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1. Introduction

This paper addresses thaulti-armed bandit problem with switching penalt@dABSP) — see, e.g., Jun
(2004) for an extensive survey — which incorporates bothtahwng costs and delays, extending results
of the companion (Part I) paper Nifio-Mora (2006c), whickiradsed the simpler case with no switching
delays. While this paper also deploys the work-reward aigmpproach to restless bandit indexation used
in Part I, we will see that incorporation of switching delayarrants a separate treatment, as the previous
analysis does not directly extend to the present case. VEesthtt by pointing out the key differences that,

we argue, justify the present paper: (i) in Part |, classiedita with switching costs were formulated as



Markovian restless bandits, whereas incorporation ofchiriy delays requires a semi-Markovian formu-
lation; (ii) the analysis in Part | held under the assumptluat the sum of startup and shutdown costs be
nonnegative, whereas here the extra assumption is regbaedandit rewards be nonnegative — as pointed
out in (Asawa and Teneketzis, 1996, Sec. IV.C); (iii) in Rad fast index algorithm was given that sub-
stanstially improved upon that proposed in Asawa and Terisk€1996) for the case of switching costs
only, yet no index algorithm is given in their paper for thseaf switching delays; (iv) the complexity of
the switching-index algorithm in Part | is of at mast4 O(n) arithmetic operations for an-state bandit,
whereas incorporation of switching delays requires anrétgn with increased complexity of (at most)
(5/2)n? + O(n) operations; and (v) more importantly, in Part I, the indédgbanalysis was based on es-
tablishing that the restless bandits of concern satisfiedPtBL-indexability conditions we had introduced
in earlier work; yet, the analyses below reveal that incoapion of switching delays yields restless bandits
that need not be PCL-indexable, and hence require a diffaygrroach to establish their indexability; in
this paper we successfully deploy for such a purpose the powerful LP-indexabilityconditions recently
introduced in Niflo-Mora (2007).

The present paper follows the form and structure of its Paduhnterpart as closely as possible, even
using vertatim sentences from it when a variation would aplthing of substance, with the intent that a
reader of both papers can more easily appreciate theirsgitigs and differences.

To extend the initial example given in Part I, imagine a firmnavg a portfolio of dynamic and stochastic
projects, of which it can engage one at a time. To (re)stam@gt, the firm must incur an upfront lump-sum
startup costas well as atartup delay after which it accrues rewards and operating expensesfirimean
decide, at any time, to abandon the project currently inaip®y, incurring a lump-surshutdown costas
well as ashutdown delaylt can then switch to another project. Such a firm faces thblpm of designing
a dynamic project selection policy that maximizes the etgubtotal discounted value of its net earnings.

In this and many other applications switching delays playradamental role, and should thus be in-
corporated into corresponding system models. Thus, ptattlays may represent, e.g., time to lay up
the groundwork or to build up infrastructure, as well asnirgg or learning time for workers. Similarly,
shutdown delays may arise, e.g., when dismantling instatigastructure.

The problem is cast asseemi-Markov decision proce§SMDP) by modeling projects dsandits i.e.,
binary-action (active/passive) SMDPs that can only chastgee while active. In the no switching penalties
case, one thus obtains thaulti-armed bandit probleniMABP), which is optimally solved by th&ittins
indexpolicy. See Gittins (1979).

The optimal index solution for the MABP prompted investigat of priority-index policiesfor the

MABPSP. As discussed in Banks and Sundaram (1994), suctigkttach an indey(a;,,im) to each



banditm, which is a function of its previous acti@y, and current statg,, thus decoupling into a “continua-
tion index” vin(1,im) and a “switching index'vm(0,im). They observed that “it is obvious that in comparing
two otherwise identical arms, one of which was used in theipos period, the one which was in use
must necessarily be more attractive than the one which vias$ itb be consistent which suchhgsteretic
property, the indices must satisfy

Vin(1,im) > Vn(0,im). 1)

Though Banks and Sundaram (1994) proved that such policasoh generally optimal in the presence
of switching costs, Asawa and Teneketzis (1996) introdwasethtuitively appealing index for the MABSP,
which we will refer to henceforth as th&T index both for the case of only switching costs and for that of
only switching delays, and showed that it partly charazésrioptimal policies. Their continuation index is
the bandit’s Gittins index, while their switching index ietmaximum rate, achievable by stopping rules that
engage an initially passive bandit, of expected discourdedrd earned minus initial startup cost incurred,
per unit of expected discounted time — including the initialay.

In Asawa and Teneketzis (1996), an index computation meith@iesented to jointly compute both
indices in the case of only switching costs. Yet, no algamitis given in there to compute the index under
switching delays. This raises the need to develop an effiaielex computation method for bandits with
switching delays, which is the prime goal of this paper, @iiie second goal is to investigate empirically
the performance of the resulting AT index policy.

We will address such goals in the setting of an extended mibdelallows state-dependent startup
and shutdown costs and delays for each bandit, which weedlice to the case of no shutdown penalties,
through a seemingly indirect route: by exploiting the natveformulation of a classic bandit with switching
penalties as aemi-Markov restless bandit- one that can change state while passivenithout switch-
ing penalties, through which the MABSP is cast asemi-Markov multi-armed restless bandit problem
(SMARBP).

Such a reformulation will allow us to deploy the powerful @xation theory available for restless bandits.
This was introduced by Whittle (1988), who first realized the Gittins-index definition via calibration also
yields an index for restless bandits, albeit only for theitlm range of so-callethdexableinstances. He
proposed to use the resulting index policy as a heuristitheeMARBP, which is generally suboptimal. The
theory has been developed in Nifio-Mora (2001, 2002, 2008b7), where th&/hittle indexand extensions
are shown to measure trade-off (reward vs. work) rates, edenr terming itmarginal productivity index
(MPI).

Of most relevance to this paper is Niflo-Mora (2007), whbeettactable class afP-indexablebandits

— as they are based dinear programming LP) analyses — is introduced, for which the MPl is efficigntl
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computed by aadaptive-greedy algorithmThe scope of such an algorithm is thus extended from the clas
of PCL-indexablebandits in the author’'s earlier work to the larger class ofihdexable bandits. Such
an extension will play a crucial role in this paper, as theless bandits of concern will be shown to be
LP-indexable, yet are not necessarily PCL-indexable.

We deploy here such a theory, by proving and exploiting tlee tlaat the AT index of a bandit with
switching costs and delays is precisely the bandit's Whittdex/MPI in its semi-Markov restless refor-
mulation. We will establish that such restless bandits @&dridexable, relative to the family of hysteretic
policies consistent with (1), which will allow us to computes index using the adaptive-greedy algorithm
referred to above. A work-reward analysis will then reviakisuch an algorithm decouples into two stages:
a first stage that computes the Gittins index and requirag extantities; and a second stage, which is fed
the first-stage’s output, that computes the switching index

To implement such a scheme, one can use for the first stagef aayayalO(n®) algorithms introduced
in Nifio-Mora (2006a). For the second stage, we will presare a fast switching-index algorithm that
performsat most(5/2)n? + O(n) arithmetic operations, thus achieving an order of mageifatprovement
that renders negligible the marginal effort to compute tvéching index. Such an algorithm is the main
contribution of this paper.

The paper further reports on a computational study demetirggrthat such an improved complexity
translates into dramatic runtime savings. Such a studynmgtEmented by a set of experiments that demon-
strate the near-optimality of the index policy and its sabsal gains against the benchmark Gittins index
policy across an extensive range of two- and three-banstiamces.

