

Use of Convolutional Codes for Collaborative
Networks

Master’s Thesis

performed in Telecom Engineering,
by

RAFAEL CABALLERO ZARAGOZA

Montreal July 20, 2009

Use of Convolutional Codes for Collaborative
Networks

Master Thesis

performed in Telecom Engineering,

Dept. of Electrical and Computer Engineering
at Concordia University

by Rafael Caballero Zaragoza

Examiner: Professor Reza Soleymani

 Concordia University

 Montreal July 20, 2009

 I

Acknowledgements

 First of all, I would like to thank my family, my parents and my sister, for the support
and the encouragement they have given me throughout all this university years, in particular in
those difficult moments that I had to overcome especially during finals periods. I am very
grateful because without them it would have been a lot harder, yet impossible, to fulfil this
challenge.

 I also would like to thank my supervisor at Concordia, Professor Reza Soleymani for
giving me the opportunity to work with him and his group. It has been a very enriching
experience for me to follow up my thesis in such a delightful environment.

 I am also very grateful to my tutor at my host university, Maria Julia Fernández-Getino
García who has supported me not only to take advantage of this experience abroad but also
throughout all my years at the university with very valuable advice and encouragement.

 I cannot forget about my co-workers at the Concordia lab, Patrick, Hesam and Ding
who has helped me out with the guidance and resolution of the various queries I have faced over
the realization of this thesis. They have been a key part in the achievement of my results and the
knowledge of their own work.

 Finally, I would like to mention and thank all the people who have shared those years at
the university with the good and the bad moments, especially Jorge, Ramon and Irene.

 II

Abstract

 The objective of this thesis was to acquire the knowledge about the works perform by
professor Soleymani and his student group in collaborative communications. We decided to
start from the beginning simulating a wireless communication scenario and we thought it would
be of great value to implement and simulate a convolutional channel code with Viterbi
decoding. The last part has been about studying collaboration trough the references and some
implemented simulations.

The main issue of this thesis has been the implementation and usage of a convolutional
code with Viterbi decoding in a collaborative scenario. Throughout the period of duration of the
work, we have first modelled a simple convolutional code that we have tested and compared
with the case in which we did not have any channel coding. Later on, in a second phase of the
project, we have used that convolutional code implemented combined with collaboration.

 To help with the simulations, we have implemented our code in MATLAB and we have
made a comparison in performances between different possible scenarios.

 III

Contents

Contents

List of figures

List of tables

1. Background 1
 1.1. Introduction.. 1
 1.2. Purpose... 1
 1.3. Method... 1
 1.4. Report structure.. 1

2. Description of the scenario 3
 2.1. System overview... 3
 2.2. Generating the data... 3
 2.3. Convolutional encoder.. 4
 2.4. BPSK modulator... 5
 2.5. Mapping the channel symbols to signal levels.................................. 5
 2.6. AWGN channel... 5
 2.7. Viterbi decoder.. 7
 2.8. The performance estimation block.. 10

3. Radio channels 11
 3.1. Introduction... 11
 3.2. Fading models... 11
 3.2.1. Large scale fading... 12
 3.2.2. Small scale fading... 12
 3.3. Small scale fading: mechanisms, categories and effects.................. 13
 3.3.1. Time dispersion of the channel... 13
 3.3.2. Time variance of the channel.. 13

4. Collaborative Networks 15
 4.1. Introduction... 15
 4.1.1. Background ideas.. 15
 4.2. Basic assumptions... 16
 4.3. Two phase communication... 17
 4.3.1. Detect and forward.. 18
 4.3.2. Full diversity collaboration... 19
 4.3.3. Time fraction... 22
 4.3.4. Collaborative coding.. 22
 4.4. Multiple relays.. 23

5. Results 24
 5.1. AWGN channel... 24
 5.1.1. Figures... 25
 5.2. AWGN channel with Rayleigh slow fading...................................... 27
 5.2.1. Figures... 27
 5.3. AWGN channel with Rayleigh fast fading.. 29
 5.3.1. Figures... 30
 5.4. AWGN channel with Rayleigh slow fading and collaboration......... 33
 5.4.1. Simulated scenario... 33

 IV

 5.4.2. Figures.. 36

6. Discussion 42

7. Future work 43

8. References 44

9. Appendix 45
 9.1. Matlab files... 45

 V

List of figures

 Figure 2.1. system overview
 Figure 2.2. convolutional encoder
 Figure 2.3. the constellation diagram for BPSK
 Figure 2.4. the AWGN channel
 Figure 2.5. BER of BPSK modulation in AWGN channel
 Figure 2.6. trellis diagram for a convolutional encoder of rate ½ and L=3 for a
 15-bit message
 Figure 2.7. transition between states
 Figure 2.8. result at t=1
 Figure 2.9. result at t=2
 Figure 2.10. result at t=3
 Figure 2.11. result at t=4
 Figure 2.12. trellis optimum path after getting to the end

 Figure 3.1. types of fading in radio channels
 Figure 3.2. a typical Rayleigh fading envelope

 Figure 4.1. wireless collaborative scenario
 Figure 4.2. network model with parameters
 Figure 4.3. a) direct transmission, b) collaboration with source silent in second
 phase, c) collaboration with source transmitting in the second phase
 Figure 4.4. collaboration with source silent in the second phase

 Figure 5.1. convolutional encoder
 Figure 5.2. BPSK modulation in an AWGN channel for blocks of length 10 bits
 Figure 5.3. BPSK modulation in an AWGN channel for blocks of length 100 bits
 Figure 5.4. BPSK modulation in an AWGN channel with slow Rayleigh fading for
 blocks of length 10 bits
 Figure 5.5. BPSK modulation in an AWGN channel with slow Rayleigh fading for
 blocks of length 100 bits
 Figure 5.6. BPSK modulation in an AWGN channel with slow Rayleigh fading for
 blocks of length 1000 bits
 Figure 5.7. BPSK modulation in an AWGN channel with fast Rayleigh fading for
 blocks of length 10 bits
 Figure 5.8. BPSK modulation in an AWGN channel with three different Rayleigh
 fading values for blocks of length 9 bits
 Figure 5.9. BPSK modulation in an AWGN channel with five different Rayleigh
 fading values for blocks of length 10 bits
 Figure 5.10. BPSK modulation in an AWGN channel with five different Rayleigh
 fading values for blocks of length 100 bits
 Figure 5.11. simulated scenario
 Figure 5.12. convolutional encoder for source and relay
 Figure 5.13. BPSK modulation in an AWGN channel with Rayleigh fading and
 collaboration of the relay far from the source and the destination, for
 blocks of length 260 bits.
 Figure 5.14. BPSK modulation in an AWGN channel with Rayleigh fading and
 collaboration of the relay near the source, for blocks of length 260 bits
 Figure 5.15. BPSK modulation in an AWGN channel with Rayleigh fading and
 collaboration of the relay near the destination, for blocks of length 260
 bits

 VI

 Figure 5.16. BPSK modulation in an AWGN channel with Rayleigh fading and
 collaboration of the relay in the middle of source and destination, for
 blocks of length 260 bits
 Figure 5.17. BPSK modulation in an AWGN channel with Rayleigh fading and some
 collaboration of the relay in the middle of source and destination, for
 blocks of length 260 bits

 VII

List of tables

 Table 2.1. truth table

 Table 2.2. table with states selected when tracing the path back through the
 survivor state table

 Table 2.3. table that maps state transitions and inputs

 1

1. Background

Introduction

Convolutional encoding and Viterbi decoding are error correction techniques widely
used in communication systems to improve the bit error rate (BER) performance. However, at
some point, we will not be able to enhance our performance due to the impairments of the
channel. To overcome these problems we will use collaboration with our channel coding
method. We will take advantage of the higher diversity of our system when using the help of
other nodes.

Purpose

The initial intent of this project was to design a collaborative scenario to learn the basics
behind this technique and its advantages in terms of improving the performance of a whole
wireless system.

To do that we have first designed a simple scenario with one source and we have been

adding different layers. The most complicated part or, at least, the most laborious one has been
the implementation of the convolution encoder and the Viterbi decoder. Once we have done and
tested both, we have passed to next step which has been the inclusion of a relay in the system
helping the source to get better performances at the destination.

The actual purpose of this work is to actually test the enhancement in the behaviour of

the whole system when we add collaboration to it. To accomplish the task, we have been getting
used to the topic through different literature.

Method

To realize this project, MATLAB was chosen for development mainly because of its
ease of use. The simulations carried out are not that long and heavy but further research on this
topic, could suggest an implementation in C or C++ for better simulation performances.

Report structure

In the next chapter we will present our simple scenario for the first part of the thesis
followed by an introduction to convolutional coding and Viterbi decoding. Then we will talk
about the behaviour of the Viterbi algorithm system.

After that, we will discuss the different fading models we can face in a wireless radio

channel because we will need to simulate the fading in our channel.

In the following chapter after the fading topic, we will get into the collaboration part

explaining the main ideas behind it that we have gathered out of the massive reading of papers
and different references.

The last chapter will be made of different simulation of all the different case scenarios

we have studied throughout the whole thesis, from the most basic one, without fading, to the

 2

collaboration scenarios with the different positions of the relay. The whole point of this thesis is
ending simulating different collaborative network scenarios in which we will apply the
convolutional channel codes we have studied so far. To conclude, plots of simulation results are
given and the results are discussed.

 3

2. Description of the scenario

System overview

 We are going to implement a basic case scenario, adding different steps at a time to
obtain the performances of a convolutional code compared to the ones of different coding
techniques.

 We are following a series of steps to fulfil this simulation of a convolutional code with
Viterbi decoding. At the very beginning, we will have a simple AWGN scenario with a BPSK
modulation. Afterwards, we will add the fading due to multipath and we will compare both
simulations.

 From now on, we will explain all the different steps which are necessary to implement
our wireless communications system but as an introduction, this will be our block diagram.

Figure 2.1: system overview

 As we can see, it is a very simple block system in which we have space for other blocks
that we could add to make the system more real. We consider that we make de demodulation
process in the Viterbi decoder because we have soft decision.

The platform we are going to use to simulate our system will be Matlab so if we
mention any function it will be something related with the Matlab language.

Generating the data

 We use a random number generator that gives us a certain number of bits which will
represent our message or information. That information will be encoded and transmitted through
the channel. We will use the rand function in Matlab.

 4

Convolutional encoder

 Convolutional codes are applied in applications that require good performance with low
implementation cost. They are used with data streams not with static blocks. We have designed
a very simple convolutional encoder with a code rate of r=1/2 and a memory length of M=2.

 We can denote a convolutional code with three parameters (n,k,L) where n is the
number of outputs at the encoder, k is the number of bits we introduce at the input of the
encoder at a time and L is the memory length plus the input (L=M+1).

 As we said before, and following the notation used to describe a convolutional code, in
our case we are using a (2,1,3) convolutional encoder as we can see in the figure below.

 We can also define our code by
series of vectors or sequences that specify
a convolutional code completely. If we put
those vectors all together we obtain the
generator matrix which defines the
connections between all the slots and the
outputs of our system.

 In our case, this generator matrix
would be:

 As we can see, we have as many
rows as outputs and as many columns as
memory units (counting the input itself).

 Figure 2.2: convolutional encoder

We have three slots which correspond to the input and the two memory units. To obtain the
output of the encoder in each time instant, we just have to make a matrix multiplication of the
information in the slots and the generator matrix.

 This matrix multiplication could be seen as a modulo-two addition as well. We could
think about our system as a cascade of exclusive-or gates. These exclusive-or gates perform
modulo-two addition of their inputs following this table:

 This is the truth table that we will follow to
obtain the output of the encoder in each time instant.

 If we go back to our convolutional code, we can
see from the structure that each input has an effect on
three successive pairs of the output symbols. That is an
extremely important feature and it is what gives the
convolutional code its error correcting power.

 So, for the last bit of our block or data given, in
order to affect three pair of output symbols, we need to

 Table 2.1: truth table output two more pair of symbols (maybe we will be

=

101

111
G

 5

discarding those bits at the end but we have to do that for the last bit). This is accomplished in
our example encoder by clocking the convolutional encoder memory slots two more times (M
times in a general encoder) while holding the input at zero. This process is called ‘flushing’ the
encoder and results in two more pair of output symbols.

 Another important aspect to take into consideration is that the encoder must start and
end in a known state for the decoder to be able to reconstruct the input data sequence properly.

BPSK modulator

 This is the simplest modulation we could have in a system. It is also the simplest form
of a Phase Shift Keying (PSK) modulation. We use two phases which are separated by 180º. To
make it simpler, the two constellation points are positioned on the real axis, at 0º and 180º.

 The binary data
will be carried through the
following signals:

 - For binary ‘0’:

- For binary ‘1’:

Figure 2.3: the constellation diagram for BPSK

Mapping the channel symbols to signal levels

 To transmit this binary signal, we are going to use an antipodal baseband signalling
scheme. This is just a matter of translating ‘0’s to ‘+1’s and ‘1’s to ‘-1’s. We will perform the
operation y=1-2x on each convolutional encoder output symbol to accomplish that.

AWGN channel

 If we want to simulate the real characteristics of the channel, we will have to add the
additive white Gaussian noise process which simulates background noise of the channel under
study.

 Adding noise to the transmitted channel symbols produced by the convolutional
encoder, involves generating Gaussian random numbers, scaling the numbers according to the
desired energy per symbol to noise density ratio, Es/N 0, and adding the scaled Gaussian random
numbers to the channel symbol values.

)2cos(
2

)(1 ππ += tf
T

E
ts c

b

b

)2cos(
2

)(0 tf
T

E
ts c

b

b π=

 6

 If we have an uncoded channel, Es=Eb, since there is one symbol per bit. However, for a
coded channel like in our case we have to take into consideration that we are sharing the energy
between all the code word bits. We have to work with the energy per coded word or energy per
symbol (Es).

 As an example, we can consider our
system with the convolutional channel coding of
rate ½. In this case, Es≠Eb, so to obtain the
relation between Es/N0 we have to apply:

Figure 2.4: the AWGN channel

So as a result of all that, the received signal without taking into consideration any other

thing, will be the sum of both, the noise and the information coming from the encoder, r(t)=
s(t)+n(t).

Figure 2.5: BER of BPSK modulation in AWGN channel

 To see the result of the different methods of coding in our system, we will compare with
the theoretical curve which we can obtain by applying the expression to obtain the BER of a
BPSK modulation in AWGN channel:

 2/)(
0N

E
erfcBER c=

)2/1(log10)/(log10 10
0

10
00

+=+=
N

E
nk

N

E

N

E bbs

 7

 As we said before, in this modulation case, Ec=Eb, so it would not matter which energy
we choose to simulate the behaviour of this modulation over an AWGN channel.

 We plot the behaviour of this BPSK modulation over an AWGN channel (Figure 2.5).
That will be our reference for the rest of the channel coding simulations that we will see further
on.

Viterbi Decoder

 This is the trickiest part of our system so far; it has also been the part which has needed
more time to fulfil as we have faced different problems to accomplish it.

 The very first step that will help us understand the Viterbi algorithm is the trellis
diagram. The figure below shows the trellis for our example (remember that we had a rate of ½
and L=3).

