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Abstract

This paper designs, evaluates, and tests a tractable priority-index policy for
scheduling target updates in a discrete-time multitarget tracking model, which aims
to be close to optimal relative to a discounted or average performance objective ac-
counting for tracking-error variance and measurement costs. The policy is to be
used by a sensor system composed of M phased-array radars coordinated to track
the positions of N targets moving according to independent scalar Gauss–Markov
linear dynamics, which therefore allows for the use of the Kalman filter for track
estimation. The paper exploits the natural problem formulation as a multiarmed
restless bandit problem (MARBP) with real-state projects subject to deterministic
dynamics by deploying Whittle’s (1988) index policy for the MARBP. The challeng-
ing issues of indexability (existence of the index) and index evaluation are resolved
by applying a method recently introduced by the first author for the analysis of
real-state restless bandits. Computational results are reported demonstrating the
tractability of index evaluation, the substantial performance gains that the Whittle’s
marginal productivity (MP) index policy achieves against myopic policies advocated
in previous work and the resulting index policies suboptimality gaps. Further, a pre-
liminary small–scale computational study shows that the (MP) index policy exhibits
a nearly optimal behavior as the number of distinct objective targets grows with
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1 Introduction

1.1 Background and Motivation

Recent advances in sensor technology have provided modern multi-sensor systems with

an increased operating flexibility to achieve given performance objectives. Such an un-

precedented flexibility provides new systems with the possibility of rapidly adapting its

functioning to suit a variety of highly dynamic environments. Yet, fully exploiting this

benefit calls for the development of appropriate scheduling algorithms. The widespread

adoption of these cutting-edge technologies has stimulated this demand and ultimately

matured into an emerging field of research: sensor management (SM ).

A concrete example of SM problems posed by the introduction of an advanced sensing

technology is given by the active electronically scanned phased-array radar. Typical pulse

radar systems operate by illuminating a scene with a short pulse of electromagnetic energy

and collecting the energy reflected from the scene. In contrast to traditional radar systems,

in which illumination parameters, such as beam direction and shape among others, are

typically hard-wired, phased-array radars are capable of electronically controlling these

parameters during system operation so as to best extract information from the scene.

Naturally, efficient usage of these flexible sensing resources requires the schedulling of

transmission parameters so as to optimize the system’s performance. We refer the reader

to [16] for a survey of the substantial literature in the area.

The design of such scheduling policies should take into consideration the distinctive

features of each transmission parameter as well as the dynamics and uncertainty which

characterizes the environment for the utilization of shared, and hence usually scarce,

system’s resources. This fact accounts for the growing surge of research on modern radar

scheduling that seek to optimize a concrete system’s objective, such as target tracking

or target detection, by formulating stochastic dynamic programming models known as

Markov Decision Problems (MDP). Unfortunately, optimal scheduling strategies for these

problems are often computational intractable in all but a few simple problems. Thus,

the design of tractable and near-optimal SM policies represents a considerable research

challenge.

For the inherent benefits of these flexible systems to be fully realized, the follow-

ing issues have to play a prominent role in the design of SM policies: (i) the real-time

operational management of modern sensing systems requires implementable scheduling

algorithms which ideally run in polynomial time, since they will be on-line; (ii) the need

to account for the long term effects of current actions to achieve greater performance

gains calls for non-myopic policies; (iii) when the system is to be used in fairly distinct

environments, robustness of scheduling methods is of vital importance (i.e. rules leading

to near-optimal performance in one environment should not result in a poor performance

in another environment) and; (iv) since idle radar time can be allocated to other tasks in
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multi-function radars, policy design should take into account that a low system utilization

may become highly advantageous.

This paper addresses the SM problem faced by the coordinator of a set of M phased-

array radars whose objective is the dynamic tracking over an indeterminate time horizon of

a fixed number N of well-separated moving targets. Phased-array radars, operating in the

tracking or revisit mode, maintain targets’ location estimates by steering the radar’s beam

to point toward desired directions, as opposed to conventional track-while-scan radars,

which track targets while the radar’s antenna mechanically rotates at a constant rate. In

this context, appropriately switching beam direction (which implies the monitoring of the

total energy intercepted by a measured target) raises the possibility of improving tracking

performance via the design of a suitable scheduling control policy adopted for dynamic

prioritization of target track updates.

1.2 Prior Work: MDP Models for Multitarget Tracking

Early work on the subject of optimal scheduling of track updates in phased array radars

dealt with the minimization of radar energy required for track maintenance, see, e.g., [15],

[14], [3]. The design of optimal target track updates scheduling policies in highly idealized

system models which ignore other relevant issues as target detection, waveform selection,

and control of the pulse repetition interval (PRI) is addressed in recent work. In [5],

a beam scheduling algorithm is derived from a discrete-time and discrete-state partially

observed Markov decision process (POMDP) model which assumes that targets’ motion

from one PRI to the next is negligible (i.e. targets are stationary). Exploiting the special

structure of the suggested POMDP as a classic multiarmed bandit problem (MABP), the

optimal policy is characterized in terms of an index policy.

A discrete-time finite horizon formulation for non-stationary targets in which targets

and target track measurements follow scalar, linear Gauss–Markov dynamics, and target

track-error variances (TEVs) are updated via Kalman filter’s equations is introduced

in [4]. The authors seek to to optimize the sum of the targets’ track error variances over a

finite horizon and propose a greedy scheduling policy, which updates at each time a target

of largest TEV, thus taking a target’s current TEV as its priority index . They further

claim such a greedy-index policy to be optimal in for the case of two symmetric targets.

A promising approach to the design of policies for dynamic prioritization of target

track updates, as well as for other related SM problems, draws on the formulation of

multiarmed restless bandit problems (MARBPs) with real-state projects. The MARBP

is a powerful modeling framework which concerns the optimal sequential allocation of a

scarce resource to a collection of N stochastic projects, out of which at most M can be

engaged at a given time. Each project (or bandit) is modeled as a binary-action (active

or passive) Markov decision process (MDP). The goal is to find a scheduling policy that

maximizes the expected total discounted (ETD) or the long-run expected time-average
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reward earned over an infinite horizon. In the special classic case where only one project

can be engaged at each period and passive projects do not change state, there exists an

optimal policy of index type, the Gittins index [1] is attached to each project as a function

of its state, and then a project of largest index is engaged at each time.

Yet, bandit formulations of SM problems call for the use of MARBP models, since

projects (where a “project” is a target and the active action is to deploy sensing resources

to the target) change state when passive. Indeed, Whittle used multitarget tracking as

one of his motivating applications for introducing the MARBP, in the example of M

aircraft trying to track the positions of N enemy submarines, where, as he put it, “the

bandits are restless in the most literal sense.” This inadequacy of the classic model is

also pointed out in [6], where the authors extend the results in [4] on optimality of the

greedy-index scheduling policy for tracking two symmetric targets to more general linear

dynamical systems under the same finite-horizon total TEV performance objective. De-

spite remarking that such a problem falls within the framework of the MARBP presented

by Whittle in [18], they do not use the indexation approach proposed there.

Index policies are generally suboptimal for the MARBP, yet Whittle introduced in [18]

a heuristic index policy based on a particular index for restless bandits, which emerges

from a Lagrangian relaxation and decomposition approach that also yields a bound on

the optimal problem value. The Whittle index, which has been extended in [10] into the

more general concept of marginal productivity (MP) index —named after its economic

interpretation— raises substantial research challenges as (i) indexability (i.e., existence of

the index) needs to be established for the model at hand; and (ii) the index needs to be

evaluated in a tractable fashion.

Over the last decade, the first author has developed a methodology for resolving such

issues on restless bandit indexation in the discrete-state case, in a stream of work starting

in [7–9], which is reviewed in [11]. More recently he has announced in [12] extensions

to real-state restless bandits, which are the cornerstone of the present paper’s approach,

and are also deployed in an opportunistic spectrum access model in [13]. The potential of

real-state MARBP models to effectively address SM problems resides at the possibility of

resolving the previously mentioned prominent issues on SM scheduling policy design by

deploying such an indexation methodology.

1.3 Goals and Contributions

The model we consider here is based on and extends that formulated in [4], in which

targets and target track measurements follow scalar, linear Gauss–Markov dynamics, and

target track-error variances (TEVs) are updated via Kalman filter’s equations. This

paper extends such a line of work by investigating an MARBP formulation of dynamic

tracking of multiple asymmetric targets with scalar linear Gauss–Markov dynamics, which

incorporates both tracking-error and measurement (energy) costs, the main goal being to
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obtain a tractable index policy that performs well based on restless bandit indexation.

The paper deploys the methodology for real-state restless bandit indexation announced

in [12] to establish indexability and evaluate the MP index in an efficient fashion for the

model of concern. The resulting beam scheduling rule is both non-myopic and depends

on the target’s initial TEV and on its movement and measurement dynamics. Computa-

tional results obtained demonstrate the tractability of index evaluation, the substantial

performance gains that the marginal productivity (MP) Whittle’s index policy achieves

against myopic policies advocated in previous work as well as the resulting index policies

suboptimality gaps. Moreover, preliminary computational results suggest that the result-

ing index policy is nearly optimal for the case in which the total number of distinct targets

grows as the proportion of radars to targets remains constant. Proofs will be included

in the full journal version of this work, along with extensive large-scale computational

experiments.

1.4 Organization of the Paper

The remainder of the paper is organized as follows. Section 2 describes the multitarget

tracking model and the MARBP formulation. Section 3 discusses the restless bandit

indexation methodology for real-state restless bandits introduced in [12] as it applies to

the design of index policies for multitarget tracking. Section 4 discusses how to deploy

such a methodology in the present model to verify indexability and to provide a tractable

evaluation of the Whittle’s MP index. Alternative index policies and their relation to the

Whittle’s MP index policy are summarized in Section 5. Section 6 reports the results of

some small-scale computational studies to assess the tractability and the computational

cost of index evaluation as well as the relative and absolute performance of the Whittle’s

MP index policy.