Section 2 describes the model, shows how to reduce it to thealzed no shutdown penalties case,
defines the AT index, and gives the SMARBP reformulation.ti8e@ reviews the indexation theory to be
deployed. Section 4 carries out a work-reward analysis formaulated restless bandits. Section 5 draws
on such an analysis to develop the new decoupled index edguoriSection 6 discusses dependence of the

index on switching penalties. Section 7 reports the contipmal study’s results. Section 8 concludes.

2. Model, AT index and Restless-Bandit Reformulation

2.1. The MABPSP

Consider a collection oM finite-state bandits, one of which must be engagadi@ at each discrete
decision periodr € Z ., with 0< 1 " 00 ask — oo, while the others are resteplgssivg. Switching bandits
is costly, involving startup and shutdown costs and del&ys.assume that a freshly set up bandit must be

worked onfor at least one period, and will say that a bandiegagedf it is either being worked on, or is



undergoing a startup or a shutdown delay.

A rested banditm occupying staté,, — belonging in its state spadé, — accrues no rewards, i.e.,
RY(im) = 0, and its state remains frozen. When freshly engaged, utsngtartup costy(im), followed by
a discrete random startup deldy(im) € Z having z-transformen(zim) £ E[Z(m], during which no
rewards accrue. When the startup is completed, the bandit beuworked on, yielding an active reward
RL (im) = Rm(im) and changing state at the following periodjtewith probability pm(im, jm). After one or
more periods at which the bandit is worked on, it may be redfdfiis happens in stat@,, shutdown cost
dm(jm) is incurred, followed by a random shutdown delgy € Z., having z-transformyim(z) £ E[Z],
during which no rewards accrue. Then, the bandit must beddst at least one period. Note that we allow
startup delay distributions to be state-dependent, whilgdown delay’s are constant — due to results in
Section 2.2. Rewards and costs are time-discounted withrf@c< 8 < 1. We will find it convenient to
write @n(B;im) andWm(B) as@n(im) and Ym.

Note that such a model can readily accomodate the case wivéohiag costs are instead incurred
at rateSCr(im) and Dy (im) per period during the startup and shutdown delays, reseéctiClearly, one

should then use the equivalent lump-sum switching costs

1—tm

2 1- qu(Im)Cm('m) and dm(lm) £ WDm(Im)

Cm(im) 1.5

Actions are chosen by adoption oseheduling policyt, drawn from the clasBl of admissible policies
which are nonanticipative relative to the history of stated actions, and engage one bandit at a time. Focus
on such a version, instead of on that whatenostone bandit can be engaged, is without loss of generality.
The MABPSP is to find an admissible policy that maximizes tkgeeted total discounted value of rewards
earned minus switching costs incurred.

We will denote byXm(t) andan(t) € {0,1} the prevailing state and action for banditat periodt,
respectively, wheran(t) = 1 (resp. am(t) = 0) means that the bandit is engaged (resp. rested). Since it
must be specified whether each bandits initially set up, we denote such status &y(0). We define
the bandit'saugmented staté be Xm(t) £ (anm(t), Xm(t)), which moves over thaugmented state space
Nm 2 {0,1} x Nm. Thejoint augmented statis thusX (t) £ (Xn(t))h_,,

M

a(t) = (am(t)) py-

and thejoint action processs

2.2. Reduction to the Normalized No Shutdown Penalties Case

We show in this section that it suffices to restrict attentiothe no shutdown penalties case, without loss
of generality. Suppose that, at a certain time, which we takeet = 0, a bandit is freshly engaged for a

random duration given by a stopping time/raleLet us drop the bandit labeh, and denote bR = (R;),



¢ = (c;) andd = (d;) the bandit’s state-dependent active reward, startup amgi@hn cost vectors. Let
us further denote by = (¢;) the bandit’s state-dependent starpansform vector, evaluated at= 3,
and lety denote the corresponding constant shutdatmransform value. We can thus write the expected

discounted net reward earned on the bandit during such sy, starting aX(0) =i, as

-1
fiT(R7cvd7 o, QU) =S EIT |:_ G+ Bfl % RX(t)Bt - dX(T)B£i+T:| ) (2)
t=

whereé; is the random startup delay startingi.a he corresponding discounted amounizvairk expended

on the bandit is
1— BEI

G (o.0) 2 [ | pé Z)B‘ Bﬂ @)

where, as mentioned above, both the startup and shutdoaysdgbandn are counted as “work.”

We have the following result, whetds the identity matrix indexed by the state spate® = (pij )i jen

is the transition probability matrix, arflis a vector of zeros.

Lemma 2.1
(@ 7 (R.c,d, @) = 7 (F{R+ (1~ BP)A}, (¢ + @il jen, 0,4, 1)..
(0) o' (o.¢) =gf (vo.1).

Proof. (a) Use the elementary identity

-1

(B =di — Za{dx(t) — Bdx (i1} B'
=

to obtain

-1
F(Re.d.0) & 5| ~o BT 5 RuyB' —dho b |
t=

-1
= —G + QEf ZORX(t)Bt - dX(r)BT]
=
-1
:—c.+rn{ —d +E{ Z}{Rx 1)+ Ox o) BdXt+1}B]}
-1
—@di + @E{ Z}{Rx t) + Ax ) — Bdx (1) } B
=1 Ry (1) + dx () — BOx(t+1)
@d + QUE, t; w 'g
1



(b) This part follows by writing

o = Ef 1 BEI

+B4 ;Bt [35'”] - 1 ng(nET

S “lasigee gy
—a

;Bt gB]

-1
1 Bw+anT ;{1 (1— w}ﬁ] (”Ber(nwET t;ﬁ]
=0 (Wfp, )

a

Lemma 2.1 shows how to eliminate shutdown penalties: ong siegply incorporate them into modified

startup costs and delay transforms, as well as active rewgneen by the transformations
~ A

oA DA 1
£ci+@d;, ¢ =yg, and R:E{R+(I—[3P)d}. (4)

Note that, in the casg = c andd; = d, one obtain€j = c+dg andR; = {R; + (1 B)d}/y.

We will hence focus our discussion henceforth intioemalizedno shutdown penalties case.

2.3. The AT Index

We next define the AT index for a bandit, whose latnele drop from the notation, extending the definitions

in Asawa and Teneketzis (1996) to the present setting. Thiént@tion AT index is

-1
i t;RX(t)Bt
| at
5]

whereT is a stopping time/rule that engages a bandit starting & staeeding no setup; henceQAlTl)

AT &
Vi = Max
(1) >0

: ()

is

precisely the bandit’s Gittins index. The switching AT inds

-1 -1
—Ci +Ef | B¢ ;Rxmﬁt —C + QEf ;Rxmﬁt
VAL 2 max = = max = (6)
©i) = 1% &-1 . ; -1 . ™0 1_ . -1 ‘ ’
BL+BS S B T QR B
t;) t;) 1-B | t;

where nowr is a stopping time/rule that engages a bandit startingvltich needs to be set up.
Notice that, writingg! = Ef [y{ "¢ B'] and f7 = Ef [y{_¢ Rx)B'], we have that

fif  —a+aff _1A-Pag+@-@ff ,

11— o 1-— — r=
9 o gﬂng. g 1-a+(1-Bag




provided that; > 0 andR; > 0, for j € N. In such a case, on which we will focus our analyses, it folow

from the above thav(AlTi) > Vé)Ti)’ consistently with (1).