Figure 2.6: trellis diagram for a convolutional encoder of rate ½ and L=3 for a 15-bit message

 We have 2 memory slots (M=2) so that means
we can have up to 4 different possible states which are
represented as a four rows of horizontals dots. There
is one column of four dots for the initial state of the
encoder and one for each time instant during the
message.

 For a 15-bits message with two encoder
memory flushing bits, there are 17 time instants in
addition of the initial one (t=0). The solid lines
connecting dots in the diagram represent state
transitions when the input bit is a one whereas the
dotted lines represent state transitions when the input

 bit is a zero.
Figure 2.7: transition between states

 The two-bit numbers labelling the lines are the corresponding convolutional encoder
channels symbol outputs (remember that n=2 in our system).

 One of the most important things we have to notice is that as the initial condition of the
encoder is the state ‘00’ and the two memory flushing bits are zeroes, the arrows start and finish
at this state. This is an important feature of the trellis diagram as we have to know which are the
initial and final states of the encoder to proceed with the decoding process.

 8

 Let’s start explaining how the Viterbi algorithm actually works. Each time we receive a
pair of channel symbols, we are going to compute a metric to measure the distance between
what we received and all the possible channel symbols pairs we could have received.

 In our example, we are using soft decision which means that we are considering
Euclidean distance to measure. The distance values we compute at each time instant for the
paths between the states at the previous time instant and the states at the current time instant are
called branch metrics. For the first time, we are going to save these results as ‘accumulated error
metric’ values associated with the states.

 If we take the first transition as an example, which means going from t=0 to t=1, there
are only two possible channel symbol pairs we could have received, ‘00’ and ‘11’. This is
because we know the convolutional encoder was initialised to the all zeros state and given one
input bit (that can only be a one or a zero), there are only two states we could transition to and
two possible outputs for the encoder.

 In each of the following states, we will be adding the branch metric values to the
previous accumulated error metric values associated with each state that we came from to get to
the current one. What we carry forward to the next time instant is the accumulated error metrics
for each state and the predecessor states for each of the four states at the previous time instant.

 Figure 2.8: result at t=1 Figure 2.9: result at t=2

 In the figures above, we are showing the process with hard decision which is easier due
to the use of Hamming distance that only counts the number of different bits between the
received channel symbol pair and the possible channel symbol pairs.

 Note that the solid lines between states at t = 1 and the state at t = 0 illustrate the
predecessor-successor relationship between the states at t = 1 and the state at t = 0 respectively.
This information is shown graphically in the figure, but is stored numerically in the actual
implementation. To be clearer, at each time instant t, we will store the number of the
predecessor state that led to each of the current states at t.

 From this point and starting at time instant t=3, things get a little bit more complicated
since there are now two different possible ways to get to each of the four possible states from
the previous ones. The way to handle this is just by comparing the accumulated error metric
associated with each branch and discarding the larger one of each pair of branches leading into a
given state. Dealing with Hamming distances, we can have some cases in which we have the
same metric for both paths, we just save one of them, but in our case, for soft decision decoding,
we will rarely have this problem.

 9

 The operation of adding the previous accumulated error metrics to the new branch
metrics, comparing the results, and selecting the smallest accumulated error metric to be
retained for the next time instant is called the add-compare-select operation.

 Figure 2.10: result at t=3 Figure 2.11: result at t=4

 In the two figures above we can see the result of the process for the time instants t=3
and t=4. We have to note that in t=3 we are committing an error between the encoded word
which comes out of the encoder and the received word after being transmitted through the
channel. Normally after de decoding process we will be able to solve that error and we will not
actually count it as so.

 Notice that at t=4, the path through the trellis of the actual transmitted message, shown
in bold, is again associated with the smallest accumulated error metric. This is the main idea
behind the Viterbi decoder and the one that it exploits to recover the original message.

 At this point of the process, we have already studied the different case scenarios that we
can face in the trellis, which are the first two steps (M in a general case) and the rest, up to the
end of the trellis, starting in our case at time instant t=3. So we can get to the end at time instant
t=17 and the trellis look like this without the messy paths in every time instant.

Figure 2.12: trellis optimum path after getting to the end

 Once we have got to the end of the trellis we are ready to perform the decoding process,
ready to generate the decoder output from the optimal path. We have to build a matrix with the
accumulated error metric for every single state and for every single time instant and another one

 10

with the history of the sates that preceded the states at instant t with the smallest accumulated
error metric. Once this information is built up, the Viterbi decoder is ready to recreate the
sequence of bits that were input to the convolutional encoder when the message was encoded
for transmission. To accomplish this we have to follow the following steps:

- We select the state having the smallest accumulated error metric and save the state
number of that state

- Then, iteratively we perform the following step until we reach the beginning of the
trellis: we work backwards through the state history table (the one that shows the
surviving predecessor states for each state at time instant t), for the selected state,
select a new state which is listed in the state history table as being the predecessor
to that state and saving it. This is the backtrack step.

 Table 2.2: table with states selected when tracing the path back through the survivor state table

- To finish, we will work
forward again through the list
of selected states we have
saved in the previous steps.
With the help of the table
showing the next state given
the input and the current state,
we can know which is the
input bit that corresponds to a
transition from each
predecessor state to its
successor state. That is the bit
that must have been encoded
by the convolutional encoder. Table 2.3: table that maps state transitions
 and inputs

 So after all the process, we must have the same 15 bits that were encoded at the
beginning. That means that we are discarding the last 2 bits (M in a general case) which were
the flushing bits.

The performance estimation block

This block, we could actually have avoided the explanation because it is a trivial thing
to do to obtain the performances of a channel coding. What we will do it is to compare both, the
message word which enters the convolutional encoder with the decoded word which we get
from the Viterbi decoder. We will then compute the errors we are having for different Eb/N0
ratios.

 11

3. Radio channels

Introduction

 The radio channel place the basic limits on the performance of wireless
communications. A radio channel can be of a variety of types and it can change with time. This
random nature of radio channels make them very important in the wireless transmission
systems. In traditional systems we experience additive white Gaussian noise (AWGN) channel
model with thermal noise in the receiver components along with antenna temperature as the
main source of signal degradation. In radio channels, this model fails due to the random nature
of propagation channel.

 This random nature causes rapid changes in signals amplitude, phase and frequency and
is generally called fading. More importantly in a wireless channel, a signal can travel over
multiple paths between transmitter and receiver and can contribute to multi path fading.

 The term fading refers to the time variation of a received signal power caused by
changes in the transmission medium or paths. In a fixed setup, fading is affected by changes in
atmospheric conditions such as rainfall. But it is different in a mobile environment where one of
the two antennas is moving relative to the other, the relative location of various obstacles
changes over time, creating complex transmission effects.

Fading models

 The modeling of a channel is generally based on large and short area distances. We have
two big different models of case scenario we can actually simulate. One of them is large scale
fading which is a model based on large area distances that covers mean signal strength of the
signal and are efficient in measuring radio coverage area in broader aspects. On the other hand,
we have models based on rapid changes of signal strength over short areas and time which are
called small scale fading. We can make a classification of the main types of radio channel
fading.

Figure 3.1: types of fading in radio channels

 12

Large scale fading

 Impact of surrounding landscape and infrastructure on received signal strength are
described in large scale fading model. This is described in terms of mean path loss nth-power
law and a log normally-distributed variation about the mean. Mean path loss as a function of
distance‘d’ between mobile end and base station can be expressed as:

 Lp(d) ∞ (d/dr)

n,

 Where Lp is the path loss, dr is reference distance generally in the range of 100 m to 1
km depending on the size of cell and value of path loss exponent n depends on propagation
environment and generally lies between 2 and 4.

 Measured values have shown that path loss is a random variable with a log-normal
distribution. So, in more appropriate terms we can generalize large scale fading model as:

 Lls = Lp(d) + Yσ,

 Where Yσ, is deviation about the mean.

Small scale fading

 This type of fading is caused by multi path in the radio channel. It can cause fading in
received signal in three main ways:

 - Fast changes in the received signal over a short period of time or distance.

 - Due to the time variation of the channel, various Doppler shifts can cause frequency
modulation of the signal.

 - Multi path delays can generate replicas of the original signal.

 We can follow different models for the simulation of these different impairments that
can occur to the transmitted signal regarding fading. If the received signal is composed of line
of sight components, then we can make the assumption that this small scale fading can be
modeled as Ricean fading. If the line of sight component in the received signal is zero then it is
called Rayleigh fading. This is the model we are going to focus in because it is the most
common one in wireless communications. An example of Rayleigh fading is shown below:

Figure 3.2: a typical Rayleigh fading envelope

 13

Small scale fading: mechanisms, categories and effects

 For the time being, we are going to focus on small scale fading because of the multi
path in the radio channel. We have been speaking about the different types of fading we can
have for a mostly real scenario. We could make two different classifications regarding the
frequency dependence or the time variance.

Time dispersion of the channel

 Time dispersion can be observed by plotting received power of the transmitted signal
varying with time delay τ. We can define τ as the copy of signal component received after the
arrival of the first signal. We can define maximum excess delay Tm as the time during which
first and last multipath component of the transmitted signal is received. If we compare Tm with
symbol time Ts, we can observe that our signal is distorted in two main ways, which we will
explain subsequently.

 - Frequency selective fading: that happens when Tm is greater than Ts so the received
multipath components are arriving beyond the symbol time duration which causes channel
related inter symbol interferences (ISI). We will have different types of attenuation regarding
the frequency used to transmit in every case.

 - Flat fading: in this case, Tm<Ts, so it means that all the received multipath
components are arriving within the symbol time period. We then, can assume the same
behaviour of the signal in every different frequency. For such a scenario, we will not suffer from
ISI but still the received components can add destructively and cause variations in the received
signal, in the signal to noise ratio (SNR) of the received signal.

Time variance of the channel

 We can either define the time variance of the channel as the relative motion of
transmitter and receiver with respect to each other or the motion of the objects in the channel.
Due to this variation in the channel, signal amplitude and phase are varied as channel
propagation paths are constantly changing. We can define a time constant T0 as the time over
which the channel remains constant. We can then compare this no-variation of the channel
characteristics time with the time per symbol (Ts). We obtain two different classifications.

 - Fast fading: that is the case when Ts>T0. We have a different behaviour of the channel
for every single bit we send. This is not a very realistic case scenario cause if that is so, it would
be very difficult to simulate this type of channel.

 - Slow fading: this is the opposite case, the one in which Ts<T0,

 which means that the
channel is staying constant over the symbol time period. We can assume we have the same
scenario within an hour for example, it doesn’t change that much and the impact on the signals
transmitted will be the same.

 When we want to simulate this fading phenomenon, we need to have a statistical model.
We assume that there is a large number of scatters in the channel that contribute to the signal at
the receiver so we can then apply the central limit theorem that leads to a Gaussian process
model for the channel impulse response. If the process is zero mean, which is the case for a
Rayleigh fading model, the envelope of the channel response at any time instant has a Rayleigh
probability distribution and the phase is uniformly distributed (0,2π).

 14

 For our case scenario, we will only care about the amplitude of the fading model as we
are in a BPSK scenario and the shift in the phase will not affect our performances.

 15

4. Collaborative networks

Introduction

 In this part we are going to study the case of collaboration in wireless networks to
achieve better performances. When we talk about collaboration we are talking about spatial
diversity and when we talk about this term we should think that we actually need multiple
transmit antennas at the source. Normally that is not possible in real world applications due to
practical issues that force us to limit the amount of antennas we can actually have in a wireless
device.

 Lately, we have thought about the actual possibility of using other idle nodes in our
wireless system to take advantage of them and make them help us to transmit our information to
the destination. That scenario can be viewed as a virtual transmitting antenna array.

 Following with our work, we will try to see the enhancement in the performances of our
convolutional code when we add the help of the relay to transmit our information.

 When we talk about collaborative communications we should mention the previous use
of multiple-input multiple output (MIMO) techniques. With this technique we actually improve
the capacity of the system by increasing the number of transmitting and receiving elements. We
are transmitting our data through different faded channels (each of the antennas in the
transmitter and the receiver) so that means we are increasing the diversity of our system. One of
the channels might be affected by a bad fading coefficient but the others might not so we take
advantage out of it.

 As we can see, transmit diversity is actually an advantage when dealing with wireless
networks. However, we have to think about the mobility in this type of systems. We need to
have portable devices easily carried from one place to the other. This requirement of mobility is
clearly an obstacle to implement several transmitting or receiving elements in a real wireless
device. Mobility and transportability impose size constraints on the wireless terminals.

 So that is the reason why collaboration has been proposed. The basic idea behind it is
that in a network composed by wireless nodes a possible transmitting node with a single antenna
could be added by an idle node emulating a MIMO scenario. That idle node will be another
wireless device.

Background ideas

 We are going to explain
some previous ideas that have lead
to the development of collaborative
communications.

 As we have already stated,
collaborative communications were
introduced to allow devices
equipped with a single antenna to attain
 Figure 4.1: wireless collaborative scenario

 16

higher order spatial diversity. Thus, they are capable of dealing with the fading issue which is
really important in wireless communications.

 At the very beginning we were supposing that the channel between the source and the
relay was only affected by an additive white Gaussian noise (AWGN). When we introduce the
fading phenomena in the system is when it is worth talking about collaborative communications
as we can attain a higher degree of spatial diversity.

Basic assumptions

 We are going to present the scenario we are going to work with. Actually, we will be
working with the basic scenario, the most basic example of collaborative networks in which we
have one source, one relay and one destination. So far, we had not considered the relay in our
convolutional system but we have the same situation in which a source wants to transmit some
kind of information to the destination. However, this time he will be helped by an idle node in
the system considered the relay. Working with the relay gives us the opportunity to have
another way of transmitting our information through a different path which will have a different
fading. As a result we will be maximizing the transmit diversity.

 The scenario that we have is basically the same as we saw in Figure 4.1 but in this case,
we will be adding some parameters that we will be able to adjust. Different simulations will be
done changing the value of these parameters.

 As we can see we have three
different parameters for each path, Dij, Hij
and PGij that stand for distance between
nodes, fading coefficients and path gain
respectively.

 When we talk about path gain we
actually should be talking about path loss
because it represents the long scale
fading coefficient which might lead to an Figure 4.2: network model with parameters
attenuation of the signal.

 What we do is we set the source-destination gain and the distance between source and
destination to be 1 (PGsd=Dsd=1) and we determine the rest of the path gain relative to this PGsd
following this equation:

α

=

ij

sd
sdij D

D
PGPG

 We are going to use a path loss exponent of 2 (α=2) for all results. We also assume the
distance between source and relay to be greater than zero because if Dsr was zero we would be
having a normal MIMO system.

 If we talk about the fading coefficients for the system, we will assume we have a small
scale fading at the beginning. We can actually make some simulations assuming fast fading but
at the beginning we will set them to be the same throughout the whole frame. As in the previous
simulations, we also assume that the destination knows the behavior of the channel between him
and the source and between him and the relay. That means he will know the value of the fading
coefficients. As for the relay, it will know the behavior of the channel between him and the

 17

source so it will also know the fading coefficient between both of them. We have to add that as
we assume those fading coefficients to follow a Rayleigh pattern, they will be modeled as
independent samples of a complex Gaussian random variable with zero mean and a variance of
0.5 as before.