2 Multitarget Tracking and Restless Bandit Formu-

lation

2.1 Multitarget Tracking Kalman Filter Model

We consider the tracking of N moving targets labeled by n ∈ N , {1, . . . , N} by means

of a sensing system composed of M phased array radars labeled by m ∈ M , {1, . . . ,M}.
All radars in the system are synchronized to operate over time slots t = 0, 1, . . ., where

a time slot corresponds to a PRI. The system is controlled by a central coordinator, who

at each slot t must decide to update the tracks of at most M targets by steering toward

them the beams of as many radars to measure their positions.

As in [4] and [6], we assume that there are no clutter or false measurements, and that

the probability of target detection is unity. For simplicity we also assume that targets
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move in one dimension. Let x
(n)
t be the (unobservable) position of target n in the real

line R at the beginning of slot t. If a radar measures target n’s position in slot t, a noisy

measurement y
(n)
t is obtained. Decisions on which target tracks to update at each time

are formulated by binary action processes a
(n)
t ∈ {0, 1}, where a

(n)
t = 1 if target n is

measured in slot t and a
(n)
t = 0 otherwise.

The targets move over R following independent linear Gauss–Markov dynamics

x
(n)
t = F (n)x

(n)
t−1 + ω

(n)
t , t ≥ 1, (1)

where the position-noise process ω
(n)
t is an i.i.d. zero-mean Gaussian white noise with

variance q(n), and F (n) is a fixed constant in R.

At a slot t in which target n is measured, the corresponding measurement y
(n)
t is

generated by the following linear Gauss–Markov dynamics

y
(n)
t = H(n)x

(n)
t + ν

(n)
t , (2)

which is target specific but independent of the radar being used, and where the measurement-

noise process ν
(n)
t is an i.i.d. zero-mean Gaussian white noise with variance r(n), and

H(n) ∈ R.

Although our approach applies to arbitrary parameters F (n) and H(n), for simplicity

of exposition we will focus the subsequent discussion on the case F (n) = 1 and H(n) = 1.

If an initial estimate of the position and of the tracking error variance (TEV), denoted

by x̂
(n)
0 and p

(n)
0 , respectively, are given for each target n, then the optimal minimum-

variance predicted estimates are given by the Kalman filter. The TEV p
(n)
t , which de-

scribes the uncertainty in target n’s track at the beginning of slot t, is recursively updated

by the Kalman equations

p
(n)
t =


p

(n)
t−1 + q(n), if a

(n)
t = 0

p
(n)
t−1 + q(n)

p
(n)
t−1/r

(n) + q(n)/r(n) + 1
, if a

(n)
t = 1

We shall take the state of each target n to be its scaled TEV (STEV) s
(n)
t , p

(n)
t /r(n),

which follows the dynamics

s
(n)
t =


φ0,(n)

(
s

(n)
t−1

)
, if a

(n)
t = 0

φ1,(n)
(
s

(n)
t−1

)
, if a

(n)
t = 1,

where

φ0,(n)(s) , θ(n) + s, φ1,(n)(s) ,
θ(n) + s

1 + θ(n) + s
(3)

and θ(n) , q(n)/r(n) is the position to measurement noise variance ratio for target n.
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Such a STEV state, being a scaled variability measure of target’s n current position

estimate, naturally moves over the state space S(n) , [0,∞). Hence, for some r(n) ∈
(0,∞), s

(n)
0 = 0 corresponds to exact knowledge of the targets’ initial positions and

s
(n)
0 =∞ to complete uncertainty of the targets’ initial positions.

Note that, for any initial state s
(n)
0 = s, the t-th iterate of φ1,(n)(s), φ

1,(n)
t (s), which is

generated by φ
1,(n)
0 (s) , s and φ

1,(n)
t (s) , φ1,(n)

(
φ

1,(n)
t−1 (s)

)
, converges to the limit

φ1,(n)
∞ , lim

t→∞
φ

1,(n)
t (s) =

1

2

(√
θ(n)(4 + θ(n))− θ(n)

)
,

which is the unique nonnegative root of φ1,(n)(s) = s and is an attractive fixed point.

Also, notice that, for any initial state s
(n)
0 = s, the tth iterate of φ0,(n)(s), φ

0,(n)
t (s),

which is generated by φ
0,(n)
0 (s) , s and φ

0,(n)
t (s) , φ0,(n)

(
φ

0,(n)
t−1 (s)

)
, converges to the limit

φ0,(n)
∞ , lim

t→∞
φ

0,(n)
t (s) =

(
s+ θ(n)t

)
=∞,

which is an attractive fixed point.

Notice that the subset of states S(n) , [φ1,(n)
∞ ,∞) is absorbing for target n. Note

further that φ1,(n)
∞ ≤ θ(n) iff θ(n) ≥ 1/2, which will be the case if, for instance, radar’s

measurements on target n are precise enough, while φ1,(n)
∞ ≥ θ(n) iff θ(n) ≤ 1/2. We

assume henceforth that θ(n) ≥ 1/2 for each target n.

As alleged by Whittle in [18] when describing the submarine surveillance example,

the passive and active dynamics (φ
0,(n)
t (s) and φ

1,(n)
t (s)) result in contrary movements in

the state space S , [0,∞), which respectively correspond to loss and gain of precision on

targets’ location estimates.

To take actions a
(n)
t , the coordinator follows a scheduling policy π, which is drawn

from the class Π(M) of admissible scheduling policies that are nonanticipative (based on

the history of states and actions) and measure at most M targets per time slot,∑
n∈N

a
(n)
t ≤M, t = 0, 1, 2, . . . (4)

We assume that a radar which updates the target n’s track in a time slot incurs a mea-

surement cost h(n) ≥ 0, representing the cost of beam energy expended for the track’s

update. Further, we take the tracking-error cost at slot t to be d(n)p
(n)
t+1 = d(n)r(n)s

(n)
t+1,

where d(n) > 0 is a constant that may differ by target. The flexibility furnished by the

d(n) will be of use if the relative importance of tracking precision differs across targets.

Hence, the one-slot cost incurred by taking action a on target n when it occupies STEV

state s is C(n)(s, a) , d(n)r(n)φa,(n)(s) + h(n)a.

2.2 Multiarmed Restless Bandit Formulation

Consider the following dynamic optimization problems: (1) find a discount-optimal policy,

V ∗D(s) = min
π∈Π(M)

Eπ
s

 ∞∑
t=0

∑
n∈N

βtC(n)
(
s

(n)
t , a

(n)
t

) , (5)
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which minimizes the expected total discounted (ETD) cost, where 0 < β < 1 is the discount

factor, s0 = s = (s(n)) is the initial joint STEV state, and Eπ
s [·] denotes expectation under

policy π conditional on s0 = s; and (2) find an average-optimal policy,

V ∗A(s) = min
π∈Π(M)

lim
T→∞

1

T
Eπ

s

 T∑
t=0

∑
n∈N

C(n)
(
s

(n)
t , a

(n)
t

) , (6)

which minimizes the expected long-run average cost.

Problems (5) and (6) are discrete-time multiarmed restless bandit problems with real-

state projects. Each project feeds on the limited sensing system’s resources and it is

modeled as a binary-action MDP whose STEV state s
(n)
t lives on the Borel state space

S(n). Note that, taking action a
(n)
t on target n, with a

(n)
t = 1: a beam is steered toward

target n to measure its position; a
(n)
t = 0: no beam is steered toward target n to measure

its position, leads to the following consequences: (i) the tracking of target n results

in a system cost C(n)
(
s

(n)
t , a

(n)
t

)
per PRI, which describes the tracking accuracy for a

given resource consumption a
(n)
t ; and (ii) the target’s next state s

(n)
t+1 is given by (3),

which implies that, given a
(n)
t , state transitions are deterministic and independent across

projects.

The existence of an optimal solution for MARBP such as (5) is ensured under appro-

priate conditions on C(n) and a
(n)
t ,(cf. [2]). Moreover, such a solution is a deterministic

stationary policy taken from the class Π(M) of admissible scheduling policies and it is

characterized by the corresponding dynamic programming equations (DPEs). Nonethe-

less, exact numerical solution to such DPEs is generally intractable, due both to the curse

of dimensionality and to problem specific difficulties introduced by its continuous state

space. This computational infeasibility is also the case for the average-cost MARBP (6).

In view of the above, instead of attempting to solve such problems optimally, we shall

pursue the more practical goals of designing and computing a well-performing heuristic

policy of priority-index type. Such policies attach an index λ(n)(s(n)) to each target n as

a function of its STEV state s(n), depending on target parameters. At time t, the resulting

index policy selects at most M targets to measure, using λ(n)(s
(n)
t ) as a priority index for

measuring target n (where a larger index value means a higher priority), among those

targets, if any, for which the index exceeds the measurement cost, i.e., λ(n)
(
s

(n)
t

)
> h(n),

breaking ties arbitrarily.

In the sequel, we shall focus for concreteness on discounted-cost problem (5), although

our approach also applies to average-cost problem (6).

7



3 Real-state Restless Bandit Indexation

3.1 Relaxed Problem, Lagrangian Relaxation, and Decomposition

Along the lines introduced in [18] for the equality-constrained case, we shall deploy a

Lagrangian relaxation and decomposition approach. We thus start by relaxing problem

(5) replacing the sample-path peak resource-usage constraint (4) that at most M targets

are measured at each time by the averaged version of such a requirement that the ETD

number of measured targets does not exceed M/(1− β), i.e.,

Eπ
s

 ∞∑
t=0

∑
n∈N

βta
(n)
t

 ≤ M

1− β
. (7)

Denoting by Π(∞) the class of nonanticipative scheduling policies (which can measure

any number of targets at any time), the relaxed primal problem is

V R(s) = min
(7),π∈Π(∞)

Eπ
s

 ∞∑
t=0

∑
n∈N

βtC(n)
(
s

(n)
t , a(n)

) . (8)

Note that the optimal value (cost) of (8) V R(s) gives a lower bound on the optimal value

of (5) V ∗D(s).