2.4. Semi-Markov Restless-Bandit Reformulation

Taking Xm(t) as the state of each bandityields a reformulation of the MABPSP as a SMARBRhout
switching penalties, having joint state and action proamﬁﬁ) anda(t), where actions can only be taken at
the sequenceg, of decision periods discussed above. The rewards and dgadaomirestless banditin such

a reformulation are as follows. If at periad the bandit occupies (augmented) stéltg,) and is engaged,
the active rewar@,ln(l, im) = Rm(im) is earned, and the state moves at the next decision patied= 1+ 1

to (1, jm) with active transition probabilitys,((1,im), (1, jm)) = Pm(im, jm). If the bandit is instead rested,
no passive reward is earned, i@‘(l, im) =0, and the state moves at the next decision pefiiogd = 1+ 1

to (0,im) with a unity passive transition probability, i.g3,((L,im), (0,im)) = 1.

If the restless bandit occupiesmtstate(0,i,) and is engaged, the expected active reward

RL(0,im) 2 E[—Cm(im) + B Ry (im)] = —Cm(im) + @n(im)Rm(im) (7

accrues up to the next decision peripd; = T« + Em(im) + 1, at which its state moves {4, jm) with active
transition probabilitypy,((0,im), (1, jm)) £ Pm(im, im). If the bandit is instead rested, no passive reward
accrues, i.e.@\(o,im) = 0, and the state remains frozen at the next decision pauod= 1+ 1, i.e.,
P9 ((0im), (0,im)) = 1.

We can thus formulate the MABPSP as the SMARBP

o M
maxy [ 5 RE™ (Xn(1))B™ ®)
k=0m=1

whereET-] denotes expectation under polimconditional on the initial joint stat& (0) =T.

3. Restless Bandit Indexation: Theory and Computation

We discuss in this section the semi-Markov restless bandixation theory referred to in Section 1, as
it applies to a single bandih as above — in its restless reformulation. We hence drop abaitbandit
label m henceforth, so that, e.gN andN £ {0,1} x N denote the bandit’s original and augmented state
spaces. We will denote biyl the space of admissible bandit operating policiesvhere such a notation
distinguishes them from their boldface counterparts useda multi-bandit setting above. We will assume

that (normalized) startup costs and active rewards areayative.

Assumption 3.1 Fori € N:



() ¢ >0;and
(i) R =0
3.1. Indexability and the MPI
We use two criteria to evaluate a poligy relative to an initial statéa ,ig): thereward measure

. 2

m
(8g+0) E(a&io)

S R(X(1)) 8%
k; (X(te))B ]

which gives the expected total discounted valuaeatf rewards— net of switching costs — that accrue on

t;a(t)ﬁt] ,

which gives the corresponding expected total discounteouabtof work expended. We will actually con-

the bandit; and thevork measure

T A

ag o) — (ag io)

sider the average measurE5andg’ obtained by drawing the initial state from a positive praligbhmass
function p(,- ;) > 0 for (a~,i) € N.
Imagining that work is paid for atrageratev leads us to consider thewage problem

ryeahxf T_vg", 9)

which is to find an admissible bandit operating policy acinigithe maximum value of net rewards earned
minus labor costs incurred. We will use (9)dalibratethemarginal value of worlat each state, by analyzing
the structure of optimal policies asvaries.

MDP theory ensures that for every wage= R there exists an optimal policy that is stationary deter-
ministic and independent of the initial state. Any such agydk characterized by itactive setor subset of

states where it prescribes to engage the bandit. We wilevagtive sets as

eSS £ {0} xSHU{1} xS, S,SCN.

Thus, the policy that we denote I8y & S; engages the bandit when it was previously rested (respgedya
if the original stateX(t) lies in S (resp. inSy).

Hence, to any wage there correspondsumnique maximal optimal active se§(®) ¢ S;(v) C N, which
is the union of all optimal active sets. Now, we say that theditas indexableif there exists amdexv{a,’i)

for (a~,i) € N such that

S(v)={(0i): vy >v} and S(v)={(Li): v, >Vv}, VeR.



We then say that(*a,7i) is the bandit'smarginal productivity indexMP1I), or Whittle index termingv(*m the
continuation MP) andv(*qi) the switching MPI

Thus, the bandit is indexable with MI@[*a,” if it is optimal in (9), to engage (resp. rest) the bandit
when it occupies stat@,i) iff v(*a,7i) >v (resp.v(*a,ﬂ < v). Note that Whittle (1988)’s original definition
of indexability was stated in an equivalent form in terms pfilmal passive sets.

To establish indexability and compute the MPI, we have dmed in Nifilo-Mora (2001, 2002, 2006b,
2007) an approach based on positing and then establistergriicture of optimal active sets, asative-
set family.7 C 2N that containsall sets§;(v) @ S;(v) asv varies, under a possibly restricted range of
reward/cost parameters. The intuition that, if startugeatisfy Assumption 3.1, optimal policies should
have the hysteretic property that, if it is optimal to engadpandit when it was previously rested, then, other
things being equal, it should be optimal to engage it wherai mreviously active, leads us to guess that the
right choice ofZ should be

F72{90S: $CSCN} (10)

Notice thatZ represents a family of policies consistent with (1), whioh posit to contain the optimal
policies for (9). Wherfy # S, such policies present thgysteresis region;S, S, on which bandit dynamics
depend on the previous action. We will thus aim to establiglexability relative to such a family, meaning

that the bandit is indexable aj(v) & S;(v) € Z for v € R.

3.2. An lllustrative Example

To help the reader unfamiliar with the above concepts togttaesm, we present next an illustrative example.
Consider the 3-state normalized (no shutdown penaltieg)ibenstance with no startup cost, startup delay

given by itsz-transform valuep = ¢(3),

0.0250 0.6635 00285 03080
0.0338 0.4868 00530 04602

B=095 R= {0.4242, and P= {0.6345 03583 00072] .

Work and reward measurg® and ™ are evaluated assuming that the initial state is unifornnéyah.
The left pane in Figure 1 shows tlaehievable work-reward performance regionthe classic no startup
delay (@ = 1) case. The four points displayed, which determine theorégupper boundary, are the work-
reward performance points corresponding to the policieggactive sets, from left to right, @2}, {2, 3},
and{2,3,1}. The work-reward trade-off slopes/rates between suchtpaire the bandit’s Gittins index
values:

Vi = 0.4242> vj = 0.061487> v; = 0.048002
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The right pane in Figure 1 shows a corresponding plot for e avithg = 0.98. The upper work-
reward boundary is determined by the seven points dispjayieidh are the work-reward performance points
corresponding, from left to right, to the policies havingiaz sets @ 0, 06 {2}, {2} & {2}, {2} {2,3},
{2,3}®{2,3}, {2,3} ®{2,3,1} and{2,3,1} & {2,3,1}. The work-reward trade-off slopes between such

points give the MPI values:
V(*1,2) =0.424> v(*072> =0.334> v(*173) =0.061> v(*073> =0.051> V(*1,1) = 0.048> V(*Ql) =0.047.

The plot represents the right end-points giving a contionaihdex value by a black circle, and those giving
a switching index value by a white square. Note further thaicbntinuation index matches the Gittins index

of the previous case.

no startup delay¢g = 1) startup delay withp = 0.98

fT[
le'

Figure 1: Achievable Work-Reward Performance Regions andctire of Upper Boundaries.