 In previous sections we did not pay attention to the large scale fading as we assumed it
to be 1 but now we have to quantify the over-all attenuation of a signal suffered through any
link. Thus, we have to take into consideration both, the path gain and the fading coefficient as
follows:

 ijijij HPGG =

 As we can derive from what we have already assumed, in the scheme we are proposing,
the source is considered blind. Basically, it is neither aware of its transmission channel’s fading
coefficients nor of the relay collaboration status. As we can imagine, the relay is neither aware
of its transmission channel’s coefficients with the destination.

Two phase communication

 If we want to keep source and relay working in the same frequency we need to have a
two phase protocol for the relay. It will be impossible for the relay to be transmitting and
receiving at the same time if we do not want to use another frequency. If we were to use another
frequency we would be using more bandwidth which is not a desired situation, it could be even
not possible at some point. The thing is that due to the severe attenuation through the wireless
channel any received signal will be very weak compared to the one transmitted to the source,
that means that if we are transmitting at the same frequency, any transmitted signal from the
node would overwhelm any received signal.

 Therefore, the relay has two operations to perform; it must listen first to the source and
then send its own signal to the destination. As a result of that, two-phase protocols have been
proposed for collaboration.

 In a two-phase protocol, the relay spends the first phase (also known as the exchange or
listening phase) receiving the data from the source. In the second phase (also known as the
collaborative phase) the relay transmits its own signal to the destination. Depending on the
protocol under study, the destination may listen only to the collaborative phase or both phases to
perform the decoding. Two-phase protocols eliminate the need for the relay to collaborate on a
different wireless channel. However, they increase the bandwidth requirement. It is evident that
any signal sent by the source will require twice the bandwidth for the relay to be able to
collaborate because it has to listen first.

 When we talk about collaboration we might assume full diversity which means that all
the information sent by the source is being received at the destination through two different
channels with two different gains. When we compare direct transmission with collaboration we
realize that we have to send the information to the relay as soon as possible for it to be able to
collaborate.

So we will have to change the rate of transmission to be able to have collaboration
which means that the entire data transmitted from the source must be contained in a fraction of
the channel allocation used in direct transmission.

 18

Figure 4.3: a) direct transmission, b) collaboration with source silent in second phase, c)
collaboration with source transmitting in the second phase

 As we can see the source might be transmitting or not in the collaboration phase. The
information is transmitted in the first phase and once both, the source and the relay, have the
information we can let the source retransmit it (in the form of parity or repetition).

 In this case both phases have the same length which is one of the many different cases
we can have. We have to notice that if the period of collaboration is shorter than the period of
listening some of the information symbols might be only transmitted once which would mean
that the whole system would not be considered as a full diversity system.

 If we want to compare the b) and c) cases we have to take into consideration that we are
transmitting more information (in the form of parity or not) in the c) case. Hence, the bits
transmitted in the b) case should have higher power in comparison with those transmitted in c).
As an example to understand the whole idea, if we receive a bit of information three times we
will have a lower probability of error than if receive it twice but, if those two received bits have
higher power they would be less likely to be in error. As a result of that we can actually make a
fair comparison between those two case scenarios.

Detect and forward

 This was one of the first methods proposed at the beginning when talking about two
phase communication. For this protocol, the relay listens in the first phase and attempts to detect
the transmitted symbols from the source and then retransmits the detected symbols in the
collaborative phase. So basically, we can make two different parts, the non-collaborative part
and collaborative one.

 As we can see this is a simple way to achieve collaboration in a wireless channel.
However, we do not have full diversity for the whole set of symbols we are transmitting. The
method was proposed to increase the throughput of the system so we need to balance between
the symbols that are sent with and without collaboration. That is the reason why some symbols
might attain full diversity whereas those transmitted without collaboration can only achieve unit

 19

diversity. Therefore, the overall performance of this method does not maximize diversity and
hence cannot be assumed to maximize throughput either.

 We could be having this example between source (S) and relay (R):

 S: a1 a2 a3 a4

 R: a3 a4

 So as we can see in this example, the first two symbols are attaining unit diversity
whereas the last two are actually achieving full diversity. The whole system cannot be
considering as a full diversity system.

 Besides, we will have to handle with other drawbacks for this method. The thing is that
if the detection at the relay is poor or incorrect, we are doing nothing to recover from it, we are
just sending the information we have received to the destination, so we might attain worse
performances at the end. In addition to that problem, we need to review that to achieve optimal
decoding, the destination needs to know the characteristics of the channel between source and
relay.

Full diversity collaboration

 As we have already said, one of the most important features of collaborative
communications is that we can attain full diversity for the whole set of information bits. To
attain that, several methods have been proposed, all of them following a two phase pattern. We
are going to focus in two main protocols, Amplify and Forward (AF) and Decode and Forward
(DF). To explain both of these methods we will consider that only the relay is transmitting in
the collaborative phase. This is only an assumption we are making but the source could be very
well transmitting at the second phase too.

Amplify and Forward

 This is a simple method to achieve collaboration in the wireless channel. In the first
phase, the relay listens to the information coming from the source and then simply amplifies the
signal and retransmits it to the destination. We could see that method as a version of repetition
encoding, where source and relay transmit basically the same thing although we have to take
into consideration that the information sent by the relay is actually corrupted by the noise in the
channel between source and relay.

 As a basic example of this method between source (S) and relay (R):

 S: a1 a2 a3 a4

 R: β(a1+n) β(a2+n) β(a3+n) β(a4+n)

 This time, we have a gain (β) added by the relay but we are amplifying not only the
information but also the noise in the source-relay channel. We could actually be sending errors
which means that the decoding process would be compromised.

 We are going to assume that the exchange and collaboration phases are of the same
length (which means that once the source has transmitted half of his frame the relay starts to
collaborate) to see how are the signals received at each phase at the relay and the destination.

 20

Figure 4.4: collaboration with source silent in the second phase

 So n1=n2 which means that the collaboration fraction is ½ which is only an assumption
due to the fact that we can actually have another rate.

 During the exchange phase of the AF protocol, the received signals at the relay and the
destination are respectively those:

)()()(kzkxGEky e
r

e
ssrs

e
r +=

)()()(kzkxGEky e
d

e
ssds

e
d +=

 The term)(kye
i stands for the kth symbol received at node i during the exchange phase.

As we can see the symbol transmitted by the source is the same and we have different samples
of noise due to the different channels. Both of them are Gaussian random variables with a
variance of No/2 per dimension. Es is the energy per transmitted symbol and Gij is the channel
coefficient that we already defined before, taking into consideration the path gain and the fading
coefficient.

 During the exchange phase the relay processes the data and amplifies it. The received
signal at the destination during the collaborative phase will be:

)()2()(kznkyGEky c
d

e
rrds

c
d +−= β

 Where β is the amplifying gain at the relay.

 To sum up, we have to remember the main idea of this protocol which is that even
though noise is also amplified at the relay, the destination is receiving two copies of the signal
through two independently different fading channels, which means that we are accomplishing
our goal which is to maximize the spatial diversity.

Decode and Forward

 This is another two-phase protocol in which the relay not only receive and forward the
information but it also decode it and re-encode it again to transmit it to the destination. As we
can imagine, this is a more robust method of collaboration as we no longer have the effect of the
possible errors between the source and the relay. However, this extra step will mean more work
and more complexity for the relay.

As a rough example of this method between source (S) and relay (R):

 21

 S: a1 a2 a3 a4

 R1: a1 a2 a3 a4

 R2: b1 b2 b3 b4

 We are showing the possible case in which we could have two different relays listening
or collaborating with the source. As we can see, for the first relay, we are assuming that the
encoder is the same as the one in the source, so when we re-encode the symbols we are
obtaining the same code word as in the source. For the second relay, we have decoded the
information coming from the source and we have re-encoded it with a different encoder. That is
the reason why we have different code words sent to the destination.

 Obviously, at the destination we will need to have some kind of information about the
coding process in both the source and the relay if this is not the same.

 If we get into a more formal example as we did for the AF case we can say that for the
first phase of the protocol, which is always the exchange phase the signals received at the relay
and the destinations remains the same as in the AF protocol:

)()()(kzkxGEky e
r

e
ssrs

e
r +=

)()()(kzkxGEky e
d

e
ssds

e
d +=

 The real change in this method comes actually at the collaboration phase after the relay
has decoded the codeword coming from the source and re-encoded it. Thus, the signal received
from the relay at the destination follows this pattern:

)()()(kzkxGEky c
d

c
rrds

c
d +=

 As we can see, the coded symbol)(kxc
r stands for the kth symbol obtained from the

encoder at the relay during the collaboration phase. It is the result of a process of decoding and
re-encoding:

)))((()(kywukx e
r

c
r =

 For that expression, u(.) is an encoding function and w(.) is a decoding one.

 We have to notice that if the encoder at the source and the destination is the same which
means we have a sort of repetition code but through different channels, the symbols received

from both should be following the same pattern so)()(kxkx e
s

c
r = .

 To conclude with this section we need to make a comment on the process of decoding in
the relay. As we can imagine, if we want a perfect decoding process of the information coming
from the source without any error, we will need to have a high SNR between source and relay or
a very favorable channel between them.

 In reality, we will need to be satisfied with a certain degree of BER to start the
collaboration process. Based on that certain threshold we can work with selection relaying. In
this case, when the relay is unavailable to decode the information coming from the source, it
does not help and the source decides to go back to the direct transmission for the remainder of
the frame.

 22

 We will need to balance between attaining full diversity and being able to decode the
information coming from the source with a certain degree of reliability. That means, if we want
to have the information sent through different channels (full diversity) we will have to relax the
decoding constraint at the relay for this to be able to re-encode the information and actually
collaborates with the source.

Time fraction

 This is a variable we have considered so far as being ½. The time fraction is defined to
be as the ratio of time spent by the relay listening to the source versus the over-all time of the
whole process of listening and collaboration.

n

n1=∆

Variable time fraction

 We might think about changing the time spent at the listening phase to increase the time
the relay is actually collaborating, thus we would increase the performance at the destination.
The problem is we need to ensure a minimum BER value at the relay for it to collaborate. If we
shorten the listening part the relay might not get what the source is transmitting so it would
eventually forward errors to the destination. No matter the two phase method used, we might
not be helping the destination to decode the information properly.

 One solution to this problem is to increase the power of the signal transmitted from the
source but by doing so, we will be increasing the over-all energy cost which is not good.

 As a result of this issue, we are presenting a protocol which deal with the time fraction
selection. It will be a matter of the relay, the task to choose its own time fraction and by doing
so, we can be sure to always maximize the amount of time the relay is collaborating.

 The process is very simple, assuming that we divide the frame into a set of blocks; the
relay listens to the source until it can decode the data with a certain error rate, then it starts
collaborating. In order to accomplish this process the source must be transmitting a signal
during the entire frame time and it will never become silent. Like that, we can have different
time fractions possibilities.

 For the destination, to achieve optimal decoding, it needs to be aware of the time
fraction decided by the relay as well as the fading coefficients at the source-destination and the
relay-destination path.

Collaborative coding

 That is what we call to the combination of coding and collaboration. Up to now, we had
assumed we did not have any coding for the information bits generated at the source but form
now on we will consider some type of coding for that information. At the very last, the idea is
the same because we are sending sets of encoding information through different faded channels.

 This is actually the next step in our work once we have generated our convolutional
encoder and decoder we integrate them with the collaboration part. We could have perfectly

 23

worked with any other code to end up doing the same because the collaboration protocol does
not rely on the channel coding method. Basically, the source encodes the information with the
channel code method chosen and sends it to both the relay and the destination. The relay
receives the codeword and decodes it to get the information. It will be a matter of the relay to
decide whether the decoded information is reliable or not to send it to the destination. If that is
the case it re-encodes the information bits to transmit them as another set of parity bits. At the
destination we will combine the set of parities obtained from the source and the relay. We just
have to take into consideration that, the set of parity coming from the relay will be received
from the source only in the collaboration phase, whereas the set of parity coming from the
source could be received in either phases.

Multiple relays

 As we have seen, when we have the help of the relay we are increasing the spatial
diversity of the whole system. With a single relay, we will have two different paths to the
destination because the information is sent through two different faded channels. We could tend
to think that, by increasing the spatial diversity degree normally we would achieve an
enhancement in the performances.

 The problem when we have multiple relays is that in the collaborative phase we will
have more than one signal arriving to the destination while when we had only one relay there
was no doubt about the signal coming from the relay. So, we have to take into consideration that
whether we achieve full diversity or not when all the relays are transmitting in the second phase
is not so clear.

 Two different methods to achieve full diversity while having multiple relays have been
proposed. One of them, is based on the sharing of the transmitting time which means that, if we
have M relays, we are using M+1 phases to transmit all the signal from the different nodes
including the source. With such a way of operation, we book a certain time for each relay to
transmit and it is clear that we do not have two nodes transmitting at the same time and we can
actually achieve full diversity for our system. However, if we want to transmit the same
information in a shorter period of time we will have to use a higher rate which means we will be
increasing the bandwidth requirements.

 For the second method we will use a space-time coding technique which will allow us
to use the same two phases. Thus, in the first one, all the relays will be listening to the signal
coming from the source and in the second one, once they have decoded the information, they
will re-encode it using a space-time code and forward to the destination. This method also
achieves full spatial diversity but it requires a more complex space-time coding at the relays
which means a longer time to send the parity information to the destination.

 24

5. Results

AWGN channel

 At the beginning, we are testing our AWGN system without any Rayleigh fading. We
will compare the results with the theoretical curve, the curve we obtain when we have no coding
and the curve for a Hamming block code with Belief propagation decoding.

 The simulations are repeated until we have 100 blocks in error or until we have sent 107
blocks. We are making two different simulations for our system, with a block of 10 bits and
with a block of 100 bits. Both of them are run with a relation EbN0 from 0dB to 8dB.

 Normally, there should not be big
differences between both of them due to the
encoder we have chosen of 3 slots (L=3).
We will remind the appearance of our
encoder followed by the results we have
obtained for this case scenario.

 Figure 5.1: convolutional encoder

 25

Figures

In this first figure we show the performances of the different channel code techniques.

Figure 5.2: BPSK modulation in an AWGN channel for blocks of length 10 bits

 As we can see, at the beginning when the ratio EbN0 is equal to zero, which means that
we have the same power of signal and noise, we do not get any advantage from the channel
coding. As we increase the power of the signal (we should better say, we increase the ration
EbN0), we obtain a lot better performances from the fact that we are coding our information and
so, we can recover from previous errors. That is a very general behaviour for all channel coding.

 In this graph, we are plotting four different curves, one of them, the blue one, is just
showed to be compared with the others. It’s a theoretical curve which stands as a reference and
which is calculated out of the model for a BPSK modulation over an AWGN channel.

 Then, we are simulating a BPSK modulation to which we add the Gaussian noise to
actually compare with this theoretical curve. This information will be just send through the
channel without any channel coding process. As we could imagine, we are following the same
performance as for the theoretical one. To decode the received information we just follow a
simple deciding process in which we compare the received bits to a threshold, if we are over this
value we assume we have transmitted a ‘0’, if we are below we decide a ‘1’ was transmitted.

 The other two curves are the interesting ones because we are following a coding
process. We wanted to compare the performances of a block code and a convolution code so
that is the reason we have chosen a Hamming code to compare to our convolutional scenario.

 The only difference between a block code and a convolutional one is that for the last
one, the encoded bits depend not only on the current k inputs but also on the past input bits.
Convolutional codes do not offer more protection against noise than an equivalent block code.