To address such a constrained MDP (8) we deploy a Lagrangian approach, including

coupling constraint (7) and attaching a multiplier λ ≥ 0 to it. The resulting problem

V L(s;λ) = min
π∈Π(∞)

Eπ
s

 ∞∑
t=0

∑
n∈N

βt
{
C(n)

(
s

(n)
t , a

(n)
t

)
+ λa

(n)
t

}− Mλ

1− β
(9)

is a Lagrangian relaxation of (8), whose optimal value V L(s;λ) gives a lower bound on

V R(s). Next, given the fact that target’s state transitions are independent, we decompose

problem (9) as

V L(s;λ) =
∑
n∈N

V L
(n)(s

(n);λ)− Mλ

(1− β)
, (10)

where

V L
(n)(s

(n);λ) = min
π(n)∈Π(n)

Eπ
(n)

s(n)

[ ∞∑
t=0

βt
{
C(n)

(
s

(n)
t , a

(n)
t

)
+ λa

(n)
t

}]
, (11)

is target n’s subproblem optimal value and Π(n) is the class of nonanticipative tracking

policies for target n in isolation. In terms of these individual problems, multiplier λ

represents an additional cost, to be added to the target’s regular measurement cost h(n),

that will be paid per time slot a beam is measuring target n. Note that, for a given charge

λ, target n’s subproblem (11) can be interpreted as the optimal control problem faced

by a manager exclusively responsible of tracking target n. We will hence refer to (11) as

target’s n’s λ-charge subproblem.
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The Lagrangian dual problem is to find an optimal value λ∗(s) of λ giving the best

lower bound on V R(s), which we denote by V D(s):

V D(s) = max
λ≥0

V L(s;λ) (12)

Such a problem can be interpreted in economic terms as the central coordinator’s prob-

lem of selecting a critical λ∗ value for the charge paid by each target manager so that

by independently solving their individual λ-charge subproblem the best possible system

performance V L(s, λ∗(s)) is achieved. Note that such a λ∗ solves (12) which is a scalar

convex optimization problem, since V L(s;λ) is concave in λ. Clearly, by decoupling the

whole problem into n individual subproblems, (10) is significantly easier to solve than (5),

yet its computational tractability depends on that of individual subproblems (11).

Notice that although weak duality (V R(s) ≥ V D(s)) is ensured, satisfaction of strong

duality, i.e. V R(s) = V D(s), calls for further investigation.

3.2 Indexability; Whittle’s Marginal Productivity Index Policy

Focus now on the optimal control problem faced by a dedicated manager concentrated

exclusively on the tracking target n in isolation as described by subproblem (11). We

shall henceforth treat measurement charge λ as a scalar parameter taking values in R.

Thus, negative values of λ can be viewed as a subsidy for measuring target n, just as

positive values of λ were interpreted as an additional measurement cost for measuring

target n. In light of this economic interpretation of multiplier λ, consider the definition

of the following key structural property of such a parametric restless bandit subproblem,

termed indexability.

Definition 1 We say that subproblem (11) is indexable if there exists an index λ∗,(n)(s)

which is a scalar function of the target’s STEV state s ∈ S such that, for any value of

multiplier (measurement charge/subsidy) λ ∈ R, the active action a
(n)
t = 1 (measuring

the target) is optimal in state s
(n)
t = s iff λ∗,(n)(s) ≥ λ.

If the above definition holds, the solution to an indexable restless bandit subproblem

can be simplified, and hence also that of Lagrangian dual (12). Exploiting this special

structure, a reduced class of admissible policies in Π(n) needs to be considered in order

to solve it. Clearly, when the optimal policy of (11) can be expressed in terms of such a

scalar function λ∗,(n)(s) it suffices to consider deterministic stationary policies to find its

solution.

Further, indexable subproblems result in a resource allocation rule which is in ac-

cordance with the traditional microeconomics profit maximization principle by which a

resource should be exploited up the point in which the marginal profit of employing an

extra unit of it equals zero. From definition 1, the beam is allocated to measure target

9



n in a PRI only as long as the measurement charge λ, its marginal cost, does not exceed

function λ∗,(n)(s), which can thus be viewed as the marginal revenue of measuring target

n when it occupies STEV state s. Thus, optimal solution of indexable subproblems are

such that the marginal profit of allocating a beam at each active PRI is at least 0, i.e.

λ∗,(n)(s)− λ ≥ 0.

The indexability property of restless bandits was introduced by Whittle in [18], be-

ing later extended by the author (cf. the survey [11]), leading to the unifying concept of

marginal productivity (MP) index after its above mentioned natural economic interpreta-

tion.

If each single-target subproblem (11) were indexable and a tractable procedure were

available to evaluate index λ∗,(n)(s), then this would readily yield a computationally

tractable algorithm to solve Lagrangian dual problem (12) —provided the objective of

(11) could also be efficiently evaluated— and thus compute the lower bound V D(s) re-

ferred to above. Further, we could then use for multitarget problem (5) the resulting

Whittle’s MP index policy, based on using λ∗,(n)
(
s

(n)
t

)
as target n’s priority index.

3.3 Sufficient Indexability Conditions and Index Evaluation

Whittle’s indexability ensures that optimal policies for restless bandit problems can be

characterized by a scalar priority index, yet this structural property needs to be estab-

lished for the model at hand. For such a purpose, the first author introduced in work

reviewed in [11] sufficient indexability conditions for discrete-state restless bandits based

on satisfaction on partial conservation laws (PCLs), along with an index algorithm.

The first author has extended the scope of such conditions to real-state restless bandits

in results announced in [12], as reviewed next. The ensuing discussion focuses on a single-

project restless bandit problem modeling the optimal tracking of an individual target,

whose label n is henceforth dropped from the notation. We thus write, e.g., the target’s

state and action processes as st ∈ S , [0,∞) and at ∈ {0, 1}, respectively.

We shall evaluate the performance of an admissible tracking policy π ∈ Π along two

dimensions: the work measure

g(s, π) , Eπs

[ ∞∑
t=0

βtat

]
,

giving the ETD number of times the target is measured under policy π starting at s0 = s;

and the cost measure

f(s, π) , Eπs

[ ∞∑
t=0

βtC(st, at)

]
,

giving the corresponding ETD cost incurred.

The target’s optimal tracking problem (11) is then reexpressed in terms of these mea-

sures as

V ∗(s;λ) = min
π∈Π

f(s, π) + λg(s, π). (13)

10



Once again, consider problem (13), which is a real-state MDP, as target’s λ-charge sub-

problem.

In order to show indexability of (13), we shall study the conditions under which it

suffices to consider deterministic stationary policies, which are naturally represented by

their active (state) sets, i.e., the set of STEV states where they prescribe the active action

(measure the target). For an active set B ⊆ S, we shall refer to the B-active policy.

More precisely, we shall focus attention on the family of threshold policies. For a given

threshold level z ∈ R , R∪{−∞,∞}, the z-threshold policy measures the target in STEV

state s iff s > z, so its active set is B(z) , {s ∈ S : s > z}. Note that B(z) = (z,∞) for

s ≥ 0, B(z) = S = [0,∞) for z < 0, and B(z) = ∅ for z = ∞. We denote by g(s, z) and

f(s, z) the corresponding work and reward measures.

For fixed z, work measure g(s, z) is characterized as the unique solution to the func-

tional equation

g(s, z) =

1 + βg
(
φ1(s), z

)
, s > z

βg
(
φ0(s), z

)
, s ≤ z,

(14)

whereas cost measure f(s, z) is characterized by

f(s, z) =

C(s, 1) + βf
(
φ1(s), z

)
, s > z

C(s, 0) + βf
(
φ0(s), z

)
, s ≤ z.

(15)

We shall use the marginal counterparts of such measures. For threshold z and action a,

denote by 〈a, z〉 the policy that takes action a in the initial slot and adopts the z-threshold

policy thereafter. Define the marginal work measure

w(s, z) , g(s, 〈1, z〉)− g(s, 〈0, z〉), (16)

and the marginal cost measure

c(s, z) , f(s, 〈0, z〉)− f(s, 〈1, z〉). (17)

If w(s, z) 6= 0, define further the MP measure

λ(s, z) ,
c(s, z)

w(s, z)
. (18)

The following definition extends to the real-state setting a corresponding definition

introduced by the first author in [7] for discrete-state restless bandits.

Definition 2 We say that subproblem (13) is PCL-indexable (with respect to threshold

policies) if:

(i) positive marginal work : w(s, z) > 0, s ∈ S, z ∈ R;

11



(ii) nondecreasing index : the index defined by

λ∗(s) , λ(s, s), s ∈ S. (19)

is monotone nondecreasing in s

The next result, which extends the scope of a corresponding result in [7] for discrete-

state restless bandits to the real-state setting, states the validity of the PCL-based suffi-

cient indexability conditions deployed in this paper. It further shows how to evaluate the

Whittle’s MP index.

Theorem 1 If subproblem (13) is PCL-indexable, then it is indexable and the λ∗(s) in

(19) is its Whittle’s MP index.

4 Indexability Analysis

This section reports the results of the analysis required to establish that the single-target

tracking restless bandit model is PCL(F )-indexable, so that Theorem 1 can be invoked.

We also describe how the MP Index can be computed in a tractable fashion.

The indexability analysis of the present model is based on the evaluation and analysis

of work and cost measures g(s, z) and f(s, z), from which their marginal counterparts

w(s, z) and c(s, z) are immediately obtained. Under a z-threshold policy, the state variable

process st starting at some initial state s0 = s in S determines the evolution of the

associated action process at. Thus, we next focus on the study of the st process for every

possible threshold level z ∈ R and every possible initial state s ∈ S.

Consider the iterates φt(s, z) and at(s, z), which are the STEV and action processes

st and at generated under the z-threshold policy starting at s. They can be recursively

computed as follows. Letting

φ(s, z) , 1B(z)(s)φ
1(s) + 1Bc(z)(s)φ

0(s),

where 1B(s) is the indicator of set B and Bc(z) , S \ B(z), φ0(s, z) , s and φt(s, z) ,

φ
(
φt−1(s, z), z

)
for t ≥ 1. Further, a0(s, z) , 1B(z)(s), and at(s, z) , 1B(z)

(
φt(s, z), z

)
for

t ≥ 1.