The left pane of Figure 2 shows the achievable work-rewartbpaance region for the cage= 0.8.
Now, the seven points displayed, which characterize theuppundary, correspond, from left to right, to
the policies having active setsi®d, 0® {2}, {2} ® {2}, {2} ® {2,3}, {2} ® {2,3,1}, {2,3} & {2,3,1}
and{2,3,1} ® {2,3,1}. The work-reward trade-off slopes/rates between suchipgine the bandit's MPI

values:
V(*1,2) =0.424> v(*072> =0.099 > v(*173) =0.061> V(*171) =0.048> v(*073) =0.039> V(*Ql) =0.038

Finally, the right pane of Figure 2 shows the correspondingfpr the casep = 0.5. The seven points
characterizing the region’s upper boundary corresporman feft to right, to the policies having active sets
030, 00 {2}, 0 {2,3}, 0 {2,3,1}, {2} ®{2,3,1}, {2,3} ®{2,3,1}, and{2,3,1} ® {2,3,1}. The

resulting MPI values given by the successive slopes are
V(*1,2) =0.424> v(*173> =0.061> V(*1,1) = 0.048> v(*072> =0.038> v(*073) =0.025> V(*o71) =0.024
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Note that in each case the continuation index vad(q% matches the Gittins index valwg. Further, the
successive active sefs@ S, characterizing the efficient frontiers belong in the acte¢ familyf in (10).
Also, the continuation index valuq*1i> is larger than the corresponding switching index va}gﬁ) value,

consistently with (1).

startup delay withp = 0.8 startup delay withp = 0.5

f7T
flT

Figure 2: Achievable Work-Reward Performance Regions @andctire of Upper Boundaries.

3.3. LP-Indexability and Adaptive-Greedy Index Algorithm

We next discuss the approach we will deploy to establishxiabléity and compute the MPI of the restless
bandits of concern herein, based on showing that they aliedéXable relative tc?’f, and using the adaptive-
greedy index algorithm that is valid for such bandits.

Given an actiora € {0,1} and an active s&h© S, € 7, denote bya,S @ S;) the policy that initially
takes actiora and adopts th& @ S;-active policythereafter. Now, for an augmented st&e i) and an

active setly@ S, € §E define thanarginal work measure

S A (1,90S) (0,94S1)
W g G s (11)

along with themarginal reward measure

S90S 2 ((LS99S) _ ¢ (0.S99S)
o = fan e (12)
and, wheangfi) # 0, themarginal productivity measure
s
SES G
Va) = WIS (13)

(a i)
We will deploy the LP-indexability approach to indexatiantroduced in Nifio-Mora (2007), which
extends the earlier PCL-indexability approach introdumed developed in Nifio-Mora (2001, 2002, 2006b).

12



For an active sé®= S @S, € .7, let

OS2 {(a i) e §: Su{(a i)} € 7} ={(0,i): i € S\ S}U{(Li): i € S}, (14)
whereS £ N\ SandSs £ N\ Sy, be theouter boundary o8 relative toZ; and let

IS2 {(a,i)eS: S\{(a i)} e F} ={(Li): i €S\ S}U{(0,i): i € D} (15)

be the correspondinginer boundary Note that the right-most identities in (14)—(15) followoiin (10).
Now, we require thaset systen@N ) be monotonically connectedvhich in the present setting means

that:
() O.Nec.7:
Z with Sc S there exista, j) € c?%!@and(a’, ie 6‘;23’ such thaBc SU{(a, )} C
\{(@,j)}cS;

(iii) forany S,S € .7 Z with S+ 8, it holds thatSU S €7,

(ii) forevery

Se
S andSc S

As the reader can immediately verify, ti#e defined in (10) satisfies indeed such conditions.

We will further write below
and 152 min r(§a

(a.j)eFw =0 (a J)eSwfa =0

L)

adopting the convention that the maximum (resp. minimuney @an empty set is-co (resp.+-o).

Now, we will say that the bandit isP-indexablerelative to.Z, or LP(.Z )-indexable if:

(i) wl, . wN 5> 0for(a i) eN,andr® <o<r™;
(ii) for each active seBc 7, W(éa,.i) > 0for(a,i) € c?L%gU c?%“@ and
(i) for every wagev € R there exists an optimal policy for (9) with active St 7.

We will further refer to theadaptive-greedy algorithmic schend _- shown in Table 1, where =
IN| denotes the number of bandit states in the original (ndes=sjtformulation. The algorithm pro-
duces an output consisting of a strigg, i) ﬁil of distinct augmented states spanniﬁgwith S
{(a,i1),...,(a ,ik)} € 7, for 1< k < 2n, along with corresponding index valu@s(’*ak,7ik) 2n . Ties for
picking the(a, ,ix)’s are broken arbitrarily. We use the temtgorithmic schemas it is not yet specified
how to compute the required marginal productivity rates.

We will later invoke the following key result, introduced (Nifio-Mora, 2007, Th. 5.4), which refers to

a generic restless bandit and active-set farRily

13



Table 1: Version 1 of Adaptive-Greedy Algorithmic Scheme AG

ALGORITHM AG

Output: {(a,ik), o

ak Jk)
P:=0a0
for k:=1 to 2ndo
pick (a ,ix) € arg max{vg:j): (a,i)e a;#t§*l}
Vi i) - _Vg; o S=870 (@A)
end { for }

Table 2: Version 2 of Algorithmic Scheme A&

ALGORITHM AGA
n -k * n
Output { O |0 07i0 )}k0:17 {(1’|11)7v(1.i‘;1)}k1:1

=0, =0, k:=1; k:=1
while kg+k; <2n+1do

if ki <npick j"e argmax{v(k")lk1 L jeN\ST N

if ko < kq pick J?,“""Xeargmax{vk")lk1 Je§f 1\3? 1}

(ko—1,k1—1) (ko—1ky1—1)
if kl_n+1or{ko<k1<nandv§1 max>1 <v(ojmf,1x)1 }

= 05 Vg =V T S = ST Ui koi=ko+1
(0,i”) (07|1)

else
7= Vi =Y lf,kllkl St=SU{if) ki=katl
o1
end {if }
end { while }

Theorem 3.2 An LP(.Z)-indexable bandit is indexable and algorithi » computes its MPI.

Using the definition ofZ in (10) yields the more expliciersion 2of the algorithm shown in Table 2,
where the output is decoupled. We use in this and later vessaomore algorithm-like notation, writing,
e.g., v(Séo 0j) ot as v(goj)l’klfl). Notice that the active sets constructed in both versiopsrelated by
12 S;O @S9 with k= kg +k; — 1 andkg < ky. Version 2 draws on the fact that, at each step, the
algorithm augments the current active set by a state thabeanf the form(1,i) or (0,i). Set_ES;O and§j1
in the algorithm ar&? = {il,...,ik} andS¢ = {il,...,i%!}, and satisfy tha§? c S¢, for 1< ko < k; <,
consistently with (10).
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3.4. Optimality of Hysteretic Z-Policies

We proceed to show that P@@«‘\)—indexability condition (ii) above holds for the model ofraern, namely
that .7 poI|C|es i.e., those with active seBec .7 solve (9). For such a purpose we will use Bellman

equationscharacterizing the value functlo?l*a,.i) v) for (9) starting afa,i):

915y (v) = max{B9y;(v),R —v+p ZN P9 (v)}

(16)

9o (V) = max{ B9y (), —Gi — =BV + @{R — v+ 3 Prd v

1-
1-B
Proposition 3.3 For every wagey € R there exists an optimal active Bt 7 for (9), i.e., if it is optimal

to rest the bandit in statél,i) then it is optimal to rest it i0,i).
Proof. Fix v. Formulate the assumption that it is optimal to rest the bhamd1,i) as
379(*07”(\/) >R—-v+pB Z\‘pija(*“)(v)- 17)
je
We want to show that this implies that it is optimal to reshistate(0,i), i.e

BIo,)(v) = —ci— V+€Q{R|—V+B pru L) (v)}.