 26

In many cases, they generally offer greater simplicity of implementation over a block code of
equal power.

 We are using a Belief Propagation technique to decode our block code. We are not
going to get into the details of this decoding technique; we are using this Hamming block code
to make a comparison with the convolutional one that we have indeed implemented.

 As we can see the performances of the convolutional code are getting better keeping
with the increase of the ratio EbN0. We really appreciate the reduction in the BER for a ratio of
8dB where we almost attend a BER of 10-7 for the convolutional code whereas for the block
code we hardy reach to the 10-5. That means that with the same power we can get to a lot better
performances using a convolutional code.

 Furthermore, we can talk about power saving when we need to have a certain BER over
which our system does not perform well. If that is the case we can see that if we want to attend a
BER of 2x10-4 we will need an EbN0 ratio of about 6.2dB which is almost 3 dB smaller than the
amount of power we would need to transmit the same information without any coding attending
the same performances. That is half of the power, so it is really here where we can see the
difference of applying channel coding techniques to our information.

Figure 5.3: BPSK modulation in an AWGN channel for blocks of length 100 bits

 For this next figure we just have the same case scenario but this time, we are sending
blocks of 100 bits so it took us more time to simulate. The performances are slightly better than
for the previous graph as we can see. This time, we are obtaining over 3dB for the same BER
constraint. That could be normal at some point because convolutional codes are meant to be
working with a continuous bit stream and as we increase the number of bits per block sent we
could be obtaining better performances. That will not always be the case; there must be some
point in which there are not any differences as we increase the number of bits per block.

 27

AWGN channel with Rayleigh slow fading

 Once we have simulated the AWGN channel, we are adding the Rayleigh fading due to
multipath that we normally face in a radio channel. In this section, we are going to see the effect
on the received data when we are facing a slow fading that affects the same way to all the bits in
the block. We can assume that the channel stays the same for a certain period of time (it will
change for every block).

 In this case, the simulations are repeated until we have 500 blocks in error or until we
have sent 107 blocks. We are increasing the number of blocks in error because we want to obtain
softer and more precise curves. For this case scenario, we are making three different simulations
for our system, with a block of 10 bits, with a block of 100 bits and with a 1000 bits block. All
of them are run with a relation EbN0 from 0dB to 30dB.

Figures

 We are showing the curve for the convolutional code and the one without any coding to
make a comparison between both of them.

Figure 5.4: BPSK modulation in an AWGN channel with slow Rayleigh fading for blocks of
length 10 bits

 As we can see in the graph, the performances of the convolutional code in this case are
worst than the ones obtain without coding. Both curves follow the same behaviour when we
increase the ratio EbN0.

 28

 This behaviour is perfectly normal as we have the same fading through the whole block
of bits. If the channel is bad (means that it has a bad fading characteristics) the received bits are
going to be mostly wrong and we will not be able to recover from those wrong bits because the
following ones will be affected by the same fading. The power of convolutional coding is no
longer useful and the performances are even worse than when we have no coding.

 To conclude we have to say that the difference between both curves will be random
because of the fading figure chosen for the simulation in case, that means that we could be
having a closer approach between both curves.

Figure 5.5: BPSK modulation in an AWGN channel with slow Rayleigh fading for blocks of
length 100 bits

 In this other graph we are simulating the same scenario but in this case, the length of the
blocks is of 100 bits. As we can see the behaviour is the same as in the previous graph with a
worse performance from the convolutional code. In this case, the distance between both curves
is not that big because the length of the blocks is bigger. That means that we have more bits
following the same fading value and so, we are more close to the case in which we have no
coding. Normally, as we increase the number of bits per block we should be attaining closer
curves to the non coded one.

 To obtain softer curves, we should have increased the number of blocks in error but we
think it is already enough to have 500 blocks in error, which means that we have at least 500
bits in error in total.

 For this last section, we are going to show the performance for this same scenario when
the length of the block is 1000 bits. Normally, we should obtain a closest pair of curves.

 29

Figure 5.6: BPSK modulation in an AWGN channel with slow Rayleigh fading for blocks of
length 1000 bits

 As we said before, as we increase the number of bits per block we obtain closer curves,
the one which is changing is the convolutional one which is actually approaching to the one
with no coding.

AWGN channel with Rayleigh fast fading

 We continue the simulations with a fading channel but this time we are simulating a fast
fading scenario. In this section, we are going to see the effect on the received data when we are
facing a fast fading. That means that we are having a different behaviour of the channel for the
different bits of the block. When we had a slow fading, we were suffering a single fade for the
whole block but this time we are going to see what happens for different fast fading.

 For this case, we are attaining better performances so we have decided to repeat the loop
to calculate the BER for the different EbN0 ratios, 100 times instead of 500 as we did in the
previous section. We are having at least 100 bits in error so that is more than enough to obtain
reliable performances and the simulation time is average. So, to sum up, the simulations are
repeated until we have 100 blocks in error or until we have sent 107 blocks. This time, we are
making three different simulations for our system to see how it actually responds. The length of
the blocks is more or less the same, around 9-10 bits, we could have made the length of the
blocks bigger but the simulations would have taken too long.

 30

Figures

 In this first figure for this section we are showing the performance of the system when
we have a different fading value for every single bit in the block.

Figure 5.7: BPSK modulation in an AWGN channel with fast Rayleigh fading for blocks of
length 10 bits

 As we can see the performances are better than in the previous section when we had
slow fading. Actually, what is happening is that as we have different fading for every bit, not
every random fading value is bad and the convolutional code can recover from one bad bit with
the next ones. In this case, the channel coding helps to recover some information that could
have been corrupted due to the impairments offered by the channel.

 If we make a comparison with the case with AWGN only, we can see that to obtain the
same values of BER we need to have higher ratios of EbN0 (up to 25dB to attain 10-6).

 So the main conclusion we can have from this simulation is that when we have more
different fading values, we obtain better performances for our system. The thing is, this scenario
is not that common because the system doesn’t change that much or that quick in time.

 Now, we are going to see what happens when we vary a little bit the fading pattern for
our block. That means, we are going to simulate the performances of the system when we have
three different fading values and five different fading values. The length of the blocks will be 10
bits and we will try to make a simulation of the system with 100 bits per block.

 31

Figure 5.8: BPSK modulation in an AWGN channel with three different Rayleigh fading values
for blocks of length 9 bits

 As we were expecting, as we decrease the number of fading values we are actually
reducing the diversity degrees. In the previous example we had a different fading value for
every bit and as we already commented the channel coding can recover one wrong bit from the
rest of them which are good.

 This time we have a scenario in which the fading values are affecting more than one bit
so we are approaching the case of slow fading. That means our performances must be worse
than in the case of fast fading as it actually happens. For the same EbN0 of 25dB we are
attaining a BER of 10-5 whereas in the previous case in which we had fast fading we were
having a BER of 10-6 for the same ratio of EbN0.

 Next, we have made a simulation of a system in which we have five different fading
values. It is important to notice that we have blocks of 10 bits so if we have five different fading
values we will be approaching the case in which we have a fading value for every single bit (fast
fading). Consequently, the performances of this system will be better.

 The last simulation will be as well with five different fading values but the length of the
block will be 100 bits. As we increase the number of bits per block, we will obtain better
performances as the convolutional code will be working more efficiently so we will be able to
recover from more errors.

 32

Figure 5.9: BPSK modulation in an AWGN channel with five different Rayleigh fading values
for blocks of length 10 bits

Figure 5.10: BPSK modulation in an AWGN channel with five different Rayleigh fading values
for blocks of length 100 bits

 33

 As we said, for the case in which we have five different fading coefficients with 10 bits
per block, we are attaining almost the same performances for EbN0 of 25dB than in the first
case of this section where we had fast fading. Of course, we have better performance than in the
case of three different fading values.

 For the 100 bits per block, we are attaining a better BER for every single value of EbN0
as we can see for example for the ratio of 25dB in which we are having a BER if 10-7.

AWGN channel with Rayleigh slow fading and
collaboration

 After we have simulated a normal Rayleigh channel between a source and a destination
we are going to simulate now the performances of a scenario in which we add the presence of
another node acting as a relay.

 We are going to take advantage of the fact that we have already simulated the case in
which the relay is not collaborating so we have a normal case scenario with a source and a
destination. Then, we will compare the performances we have obtained in that case with those
obtained in the case that the relay is collaborating. We are going to assume that the relay is
decoding the information perfectly so we have no errors transmitted from the relay.

 After having done that, we could see the different performances when the relay actually
decodes the information coming from the source. In this case, we could have some errors as a
result of a poor decoding in the relay. Finally we could define a threshold to differ the case the
relay can collaborate from the case the relay actually cannot. That will be a matter of the power
of transmission used at the source and the characteristics of the channel between the source and
the relay. These two other phases could be part of a future work.

Simulated scenario

 To obtain the performances of a collaborative network, we will follow a series of steps
in the simulation process.

 First, we have to notice that we can make the process of simulation a lot easier by
assuming that the relay is able to decode properly and dealing only with the signals at the
receiver. Instead, as we have already simulated the convolutional encoder and decoder, we
could use them at the relay as well.

 So we are simulating a full diversity collaboration scenario following the ‘Decode and
Forward’ method that we already explained in the ‘Collaborative Networks’ section. Just to
remind some little features about this method, the main difference with other method was that,
at the relay, we decoded the information coming from the source to re-encode it again. For our
simulations, we are going to consider that we have the same encoder at the source and the relay
so it makes things easier.

 34

Figure 5.11: simulated scenario

 As we can see in the figure, our variables will be the distances between the different
nodes of the system. We will make different simulations regarding those variables. As we
established in the corresponding chapter, we are making some basic assumptions. The most
important ones are that the distance between source and relay is one (Dsd=1) and that the path
gain between those two nodes is also one (PGsd=1).

 So that is the initial step to set the distances between the nodes, basically Dsr and Drd.
Once we have this, we can calculate the path gain using the following equation:

α

=

ij

sd
sdij D

D
PGPG ,

 As we said we set α=2.

 After we have set all the variables, we can start the real process of simulation. First of
all, we generate the information bits:

 S: a1 a2 a3 a4

 Once we have generated them, we use our convolutional encoder to generate the coded
words. We have a convolutional encoder of rate ½ which means that for every single bit of
information we will be obtaining two parity bits.

 Sd: c1 c2 c3 c4 c5 c6 c7 c8

 As we can see we have an odd
set of parity and an even set of parity
after the information has passed the
encoder. This is the set of bits we are
going to send to the destination. For the
relay, we will send only the odd bits
generated by the encoder so that means
we will have something like:

 Sr: c1 0 c3 0 c5 0 c7 0

 The decoding process at the
destination will be the same that for the
previous case in which we had the
source and the destination.

 Figure 5.12: convolutional encoder for source and relay

 35

 The main difference will be at the relay but, we have to deal with the signal coming
from the source (Sr), as if the relay was indeed the destination. Once we have received the signal
from the source, we use our Viterbi decoder to obtain the information out of it. As we can
imagine we could be obtaining something different to what we have transmitted because of the
impairments of the channel between the source and the relay and because of the power of the
signal.

 Therefore, we obtain our estimated information and we will re-encode it to send it to the
destination through a different path which is really the point of all this process. Again, we use
our convolutional encoder to generate a set of parity bits. In our simulations, we will assume as
we said before, that we are decoding properly so we do not have any errors.

 If we remember, for the ‘Decode and Forward’ method we had two phases, the one in
which the relay is listening and receiving the information from the source in a parity way and
the collaborative phase in which we were helping the source by sending the information from
the relay to the destination. We have already explained the simulation of the listening phase. To
simulate the collaborative phase, we generate another set of parity bits.

 R: d1 d2 d3 d4 d5 d6 d7 d8

 However, we have to take into consideration that we have assumed both phases to last
the same time (each ½) which means that we will be sending half of the information; in this case
we will be sending the even part of the bits generated.

 Rd: 0 d2 0 d4 0 d6 0 d8

 Once we have transmitted the information through the relay-destination path we have
accomplished our goal of attaining full diversity because we are sending the information bits
through two different channels. If we think about it we are sending twice the information from
the source and once from the relay so we are actually simulating the case in which the source is
transmitting in the second phase.

 Now, all we have to do is decoding the information at the destination gathering all the
sets of parity that we have received through the different channels. We have to be careful with
that because we have to take into consideration the actual fading coefficients and path gains of
the channels to properly apply the Viterbi decoder. So at the destination we will have something
like that:

 D: c1 c2+d2 c3 c4+d4 c5 c6+d6 c7 c8+d8

 That will be our received coded word (we cannot forget about the Rayleigh fading, the
path gain and the noise but this is a rough example, not a detailed one). Once we have the result
of both transmissions added we can apply, once again, our Viterbi decoder to obtain the
estimated information bits we transmitted at the very beginning. Hopefully we will obtain better
results than the no-collaboration case scenario because we have a more robust system as a result
of the help provided by the relay.

 At the beginning of the simulations, we will be assuming that we have a slow fading
scenario which means that we have the same fading coefficient for the whole block or frame.
Basically, we are assuming that the channel stays the same for a certain period of time.
Obviously, we will generate a different random coefficient for all the three different channels
that we have.

 36

 For this case, the simulations are repeated until we have 200 blocks in error or until we
have sent 107 blocks. We are increasing the number of blocks in error because we want to obtain
softer and more precise curves. We will try to make different simulations with different
distances between all the nodes of the system to see the different performances. The length of
the block or the frame will be 260 bits. All of the simulations are run with a relation EbN0 from
0dB to 30dB.

Figures

 We are going to plot different graphs to show the different performances of the system
under different case scenarios.

 For the first graph we are assuming the following distances between elements:

 Dsd=1 (it is always equal to one); Dsr=2; Drd=3.

 So, as we can see we have the relay at almost the same distance from the source and the
destination. However, the relay is farther from the destination than the actual source so this is
not a very illustrative real case scenario. The purpose of this simulation is to show that there is
no point to have the relay in that position because it will not be helping the source at all. We
should expect pretty much the same performances from the case in which we have collaboration
and the case in which we do not have the relay helping the source.

Figure 5.13: BPSK modulation in an AWGN channel with Rayleigh fading and collaboration of
the relay far from the source and the destination, for blocks of length 260 bits

 As we had expected, there is no big difference between the case in which we are
collaborating and the case in which we are not because the relay is further than the source and is
not helping that much.

 37

 From now on, we are going to place the relay in between the source and the destination
and we will make three different simulations, placing the relay near the source, near the
destination and in the middle of both to see how it behaves. We will be plotting in the same
graph the behaviour of the system when the relay is not helping (no collaboration) and when we
assume that the decoding process at the relay is perfect so we are sending data from the relay
with no errors (perfect collaboration).

 In the first graph we are showing the case in which the relay is closest to the source than
to the destination. We are assuming the following distances:

 Dsd=1 (it is always equal to one); Dsr=0.2; Drd=0.8

 We can see that scenario like if we had two sources sending the same information to the
destination. This same information will travel through two different fading channels with
different channel coefficients. Just to remember the channel coefficient was the combination of
the path gain and the fading coefficient:

 ijijij HPGG =

Figure 5.14: BPSK modulation in an AWGN channel with Rayleigh fading and collaboration of
the relay near the source, for blocks of length 260 bits

 Again as we were expecting, the performance of the system is better than any other
previous cases. This time the relay is actually helping the source to get better results at the
destination. As we increase the ratio SNR we have bigger differences between both cases.