Note that the processes: φt(s, z) and at(s, z), can be respectively analyzed as forward

orbits through the initial state s of the underlying discrete dynamical systems: (N0, S, φ)

and (N0, {0, 1}, a). Such orbits determine the evolution of the total cost and work measure

and, depending on the value of the threshold z, they converge to some (asymptotically)

periodic orbit or they are closed and converge to some constant orbit (or fixed point).

Hence, asymptotic or closed–form formulae for the work and cost evaluation measures

can be derived by studying the limiting behavior of the corresponding orbits.
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Based on properties of such discrete dynamical systems, evaluation measures can be

studied so that sufficient indexability conditions in Definition 1 can be verified by algebraic

means. This section outlines how to do so, and further shows how to use such properties

to evaluate the index λ∗(s).

In the sequel we focus for the sake of simplicity yet without loss of generality, on the

case where the target’s tracking cost is h = 0.

4.1 Case I: Threshold z < 0

In the case z < 0, henceforth denoted as z−, under the z-threshold policy st starts and

remains above threshold for every possible level of the STEV, since the active set includes

every possible level of the STEV, i.e. B(z−) = S = [0,∞). Thus, there are no passive

initial states to consider.

To obtain the total evaluation measures note that:

st = φt(s, z) = φ1
t (s) and at = 1 t ≥ 0, ∀s : s ∈ S.

Hence, in this case both at and st converge to constant orbits whose fixed points are

1 and φ1
∞ respectively.

Elementary arguments give that for any s in S and any z < 0 the total work and cost

measure have the following evaluation:

g(s, z−) =
1

(1− β)

f(s, z−) = d r
∞∑
t=0

φ1
t+1(s)βt

Note that a closed form solution to f(s, z−) cannot be obtained, yet the infinite sum in

f(s, z−) converges to a finite limit, since φ1
t (s) ≤ 1 for any θ, t ≥ 0 , s ∈ S. Thus, we have

that f(s, z−) ≤ d r
(1−β)

∀s : s ∈ S.

Using the above total measures, we readily conclude that for any s in S:

w(s, z−) = 1 (20)

c(s, z−) = d r

 (s+ θ)2

(1 + s+ θ)
+ β

∞∑
t=0

βt

φ1
t+1(s+ θ)− φ1

t+1

(
s+ θ

s+ θ + 1

) (21)

From this, it is readily obtained that for s→0− the index in (19) λ∗(s) has the evalu-

ation:

lim
s→0−

λ∗(s) = d r

 θ2

(1 + θ)
+ β

f(θ, z−)− f( θ

θ + 1
, z−

) (22)
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4.2 Case II: Threshold z ∈ [0, φ1
∞]

In this case, under the z-threshold policy once st gets above the threshold z, it stays so

thereafter, given that the passive set is a subset of the non-absorbing states in S. Also,

for any θ > 0 if s ≤ z, st gets above threshold after a finite number of time slots. Let

t∗0(s, z) , {t ≥ 1 : φ0
t (s) > z}. Note that for θ ≥ 1/2, it holds that φ1

∞ ≥ 1
2
. It is easy to

see that for θ > 1/2 and any s ∈ S : s ≤ z, t∗0(s, z) = 1 whereas if θ = 1/2, t∗0(s, z) = 1

for any s ∈ S/0 : s ≤ z and t∗0(0, z) = 2. In general we have that t∗0(s, z) <∞ as long as

θ > 0.

Then, to obtain the total evaluation measures note that for the case θ > 1/2 or the

case θ = 1/2 and z < 1/2 it holds that:

st =


φt(s, z) = φ0

1(s) , φ1
t (s+ θ) for t ≥ 2 if s ≤ z

φt(s, z) = φ1
t (s) for t ≥ 1 if s > z,

Elementary arguments give that for those cases the total work measure has the fol-

lowing evaluation. For any s ∈ S, g(s, z) = 1
(1−β)

if s > z, and g(s, z) = β
(1−β)

if s ≤ z. An

analogous argument can be applied for the case θ = z = 1/2, to conclude that for s ∈ S,

g(s, 1/2) = 1
(1−β)

if s > 1/2, g(s, 1/2) = β
(1−β)

if 0 < s ≤ 1/2 and g(0, 1/2) = β2

(1−β)
.

Hence, also in the case z ∈ [0, φ1
∞] both at and st converge to constant orbits whose

fixed points are 1 and φ1
∞ respectively.

To compute the marginal work measure note that, if s0 > z we have that w(s, z) = 1,

since s1 > z regardless of the selected action. On the other hand, if s0 ≤ z, under the

threshold policy s1 > z except for s = 0, z = θ = 1/2 in which case s1 = z. Yet if s0 ≤ z

and the target is measured, for θ ≥ 1/2 it holds that s1 ≥ 1/3. This implies that it can

either occur that s1 ≤ z or s1 > z, depending on the threshold value. Therefore, it is

easy to see that w(s, z) = 1− β if s ≤ z and s1 ≤ z, while w(s, z) = 1 if either s ≤ z and

s1 > z. Note that if θ = z = 1/2, w(0, 1/2) = 1. Such results allow us to conclude that

for any s ∈ S, z ∈ [0, φ1
∞] and 1/2 ≤ θ < ∞ it holds that w(s, z) is either 1 or (1 − β).

Following a similar argument, it can be concluded that for the more general case θ > 0,

w(s, z) is either 1 or (1− βt∗0(s,z)).

From these results it is readily concluded that w(s, s) = 1 for all s ∈ [0, φ1
∞) while

w(s, s) = 1− β for s = φ1
∞ and some θ > 0.

It follows from the previously stated evolution of the process st that the total cost

measure under a threshold policy will have the following evaluation:

f(s, z) =



d r

(s+ θ
)

+ β

( ∞∑
t=0

φ1
t+1(s+ θ)βt

) s ≤ z

d r

[ ∞∑
t=0

φ1
t+1(s)βt

]
s > z
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Except for the case θ = z = 1/2 and s = 0 in which it holds that

f(s, z) = d r

(1 + β

2

)
+ β2

( ∞∑
t=0

φ1
t+1

(
1 + β

2

)
βt
).

Therefore, it is readily obtained that the index in (19) λ∗(s) has the following evalua-

tion

λ∗(s) = d r

 (s+ θ)2

(1 + s+ θ)
+ β

f(s+ θ, s
)
− f

( s+ θ

s+ θ + 1
, s
), s ∈ [0, φ1

∞) (23)

λ∗(s) =
d r

1− β

θ + β

(
φ1
∞ + 2θ

φ1
∞ + 2θ + 1

− (φ1
∞ + θ)

)

+β2

f( φ1
∞ + 2θ

φ1
∞ + 2θ + 1

, φ1
∞

)
− f

(
φ1
∞ + θ, φ1

∞

), s = φ1
∞ (24)

Notice that the resulting index evaluation λ∗(s) for s ∈ [0, φ1
∞) includes that of case

4.1 as a special case.

4.3 Case III: Threshold z ∈
(
φ1
∞, (θ +

√
2θ + θ2)

)
In the case z ∈ (φ1

∞,∞), it holds that the STEV process st under a z-threshold policy,

starting at any s ∈ S, hits the set (z, z + θ] after a finite number of time slots. Further,

after first hitting such set the process st jumps infinitely often above and below threshold

within the interval (φ1
1(z), z + θ], which is the absorbing subset of states in S under a

z-threshold policy for any s , z ∈ (φ1
∞,∞). Thus, for such z-threshold values, iterates of

the process st become arbitrarily close to a periodic orbit (i.e. an asymptotically periodic

orbit) while iterates of the at process settle into a periodic orbit.

The composition of such periodic orbits, in terms of the number active and passive

PRI, clearly depends on the threshold level z. Measuring a target only if its STEV exceeds

a level z requires a low/high radar activity level if the threshold z value is high/low. More

precisely, measuring the target only if st > z makes the system action process infinitely

oscillate in periodic orbits of c(z) time slots composed of a(z) active PRI and p(z) passive

PRI.

It can be shown that if z <
(
θ+
√

2θ + θ2
)

only one passive PRI is necessary to make

st jump above threshold, whereas if z ≥
(
θ+
√

2θ + θ2
)

only one active PRI is enough to

make st fall to a level at most equal to threshold z. In terms of the above stated results,

z-threshold such that z ∈
(
φ1
∞, θ +

√
2θ + θ2

)
can be thought of as low values of the

z-threshold while z ∈
(
θ +
√

2θ + θ2,∞
)

as high values.

Let us now study the case in which z ∈ (φ1
∞,
(
θ +
√

2θ + θ2
)
. In such a case it holds

that, measuring the target only if st exceeds z requires the system action process to
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infinitely oscillate in periodic orbits of c(z) time slots, in which the proportion of passive

PRI with respect to the total number of PRI in the orbit period is less than 1
2
, i.e.

p(z)/c(z) < 1/2. That is, for such low z-threshold values the system spends at least 50%

of the time measuring the target.

For s > z, let t∗1(s, z) , {t ≥ 1 : φ1
t (s) ≤ z}. It can be shown that for any z > φ1

∞,

t∗1
(
(z + θ), z

)
− t∗1

(
z+, z

)
∈ {0, 1} with t∗1

(
z+, z

)
standing for lims→z+ t

∗
1

(
s, z

)
. In this

case, the number of time slots in an orbit c(z) is computed as the number of time slots

in which the system returns to a STEV level in which t∗1(s, z) = t∗1
(
(z + θ), z

)
starting

from an initial state in which t∗1(s, z) = t∗1
(
z+, z

)
, for some s ∈ (z, z + θ]. Note that the

orbit duration depends on the z-threshold value but not on the initial STEV level. For the

special case in which t∗1
(
(z+θ), z

)
−t∗1

(
z+, z

)
= 0, the system oscillates in regular periodic

orbits of a(z) = t∗1
(
(z + θ), z

)
active time slots followed by 1 passive time slot, hence the

orbit’s period length c(z) is equal to a(z) + 1. Yet if t∗1((z + θ), z) − t∗1((z+), z)) = 1 the

periodic orbits have an irregular composition in terms of active and passive PRI.