1-
1-B
Suppose first that < 0. In such a case, it suffices to draw on classic bandit theoting that once the
bandit is active it is optimal to keep it active in stateésr which v < v, wherev;" is the bandit’s Gittins
index. Now, Assumption 3.1(ii) ensures thgt > 0 for every state, and hence it will never be optimal to
rest the bandit, once engagedyik O.
Consider now the case> 0. In such case, we have the inequalities
—q
-B

where the second inequality follows immediately by refolatting it as

1
Son(V) >R —v+ 2 ij 91 (V) > —C— v+ai{R—-v+ 2 ij 91 (V) ],
B (o,)( ) Bje Pij (1.,)( ) 1 (ﬂ{ [3]6 Pij (1.,)( )}

. g _pl- @,
(1_(R){R|+Bj;pu’9(1,j)(v)}Z—Cl Bl B

and noting that Assumption 3.1(ii) ensures that the leftehaide in the latter inequality is nonnegative,

whereas Assumption 3.1(i) and> 0 ensure that its right-hand side is nonpositive. O

Note that Proposition 3.3 establishes(@)-indexability condition (iii) above. In order to further
establish the remaining conditions (i, ii) and to simplihetindex algorithm we will have to draw on the

work-reward analysis carried out in the next section.
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4. Work-Reward Analysis and LP-Indexability Proof

We set out in this section to carry out a work-reward analgsia single bandit with startup penalties as

above, in its semi-Markov restless bandit reformulatiord # establish its LP-indexability.

4.1. Work and Marginal Work Measures

We start by addressing calculation of work and marginal wndasuregf"6951 andvvSOEBSl We will show
that they are closely related to their counterpagftsandwiS for the underlying nonrestless bandit, where
stationary deterministic policies are represented by tetive sets$SC N.

For eachSC N, work measuregiS are characterized by the evaluation equations

1+ Xspi,-g? ificS
5 1€
o= (18)
0 otherwise
Notice that the solution to (18) is unique, since matix- BPsgis invertible, asPssis a substochastic
matrix and 0< B < 1, wherel s is the identity matrix indexed bg andPss= (Bij)ijes

Further, the marginal work measumé is evaluated by

(1-B)g8 ifics
wEe g g% =148 5 pigi e~ (19)
I 1+ Zspij g’ otherwise.
B
Notice that (18) and (19) imply that
wo>0, ieN. (20)

We now return to the bandit's semi-Markov restless refoatioh. The following result gives the eval-

uation equations for work meaSngi@iS)l, for a given active sek ® S, € 7.

Lemma4.1
1 . SO if 5
_‘”Jr(ng(&iela)sl ifics 1+BZ\‘p.Jg “ifies
SES 1-B d o5 _
Y0i) = and g} =
0 otherwise 0 otherwise.

The next result represents work meas_u@égil in terms of theg®s.
Lemma 4.2 For oS € 7.
(@) g =g* =0, fora € {0,1},i € §.

16



(b) 95"EBSl g, fories.
(©) 3% = (1-@)/(1-B)+qag™, fori € S.
(d) gSoeasl 0,forie S\ S.

Proof. (a) This part follows immediately from the definition of iyl S S;.

(b) Fori € S, we can write
Soeesl =1+p ;pIJgS)@Sl_‘_B %p”gsoeesl 1+ ;p”gsoeasl’

where we have used Lemma 4.1 and part (a). Henceg(sﬁél’s satisfy the evaluation equations in (18)
characterizing the™’s, for i € S;, which yields the result.

(c) We have, foi € &, that

SERY a SHES —a
g(oje) —W‘Hﬂg(lﬁe —W‘Hﬂgu

where we have used Lemma 4.1, the relafigic S; and parts (a, b).

(d) This part follows immediately from the definition of poyiS ® S;. O

Regardin a @S)l we readily obtain from (11) and Lemma 4.1 that

Wit =1+p vaugs"@sl g

WS _ 1 + a{1+p Bes ses @D
o % Piga s~ BYo) -

The following result represents marginal workloaq%fﬁl in terms of thens.
Lemma4.3 Fora €{0,1},S®S € F:
S .
(@) Ws‘lﬂf) —w?, forie S
(b) wso@le = —+w31 foriec <.

(c) WSO@Sl—:L _BB(H{WF’l :L:L__T(en},fories).

(d) wso@sl—l @+ qw, forie .

Wt .
(e) Wﬁ%&:ﬁ,forlesl\so.
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® WSO@Sl——(RJr—WS’l forie S\ .

-B

Proof. (a) We can write, fof € S,
W3S =148 3 PigE " — B = 1B 3 PO} = W,

where we have used (21), Lemma 4.2(a, b), and (19).
(b) We have, foi € S,

|_\
S

S _ SOS S 31
ng% W‘Hﬂ{l‘FB Z\‘pug K } [39 @
1-g 5, 1

=1 B—I-(ﬂ{l-i-ﬁ Pij g; :W-i-(ﬂwsl

where we have used (21), Lemma 4.2(a, b), and (19).

(c) We can write, foi € &,

Wit =g - Bag, > = —B{i: +@g™}
1-¢_1-Ba W
— (1= BR)g* By = g (W Py}

where we have used (215 C S, Lemma 4.1, Lemma 4.2(b, c), and (19).
(d) We have, foi € &,

1 1-q
W(Sgﬁsl—%ﬂng%& Bagn* = B+<n9. B{l_ +ag}

=1-@+@1-B)gr=1— <n+<nwsl

where we have used Lemma 4%,C S, Lemma 4.2(b, c), and (19).
(e) We can write, for € S\ S,
w2t
WSJGBS_'L _ gleelaSl Bgsoeasl _ giS_'L _ 1—|[3’
where we have used (21), Lemma 4.1, Lemma 4.2(d), and (19).

(f) We can write, fori € §\ S,

1-q 1-q 1
OS _ SO _ S
ngi) S 1-B +(ﬂg(1, T1-B +@g" =

where we have used (21), Lemma 4.1, Lemma 4.2(b), and (19).

LL
_|_
R
=
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Note that, at this point in the corresponding analysis indNWora (2006¢) — for the no startup delay
case = 1 — we could immediately establish positivity of marginalnkloads, i.e.w(éa,.i) >0, for(a ,i) e
N,S e .#, which is a prerequisite for PCL-indexability. In the pressetting, however, it is clear from
Lemma 4.3(c) thatv(s‘l’%sl, fori € &, can become negativevi\fiSl < 3 andq is close enough to zero. This is
why we cannot use here the same argument in that paper tdigstaldexability, and use instead the more

powerful LP-indexability conditions.