 38

 Now, we are going to place the relay near the destination, so we will have the source
transmitting from a further position than the relay but both in different fading channels. We are
assuming the following distances:

 Dsd=1 (it is always equal to one); Dsr=0.8; Drd=0.2

 In advance, we could think that we will get better performances than in the previous
case when we had the relay close to the source.

Figure 5.15: BPSK modulation in an AWGN channel with Rayleigh fading and collaboration of
the relay near the destination, for blocks of length 260 bits

 As we were expecting the results for this simulation are better than for the previous one.
The relay is really helping the source because it is very close to the destination. The information
coming from the relay is very reliable because of the proximity of the node, the attenuation is
very small. We make the simulation up to a SNR of 15dB because it would have taken too long
to do it for higher ratios.

 The last figure of this set is with the relay place in the middle of the source and the
destination. We are assuming the following distances:

 Dsd=1 (it is always equal to one); Dsr=0.5; Drd=0.5

 Again, as we can expect in advance, we will be attaining better performances than in the
case in which we had the relay close to the source but not better than the previous case in which
we had the relay close to the destination.

 39

Figure 5.16: BPSK modulation in an AWGN channel with Rayleigh fading and collaboration of
the relay in the middle of source and destination, for blocks of length 260 bits

 If we compare this graph with the two previous ones, we can notice that the
performances are better than the case when we have the relay close to the source but worse than
when we have it close to the destination.

 We have to take into consideration that once we have collaboration we are using more
power, the power to transmit the signal from the source and the power to transmit the signal
from the relay. To make a fair comparison with the case in which we do not have collaboration,
we have to take that fact into consideration.

 For the simulations we are performing, we are sending another set of parity from the
relay, in the collaboration phase so the relay is only working half of the time. We will then
assume that he is using half of the power the source is using.

 EbN0_values_linear=10.^(EbN0_values/10);
 SNR=3/2*EbN0_values_linear;
 SNR_db=10*log10(SNR);

 As we can see, we create another variable that will be the one we will use in the graphs
that take into consideration that we are actually using more power in the whole system (unity
for the source and half for the relay so that makes 3/2).

 To conclude, we have made a simulation of a system in which we have some
collaboration, we are not collaborating all the time anymore. The collaboration of the relay will
depend on the channel coefficient between the source and the relay. This last one knows this
coefficient and can decide whether to collaborate or not.

 40

 In advance we could think the performances are going to be worse than in the case in
which we are always collaborating which is what is actually happening.

 We are assuming the following distances:

 Dsd=1 (it is always equal to one); Dsr=0.5; Drd=0.5

 We want to compare this new graph with the previous one in which we had the same
placement of the nodes but we were collaborating all the time.

Figure 5.17: BPSK modulation in an AWGN channel with Rayleigh fading and some
collaboration of the relay in the middle of source and destination, for blocks of length 260 bits

 If we compare it with the previous graph the performances are slightly worse due to the
reason that the relay is not always collaborating. We have to take this fact into consideration by
defining a threshold (τ) above which we will be considering collaboration.

 pg_sr = (d_sd/d_sr)^2;
 tau = 9.12;
 P_no_collab = 1 - exp(-tau./(pg_sr*ebn0));
 P_collab = exp(-tau./(pg_sr*ebn0));

 FER_some_collab = P_no_collab.*FER_no_collab +
 P_collab.*FER_collab;

 TSNR = ebn0.*(P_no_collab+ (3/2).*P_collab);
 TSNR_db = 10*log10(TSNR);

 41

 As we can see the probability of collaborating or not only depends on the channel
coefficient between source and relay and the actual power used to transmit the signal. Then to
make a fair comparison with the case in which we do not have collaboration we define a TSNR
which is balanced by the probabilities calculated before

 This graph is also rougher because we have simulated with up to 100 blocks in error
instead of 200 blocks like we have done for the previous graphs. This is just because we wanted
some faster results.

 42

6. Discussion

 We have studied the convenience of using collaborative communications in wireless
scenarios that are limited in some practical ways. As we have seen, we cannot have the number
of antennas that we want in a single device due to the need of portability and movement of this
type of wireless devices. This is the main reason we have decided to work in a collaborative
way with the other nodes that belong to the system. We can actually use the resources of other
idle nodes to help us obtain better performances in the reception of the signal by increasing the
spatial diversity for our transmitted signal.

 As we have shown in the results section of this work through some simulations of
different case scenarios, the use of collaborative communications is something worth
implementing in a real world application because of the enhancement of the performances.

 Finally, as we have said, it is a very promising topic in wireless communication and it
may well be the future of the development in such an area of study.

 43

7. Future work

 The collaborative communications topic has been one of the most popular ones for the
wireless communication field in the past few years. As a result of that amount of research
devoted to that topic, many results have been obtained. However, we have a lot of issues still to
unveil. One of the most important ones is the actual practical implementation of those methods
simulated in paper. In practice, we no longer have the control over certain variables that we
assume to have a certain value in a theoretical scenario.

 Another important issue is the operation of the relays. We are assuming all of them have
the same timing for the collaborative phase but in practice every single relay will have data
knowledge in a different time which means the will finish its listening phase in a different way.

 We have considered the collaboration topic in terms of a physical layer method to
increase spatial diversity but it can be applied to other layers to achieve other goals. As an
example, some recent works have studied the possibility of using collaboration methods to
improve secrecy in wireless channels used for the transmission of sensitive information.

 Due to a lack of time in the execution of this work we have not simulated the case in
which the relay is performing the decoding of the signal coming from the source. We have tried
to implement it but the results are not good. We should try to think about the procedure more
thoroughly in order to make that part work. Hence, we have made our simulations of the
collaborative part considering that the decoding process at the relay was perfect and with no
errors. Normally, if we had simulated the decoding process in the relay, we would be making
some errors so the performances at the destinations would be worse than in the case of assuming
perfect decoding but better than not having collaborations of the relay.

 Another step we could implement out of this work would be the time of collaboration
for the relay. We could have compared the differences between the case in which the relay is
always collaborating in the second phase and the case in which the relay is not collaborating in
the second phase due to the behaviour of the channel in that particular moment (the channel
coefficient). We have simulated the case in which the relay is always collaborating but in the
real life this is not always the case because of the behaviour of the channel. The relay knows the
fading coefficient between itself and the source and could chose not to collaborate because it
finds the channel is not good to do so. We will assume that above some channel coefficient
threshold, there is no point for the relay to collaborate. We made a very simple simulation of
this case scenario.

 44

8. References

[1] Tooher, P., & Soleymani, M.R. Wireless Collaboration: Maximizing Diversity Through
Relaying. Chapter for a paper

[2] Tooher,P., Khoshneviss, H., & Soleymani, M.R. (2007). Design of collaborative codes
achieving space-time diversity. Paper presented at the IEEE International Conference on
Communication (ICC), Glasgow,UK.

[3] Laneman, J.N., Tse, D., & Wornell, G. W. (2004). Cooperative diversity in wireless
networks: Efficient protocols and outage behavior. IEEE Transactions on Information Theory,
50(12), 3062-3080.

[4] Sendonaris, A., Erkip, E., & Aazhang, B. (2003a). User cooperation diversity, part I: System
description. IEEE Transactions on Communications, 51(11), 1927-1938.

[5] Sendonaris, A., Erkip, E., & Aazhang, B. (2003b). User cooperation diversity, part II:
System description. IEEE Transactions on Communications, 51(11), 1939-1948.

[6] Stefanov, A., & Erkip, E. (2004). Cooperative coding for wireless networks. IEEE
Transactions on Communications, 52(9), 1470-1476.

[7] Hunter, T. E., &Nosratinia, A. (2006). Diversity through coded cooperation. IEEE
Transactions on Wireless Communications, 5(2), 283-289.

[8] Foschini, G., & Gans, M. (1998). On limits of wireless communication in a fading
environment when using multiple antennas. Wireless Personal Communications, 6(3), 311-335.

[9] Tarokh, V., Seshadri, N., & Calderbank, A. R. (1998). Space-time codes for high data rate
wireless communication: Performance criterion and code construction. IEEE Transactions on
Information Theory, 44(2), 744-765.

[10] Proakis, J. G. (2000). Digital Communications, 4th ed. New York: McGraw-Hill.

[11] Viterbi, A. J. (1971). Convolutional codes and their performances in communication
systems. IEEE Transactions on Communications, COM-19, 751-772.

[12] Fleming, C. (2003). A Tutorial on Convolutional Coding with Viterbi Decoding;
Spectrum Application.

[13] Malkamäki, E., Leib, H. (1999). Evaluating the performance of convolutional codes over
block fading channels. IEEE Transactions on Information Theory, 45(5). 1643-1646.

[14] Liu, E. (2004). Convolutional coding & Viterbi algorithm. Postgraduate seminar on radio
communications. Helsinki University of technology.

 45

9. Appendix

Matlab files

 For the different steps of this work we have used different files but we have followed a
similar pattern to accomplish all the simulations.

graph.m

function graph
%we are going to be plotting in this graph the diff erent scenarios

%we will be sending a BPSK signal(basically 1's and -1's) that
%goes through an additive gaussian noise channel (A WGN)

%we will design the ideal channel with which we'll make the
%comparaisons values of EbN0 in dBs
EbN0_values = 0:12;

%we plot the BER in channel without any coding (to calculate de BER
%we need to have the amounts or figures in linear u nits)
%we are plotting the theoretical curve with which w e can make a
%comparison to the practical one
ebn0_values = 10.^(EbN0_values/10);
BER = erfc(sqrt(ebn0_values))/2;
semilogy(EbN0_values,BER, 'bx-' , 'linewidth' , 2)
hold on;

%we plot the BER in an AWGN channel with a BPSK mod ulation and
%a simple method of decoding
[EbN0_values,BER] = scenario('no_codification' , 'simple' , 'no_fading');
semilogy(EbN0_values,BER, 'kx-' , 'linewidth' , 2)
hold on;

%we plot the BER in an AWGN channel with a BPSK mod ulation when we
%have an exact decoding method with a Hamming code(7,4)
[EbN0_values,BER] = scenario('H' , 'BP' , 'no_fading');
semilogy(EbN0_values,BER, 'gx-' , 'linewidth' , 2)
hold on;

%we plot the BER in an AWGN channel with a BPSK mod ulation and a
%convolutional encoder and a viterbi decoder
[EbN0_values,BER] =
scenario('convolutional_code' , 'viterbi' , 'no_fading');
semilogy(EbN0_values,BER, 'rx-' , 'linewidth' , 2)
hold on;

grid on
axis([0 12 1e-7 1])
title('BPSK modulation in an AWGN channel')

 46

legend('no-codification-theoretical' , 'no-codification-
simple' , 'Hamming(7,4)-BP' , 'convolutional-code');
xlabel('EbN0 (dB)')
ylabel('BER')

scenario.m

function [EbN0_values,total_BER] =
scenario(codification,decodification,fading)
%%%
%codification: indicates the type of codification a gainst errors that
%we have
 %no codification
 %H->Hamming(7,4)
 %convolutional code
%decodification:
 %exact: we suppose we havent coded the bits in the transmitter)
 %BP->Belief Propagation(BP)
 %viterbi
%fading: we're transmitting in a AWGN channel in wh ich we will
%be adding or not fadding)
%%%

%we are going to calculate the BER for different va lues of SNR
%(relation express in dBs)
EbN0_values = 0:12;

%index for the BER vectors and the Pe
index = 0;

%we obtein all the possible cases for the different EbN0
for EbN0 = EbN0_values

 %to calculate the BER we'll be calling the function channel_cod as
 %many times as necessary to calculate it as accurat e as possible
 block_Err_sum = 0;
 BER_sum = 0;
 N_blocks = 0;

 %for each value of EbN0 we send as many blocks as n ecessary until
 %we have 100 blocks in error or until the number of blocks sent is
 %higher than 10^7
 while (block_Err_sum<100 && N_blocks<1e7)
 [BER, block_Err] =
channel_cod(EbN0,codification,channel,decodificatio n,fading);

 %if we have an error in the block, Err_block will b e equal to
 %1, which indicates that we have another more block incorrect
 block_Err_sum = block_Err_sum + block_Err;
 BER_sum = BER_sum + BER;
 N_blocks = N_blocks + 1;
 end

 index = index + 1;

 %once we've finished the iterations we'll calculate the values for
 %the probabilities of error in a block and the prob ability of a
 %error bit (BER)

 47

 total_N_blocks(index) = N_blocks;
 block_error_Prob(index) = block_Err_sum / N_blo cks;

 %we save the different values of the BER in a vecto r, for each
 %value of the EbN0
 total_BER(index) = BER_sum / N_blocks;
end

channel_cod.m

function [BER,block_Err] =
channel_cod(EbN0,codification,decodification,fading)
%%%
%EbN0: ratio between signal power and noise power
%codification: indicates the type of codification a gainst errors that
%we have
 %no codification
 %H->Hamming(7,4)
 %convolutional code
%decodification:
 %exact: we suppose we havent coded the bits in the transmitter)
 %BP->Belief Propagation(BP)
 %viterbi
%fading: we're transmitting in a AWGN channel in wh ich we will
%be adding or not fadding)
%%%

%convolutional code of rate 1/2-->(n,k,L)=(2,1,3)
if strcmp(codification, 'convolutional_code')
 %we generate a sequence (a block) of bits to transm it
 %(that will apply to every single method of codific ation)
 %we actually could be considering that we are only transmitting
 %one bit at a time if we're not introducing any cod ing
 length_block = 100;
 m = round(rand(1,length_block));

 %generator matrix that we have chosen (we could def ine another
 %one)
 G = [1 1 1;
 1 0 1];
 %input for the encoder (k bits/sec)
 k=1;

 %we obtein the output of the encoder out of the gen erator matrix
 n = size(G,1);
 L = size(G,2);

 %we encode the bits of the message through the conv olutional
 %encoder that we have already implemented
 c = cnv_encd(G,k,m);

%Hamming coding (7,4)
elseif strcmp(codification, 'H')
 %generator matrix
 G = [1 0 0 0 1 1 0;
 0 1 0 0 1 0 1;
 0 0 1 0 0 1 1;
 0 0 0 1 1 1 1];

 48

 %we obtein the dimensions of the generator matrix t hat indicates
 %both the length of the message and the length of t he code word
 %and we generate a block of bits to transmit
 [length_block,n] = size(G);
 m = round(rand(1,length_block));

 %we code the bits of the message through the code g enerator matrix
 c = mod(m*G,2);

elseif strcmp(codification, 'no_codification')
 %we generate a sequence (a block) of bits to transm it
 length_block = 100;
 m = round(rand(1,length_block));

 %if we are not coding, the random bits and the code word will
 %be the same, we are not applying any matrix or any thing
 c = m;
 n = length_block;
end

%we make an antipodal transmission (we transmit 1's and -1's)
%be careful cause, when we're tx a '1' the equivale nt in antipodal
%we'll be a '-1' and when we tx a '0' the equivalen t will be '1'
%we get to take that into consideration once we're decoding
ct = 1-2*c;

%to compare all the different types of coding we'll have to make that
%the probability of error depends on the rate of co dification
%(we take into consideration the sharing of the ene rgy between all
%the code word bits);we work with the energy per co ded word
ebn0 = 10^(EbN0/10);
ecn0 = ebn0* (length(m)/length(ct));