For all s ∈ S : s ≤ z and for some threshold z ∈
(
φ1
∞, (θ +

√
2θ + θ2)

)
it holds that

t∗0(s, z) = 1. Hence, elementary arguments result in the following evaluation for the total

work and cost measure:

Proposition 1 For s ∈ S and z ∈ (φ1
∞, (θ +

√
2θ + θ2)),

g(s, z) =



1−βt∗1(s,z)

1−β + βt
∗
1(s,z)

∞∑
t=0

at
(
φ1
t∗1(s,z)(s), z

)
βt s > z

β
∞∑
t=0

at
(

(s+ θ), z
)
βt s ≤ z,

f(s, z) =



t∗1(s,z)−1∑
t=0

φ1
t+1(s, z)βt + βt

∗
1(s,z)

∞∑
t=0

φt
(
φ1
t∗1(s,z)(s), z

)
βt s > z

(s+ θ) + β
∞∑
t=0

φt
(

(s+ θ), z
)
βt s ≤ z

For a given z, Proposition 1 together with the stated properties of the at and st forward

orbits result in the following evaluation of the marginal work measure w(s, z) in (16):

w(s, z) =



(1− β)g(s, z) s > z, d = 0

1− βt∗1(s,z) (1−β2)

(1−βc(z))
s > z, d = 1

1−
(

(1− β)g(s, z)
)

s ≤ z

with d , t∗1
(
(s+ θ), z

)
− t∗1

(
s, z

)
, and c(z) ≥ 2.

Note that w(s, z) > 0 for all s ∈ S, z ∈ R. Also, from the previous analysis it can

be readily obtained that for s ∈ [(θ +
√

2θ + θ2),∞) the marginal work measure in s has
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the following closed form evaluation w(s, s) = 1−β
1−βc(s) , where c(z) is the number of time

slots defining the periodic orbit of the process a(t) under a z-threshold policy. Notice that

w(s, s) = 1
c(z)

for β = 1.

Further, arguing along the lines used for the marginal work measure w(s, z), analogous

formulae for the evaluation of c(s, z) can be derived. From such formulae it is readily

obtained the following evaluation of index in (19) λ∗(s):

λ∗(s) =
d r(1− βc(z))

(1− β)

[
(s+ θ)2

1 + s+ θ
− β

( (s+ θ)

1 + s+ θ
+ θ

)]
+

d r(1− βc(z))

f((s+ θ), s

)
− f

(
(s+ θ)

(s+ θ + 1)
+ θ, s

), s ∈ (φ1
∞, (θ +

√
2θ + θ2)

)
.

(25)

4.4 Case IV: Threshold z ∈ [(θ +
√

2θ + θ2),∞)

Following the argument invoked in the previous case, for z ∈ [(θ +
√

2θ + θ2),∞) the

STEV process st under a z-threshold policy hits the set (z, z + θ] after a finite number

of time slots thereafter jumping infinitely often above and below threshold within the

interval (φ1
1(z), z + θ]. As well, iterates of the process st become arbitrarily close to a

periodic orbit (i.e. an asymptotically periodic orbit) while iterates of the at process settle

into a periodic orbit. However, the composition of such periodic orbits differs from that

of case 4.3 in terms of active and passive action periods.

Measuring a target only if its STEV exceeds a high z-threshold level requires the

system action process to infinitely oscillate in periodic orbits of c(z) time slots composed

of a(z) active PRI and p(z) passive PRI. For z ≥
(
θ +
√

2θ + θ2
)

it holds that a(z) = 1

for all z, i.e. only one active PRI is necessary to make st fall to a level at most equal to

threshold z. Thus, it can be shown that the proportion of active PRI with respect to the

total number of PRI in the orbit is at most equal to 1
2
, i.e. a(z)/c(z) ≤ 1/2. That is, for

such high z-threshold values the system spends at most 50% of the time measuring the

target.

It can be shown that for any z ≥ (θ+
√

2θ + θ2), t∗0
(
φ1

1(z+θ), z
)
−t∗0

(
φ1

1(z−), z
)
∈ {0, 1}

with t∗0
(
φ1

1(z−), z
)

standing for lims→z− t
∗
0

(
φ1

1(s, z
)
. In this case, the number of time slots

in an orbit c(z) is also computed as the number of time slots in which the system returns

to a STEV level in which t∗0(s, z) = t∗0
(
φ1

1(z+ θ), z
)

starting from an initial state in which

t∗0(s, z) = t∗0
(
φ1

1(z)−, z
)
, for some s ∈ (z, z + θ]. Once more, orbit duration depends on

the z-threshold value but not on the initial STEV level. For the special case in which

t∗0
(
φ1

1(z + θ), z
)
− t∗0

(
φ1

1(z−), z
)

= 0, the system oscillates in regular periodic orbits of 1

active time slot followed by p(z) = t∗0
(
φ1

1(z + θ), z
)

passive time slots, hence the orbit’s

period length c(z) is equal to 1 + p(z). Yet if t∗0
(
φ1

1(z + θ), z
)
− t∗0

(
φ1

1(z−), z
)

= 1 the

17



periodic orbits have an irregular composition in terms of active and passive PRI.

It can be shown that it holds that t∗1(s, z) = 1. Hence, elementary arguments result

in the following evaluation for the total work and cost measure:

Proposition 2 For s ∈ S and z ∈ [(θ +
√

2θ + θ2),∞),

g(s, z) =



1 + β
∞∑
t=0

at(φ
1
t∗1(s,z)(s), z)β

t s > z

βt
∗
0(s,z)

∞∑
t=0

at(φ
0
t∗0(s,z)(s), z)β

t s ≤ z,

f(s, z) =



s+θ
s+θ+1

+ β
∞∑
t=0

φt(φ
1
t∗1(s,z)(s), z)β

t s > z

t∗0(s,z)−1∑
t=0

φ0
t+1(s)βt + βt

∗
0(s,z)+1

∞∑
t=0

φt(φ
0
t∗0(s,z)(s), z)β

t s ≤ z

where
t∗0(s,z)−1∑
t=0

φ0
t+1(s)βt admits the following closed form solution:

s
(1− βt∗0(s,z))

(1− β)
+ θ

1− βt∗0(s,z)+1(2 + t∗0(s, z)(1− β)− β)

(1− β2)
.

For a given z, Proposition 2 together with the stated properties of the at and st forward

orbits, allow us to obtain the following evaluation of the marginal work measure w(s, z)

in (16):

w(s, z) =



(1− β)g(s, z) s > z

1− βt∗0(s,z) (1−β2)

(1−βc(z))
s ≤ z, d1 = 1

1− (1− β)g(s, z) s ≤ z, d1 = 0

with d , t∗0
(

(s+θ)
s+θ+1

, z
)
− t∗0

(
s, z

)
and c(z) ≥ 2.

Note that w(s, z) > 0 for all s ∈ S, z ∈ R. From the previous analysis, it is readily

obtained that for s ∈ [(θ+
√

2θ + θ2),∞) the marginal work measure in s has the following

closed form evaluation w(s, s) = 1−β
1−βc(s) . Note that this evaluation coincides with that of

case 4.3, hence for β = 1, w(s, s) = 1
c(z)

.

Further, arguing along the lines used for the marginal work measure w(s, z) evaluation,

c(s, z) can be derived via (17). From this it is readily obtained that the index λ∗(s) in

(19) has the evaluation
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λ∗(s) =
d r(1− βc(z))

1− β

[
(s+ θ)2

1 + s+ θ
− β

t∗0−1∑
t=0

φ0
t+1(s)βt +

β(1− βt∗0)

f((s+ θ), s

)
− f

(
st∗0 , s

)], s ∈ [(θ +
√

2θ + θ2),∞). (26)

4.5 Case V: Threshold z =∞

In the case z =∞, under the z-threshold policy st will never be above threshold starting

from any possible initial level of the STEV, given that the active set is the null set, i.e.

B(z) = ∅. Hence, in this case every possible initial state is a passive initial state.

Once more, to obtain the total evaluation measures note that:

st = φt(s, z) = φ0
t (s, z) and at = 0 t ≥ 0 ∀s : s ∈ S

Hence, in this case at converges to a constant orbit whose fixed point is 0 while st

grows linearly in time up to infinite.

Elementary arguments give that for any s in S the total work and cost measure have

the following evaluation:

g(s,∞) = 0

f(s,∞) = d r

 s

(1− β)
+

θ

(1− β)2


Hence, for any s in S the corresponding marginal measures are:

w(s,∞) = 1 (27)

c(s,∞) = d r

(
(s+ θ)2

(1− β)(1 + s+ θ)

 (28)

From this, it is readily obtained that the MP measure λ(s,∞) = c(s,∞) can be expressed

as follows:

λ(s,∞) = d r

(
(s+ θ)2

(1− β)(1 + s+ θ)


Therefore the index (19) λ∗(s) has the evaluation:

λ∗(s) = d r

(
lim
s→∞

(s+ θ)2

(1− β)(1 + s+ θ)

)
=∞ (29)

4.6 Verification of PCL-indexability and Index Evaluation

Based on the results in Sections 4.1-4.5, conditions stated in 2 can be verified and we

therefore obtain the following result.
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Proposition 3 The single-target tracking problem is PCL-indexable with respect to thresh-

old policies under the β-discounted criterion, for 0 ≤ β < 1. Therefore, it is indexable,

and the index λ∗(s) previously calculated is its Whittle’s MP index.

We can also extend the result of Proposition 3 to the average criterion. Thus, denoting

by λ∗β(s) the MP index for discount factor β, it holds that λ∗β(s) increases monotonically

to a finite limiting index λ∗(s) as β ↗ 1.