4.2. Reward and Marginal Reward Measures

S99
Cal
Again, we will show that they are closely related to theirm:mmpartsfiS andrisfor the underlying nonrestless

We continue by addressing calculation of required rewaddraarginal reward measureé%?i?l andr

bandit wit no startup costs.

For each active s&C N, the reward measur[f;S is characterized by the evaluation equations

RH—BZpijij ifieS
s 1€
fi7= (22)
0 otherwise
while the marginal reward measuri%is given by
(1-p)fS ifieS
S2 9 _t09 _Rr4p 2 Pi fP-Bf= (23)
fe R+ ngij f> otherwise.
IE
Returning to the semi-Markov restless formulation, thetmegult gives the evaluation equations for

reward measure ?EB;?, for a given active se&k© S, € 7.

Lemma 4.4
Ri+BZjeNpijf(S£€jﬁ)Sl ifa-=1ieS
255 =0 c+@{R+BYjenm I} ffa =0ieS
B f(%iﬁsl otherwise

The next result represents reward mead@’éﬁl in terms of thef>s.

Lemma 4.5 For @S € .7
(@) ffgﬂfi? —0=f% fora €{0,1},ic .
(b) fffﬁsl — £, fories,.
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(©) fso@Sl —c+q@f forieS.
(d) fso@Sl 0= {2, forie S\ S.

Proof. (a) This part follows immediately from the definition of iyl S S;.
(b) We can write, foii € S,

fso@Sl R+p %p”fsoeisl-l‘ﬁ ;p”fSo@Sl R+pB ;p”fSo@Sl’

where we have used Lemma 4.4 and part (a). Hence‘ffﬁeQ’l’s, fori € S, satisfy the evaluation equations
in (22) for corresponding termﬁsl, which yields the result.
(c) We have, foi € &,

foyr=—c+a{R+B le”fs"@sl = —c+af,

where we have used Lemma 4.4, (22), and parts (a, b).

(d) This part follows immediately from the definition of poyiS ® S;. O

Regarding marginal reward measmfgfﬁl, we obtain from (12) and Lemma 4.4 that
R =R+B %p.,f ~Bfg>

(24)
ron = c.+qq{R.+Bpr.,fS°@Sl} BfaL.

The following result represents marginal rewafgﬁﬁﬁl in terms of therS's.
Lemma4.6 For§ &S ¢ 7
(@ g =r*fories,

(b) rigi > =—c+r* fories.

() rSOEBSl Bec + BB(R r, foric .
(d) rso@sl —(1-B)Gi+q@r, forie .
(&) rus = r‘_B,forieSl\So.

Sl
) rso@sl “Gtagg forie s\ S.
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Proof. (a) We can write, fof € S,
Soeesl _R+B pr”fsoeasl fsoeasl R|+B pij f, S

where we have used (24), Lemma 4.4, Lemma 4.5(a, b), (22)287d (
(b) We have, foii € S,
(So@)Sl C|+§q{1+B Z\‘p”f&@sl} BfSJ@S_'L
— +cn{1+BjE P} =—c+ar®,
where we have used (24), Lemma 4.5(a, b) and (23).

(c) We can write, foi € &,

rSo@Sl_fSoeaSl stoeasl_fsl B{_Cl_anSl}

(L)
A _ s n. ., 1-Ba S,
=Bci+(1-Ba)f™* =pBc+ 1 3

here we have used (24 C S;, Lemma 4.4, Lemma 4.5(b, ¢) and (23).
(d) We have, foi € &,

(sgela)sl G+ S)@S_'L BfSJEBSl CI_|_(nf -B{- C|_|_(nf }
—(1—B)ci +<n(1—B)fiSl = —(1-B)ci+ar,
where we have used Lemma 4%,C S;, Lemma 4.5(b, c) and (23).
(e) We can write, for € S\ S,

SHBS _ soeesl Soeasl sl_ [

where we have used (24), Lemma 4.4, Lemma 4.5(d) and (23).
(f) We have, fori € S\ S,

r

rS_'L
B’
where we have used (24), Lemma 4.4, Lemma 4.5(b), and (28&).cbmpletes the proof. O

Mo = c.+rn{F<+B§Np.,fS°@sl} B =—c+af=—ct+ar o

4.3. Marginal Productivity Measures

We continue by addressing calculation of the marginal pcodity measuresv(SOEBSl in (13). Again, we

will show that they are closely related to their countemaﬁfor the underlying nonrestless bandit without
startup costs, given by
s
sa
v = —, 1€N,SCN. 25
wS (25)

The next result represen\lzgu,@i?l in terms of thevis’s.
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Lemma4.7 For§a S T

(@) vSOEBSl S forie S
oS W .
C|+r H Sl C| .
(b) vsoeasl — = vt forie$.
g Tgewet we S
B + g wt B(1-PB) G
(©) vSoeasl = — = L[y 4+ ==L L) fori € S such that Wt #
= s s NS |
By
1-Bg-
_B\c S _(1-B)c StySt
(d) VS"@S“— —1-Platar’ -1 BJGi + guiy forie .
1-@+aw> 1- @+ @w*
(e) vso@sl—vsl foric S\ .
1-B)G+(1-a@)v® |
() vso@sl v ( _ieS\S.
1- @+ aw? \
Proof. All parts follow immediately from (13), (25), Lemma 4.3 ahdmma 4.6. O

4.4. Proof of LP(@-Indexability

We next draw on the above results to establish that the sestiandits of concern are @—indexable,

which ensures the validity of index algorithm AGvia Theorem 3.2. See Section 3.3.

Theorem 4.8 Under Assumptior8.1, the restless reformulation of a bandit with switching péea is

LP(,Q:)—indexable. Hence, it is indexable, and algorith@ - computes its MPI.

Proof. The defining LIP,f)—indexability condition (iii) in Section 3.3 was establehin Proposition 3.3.

As for condition (i), it follows by noting that, fore N,

1- 1—
WS =wP=1>0, WS- WP =2 4150

- 1
1- 1—

where we have usedi“’ = WiN = 1 along with emma 4.3(a)—(d), respectively.

Regarding condition (ii), consider an active Set HBS € 7. Then, we have
WE't <0—a =1landi€ H— (L,i) ¢ 9%Sand(L,i) ¢ %S

where we have used Lemma 4.3, (15), (14) and (10). Hencetamdii) holds.

The proof is now completed by invoking Theorem 3.2. O
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4.5. Further Simplification of the Index Algorithm

The above results allow us to further simplify Version 2 afem algorithm AG;into theVersion 3shown

in Table 3. In the latter, we use Lemma 4.7(b, d) to repremmired marginal productivity rateu{“@Sl

terms of thev™s. Notice that in Version 3 we uae((o o= (WhICh denotew(So Sa-1 YYin place ofv((ko ) Lha— >,
drawing on Lemma 4.7(d). We do so for computational reasasstorage of quantltlen_r(Okl requires
Lki—1),
one less dimension than storage of ﬂ(‘@j) 's.
Table 3: Version 3 of Algorithmic Scheme A&
ALGORITHM AG
k v*
Output: {(0ig ), V 0i) Heo=10 1(L071), v 1,i'§1)}21:1
=0, =0, k:=1; k:=1
while kg +k; <2n+2do
if ki <npick j" € argmax{ vj(kl_1>: je (scg’kll_)l}
V(O,!ﬁ—l) .: V_(kl—l) . (1_ B)Cj + (1_ (Pj)vj ' j e gil—l\%O*l
©.J) ] 1-q +q0w(k 1-1)
if ko < kg pick j§'® € arg max{v (Oa=). j ¢ §f*1\§§“71}
if k=n+1or {ks <k <nand V(max Y V(r(r)1a|§<1 )}
* . k
8= 18 Vo) = Viore) eSO ol 1
)
else
|‘f = v = v(kl_[ll); §f 1U{ 1, ik 1} kii=ki+1
(Ligh) (Lih)
end {if }
end { while }