%n=sqrt(n0/2)*randn(1,length(ct))
%n=sqrt(1/(2*ecn0))*randn(1,length(ct)
%if Ec=1--> ecn0=Ec/N0--> N0=1/ecn0
sigma = sqrt(1/(2*ecn0));

%we have to distinguish between a normal AWGN chann el and a more real
%channel with Rayleigh fading
if strcmp(fading, 'fading')
 %we simulate the effects of the Rayleight slow fadd ing
 %that is what the destination will receive when we take into
 %consideration both, the noise and the fadding (let s say slow
 %fading that affects to each block)
 %take into consideration, that the most general exp ression for the
 %effects of the channel is rt=sqrt(ec)*h*ct+noise w here ec is the
 %energy per bit code
 n = sigma*randn(1,length(ct));
 %the fading has real and imaginary part but we only need the real
 %part, thats the reason we take the module of it; R ayleigh fading
 %has nothing to do with the AWGN
 h = sqrt(0.5)*randn + j*sqrt(0.5)*randn;

 alpha = abs(h);
 rt = alpha.*ct+n;

 49

elseif strcmp(fading, 'no_fading')
 %we simulate the effects of the channel (gaussian c hannel)
 %that is what we will be receiving, adding the nois e to our
 %transmitted signal
 n = sigma*randn(1,length(ct));
 rt = ct + n;
end

%simple method of decodification
if strcmp(decodification, 'simple')
 m_est = simple_decoding(rt,length_block,n);

%codification Hamming with BP decodification
elseif strcmp(decodification, 'BP')
 m_est = decod_BeliefPropagationHamming(rt,G,EbN 0);

%viterbi decodification, we have two different scen arios depending
%on whether we consider a fading channel or not
elseif strcmp(decodification, 'viterbi')
 if strcmp(fading, 'no_fading')
 m_est = viterbi_soft(G,k,rt);
 elseif strcmp(fading, 'fading')
 m_est = viterbi_soft_fading(G,k,rt,h);
 end
end

%after having decoded the received code word, we co mpare it with the
%one we had transmited and we'll see if there is an y error; if that
%is so, we'll be counting the BER in the frame or t he block
%(that means we have to divide the number of errors into the length
%of the block) and we will be counting another bloc k in error
%(we dont care if one or more errors have occured a s
%long as we have one error, the block is considered as an error block)
BER = sum(m~=m_est)/length_block;

%if BER>0 is because we have at least one bit in er ror, which means
%that this block is also in error, so we consider i t as a block error
block_Err = BER>0;

conv_enc.m

function encoder_out=cnv_encd(G,k,encoder_in)
%determines the output sequence of a binary convolu tional encoder
%the program assumes zero initial state for the enc oder
%%
%G: generator matrix of the convolutional code with n rows and k*L
%columns (remember L=M+1)
%k: number of bits entering the encoder at each clo ck cycle
%(number of inputs)
%encoder_in: the binary input sequence; this input sequence
%starts with the first information bit that enters the encoder

%encoder_out: binary output sequence
%%

%check to see if extra zero-padding is necessary; i f the result of

 50

%the division is different to 0, that means that we have to fill
%with zeros at the end (that applies for k>1 cause if k=1 we wont
%ever have this problem)
if rem(length(encoder_in),k) > 0
 encoder_in = [encoder_in,zeros(size(1:k-
rem(length(encoder_in),k)))];
end

%number of times well have to repeat the procedure to obtein our
%matrix uu that we will be multiplying by the gener ator matrix at
%the end to obtein the coded word
num_steps = length(encoder_in)/k;

%check the size of matrix G, we check the number of columns that
%must be a multiple of k (remember that the number of columns is
%k*(L+1)). If we have any reminder, that will mean that the size
%of the matrix is not what we were expecting
if rem(size(G,2),k) > 0
 error('Error, G is not of the right size.');
end

%we determine L and n0; remember that the number of columns are
%the number of states multiplied by the number of i nputs
%(n=k(M+1)--> M=(n/k)-1); this L is the number of s tates +1 (L=M+1)
%cause we are using the first memory unit to store the input bits
L = (size(G,2)/k);
n = size(G,1);

%add extra 0's due to assumption of zero initial st ate for the
%encoder, that means we have 0's in all the state s lots
u = [zeros(size(1:(L-1)*k)),encoder_in,zeros(size(1 :(L-1)*k))];

%we generate u1, a row vector which has all the dif ferent states
%of the encoder (including the input) at every cloc k cycle
u1 = u(L*k:-1:1);
i=0;
for i=1:num_steps+L-2
 %we concatenate the diferent groups of bits with th e ones we
 %had from before
 u1 = [u1,u((i+L)*k:-1:i*k+1)];
end

%matrix whose columns are the contents of the
%convolutional encoder at various clock cycles
%it will have the same number of rows that the numb er of columns
%of G (that means L*k rows where L=M+1)
uu = reshape(u1,L*k,num_steps+L-1);
%determine the output
encoder_out = reshape(rem(G*uu,2),1,n*(L+num_steps- 1));

simple_decoding.m

function [m_est] = simple_decoding(r,k,n)
%we're gonna be doing a more simple case scenario f or the decoder,
%we'll be deciding that we've received a '0' when t he correpondant
%bit is below 0 and a '1' with that correspondant b it is over 0

 51

%%%
%r: received wordcode
%k: number of bits per block
%n: number of bits per coded word that number will be the same as
%k if we dont have any coding

%canal: tenemos demodulacion blanda(gaussiano)
%o demodulacion dura(binario simetrico)

%m_est: we get as result the estimated word decoded
%(we will be comparing this word code with the one we transmitted
%to see if an error has occured)
%%%

m_est= zeros(1,k);
%we make a simple loop in which we obtein the estim ation of the
message
%transmitted
for i = 1: k
 if r(i)>0
 m_est(i)=0;
 else
 m_est(i)=1;
 end
end

decod_BeliefPropagationHamming.m

function [m_est] = decod_BeliefPropagationHamming(r,G,EbN0)
%%%
%r: received code word
%G: generator matrix
%EbN0: ratio signal to noise

%m_est: palabra codigo estimada
%%%

[K,N] = size(G);

%take into consideration antipodal transmision: 1-> -1 and 0->1
pi_aux = logsig(r*4*10^(EbN0/10));
pi_m = [transpose(pi_aux<0.5).*transpose(pi_aux)
transpose(pi_aux<0.5).*transpose(1-pi_aux)] + [tran spose(1-
(pi_aux<0.5)).*transpose(pi_aux) transpose(1-
(pi_aux<0.5)).*transpose(1-pi_aux)];

%initial values
%variable to check the convergence of the algorithm
mu_m1_A_aux = [0 0];
mu_m1_A = [1 1];

mu_A_m1 = [0.5 0.5];
mu_A_m2 = [0.5 0.5];
mu_A_m4 = [0.5 0.5];

mu_B_m1 = [0.5 0.5];
mu_B_m3 = [0.5 0.5];
mu_B_m4 = [0.5 0.5];

 52

mu_C_m2 = [0.5 0.5];
mu_C_m3 = [0.5 0.5];
mu_C_m4 = [0.5 0.5];

mu_c5_A = pi_m(5,:);
mu_c6_B = pi_m(6,:);
mu_c7_C = pi_m(7,:);

for index=1:200

 %we check if the algorithm has already converged
 if (sum(mu_m1_A - mu_m1_A_aux)==0)
 break ;
 end
 mu_m1_A_aux = mu_m1_A;

 %information sent from m1 to A
 mu_m1_A = pi_m(1,:).*mu_B_m1;
 mu_m1_A = mu_m1_A./sum(mu_m1_A);

 %information sent from m1 to B
 mu_m1_B = pi_m(1,:).*mu_A_m1;
 mu_m1_B = mu_m1_B./sum(mu_m1_B);

 %information sent from m12 to A
 mu_m2_A = pi_m(2,:).*mu_C_m2;
 mu_m2_A = mu_m2_A./sum(mu_m2_A);

 %information sent from m2 to C
 mu_m2_C = pi_m(2,:).*mu_A_m2;
 mu_m2_C = mu_m2_C./sum(mu_m2_C);

 %information sent from m3 to B
 mu_m3_B = pi_m(3,:).*mu_C_m3;
 mu_m3_B = mu_m3_B./sum(mu_m3_B);

 %information sent from m3 to C
 mu_m3_C = pi_m(3,:).*mu_B_m3;
 mu_m3_C = mu_m3_C./sum(mu_m3_C);

 %information sent from m4 to A
 mu_m4_A = pi_m(4,:).*mu_B_m4.*mu_C_m4;
 mu_m4_A = mu_m4_A./sum(mu_m4_A);

 %information sent from m4 to B
 mu_m4_B = pi_m(4,:).*mu_A_m4.*mu_C_m4;
 mu_m4_B = mu_m4_B./sum(mu_m4_B);

 %information sent from m4 to C
 mu_m4_C = pi_m(4,:).*mu_A_m4.*mu_B_m4;
 mu_m4_C = mu_m4_C./sum(mu_m4_C);

 %we upgrade the values of the different factors
 inc_mu_A_m1 = (mu_m2_A(1,1) - mu_m2_A(1,2))*(mu _m4_A(1,1) -
mu_m4_A(1,2))*(mu_c5_A(1,1) - mu_c5_A(1,2));
 mu_A_m1 = [(1+inc_mu_A_m1)/2 (1-inc_mu_A_m1)/2] ;
 inc_mu_A_m2 = (mu_m1_A(1,1) - mu_m1_A(1,2))*(mu _m4_A(1,1) -
mu_m4_A(1,2))*(mu_c5_A(1,1) - mu_c5_A(1,2));

 53

 mu_A_m2 = [(1+inc_mu_A_m2)/2 (1-inc_mu_A_m2)/2] ;
 inc_mu_A_m4 = (mu_m1_A(1,1) - mu_m1_A(1,2))*(mu _m2_A(1,1) -
mu_m2_A(1,2))*(mu_c5_A(1,1) - mu_c5_A(1,2));
 mu_A_m4 = [(1+inc_mu_A_m4)/2 (1-inc_mu_A_m4)/2] ;

 inc_mu_B_m1 = (mu_m3_B(1,1) - mu_m3_B(1,2))*(mu _m4_B(1,1) -
mu_m4_B(1,2))*(mu_c6_B(1,1) - mu_c6_B(1,2));
 mu_B_m1 = [(1+inc_mu_B_m1)/2 (1-inc_mu_B_m1)/2] ;
 inc_mu_B_m3 = (mu_m1_B(1,1) - mu_m1_B(1,2))*(mu _m4_B(1,1) -
mu_m4_B(1,2))*(mu_c6_B(1,1) - mu_c6_B(1,2));
 mu_B_m3 = [(1+inc_mu_B_m3)/2 (1-inc_mu_B_m3)/2] ;
 inc_mu_B_m4 = (mu_m1_B(1,1) - mu_m1_B(1,2))*(mu _m3_B(1,1) -
mu_m3_B(1,2))*(mu_c6_B(1,1) - mu_c6_B(1,2));
 mu_B_m4 = [(1+inc_mu_B_m4)/2 (1-inc_mu_B_m4)/2] ;

 inc_mu_C_m2 = (mu_m3_C(1,1) - mu_m3_C(1,2))*(mu _m4_C(1,1) -
mu_m4_C(1,2))*(mu_c7_C(1,1) - mu_c7_C(1,2));
 mu_C_m2 = [(1+inc_mu_C_m2)/2 (1-inc_mu_C_m2)/2] ;
 inc_mu_C_m3 = (mu_m2_C(1,1) - mu_m2_C(1,2))*(mu _m4_C(1,1) -
mu_m4_C(1,2))*(mu_c7_C(1,1) - mu_c7_C(1,2));
 mu_C_m3 = [(1+inc_mu_C_m3)/2 (1-inc_mu_C_m3)/2] ;
 inc_mu_C_m4 = (mu_m2_C(1,1) - mu_m2_C(1,2))*(mu _m3_C(1,1) -
mu_m3_C(1,2))*(mu_c7_C(1,1) - mu_c7_C(1,2));
 mu_C_m4 = [(1+inc_mu_C_m4)/2 (1-inc_mu_C_m4)/2] ;

end

[value,index]=max(mu_A_m1.*mu_B_m1.*pi_m(1,:));
m_est(1) = index-1;
[value,index]=max(mu_A_m2.*mu_C_m2.*pi_m(2,:));
m_est(2) = index-1;
[value,index]=max(mu_B_m3.*mu_C_m3.*pi_m(3,:));
m_est(3) = index-1;
[value,index]=max(mu_A_m4.*mu_B_m4.*mu_C_m4.*pi_m(4 ,:));
m_est(4) = index-1;

viterbi_soft.m

function decoder_out=viterbi_soft(G,k,decoder_in)
%the Viterbi decoder for convolutional codes

%%
%G: generator matrix of the convolutional code with n rows and k*L
%columns
%k: number of bits entering the encoder at each clo ck cycle (number
%of inputs)
%decoder_in: the binary input sequence; this input sequence
%starts with the first information bit that enters the encoder

%decoder_out: the binary output sequence
%%

%we obtein the number of bits that will be entering the decoder
%(remember k/n is the rate of the code)
n=size(G,1);

%check the sizes (if the number of columns of G is not a multiple
%of k, that means, the G matrix doesnt correspond t o a valid one

 54

%for this value of k)
if rem(size(G,2),k) ~=0
 error('Size of G and k do not agree');
end

%we check the size of the row vector which has the information
%coming from the channel; it has to be a multiple o f n
if rem(size(decoder_in,2),n) ~=0
 error('channel output not of the right size');
end

%L is the number of states +1 (L=M+1) cause we are using the
%first memory unit to store the input bits (see Fig 1)
L=size(G,2)/k;

%different posibilities for the state machine, it w ill depend
%on the number of states and the number of bits ent ering the
%encoder
number_of_states=2^((L-1)*k);

%we build some data structures around which the dec oder algorithm
%will be implemented we generate state transition m atrix, output
%matrix, and input matrix
for j=0:number_of_states-1
 for l=0:2^k-1
 %we call the function nxt_stat (go to the function to see
 %what it does) we have the next state and the actua l one
 %in 'memory contents' (it includes the input)
 [next_state,memory_contents]=nxt_stat(j,l,L ,k);

 %matrix that shows for each convolutional encoder c urrent
 %state and next state and what input value (0 or 1) would
 %produce the next state, given the current one
 input(j+1,next_state+1)=l;

 %copy of the convolutional encoder 'next state' tab le
 %(gives the next state given the current state and the
 %input; the dimensions of this table are 2^(L-1)x2^ k
 nextstate(j+1,l+1)=next_state;

 %we obtein the output given the current state and t he
 %input data (which is stored in memory_contents)
 %(this will be stored in the output table)
 branch_output=rem(memory_contents*G',2);

 %copy of the convolutional encoder output table;
 %the dimensions of this table are 2^(L-1)x2^k
 output(j+1,l+1)=bin2deci(branch_output);
 end
end

%matrix to store the accumulated error metrics for each state
%computed using the add-compare select operation; t he dimension
%of this array will be 2^(L-1)x2
state_metric=zeros(number_of_states,2);

%we save the number of sections of our Trellis
depth_of_trellis=length(decoder_in)/n;