We can thus evaluate work measure g(s, z) and cost measure f(s, z) by computing the

infinite series

g(s, z) =
∞∑
t=0

βtat(s, z)

f(s, z) = d r
∞∑
t=0

βtφt+1(s, z),

(30)

truncating them to a finite number T of terms.

From these, we can readily compute the marginal work and cost measures w(s, z)

and c(s, z) via (16)–(17). In turn, we can use the latter to obtain the index λ∗(s) via

(19). Alternatively, λ∗(s) can be evaluated using w(s, s) previously derived closed form

formulae and an approximation of c(s, s) based on the properties of st asymptotically

periodic orbits.

5 The MP Index and Other Index Policies

5.1 The Myopic Index and the TEV Index

The simplest case to consider is the myopic case, which corresponds to β = 0, under

which g(s, z) = a0(s, z), f(s, z) = d rφ1(s, z), w(s, z) = 1, c(s, z) = d r
[
φ0(s) − φ1(s)

]
,

and hence λ(s, z) = c(s, z) and λ∗(s) = d r
[
φ0(s)− φ1(s)

]
= d r(θ+ s)2/(1 + θ+ s). Since

(d/ds)λ∗(s) = d r(θ+ s)(2 + θ+ s)/((1 + θ+ s)2 > 0, the myopic index λ∗(s) is increasing

for all s ∈ S and some θ > 0. Therefore, it is straightforward that both conditions in

Definition 2 hold and thus, by Theorem 1, the target’s optimal tracking problem for β = 0

is indexable and λ∗(s) = λmyopic(s) is its Whittle’s MP index.

Such a myopic index policy is optimal in the multi-target model for β = 0, as it

minimizes the total cost function, i.e. the sum of the N targets’ tracking errors and

energy expanded for the next PRI. Notice that, for β = 0 the optimal policy is such that

for all n ∈ N we choose a
(n)
t such that:

min
π∈Π(M)

{
d(n) r(n)φ

a
(n)
t =0

1 (s(n)) ; d(n) r(n)φ
a
(n)
t =1

1 (s(n))
}

The above stated condition is equivalent to choosing a
(n)
t such that:

max
π∈Π(M)

{
a

(n)
t d(n) r(n)

[
φt(s, 0)− φt(s(n), 1)

]}
⇐⇒ max

π∈Π(M)

{
a

(n)
t λmyopic(s(n))

}
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Further, in the completely symmetric case in which all targets n ∈ N have the same

state space model, measuring the M targets of highest λmyopic(s(n)) or measuring the

M targets with the highest initial TEV λTEV(s(n)) = d(n) r(n)s(n) result in an equivalent

choice of targets to measure, and therefore in an identical system performance for the next

PRI. Such a result holds because under the identical targets assumption, for all targets

and every possible STEV the myopic index is a monotone transformation of the TEV

index. Thus, for β = 0 and in a completely symmetric scenario the MP index policy, the

TEV index policy and the myopic index policy yield an identical tracking performance

which is also optimal.

Both in [6] and [4] authors claim to optimize the sum of the targets’ track error vari-

ances over a finite horizon for β = 1 by deploying a scheduling TEV index policy for the

case of two symmetric targets. Yet, notice that for the general case of asymmetric targets

such a heuristic is not optimal nor does the above mentioned index policy equivalence

hold.

5.2 The MP Index and the Gittins index: case θ = 0

An interesting case to consider is when θ = 0, under which active and passive dynamics

are reduced to: φ1
t (s) = s

s+1
while φ0

t (s) = s. Hence, the model is no longer restless.

Following the previous section argument, it can easily be seen that:

g(s, z) =

 1−βt∗1(s,z)

1−β , s > z

0, s ≤ z.
(31)

with t∗1(s, z) = d s−z
s z
e, whereas cost measure f(s, z) is characterized by

f(s, z) =


d r
[ t∗1(s,z)−1∑

t=0

s

s(t+ 1) + 1
βt +

βt
∗
1(s,z)

(1− β)

s

st∗1(s, z) + 1

]
, s > z

d r
[

s
(1−β)

]
, s ≤ z.

(32)

Thus, it can be computed that for s > z it holds that w(s, z) = 1 − βt∗1(s,z), whereas

w(s, z) = 1 when s ≤ z. Further, w(s, s) = 1 while c(s, s) = d r
(1−β)

[
φ0(s)− φ1(s)

]
. Hence

λ(s, z) = c(s, z) and λ∗(s) = d rs2/(1+s). Since (d/ds)λ∗(s) = d r
(1−β)

s(2+s)/((1+s)2 > 0,

the index λ∗(s) is non decreasing for s ∈ S (and strictly increasing for s ∈ S\0). Therefore,

both conditions in Definition 2 hold and, by Theorem 1, the target’s optimal tracking

problem is indexable and λ∗(s) is its Whittle’s MP index. Moreover in this case, λ∗(s) is

also its Gittins index, since the model formulation under θ = 0 is classic, and it can be

conveniently expressed as: λmyopic(s)
(1−β)

.

Notice that the case θ = 0 occurs either when the target’s movement process is de-

terministic, i.e. q = 0, or when its measurement process is such that r = ∞. Also, note

that in the latter case, its Whittle’s MP index λ∗(s) =∞ for all s ∈ S while in the former
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λ∗(s) depend only of r and s. Further, for the case of any N objective targets and M = 1

we can expect such an index to be optimal [1].

5.3 The MP Index: case θ =∞

It is also interesting to consider the model when θ = ∞, under which active and passive

dynamics are reduced to: φ1
t (s) = φ1

∞ = 1 while φ0
t (s) = ∞ for all s, z ∈ S. Hence,

staring from any initial STEV in S, the process st under a threshold policy infinitely

alternates between 1, the minimum STEV level, and ∞, the maximum STEV level, for

all t = 1, 2, .... Following the previous section argument, it can easily be seen that for all

z ∈ S:

g(s, z) =


1

1−β2 , s > z
β

1−β2 , s ≤ z.
(33)

whereas cost measure f(s, z) tends to infinite irrespective of the initial state and threshold

value. Thus, it can be shown that in this case for any s, z ∈ S it holds that w(s, z) =

w(s, s) = 1
1+β

. Further, c(s, s) can be conveniently expressed as

c(s, s) = d r
[(
φ0(s)− φ1(s)

)
+ β

(
f(φ0(s), s)− f(φ1(s), s)

)]
.

Thus, λ∗(s) = c(s, s)(1 + β). For this case it holds that λ∗(s) = lim
θ→∞

λmyopic(s)(1 + β).

From where it follows λ∗(s) is increasing for s ∈ S, therefore the target’s optimal tracking

problem is indexable with λ∗(s) is its Whittle’s MP index.

Notice that the case θ =∞ occurs either when the target’s movement process is such

that q = ∞ or when its measurement process is exact, i.e. r = 0. Also, note that in

the former case, its Whittle’s MP index λ∗(s) = ∞ for all s ∈ S while in the latter case

λ∗(s) = d q (1 + β) for all s ∈ S.

6 Computational Experiments

6.1 MP Index Evaluation

We have implemented a MATLAB script for index evaluation using the above results.

The MP index was then computed for a target instance with parameters d = 1, r = 1,

and q = 5, so θ = 5, φ1
∞ = 0.8541 and (θ +

√
2θ + θ2) = 0.9161. The series in (30) were

approximately evaluated by truncating them to T = 102 terms for β = 0.1, 0.2, . . . , 0.9,

and to T = 105 terms for β = 0.9999. For each β, the index λ∗(s) was evaluated on a

grid of s values of width 10−3. Note that for the case β = 1 evaluation of the marginal

work measure by truncating the series to any number of time slots results in a 0 value,

given the periodic cycles that govern the evolution of the total work measures under a

threshold policy. (See Appendix A.)

Fig. 1 shows the results. As required by the PCL-indexability conditions, in each case

the index λ∗(s) was monotone nondecreasing (in fact, strictly increasing) in s. Note that
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the index λ∗(s) is continuous in s, being also piecewise differentiable. Further, for fixed s

the index λ∗(s) is increasing in β, converging as β ↗ 1 to a limiting index that can be used

for average-criterion problem (6), which we have approximated by taking β = 0.9999. For

each s, the time to compute λ∗(s) was negligible.

Figure 1: The Whittle’s MP index for different discount factors β.

6.2 Numerical Convergence of the MP Index Evaluation

The convergence rate of the above implemented MP index approximate evaluation pro-

vides meaningful information for the purpose of practical implementation of the resulting

target update scheduling policy. Particularly, determining the number of discrete time

slots necessary to achieve numerical convergence at some finite computational precision

becomes relevant for achieving computational efficiency.

Hence, we have implemented a preliminary computational study in order to assess the

convergence behavior of the infinite series defining the proposed MP index. Staring from

a target instance with parameters as those of section 6.1, we implemented a script that

computed the MP index λ∗(s) at the STEV level s = 1 truncating the infinite series to

time slot T with T = 1, 2, . . . , Tmax at each iteration for β = 0.1, 0.2, . . . , 0.9 respectively.

For β ≤ 0.9 numerical convergence of such series is achieved at some Tmax ≤ 102. Thus,

defining λ∗L(s) as limT→∞ λ
∗
T (s), we approximate it using the resulting λ∗(s) computed

truncating the infinite series up to time slot Tmax, and we thus compute the approximation

error e(T ) when considering T terms of the series as λ∗T (s) − λ∗L(s). Next, we study the

limiting behavior of the following error rate e(T+1)
e(T )

.
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Fig. 2 shows the results. The MP index approximate evaluation appears to converge

linearly. Further, the convergence rate seems to be equal to the discount factor β. In

fact, in appendix A we analytically derive such a result for the marginal work measure

w(s, s), for which a closed form expression is available. Extending the proof for the MP

approximate index evaluation calls for further investigation.

Notice that under such conditions, the limiting index for average-criterion problem

tends to converge sublinearly. Therefore, precise enough approximations for the case

when β ↗ 1 will result computationally more expensive as β approaches 1. Further

work is required to derive accurate index approximations which require a substantially

lower computational effort for a given precision. Such approximations follow from the

indexability analysis of section 4 and the study of the STEV dynamics under a threshold

policy.