4.6. The MPI is the AT Index

We next establish the identity between the MPI and the ATxrfde the bandits of concern in this paper.
We will find it convenient to reformulate the expressions ttae AT index, given in (5)—(6) in terms of
stopping times, using instead active sBtsS N to represent the latter — as it suffices to consider statjonar

deterministic policies. In the above notation, we can tharsnfilate the continuation and switching AT

indices as
fS
Vil # max os. (26)
and
—G s
V(%Tl) a ignsg),\,( _c.(n+ @f 7
C S
18 + @9



Recall that we denote the MPI by, ;.
Proposition 4.9 Under AssumptioB.1, v(; ;) = Vi) andvy;, = v{g;), fori e N.

Proof. We first show thav(; ;) = v('“lTi), through the equivalences

v > v(*l’i) < itis optimal in (9) to rest the bandit &1,i)

=02 Mis, T~ Ve
fSO_Ele
e v> max -2V _
SCSICN: €S 9(51?9)51
2
V2> max f = Vi

where we have used the result that the band# indexable, and hence if it is optimal to rest it(&ti) then
it is also optimal to rest it af0,i), along with Lemma 4.2(b) and Lemma 4.5(b).

Now, we show that/(*o’i) = ngi), through the equivalences

V> V(*O,i) < itis optimal in (9) to rest the bandit &0, i)

SOS _ ,q2PS
=0z max o fon ~ Vo
fSOPS

<= v>  max )
SCSICN: €S 950?‘951
(0,i)

—C fSl
~—v> max ﬂ:vﬁoﬂ,
SICN:ieS 1—43_1_(“ S )
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where we have used that the banditZindexable (cf. Proposition 4.8), along with Lemma 4.2(njla

Lemma 4.5(c). This completes the proof. O

5. Two-Stage Index Computation

In this section we further simplify Version 3 of the index aiijhm, by decouplingcomputation of the

continuation and the switching index into a two-stage saem

5.1. First Stage: Computing the Continuation Index

We start with continuation index; ;, which is the Gittins index;" of the bandit. We will need further
guantities as input for the second-stage algorithm to bmudssed later.
To compute such an index and extra quantities, we refer t@l@rithmic scheme A&in Table 4.

This is a variant of the algorithm of Varaiya et al. (1985¥prenulated as in Nifio-Mora (2006a). For actual
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Table 4: Gittins-Index Algorithmic Scheme AG

ALGORITHM AG!: N
Output: {i'f}ﬂlzl, {vj:jeN}, {(wg 1),vj( 1>): j€ ﬁl}ﬂlzl

set S :=0; compute{(wi(o),vim)): ieN}
for ky :=1tondo
pick i' € argmax{ v Vi e N\ S
1 1
compute{(wi(kl), vi(kl)): ieN}
end

implementations, one can use several algorithms in trer lafiper, such as ti@st-Pivotingalgorithm with
extended output FP(1), performirid/3)n° + O(n?) arithmetic operations; or theomplete-Pivoting CP)

algorithm, performing @ 4 O(n?) operations.

5.2. Second Stage: Computing the Switching Index

We next address computation of the switching ingdter having computed the Gittins index and required
extra quantities. Consider the algorithm %@in Table 5, which is fed as input the output of AGand
produces a sequence of stai%%$panning\l, along with corresponding index value(éoiigo), computed in a
top down(TD) fashion, i.e., from highest to lowest. Table 5 showsittom up(BU) version: algorithm
AGCB’U. Notice that we have formulated such algorithms in a forn épglies to the case where the startup
delay is positive at every stajeso thatg < 1.

The following is the main result of this paper.

Theorem 5.1 AlgorithmsAGS%, andAGgy, compute the switching index, ;.

Proof. The result follows by noticing that algorithm A?@ is obtained from Version 3 of index algorithm

AG in Table 3 by decoupling the computation of W@’i)’s and they;"’s. O
We next assess the arithmetic operation count of the swigahdex algorithms.
Proposition 5.2 AlgorithmsAGY, andAGY,, perform at most5,/2)n? + O(n) operations each.

Proof. The operation count is dominated by the statement

(ki—1)

Ok) . (k-1 GtV . .
v =y -1 je \an,
0,}) j 1+ijgk171) S

25



Table 5: Switching-Index Algorithm A@-‘b: Top-Down Version.

ALGORITHM AG
Input: (i}, (v JEN), (0 uf): e,
Output: {if® Heo=1{V(0,jy - 1 €N}

Ci :_l ZCJ,jGN zi=¢/1-¢); =0, §:=0; k:=0
for k; :=1tondo
S¢:=817 1y {i%}; AUGMENT; = false
(Ok) . (ka-1) °J+"(kl 5
Vioj) = VY] Ttz ,JG§I \S;O
while kg < k; and not(AUGMENTl) do
pick jia* e argmax{vOkl jest\se}

— (0 k)
if ky=n or vkl < V(o,maX)

k0+1 * . (Ok>
i Janax, v(o.w) .—v(mk;“)
else
AUGMENT; := true
end{if }
end { while }
end { for }
in algorithm AG), and in the statement
~ (k1—1)
©Ok) . (k-1 GtV :
Vij) =V~ k- € S

1+zw

in algorithm AC-%U, for 2<k; < n+ 1. In each such statement, at mo&{ arithmetic operations are

performed, which yields the stated maximum total count. O

6. Dependence of the Index on Switching Penalties

We next present and discuss some insightful properties antlh® index depends on switching penalties,
focusing on the casg =c, d, =d and@ = ¢, fori € N We will make explicit in the notation below the
prevailing switching costs, writing the continuation indes v(*l’i)(d, ) — as it does not depend @mnor
on @, and the switching index az{l’i)(c,d, o).

We further denote by > 0 and byfS > 0 the Gittins index and the reward measure of the underlying
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Table 6: Switching-Index Algorithm Ag:‘U: Bottom-Up Version.

ALGORITHM AGY:
Input: {ukl}kl p Vi T eNE LW V) jesin
Output: {if Heor {Viojy - TEN}

A (n)
N -B on) O R
Cii=——Cj; Zi=@¢/(1—@); Vg =V, —————,]J€N
J 1— 401 ] ] (0,j) J 1+ijgn)
§:=N; §:=N;ki:=n
for kg :=ndownto1ldo
SHRINKg := false
while kg <k; and not(SHRINKp) do
pick jon ¢ argmln{v °k1 Ljese)
(O.k1)
if ko=ky or V(o.,‘gﬂﬂ) < vékll
iko . min. % 0k1)
o= 1o V<0|E°> _V<0|S°>
o= 0\ {i®}; SHRINKg := true
else
=) a1
1
Ok) . (k-1 CitV
Voi) =Vi T lrawle D JG*
jW J
end{if }
end { while }

end { for }

Lemma 6.1

bandit with no switching penalties. We will use the switahindex expression

v(*07i)(c>d7(p7 W) - maXH (C d fPJ/—’a f| i )

—(c+od)+o(f+ (1 B)dg)

19y
g oV

H(Cad7(p7w7 fag) é

(@) fSCSCN,then £< S and ¢ < ¢of.
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(28)

Notice that identity (28) draws on the transformation dssad in Section 2.2 along with the switching-
index representation in (27), where we have used that theittseareward measure with modified rewards
+(1-p)d}/y, for j €N, is given byfS= { S+ (1— B)dg®} /.
We will use the following preliminary result.