 55

%we create a matrix with the elements of the inform ation getting
%into our system (decoder_in)(thats the info coming from the
%channel, the received coded word)
decoder_in_matrix=reshape(decoder_in,n,depth_of_tre llis);

%matrix to store state predecesor history for each encoder state
%for up to depth of Trellis +1 symbol pairs (pairs cause n=2);
%the dimensions are 2^(L-1)xdepth_Trellis+1
survivor_state=zeros(number_of_states,depth_of_trel lis+1);

%we'll be dividing the decoding process in to parts thats because
%the initial condition of the encoder is state 0 an d the path must
%end up at this same state (the number of steps of the algorithm
%will be the number of bits of our message plus the number of
%encoder memory plus the initial state t=0 which re presents the
%initial condition of the encoder)

%start decoding of non-tail channel outputs
for i=1:depth_of_trellis-L+1
 flag=zeros(1,number_of_states);

 %at the beginning, going for example from t=0 to t= 1, there
 %are only two possible channel symbols pairs (if k= 1) we could
 %have received; thats because we know the convoluti onal encoder
 %was initialialized to the all zeros state and givi ng one input
 %bit (1 or 0), there are only two states we could t ransition
 %to and therefore, two possible outputs of the enco der; thats
 %the reason we make this two different steps, one f or the
 %fisrts time instants and the other for the followi ng ones
 if i <= L
 step=2^((L-i)*k);
 else
 step=1;
 end

 %each time that we receive a pair of channel symbol s,
 %we're going to compute a metric to measure the dis tance
 %between what we received and all the possible chan nel symbols
 %we could have received
 for j=0:step:number_of_states-1

 %we have as many different posibble paths getting t o a
 %node as the numbers of bits at the input (if k=1, we will
 %have two different posiible paths getting to each node,
 %we'll have to sa ve the one that has less distance)
 for l=0:2^k-1

 %we save the distance values we compute at each tim e
 %instant for the paths between the states at the
 %previous time instant and the states at the curren t
 %time instant
 branch_metric=0;

 %we obtein the binary code for the posible outputs
 %considering the state in which we are
 binary_output=deci2bin(output(j+1,l+1), n);

 %we make an antipodal transmission (we transmit 1's
 %and -1's) be careful cause, when we're tx a '1' th e
 %equivalent in antipodal we'll be a '-1' and

 56

 %when we tx a '0' the equivalent will be '1'we get
 %to take that into consideration once we're decodin g
 binary_output_antipodal = 1-2*binary_ou tput;

 %we save the distance between the received channel
 %symbols and the possible channel symbols
 for ll=1:n

branch_metric=branch_metric+abs(decoder_in_matrix(l l,i)-
binary_output_antipodal(ll));
 end

 %if the metric of that state is higher than the
 %cumulated metric of the previous state plus the br anch
 %metric we save the lower metric and we set the new
 %survivor state, otherwise we dont get into this if
 %we keep the same survivor state
 if ((state_metric(nextstate(j+1,l+1)+1,2) >
state_metric(j+1,1)+branch_metric) || flag(nextstat e(j+1,l+1)+1)==0)
 state_metric(nextstate(j+1,l+1)+1,2) =
state_metric(j+1,1)+branch_metric;
 survivor_state(nextstate(j+1,l+1)+1 ,i+1)=j;
 flag(nextstate(j+1,l+1)+1)=1;
 end

 end
 end
 %we switch the order of the columns in our state_me tric matrix;
 %actually what we would be switching is the second row which
 %before that change was the first one
 state_metric=state_metric(:,2:-1:1);
end

%start decoding of the tail channel-outputs
%we do the same procedure for the last time instant s of the Trellis
for i=depth_of_trellis-L+2:depth_of_trellis
 flag=zeros(1,number_of_states);
 last_stop=number_of_states/(2^((i-depth_of_trel lis+L-2)*k));
 for j=0:last_stop-1
 branch_metric=0;
 binary_output=deci2bin(output(j+1,1),n);
 binary_output_antipodal = 1-2*binary_output ;
 for ll=1:n
 branch_metric=branch_metric+abs(decoder _in_matrix(ll,i)-
binary_output_antipodal(ll));
 end
 if ((state_metric(nextstate(j+1,1)+1,2) >
state_metric(j+1,1)+branch_metric) || flag(nextstat e(j+1,1)+1)==0)
 state_metric(nextstate(j+1,1)+1,2) =
state_metric(j+1,1)+branch_metric;
 survivor_state(nextstate(j+1,1)+1,i+1)= j;
 flag(nextstate(j+1,1)+1)=1;
 end
 end
 state_metric=state_metric(:,2:-1:1);
end

%generate the decoder output from the optimal path; we work backwards
%through the state history table (survivor_state)(s hows the surviving
%predecessor states for each state at each time t), for the selected

 57

%state and for that particular time instant, we sel ect a new state
%which is listed in the state history table as bein g the best
%predecesor to thatstate (we save the state number of each
%selected state)

%array to store a list of states determined during traceback;
%its a line array which dimensions are 1xdepth_Trel lis+1
state_sequence=zeros(1,depth_of_trellis+1);

%the last element of this array must be the state 0 , so the
%penultimun will be the state which path leads to t hat 0 state
%(in our example that path comes from the state 1)
state_sequence(1,depth_of_trellis)=survivor_state(1 ,depth_of_trellis+1
);

%we obtein the states selected when tracing the pat h back through
%the survivor state table
for i=1:depth_of_trellis
 state_sequence(1,depth_of_trellis-
i+1)=survivor_state((state_sequence(1,depth_of_trel lis+2-
i)+1),depth_of_trellis-i+2);
end

%once we've obteined the path back, using a table t hat maps state
%transitions to the imputs that caused them, we can recreate the
%original message; the flushig bits at the end are discarded so
%the dimensions of this line vetor are 1xdepth_Trel lis-L+1
%(=1xdepth_Trellis-M)
decoder_out_matrix=zeros(k,depth_of_trellis-L+1);
for i=1:depth_of_trellis-L+1

dec_output_deci=input(state_sequence(1,i)+1,state_s equence(1,i+1)+1);
 dec_output_bin=deci2bin(dec_output_deci,k);

 %if k=1 this matrix will be equal to de final resul t, if not,
 %we'll be having the estimated bits of the message in each time
 %instant per columns, afterwards, we will have to o rganise them
 %in a single row
 decoder_out_matrix(:,i)=dec_output_bin(k:-1:1)' ;
end

%we give the result in a row vector
decoder_out=reshape(decoder_out_matrix,1,k*(depth_o f_trellis-L+1));

nxt_stat.m

function
[next_state,memory_contents]=nxt_stat(current_state ,input,L,k)
%%
%current_state: those are the states of our encoder (M=L-1)
%input: this is the input, we'll be simulating a si mple
%convolutional code with k=1 but if we had a more c omplex case
%scenario with k=2 for ex. this input would be (0,1 ,2,3-->0-2^2-1)
%L: number of states plus 1
%k: number of inputs
%%

 58

%we call 'deci2bin' function to obtein the actual s tate in a binary
%format and the input
binary_state=deci2bin(current_state,k*(L-1));
binary_input=deci2bin(input,k);

%we create the next state from the actual input and all the memory
%slots excepts the last one and we use the 'bin2dec i' function to
%obtein it in a decimal format
next_state_binary=[binary_input,binary_state(1:(L-2)*k)];
next_state=bin2deci(next_state_binary);

%we also save the content of the state machine in t his particular
%moment(including the input)
memory_contents=[binary_input,binary_state];

deci2bin.m

function y=deci2bin(x,l)
%decimal to binary
y = zeros(1,l);
i = 1;
while x>=0 & i<=l
y(i)=rem(x,2);
x=(x-y(i))/2;
i=i+1;
end
y=y(l:-1:1);

bin2dec.m

function y=bin2deci(x)
% binary to decimal
l=length(x);
y=(l-1:-1:0);
y=2.^y;
y=x*y';

graph_collaboration

function graph_collaboration
%we are going to be plotting in this graph the diff erent scenarios

%we will be sending a BPSK signal(basically 1's and -1's) that
%goes through an additive gaussian noise channel (A WGN) with
%slow Rayleight fading and with collaboration from a relay

%we will design the ideal channel with which we'll make the
%comparaisons values of EbN0 in dBs
EbN0_values = 0:25;

%we plot the FER in an AWGN channel with a BPSK mod ulation and a
%convolutional encoder and a viterbi decoder when w e have no help
%from the relay
[EbN0_values,BER,FER] = scenario_collaboration('no_collaboration');

 59

semilogy(EbN0_values,FER, 'rx-' , 'linewidth' , 2)
hold on;

%we plot the FER in an AWGN channel with a BPSK mod ulation and a
%convolutional encoder and a viterbi decoder when w e have perfect
%help from the relay (we assume a perfect decoding process at the
%relay)
[EbN0_values,BER,FER] = scenario_collaboration('collaboration');
EbN0_values_linear = 10.^(EbN0_values/10);
%to make a fair comparaison we have to take into co nsideration the
%power of the transmission from the relay
SNR = 3/2*EbN0_values_linear;
SNR_db = 10*log10(SNR);
semilogy(SNR_db,FER, 'kx-' , 'linewidth' , 2)
hold on;

%we plot the FER in an AWGN channel with a BPSK mod ulation and a
%convolutional encoder and a viterbi decoder when w e have perfect
%help from the relay (we assume a perfect decoding process at the
%relay)
[EbN0_values,BER,FER] =
scenario_collaboration('perfect_collaboration');
EbN0_values_linear = 10.^(EbN0_values/10);
%to make a fair comparaison we have to take into co nsideration the
%power of the transmission from the relay
SNR = 3/2*EbN0_values_linear;
SNR_db = 10*log10(SNR);
semilogy(SNR_db,FER, 'kx-' , 'linewidth' , 2)
hold on;

grid on
axis([0 25 1e-4 1])
title('BPSK modulation in an AWGN channel with Rayleigh f ading with
and without collaboration')
legend('convolutional-code-no-collaboration' , 'convolutional-code-
perfect-collaboration');
xlabel('SNR (dB)')
ylabel('FER')

channel_cod_collaboration.m

function [BER,FER] = channel_cod_collaboration(EbN0,collabo ration)
%%%
%EbN0: ratio between power of signal and power of n oise
%collaboration: indicates wheter we have or we do n ot have
%collaboration of the relay in our system

%BER: probabilidad de error de bit
%FER: boolean that tells you wether the transmitted block or frame
%is in error
%%%

%we define the different variables for the collabor ative part in
%here (the different distances between all the devi ces in the system)
d_sd = 1;
d_sr = 0.5;

 60

d_rd = 0.5;

%we calculate the path gain for the the source-rela y path and
%for the relay-destination path (we have set the pa th gain for
%the source-destination path to 1)
%the formula to calculate the path gain for the sou rce-relay
%path for example would be: pg_sr=(d_sd/d_rd)^2*pg_ sd but the
%pg_sd=1 so we dont need to take it into considerat ion
pg_sr = (d_sd/d_sr)^2;
pg_rd = (d_sd/d_rd)^2;

%we generate a sequence (a frame) of bits to transm it (that will
%apply to every single method of codification)
%we actually could be considering that we are only transmitting
%one bit at a time if we're not introducing any cod ing
length_block = 260;
m = round(rand(1,length_block));

%convolutional code of rate 1/2-->(n,k,L)=(2,1,3)
%generator matrix that we have chosen (we could def ine another one)
G = [1 1 1;
 1 0 1];

%input for the encoder (k bits/sec)
k=1;

%we obtein the output of the encoder out of the gen erator matrix
n = size(G,1);
L = size(G,2);

%we encode the bits of the message through the conv olutional encoder
%that we have already implemented
c = cnv_encd(G,k,m);

%we make an antipodal transmission (we transmit 1's and -1's)
%be careful cause, when we're tx a '1' the equivale nt in antipodal
%we'll be a '-1' and when we tx a '0' the equivalen t will be '1'
%we get to take that into consideration once we're decoding
ct = 1-2*c;

%to compare all the different types of coding we'll have to make
%that the probability of error depends on the rate of codification
%(we take into consideration the sharing of the ene rgy between all
%the code word bits);we work with the energy per co ded word
ebn0 = 10^(EbN0/10);
ecn0 = ebn0* (length(m)/length(ct));

%n=sqrt(n0/2)*randn(1,length(ct))
%n=sqrt(1/(2*ecn0))*randn(1,length(ct)
%if Ec=1--> ecn0=Ec/N0--> n0=1/ecn0
sigma = sqrt(1/(2*ecn0));

%we are simulating a real channel with Rayleigh fad ing
%we simulate the effects of the Rayleight slow fadd ing
%that is what the destination will receive when we take into
%consideration both, the noise and the fadding (let s say slow
%fading that affects to each block)
%take into consideration, that the most general exp ression for the
%effects of the channel is rt=sqrt(ec)*h*ct+noise w here ec is the

 61

%energy per bit code
n_sd = sigma*randn(1,length(ct));

%the fading has real and imaginary part but we only need the real
%part, thats the reason we take the module of it; R ayleigh fading
%has nothing to do with the AWGN
h_sd = sqrt(0.5)*randn+j*sqrt(0.5)*randn;
alpha_sd = abs(h_sd);
rt_dest = alpha_sd*ct+n_sd;

%if we have collaboration we also have to send the information to
%the relay for it to decode it, re-encode it and se nd it to the
%destination as well
if strcmp(collaboration, 'collaboration')

 %we generate the noise samples for relay (the noise coefficient
 %is particular of every reception node)
 n_sr = sigma*randn(1,length(ct));

 %we generate the fading coefficient for the source- relay path
 h_sr = sqrt(0.5)*randn+j*sqrt(0.5)*randn;
 alpha_sr = abs(h_sr);

 %our information sent to the relay would have this shape but we
 %are actually sending only the odd set of bits to t he relay;
 %remember to add the path gain factor to the inform ation sent
 rt_sr = (sqrt(pg_sr)*alpha_sr)*ct+n_sr;

 %we want to transmit the odd set of parity to the r elay so we
 %create another set of rt's (we need to have 0's in the even
 %positions)
 rt_rel = zeros(1,length(rt_sr));
 for i=1:length(rt_rel)
 if (mod(i,2)==1)
 rt_rel(i) = rt_sr(i);
 end
 end
end

%we start the decoding process

%viterbi decodification, we are considering we have a fading
%channel
%we decode the information for the destination
m_est = viterbi_soft_fading(G,k,rt_dest,h_sd);

%if we have collaboration we have to decode the inf ormation
%transmited from the source, re-encode it and send it to the
%destination
if strcmp(collaboration, 'collaboration') || strcmp(collaboration,
'perfect_collaboration')

 %we check if we are assuming that we have a perfect decoding
 %process at the relay,if thats the case we do not n eed to decode
 %the information, we just assume that the relay dec ode it
 %perfectly so we take 'm' again to encode
 if strcmp(collaboration, 'perfect_collaboration')
 c_rel = cnv_encd(G,k,m);

 62

 else
 %we decode the information at the relay (we put 0's for the
rest of
 %coefficients which are not necessary in this case but for the
p_sd=1
 %always)
 m_est_rel =
viterbi_soft_fading_collaboration(G,k,rt_rel, 'relay' ,h_sr,0,0,pg_sr,1,
0);