Figure 2: The Whittle’s MP index convergence rate for different discount factors β.

6.3 Benchmarking the MP Index Policy

We have performed some small-scale preliminary computational studies to assess the

relative performance of the MP-index policy against the alternative reviewed policies: the

TEV-index policy, based on index λTEV(s) = d r s, which has been proposed in [4, 6] and

is called the greedy policy there, and the myopic-index policy, based on the MP index

λmyopic(s) = d r[φ0(s)− φ1(s)] corresponding to β = 0.

First, we consider a base instance with a single radar andN = 4 symmetric targets with

q(n) ≡ 0.5, r(n) ≡ 1, d(n) ≡ 1, and zero measurement costs h(n) ≡ 0. This base instance

with identical targets of low position to measurement noise variance ratio was modified
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by varying q(1), the position noise’s variance for target 1, while keeping constant r(n),

the measurement noise’s variance for all n targets. That is, for a given radar measuring

precision and while the other target’s movement processes remain invariant, the movement

process for target 1 becomes more volatile. In particular, at each new instance, q(1)

assumed values over the range q(1) ∈ {0.5, 1, 2, . . . , 10}. The discount factor is β = 0.99.

The MP index was computed on-line for each target, truncating the corresponding

infinite series to 103 terms based on the results of section 6.2. For each instance and

policy, the system was left to evolve over a horizon of T = 104 time slots. The initial

state for each target n was taken to be s
(n)
0 = 0, which corresponds to exact knowledge of

the targets’ initial positions.

Table 1 reports the resulting TEV performance objective achieved under each policy

for each value of parameter q(1) along with the lower bound obtained from the relaxation.

The results show that the MP index policy outperforms both the myopic and the TEV

index policy. As for the MP index policy’s suboptimality gap, we can bound it above using

the relaxation’s lower bound. Moreover, we observe that the MP index suboptimality gap

is at least 2 % and at most 5 %. The MP index policy performance improvement over the

myopic policy increases as q(1) gets larger. Note that such a performance gain is 5.42 %

for the case in which q(1) = 3/2, which is a quite significant amount. For the maximum

value of the position noise’s variance for target 1 considered, q(1) = 10, such a gain is of

61.3 %.

Despite the fact that MP index policy also outperforms the TEV index policy, in this

case the performance gain is not as significant as with respect to the Myopic index policy.

In fact, the TEV policy is almost as good as the MP index policy for all cases. We note

that, with the system starting from such a base instance, the TEV index policy will tend

to give greater priority to target 1 as its movement becomes more uncertain, just as the

MP index policy does. However, the MP index policy and the TEV index policy may

prioritize targets differently if the base instance is such that identical targets share a high

position variability, and thus a high position to measurement noise variance ratio, and we

vary that instance by allowing a given target to become less volatile in its movement.

To illustrate such a fact, consider a base instance with a single radar and N = 4

symmetric targets with q(n) ≡ 10, r(n) ≡ 1, d(n) ≡ 1, and zero measurement costs h(n) ≡ 0.

We next modify this base instance with identical targets of high position to measurement

noise variance ratio by varying q(1), the position noise’s variance for target 1, while keeping

constant r(n), the measurement noise’s variance for all n targets. That is, for a given radar

measuring precision and while the other target’s movement processes remain invariant, the

movement process for target 1 becomes less volatile. In particular, at each new instance,

q(1) assumed values over the range q(1) ∈ {0.5, 1, 2, . . . , 10}. The discount factor is again

β = 0.99.

Table 2 reports the resulting TEV performance objective achieved under each policy
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Table 1: Benchmarking results (1): q(n) ≡ 0.5 for all n 6= 1

q(1) TEV Myopic MP LB

1/2 5.837 5.829 5.829 5.715
1 6.601 6.750 6.595 6.434

3/2 7.195 7.530 7.143 6.985
2 7.814 7.866 7.618 7.455

5/2 8.091 8.177 8.030 7.845
3 8.361 8.997 8.358 8.144
4 8.889 10.548 8.881 8.675
5 9.409 11.880 9.411 9.187
6 9.923 13.337 9.881 9.699
7 10.435 14.800 10.392 10.205
8 10.944 16.249 10.872 10.710
9 11.452 17.691 11.351 11.192

10 11.959 19.117 11.852 11.670

for each value of parameter q(1). The results show that also in this case the MP index policy

outperforms both the myopic and TEV index policies, yet in this case the performance

improvement now decreases as q(1) gets larger. For the minimum value of the position

noise’s variance for target 1 considered, q(1) = 0.5, the performance gain of the MP index

policy over the TEV index policy is 8.58 %, which is a significant amount. Among the

TEV and myopic policies, the former performs better for smaller values of q(1), while the

latter performs better for larger q(1). In fact, the myopic policy is as good as the MP

index policy in the symmetric-target case q(1) = 10 (and also in the cases q(1) = 8 and

q(1) = 9). As for the MP index policy’s suboptimality gap, bounding it above by means

of the relaxation’s lower bound, we note that the MP index suboptimality gap is al least

2.31 % and at most 11.68 %.

6.4 Asymptotic Optimality of the MP Index Policy

Together with the restless bandit indexability property introduced in [18], Whittle conjec-

tured that for a population with N projects, the policy of being active in the M projects

of greatest MP index is asymptotically optimal as M and N tend to ∞ in constant ratio

p with p = M/N .

Such a conjecture can be formulated in terms of the problem under study as follows.

Denote as πj the proportion of targets of type j in the total number of targets, which is

characterized by the parameter specification rj, dj, qj, hj.

Proposition 4 For population of fixed composition in the sense that πj → π as N →∞,
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Table 2: Benchmarking results (2): q(n) ≡ 10 for all n 6= 1

q(1) myopic TEV MP LB

1/2 47.584 44.492 40.676 39.839
1 49.193 46.452 43.707 42.856

3/2 50.267 47.902 45.959 45.097
2 51.302 49.475 47.815 46.943

5/2 52.246 56.777 49.409 48.531
3 53.094 51.584 50.855 49.838
4 54.804 54.181 53.367 52.325
5 55.394 56.906 56.140 54.351
6 56.908 56.142 55.396 54.491
7 59.403 59.210 58.924 56.478
8 60.431 60.740 60.431 58.013
9 61.936 62.270 61.936 59.504

10 63.441 63.799 63.441 62.529

with all N targets being indexable, Whittle conjectured that

V ∗D(s;λ)→ V L(s;λ) as M,N →∞ and p = M/N

In [17] the authors provided some counterexamples which elucidated that in general

asymptotic optimality of such index policy need not be the case. Further, they estab-

lished a sufficient condition for such conjecture to hold. Unfortunately, evaluating such a

condition for the model at hand is not an easy task, calling for further research.

We have performed a small-scale preliminary computational study to assess the con-

ditions under which we can expect such a conjecture to hold for the present model. We

consider a base instance with one beam per 4 objective targets (i.e. p = 1/4) for tracking

a population of N = 4 different targets (i.e. π = 1/N), with q(n) ≡ n, r(n) ≡ 1, d(n) ≡ 1,

a discount factor of β = 0.99 and zero measurement costs h(n) ≡ 0. This base instance

was modified by letting N vary over the range N ∈ 4 ∗ {1, 2, . . . , 40}. For each instance

the MP index policy was computed on-line for each target, truncating the corresponding

infinite series to 103 terms and the system was left to evolve over a horizon of T = 104

time slots. The initial state for each target n was taken to be s
(n)
0 = 0.

Based on the resulting TEV performance objective achieved under the MP index

policy and on the lower bound provided by the Lagrangian relaxation apporach discussed

above, an upper bound for the MP index policy suboptimality gap is computed for each

population size N . Results, illustrated in Figure 3, show that the upper bound of the

MP index policy suboptimality gap initially decreases fast as N gets larger, tending to

stabilize around 2 % for the largest values of N considered. Such a result seems to

suggest that we can expect the proposed MP policy to be nearly optimal for cases in
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which, given a constant beam per target ratio, target heterogeneity grows as the total

number of objective targets goes to infinite. Regarding the other policies we observe

that the STEV index policy suboptimality gap is approximately around 4.5 % for all

N whereas the myopic index policy suboptimality gap initially increases fast as N gets

larger, tending to stabilize around 13.5 % for the largest values of N considered.

Figure 3: The Whittle’s MP index suboptimality gap as m,n→∞ with M = pN .

7 Conclusion and Future Work

We have designed a novel tractable priority–index policy for scheduling target updates in

a discrete-time multitarget tracking model based on the MARBP indexation methodology

developed by the first author. Such MP index policy successfully addresses all key issues

in the design of SM polices. Computational studies demonstrate the tractability of the

MP index, suggesting that an on-line scheduling algorithm based on it is implementable.

Moreover, the MP policy accounts for the long term effects of current actions and it ex-

hibits performance advantages over other previously suggested policies when implemented

in fairly distinct scenarios. In addition, the MP scheduling rule not only efficiently allo-

cates the system’s resources among objective targets but also it indicates when resources

should idle.

Future work is required to extend these results to the more general model in which

targets move in a multidimensional space. Also, a natural extension of this model is the

case in which probability of target detection is no longer assumed to be unity, and hence

probabilities of misdetection or false alarm are to be considered.
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A Marginal Work Convergence Rate

From results reviewed in 4 we have that:

w(s, s) =



1 s ∈ [0, φ1
∞)

(1− β) s = φ1
∞

1−β
1−βc(s) , s ∈ (φ1

∞,∞)

1, s =∞.