 %once we have it decode it, we have to reencode it again
 %(we assume we have the same encoder at the source and at
 %the relay);we encode the bits of the message throu gh the
 %convolutional encoder that we have already impleme nted
 c_rel = cnv_encd(G,k,m_est_rel);
 end

 %remember antipodal transmission
 ct_rel = 1-2*c_rel;

 %we generate the fading coefficient for the relay-d estination path
 h_rd = sqrt(0.5)*randn+j*sqrt(0.5)*randn;

 %once we have the fading coefficient for the relay- destination
 %path we have to take into consideration that for t he recived code
 %word at the destination we have to create another fading
 %coefficient which will be the sum of both (we have to be careful
 %because that fading coefficient is complex and we cannot add the
 %modules like that)

 %we are going to create the simulated code word rec eived at the
 %destination when the relay is collaborating (for t he odd bits
 %we will have like no collaboration and for the eve n bits we will
 %create another structure, taking into consideratio n that we have
 %to add the fading coefficients and not the modules)
 rt_dest_2 = zeros(1,length(rt_dest));
 for i=1:length(rt_dest)
 %we have to distinguish between the odd and the eve n bits
 if (mod(i,2)==1)
 rt_dest_2(i) = rt_dest(i);
 %for the even coefficients (be careful with the fad ing
 %coeficient)
 elseif (mod(i,2==0))

 if ct(i)==1 && ct_rel(i)==1
 alpha_srd_ct = abs(h_sd + sqrt(pg_r d)*h_rd);
 elseif ct(i)==1 && ct_rel(i)==-1
 alpha_srd_ct = h_sd - sqrt(pg_rd)*h _rd;
 if (-pi/2<angle(alpha_srd_ct)<pi/2)
 alpha_srd_ct = abs(alpha_srd_ct);
 else
 alpha_srd_ct = -abs(alpha_srd_c t);
 end
 elseif ct(i)==-1 && ct_rel(i)==1
 alpha_srd_ct = -h_sd + sqrt(pg_rd)* h_rd;
 if (-pi/2<angle(alpha_srd_ct)<pi/2)
 alpha_srd_ct = abs(alpha_srd_ct);
 else

 63

 alpha_srd_ct = -abs(alpha_srd_c t);
 end
 elseif ct(i)==-1 && ct_rel(i)==-1
 alpha_srd_ct = -abs(-h_sd - sqrt(pg _rd)*h_rd);
 end

 rt_dest_2(i) = alpha_srd_ct + n_sd(i);
 end
 end

 %we have to decode the resulting codeword at the de stination
 m_est_2 =
viterbi_soft_fading_collaboration(G,k,rt_dest_2, 'destination' ,0,h_sd,h
_rd,0,1,pg_rd);
end

%after having decoded the received code word, we co mpare it with the
%one we had transmited and we'll see if there is an y error; if that
%is so, we'll be counting the BER in the frame or t he block
%(that means we have to divide the number of errors into the length
%of the block) and we will be counting another bloc k in error
%(we dont care if one or more errors have occured a s long as we
%have one error, the block is considered as an erro r block)
if strcmp(collaboration, 'no_collaboration')
 BER = sum(m~=m_est)/length_block;

 %if BER>0 is because we have at least one bit in er ror, which
means that
 %this frame is also in error, so we consider it as a block error
 FER = BER>0;

%if the relay was indeed collaborating, we will hav e another BER and
%another FER
elseif strcmp(collaboration, 'collaboration') || strcmp(collaboration,
'perfect_collaboration')
 BER = sum(m~=m_est_2)/length_block;
 FER = BER>0;
end

viterbi_soft_fading.m

function decoder_out=viterbi_soft_fading(G,k,decoder_in,h)
%the Viterbi decoder for convolutional codes

%%
%G: generator matrix of the convolutional code with n rows and k*L
%columns
%k: number of bits entering the encoder at each clo ck cycle (number
%of inputs)
%decoder_in: the binary input sequence; this input sequence
%starts with the first information bit that enters the encoder
%h: Rayleigt fading which is known for the receiver

%decoder_out: the binary output sequence
%%

%we obtein the number of bits that will be entering the decoder
%(remember k/n is the rate of the code)

 64

n=size(G,1);

%check the sizes (if the number of columns of G is not a multiple
%of k, that means, the G matrix doesnt correspond t o a valid one
%for this value of k)
if rem(size(G,2),k) ~=0
 error('Size of G and k do not agree');
end

%we check the size of the row vector which has the information
%coming from the channel; it has to be a multiple o f n
if rem(size(decoder_in,2),n) ~=0
 error('channel output not of the right size');
end

%L is the number of states +1 (L=M+1) cause we are using the
%first memory unit to store the input bits (see Fig 1)
L=size(G,2)/k;

%different posibilities for the state machine, it w ill depend
%on the number of states and the number of bits ent ering the
%encoder
number_of_states=2^((L-1)*k);

%we build some data structures around which the dec oder algorithm
%will be implemented we generate state transition m atrix, output
%matrix, and input matrix
for j=0:number_of_states-1
 for l=0:2^k-1
 %we call the function nxt_stat (go to the function to see
 %what it does) we have the next state and the actua l one
 %in 'memory contents' (it includes the input)
 [next_state,memory_contents]=nxt_stat(j,l,L ,k);

 %matrix that shows for each convolutional encoder c urrent
 %state and next state and what input value (0 or 1) would
 %produce the next state, given the current one
 input(j+1,next_state+1)=l;

 %copy of the convolutional encoder 'next state' tab le
 %(gives the next state given the current state and the
 %input; the dimensions of this table are 2^(L-1)x2^ k
 nextstate(j+1,l+1)=next_state;

 %we obtein the output given the current state and t he
 %input data (which is stored in memory_contents)
 %(this will be stored in the output table)
 branch_output=rem(memory_contents*G',2);

 %copy of the convolutional encoder output table;
 %the dimensions of this table are 2^(L-1)x2^k
 output(j+1,l+1)=bin2deci(branch_output);
 end
end

%matrix to store the accumulated error metrics for each state
%computed using the add-compare select operation; t he dimension
%of this array will be 2^(L-1)x2
state_metric=zeros(number_of_states,2);

 65

%we save the number of sections of our Trellis
depth_of_trellis=length(decoder_in)/n;

%we create a matrix with the elements of the inform ation getting
%into our system (decoder_in)(thats the info coming from the
%channel, the received coded word)
decoder_in_matrix=reshape(decoder_in,n,depth_of_tre llis);

%matrix to store state predecesor history for each encoder state
%for up to depth of Trellis +1 symbol pairs (pairs cause n=2);
%the dimensions are 2^(L-1)xdepth_Trellis+1
survivor_state=zeros(number_of_states,depth_of_trel lis+1);

%we'll be dividing the decoding process in to parts thats because
%the initial condition of the encoder is state 0 an d the path must
%end up at this same state (the number of steps of the algorithm
%will be the number of bits of our message plus the number of
%encoder memory plus the initial state t=0 which re presents the
%initial condition of the encoder)

%start decoding of non-tail channel outputs
for i=1:depth_of_trellis-L+1
 flag=zeros(1,number_of_states);

 %at the beginning, going for example from t=0 to t= 1, there
 %are only two possible channel symbols pairs (if k= 1) we could
 %have received; thats because we know the convoluti onal encoder
 %was initialialized to the all zeros state and givi ng one input
 %bit (1 or 0), there are only two states we could t ransition
 %to and therefore, two possible outputs of the enco der; thats
 %the reason we make this two different steps, one f or the
 %fisrts time instants and the other for the followi ng ones
 if i <= L
 step=2^((L-i)*k);
 else
 step=1;
 end

 %each time that we receive a pair of channel symbol s,
 %we're going to compute a metric to measure the dis tance
 %between what we received and all the possible chan nel symbols
 %we could have received
 for j=0:step:number_of_states-1

 %we have as many different posibble paths getting t o a
 %node as the numbers of bits at the input (if k=1, we will
 %have two different posiible paths getting to each node,
 %we'll have to sa ve the one that has less distance)
 for l=0:2^k-1

 %we save the distance values we compute at each tim e
 %instant for the paths between the states at the
 %previous time instant and the states at the curren t
 %time instant
 branch_metric=0;

 %we obtein the binary code for the posible outputs
 %considering the state in which we are

 66

 binary_output=deci2bin(output(j+1,l+1), n);

 %we make an antipodal transmission (we transmit 1's
 %and -1's) be careful cause, when we're tx a '1' th e
 %equivalent in antipodal we'll be a '-1' and
 %when we tx a '0' the equivalent will be '1'we get
 %to take that into consideration once we're decodin g
 binary_output_antipodal = 1-2*binary_ou tput;

 %we save the distance between the received channel
 %symbols and the possible channel symbols
 for ll=1:n
 %we know how is the channel in terms of fading so
 %we can compensate it somehow by comparing the
 %received signal with the different posibilities
 %scaled by the Rayleigh fading

branch_metric=branch_metric+abs(decoder_in_matrix(l l,i)-
abs(h)*binary_output_antipodal(ll));
 end

 %if the metric of that state is higher than the
 %cumulated metric of the previous state plus the br anch
 %metric we save the lower metric and we set the new
 %survivor state, otherwise we dont get into this if
 %we keep the same survivor state
 if ((state_metric(nextstate(j+1,l+1)+1,2) >
state_metric(j+1,1)+branch_metric) || flag(nextstat e(j+1,l+1)+1)==0)
 state_metric(nextstate(j+1,l+1)+1,2) =
state_metric(j+1,1)+branch_metric;
 survivor_state(nextstate(j+1,l+1)+1 ,i+1)=j;
 flag(nextstate(j+1,l+1)+1)=1;
 end

 end
 end
 %we switch the order of the columns in our state_me tric matrix;
 %actually what we would be switching is the second row which
 %before that change was the first one
 state_metric=state_metric(:,2:-1:1);
end

%start decoding of the tail channel-outputs
%we do the same procedure for the last time instant s of the Trellis
for i=depth_of_trellis-L+2:depth_of_trellis
 flag=zeros(1,number_of_states);
 last_stop=number_of_states/(2^((i-depth_of_trel lis+L-2)*k));
 for j=0:last_stop-1
 branch_metric=0;
 binary_output=deci2bin(output(j+1,1),n);
 binary_output_antipodal = 1-2*binary_output ;
 for ll=1:n
 branch_metric=branch_metric+abs(decoder _in_matrix(ll,i)-
abs(h)*binary_output_antipodal(ll));
 end
 if ((state_metric(nextstate(j+1,1)+1,2) >
state_metric(j+1,1)+branch_metric) || flag(nextstat e(j+1,1)+1)==0)
 state_metric(nextstate(j+1,1)+1,2) =
state_metric(j+1,1)+branch_metric;
 survivor_state(nextstate(j+1,1)+1,i+1)= j;

 67

 flag(nextstate(j+1,1)+1)=1;
 end
 end
 state_metric=state_metric(:,2:-1:1);
end

%generate the decoder output from the optimal path; we work backwards
%through the state history table (survivor_state)(s hows the surviving
%predecessor states for each state at each time t), for the selected
%state and for that particular time instant, we sel ect a new state
%which is listed in the state history table as bein g the best
%predecesor to thatstate (we save the state number of each
%selected state)

%array to store a list of states determined during traceback;
%its a line array which dimensions are 1xdepth_Trel lis+1
state_sequence=zeros(1,depth_of_trellis+1);

%the last element of this array must be the state 0 , so the
%penultimun will be the state which path leads to t hat 0 state
%(in our example that path comes from the state 1)
state_sequence(1,depth_of_trellis)=survivor_state(1 ,depth_of_trellis+1
);

%we obtein the states selected when tracing the pat h back through
%the survivor state table
for i=1:depth_of_trellis
 state_sequence(1,depth_of_trellis-
i+1)=survivor_state((state_sequence(1,depth_of_trel lis+2-
i)+1),depth_of_trellis-i+2);
end

%once we've obteined the path back, using a table t hat maps state
%transitions to the imputs that caused them, we can recreate the
%original message; the flushig bits at the end are discarded so
%the dimensions of this line vetor are 1xdepth_Trel lis-L+1
%(=1xdepth_Trellis-M)
decoder_out_matrix=zeros(k,depth_of_trellis-L+1);
for i=1:depth_of_trellis-L+1

dec_output_deci=input(state_sequence(1,i)+1,state_s equence(1,i+1)+1);
 dec_output_bin=deci2bin(dec_output_deci,k);

 %if k=1 this matrix will be equal to de final resul t, if not,
 %we'll be having the estimated bits of the message in each time
 %instant per columns, afterwards, we will have to o rganise them
 %in a single row
 decoder_out_matrix(:,i)=dec_output_bin(k:-1:1)' ;
end

%we give the result in a row vector
decoder_out=reshape(decoder_out_matrix,1,k*(depth_o f_trellis-L+1));

 68

graph_some_collab.m

function graph_some_collab
%we are going to be plotting in this graph the diff erent scenarios

%we will be sending a BPSK signal(basically 1's and -1's) that
%goes through an additive gaussian noise channel (A WGN) with
%slow Rayleight fading; in this case we are going t o see the
%differences when we always have collaboration from the relay
%and when we have some collaboration from the relay

%we will design the ideal channel with which we'll make the
%comparaisons values of EbN0 in dBs
EbN0_values = 0:25;
ebn0 = 10.^(EbN0_values/10);

%we define the different variables for the collabor ative part
%in here (the different distances between all the d evices in
%the system)
d_sd = 1;
d_sr = 0.5;
d_rd = 0.5;

%we calculate the path gain for the the source-rela y path and
%for the relay-destination path (we have set the pa th gain for
%the source-destination path to 1)
%the formula to calculate the path gain for the sou rce-relay
%path for example would be: pg_sr=(d_sd/d_rd)^2*pg_ sd but the
%pg_sd=1 so we dont need to take it into considerat ion
pg_sr = (d_sd/d_sr)^2;
pg_rd = (d_sd/d_rd)^2;

tau = 9.12;
P_no_collab = 1 - exp(-tau./(pg_sr*ebn0));
P_collab = exp(-tau./(pg_sr*ebn0));

%we plot the FER in an AWGN channel with a BPSK mod ulation and a
%convolutional encoder and a viterbi decoder withou t collaboration
[EbN0_values,BER,FER_no_collab] =
scenario_collaboration('no_collaboration');
BER
semilogy(EbN0_values,FER_no_collab, 'rx-' , 'linewidth' , 2)
hold on;

%we plot the BER in an AWGN channel with a BPSK mod ulation and a
%convolutional encoder and a viterbi decoder when w e have some
%collaboration
[EbN0_values,BER,FER_collab] =
scenario_collaboration('perfect_collaboration');
BER
FER_some_collab = FER_no_collab*P_no_collab + FER_c ollab*P_collab;
TSNR = ebn0*(P_no_collab+ (3/2)*P_collab);
TSNR_db = 10*log10(TSNR);
semilogy(TSNR_db,FER_some_collab, 'bx-' , 'linewidth' , 2)
hold on;

 69

grid on
axis([0 25 1e-4 1])
title('BPSK modulation in an AWGN channel with Rayleigh f ading without
and with some collaboration')
legend('convolutional-code-no-collaboration' , 'convolutional-code-
some-collaboration');
xlabel('TSNR (dB)')
ylabel('FER')