(34)

Note that from definition 16 it follows that:

w(s, s) = 1 + β
(
g(φ1

1(s), s)− g(φ0
1(s), s)

)
(35)

For the target instance s = 1, θ = 0.5 and d = r = 1 it holds that a(1) = 1 and also

p(1) = t∗0(1, φ1
1(1)) = 1, thus c(1) = 2. Then, it follows from 1 that: g(φ1

1(1), 1) =
∞∑
t=0

β2t+1 =
β

(1− β2)
and g(φ1

1(1), 1) =
∞∑
t=0

β2t =
1

(1− β2)
. Also, from 34 we have that
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w(1, 1) = 1
1+β

for 0 ≤ β ≤ 1, since w(1, 1) = 1
c(1)

= 1/2 for β = 1. Denote the marginal

work in STEV s computed by truncating the infinite series up to time slot T as ŵ(s, s)T ,

and notice that:

ŵ(s, s)T = 1 + β
[ T∑
t=0

βt
(
at(φ

1
1(s), s)− at(φ0

1(s), s)
)]

(36)

Proposition 5 For s = 1, θ = 0.5, d = r = 1, the following holds:

lim
T→∞

∣∣∣∣∣ŵ(s, s)T+1 − w(s, s)

ŵ(s, s)T − w(s, s)

∣∣∣∣∣ = β (37)

Proof. From 36 we have that for c(s) = 2 it holds that:

ŵ(s, s)T = 1− β(1− β)

[
T∑
t=0

β2t

]
for 0 ≤ β < 1

while,

ŵ(s, s)T = 1−
[
(2T − 2)− (2T − 1)

]
= 0 for β = 1

Thus,

lim
T→∞

∣∣∣∣∣ŵ(s, s)T+1 − w(s, s)

ŵ(s, s)T − w(s, s)

∣∣∣∣∣ =
β2T+2

β2T+1
= β for 0 ≤ β < 1

lim
T→∞

∣∣∣∣∣ŵ(s, s)T+1 − w(s, s)

ŵ(s, s)T − w(s, s)

∣∣∣∣∣ = 1 for β = 1 �

Notice that, despite the fact that the proof has been done for s = 1, θ = 0.5, d = r = 1,

it can be extended to the general case s ∈ S and some parameter specification θ, d, r ≥ 0.

B Möbius Transformations for Multitarget Tracking

We have considered two iterated mappings of the form s 7→ φi(s) where s denotes the

initial STEV and i = 0, 1 stands for passive and active actions respectively. Letting

φi0(s) , s and φit(s) , φi(φit−1(s)) for t ≥ 1, and defining:

φ0(s) = s+ θ (38)

φ1(s) =
s+ θ

s+ θ + 1
(39)

where θ = q
r

stands for the position to measurement noise variance ratio.

For the sake of establishing PCL indexability, we are interested in studying the behavior

of the t-th iterate of both mappings. In order to do this it is convenient to visualize them

as Möbius Transformations, also known as Linear Fractional Transformations (LFT).
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Theorem 3 A Möbius transformation is a function m: C → C of the form

m(z) =
ax+ b

cx+ d

where a,b,c,d ∈ C and ad− cb 6= 0

Möbius transformations have the following useful property. A given Möbius transforma-

tions has the following associated matrix representation:

M =

(
a b
c d

)

And the composition of two Möbius transformations n ◦m (z), with associated matrix N

and M respectively, is also a Möbius transformations whose associated matrix is equal to

the matrix product NM .

Note that the condition above expressed that ad − cb 6= 0 is equivalent to saying that

|M | 6= 0. If ad− cb = 0 the m(x) = c where c is a constant.

Every Möbius transformation whose associated matrix is not the identity matrix, has two

fixed points that can be obtained by solving the following fixed point equation: m(x) = x.

Denote these fixed points as γ1 and γ2, then:

γ1,2 =
(a− d)±

√
(a− d)2 + 4bc

2c
(40)

Möbius transformations can be written in terms of these fixed points in a so called normal

form with the following associated matrix:

M(γ1, γ2, k) =

(
γ1− kγ2 (k − 1)γ1γ2

1− k kγ1 − γ2

)

where k = λ2

λ1
and λ1,2 are the eigenvalues of the H matrix and can be shown to be equal

to: λi = cγi + d.

This representation will be of use in order to obtain the closed from expression corre-

sponding to the tth iterate, since it can be shown that: if the transformation of matrix H

has fixed points γ1,γ2 and characteristic constant k, then M ′ = Mn will have the same

fixed points and characteristic constant equal to k′ = kn.

Thus, the tth iterate of a Möbius transformation has the following associated matrix rep-

resentation:

M ′(γ1, γ2, k
′) =

(
γ1− knγ2 (kn − 1)γ1γ2

1− kn knγ1 − γ2

)
This expression of the LFT allows us to distinguish between attractive and repulsive fixed

points of the transformation. Note that in the tth iterate m′(x) is equal to:

m′(x) =
γ1x− γ1γ2 + kn(γ1γ2 − γ2x)

x− γ2 + kn(γ1 − x)
(41)
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Thus, continuous iteration of the transformation leads us to:

lim
n→∞

m′(x) =


γ1(x−γ2)
x−γ2 = γ1 if |k| < 1

γ2(γ1−x)
γ1−x = γ2 if |k| > 1

Therefore, whenever |k| < 1 we can say that γ1 is an attractive fixed point while γ2 is a

repulsive fixed point, and for |k| > 1 roles are reversed.

Now, given all these elements we have that equation (38) and (39) define two Möbius

transformations with associated matrix representations given by:

Φ0 =

(
1 θ
0 1

)
Φ1 =

(
1 θ
1 (1 + θ)

)

Note that for equation (38), the corresponding LFT is a pure translation (since in this

case c = 0 and a = d) and thus, both fixed points are at infinity. In this case we can not

re-express the function in terms of the normal form because this form is only valid for

LFT with two distinct fixed points. The solution to recursion (38) is easy to obtain and

it is equal to:

φ0
t (s) = s+ θt (42)

Note that:
∂φ0

t (s)

∂t
= θ ≥ 0 lim

t→∞
φ0
t (s) =∞

From (42) and the above results we know that the attractive fixed point of the passive

dynamics is at infinity, and that as t increases (i.e. as we systematically do not observe a

target), the resulting STEV φ0
t (s) increases.

Now, for any s ≤ z there is a first t ≥ 1 for which φ0
t−1(s) ≤ z and φ0

t (s) > z, let us

denote that critical iteration as t∗0(s, z), and note that in this case it holds that t∗0(s, z) is

an integer such that:
z − s
θ

< t∗0(s, z) ≤
(
z − s
θ

)
+ 1

This leads us to conclude that:

t∗0(s, z) =

z − s
θ

+ 1

Thus, given the value of θ > 0, t∗0(s, z) will be finite and greater as the initial value is

further away from the threshold. Now let us analyze the Möbius transformation generated

by equation (39). Its fixed points are equal to:

γ1,2 =
1

2

(
−θ ±

√
θ(4 + θ)

)
(43)
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The eigenvalues of matrix Φ1 are the following:

λ1,2 =
(2 + θ)±

√
θ(4 + θ)

2
(44)

λ1,2 = γi + (1 + θ)

Therefore, we have that the closed formula for the t-th iterate of the active recursion is

an LFT whose associated matrix representation is the following:

Φ
′1(γ2, γ1, k

′) =

(
γ1− knγ2 (kn − 1)γ1γ2

1− kn knγ1 − γ2

)

Which indicates that γ1 will be the fixed point of the recursion (due to the fact that

|k| < 1).

Note also that, the associated matrix can be obtained as the tth power of the matrix Φ1,

thus, it holds that:

(Φ1)t =

(
λ1−d
c

λ2−d
c

1 1

) (
λt1 0
0 λt2

) (
λ1−d
c

λ2−d
c

1 1

)−1

Now using the fact that: λi = cγi + d We reexpress this as:

(Φ1)t =

(
γ1 γ2

1 1

) (
λt1 0
0 λt2

) (
γ1 γ2

1 1

)−1

From where we can conclude that:

(Φ1)t = 1
γ1−γ2

(
γ1λ

t
1 γ2λ

t
2

λt1 λt2

) (
1 −γ2

−1 γ1

)

Then,

(Φ1)t = λ2

γ1−γ2

(
γ1k

t − γ2 γ1γ2(1− kt)
kt − 1 γ1 − γ2k

t

)

Where k = λ2

λ1
.

Another useful representation of the t-th iterate of a Möbius Transformation with distinct

fixed points is the following:

φ1
t (s) =

α

1− kn(1− α
s−γ2 )

+ γ2 (45)

with α =

√(
a−d
c

)2
+ 4b

c
, and for this particular case we have that: α =

√
θ(4 + θ).

Note that:

lim
t→∞

φ1
t (s) = α + γ2 = γ1 =

1

2

(√
θ(4 + θ)− θ

)
≥ 0

34



Thus, let us define the minimum value attainable by continued measurement of a target

φ1
∞ as limt→∞ φ

1
t (s) and thus, conclude that:

φ1
∞ , γ1 =

1

2

(√
θ(4 + θ)− θ

)

Also, notice that:

∂φ1
t (s)

∂t
=

 α

1− kn(1− α
s−γ2 )

−2(
1− α

s− γ2

)
kn(log k)

Given that
(
1− α

s−γ2

)
= s−φ1

∞
s−γ2 , we conclude that:

∂φ1
t (s)

∂t



≤ 0 for s ≥ φ1
∞

= 0 for s = φ1
∞

≥ 0 for s ≤ φ1
∞

We will express the solution to active recursion (39) as in (45) for the sake of simplicity.

Analogously to the passive recursion case, for any s > z there is a first t ≥ 1 for which

φ1
t−1(s) > z and φ1

t (s) ≤ z, let us denote that critical iteration as t∗1(s, z), and note that

in this case it holds that:

1

log k
log


[
1− α

z−γ2

]
[
1− α

s−γ2

]
 ≤ t∗1(s, z) <

1

log k
log


[
1− α

z−γ2

]
[
1− α

s−γ2

]
+ 1

This leads us to conclude that:

t∗1(s, z) =

 1

log k
log


[
1− α

z−γ2

]
[
1− α

s−γ2

]



Thus, given the value of k, α, γ2 associated to a certain θ value and a given threshold level

z, t∗1(s, z) will be greater as the initial value is further away from the threshold.
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