(b) If d + wc > eiN, then Hc,d, @, , f,g) is increasing in f and ing, fod < f < fNand0<g<
g\ =1/(1-B).
Proof. (a) This part follows immediately from the interpretatiohreward and work measures, using As-

sumption 3.1 for the former.

(b) The result follows immediately from the following exgeions:

0] 0
_7>0 and —H Cvd>(p7w7fvg =@
llfopw +(pwg dg ( )

d+yc—oyf S0

H(c.d ¢4, f.9) = (220 ¢ gyg)’

af

Proposition 6.2

(@) Vi (d, ) = {v*+(1-p)d}/y.

(b) Ifd+ e > ufN, thenvjy; = ovN — (1-B)c.

(© v(*o’i)(c,d, @, ) is piecewise linear convex i, d), decreasing in ¢ and nonincreasing in d.

(d) For d+ yc > oyfN, or for c,d > 0 small enough and R> 0, or for c=d =0, v(*07i>(c,d, o, ) is
nondecreasing convex pand iny.

(e) limg o v(*07i>(c,d, o,P)=—(1-p)c.

() Vioi)(C:d @, @) = ovN — (1- B)c+O(y2), asy \, 0.

Proof. (a) This part follows immediately from the fact thz%‘li)(d, ) is the Gittins index of the bandit with
modified active rewardR; = {R; + (1— 3)d}/y (cf. Section 2.2), which is related to the Gittins ind&x
of the bandit with unmodified reward by the given expression.
(b) Use Lemma 6.1(b) ang]N = (1— B) fN to write
Vioiy(c.d, @, ) =(fme[mg]xx[agmH(c,d,cp, g, f,0) =H(cd, @@, f.g") = v — (1 B)c.
(c) This part follows by noting that (28) represemggi)(c,d, @, ) as the maximum of linear functions
n (c,d) that are decreasing mand nonincreasing id.

(d) Regarding dependence gnin the casal + ¢ > @y N the result follows by part (b). Further, we

can write
d f3—(1—(1-B)g) (d+ yc)
>d7 7‘1U>f|7| 1_B 20
ag" (@0 %) =(-5) (1-pp(1-(1-p)gd))?
2 _
aacp2 (c.0.0.0, 15.65) — 2 B (1- Bg')s{. (1-(1-B)gd)(d+yo)} >0,

{1-ow(1-(1-P)g)}
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where the inequalities are easily shown to holddar small enough, using th& > 0 to ensure thatiS >0,
and forc=d=0. Thus,v(*on(c,d, @, ) is the maximum of nondecreasing convex functions, whicltsis a
nondecreasing convex.

The same line of argument applies to the dependenag, moting that

) A-B)A-QA-B)B)P ; s 1 1 s
aph(cd.0.u. .07 = - ow(i- (1o B)g.)}z{(pf' c—(1-(1-B)g) ¥d}
02 1- 1 ,
o0z H(c,d oy, 5¢%) = {(1_5211(( ((1 L;))ggl))}f{qofs —(1-(1-B)g’) ed}.
Parts (e) and (f) follow by straightforward algebra. O

We conjecture that the Lemma 6.2(c) should hold without tated qualifications.
We next give two examples to illustrate the above result® first concerns the 3-state bandit instance
with no shutdown penalties nor startup costs, startup dedaagform’s valuep, 3 = 0.95,

0.7221 0.8061 01574 00365
R 09685 and P= [0.1957 00067 Q7976|.
0.1557 0.1378 05959 02663

Figure 3 plots the bandit’s switching index for each statelvs ¢. Notice that the plot is indeed consistent
with Proposition 6.2(d, e). It further illustrates that tiedative state ordering induced by the switching index

can change ag varies.

(0i)
/

1-9¢
Figure 3: Dependence of Switching Index on Startup Delaydfiam.

The next example concerns the same base 3-state banditithutonstartup delay and shutdown delay
transformy. Figure 4 plots the continuation and switching indices factestate vs. & (. The plots are
consistent with Proposition 6.2(a, d, f). Notice that, imtjgalar, the continuation mdex (d Y) grows
to infinity asy approaches 0, reflecting that the incentive to stay in a bgnokivs steeply as the shutdown
delay gets large. Further, the plot for the switching indeswvgs that the relative state ordering induced by it

can change ag varies.
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Figure 4: Dependence of Continuation and Switching IndaeShutdown Delay Transform.

7. Computational Experiments

This section reports the results of a computational stualsed on the author's MATLAB implementations
of the algorithms described herein.

The first experiment investigated the runtime performarideodecoupled index computation method.
We made MATLAB generate a random bandit instance with gtactists for each of the state-space sizes
n=500,100Q...,5000. For eacm, MATLAB recorded the time to compute the continuation inded
required extra quantities with algorithm FP(1) in Nifio-dq2006a), the time to compute the switching
MPI by algorithms AQ, and AG,, and the time to jointly compute both indices using algontRPAG
in (Nifo-Mora, 2006a, Sec. 6.3), which is a fast-pivotimgplementation of the algorithmic scheme AG
discussed herein. This experiment was run under MATLAB RRO®4-bit on Windows XP x64, on an HP
xw9300 2.8 GHz AMD Opteron workstation with 4GB of memory.

The results are displayed in Figure 5. The left pane shovas tattimes, in hours, for computing both
indices vsn, along with curves obtained by cubic least-squares fit, ware consistent with the theoretical
O(n®) complexity. Squares correspond to the AGcheme, while circles correspond to our two-stage
scheme. The results show that the two-stage method caribistehieved about a 4-fold speedup over the
single-stage method.

The right pane shows runtimes, secondsfor the switching index algorithms vg, along with curves
obtained by quadratic least-squares fit, which are comsistih the theoreticaD(n?) complexity. Now,
squares (resp. circles) correspond to the top-down (resftorb-up) algorithm AQD (resp. AC%U). The
change of timescale from hours to seconds demonstratesrdiee-af-magnitude runtime improvement
achieved. Further, the bottom-up algorithm consistentiiperformed the top-down one, though the dif-
ference is negligible, given the small runtimes.

We further investigated how the switching index algorithmegative performance depends on startup
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Figure 5: Exp. 1(a):Runtimes of Index Algorithms.

delays. Figure 6 plots the average arithmetic operatiomtc(aoc) for each algorithm over 100 random
instances of sizea = 500,100Q...,5000, vs.¢. The top-down algorithm is better fag small enough
(longer startup delays), while the bottom-up one is betiegflarge enough (shorter delays), which agrees
with intuition. Remarkably, the criticap value remains invariant asvaries. The curves shown are obtained
by quadratic least-squares fit.

The following experiments assess the average relativeimeaince of the MPI policy in random samples
of two- and three-bandit instances, both against the opfwiay, and against the benchmark Gittins index
policy. For each instance, the optimal performance was ct&dpby solving the LP formulation of the
Bellman equations using the CPLEX LP solver, interfacech WRATLAB via TOMLAB. The MPI and
benchmark policies were evaluated by solving with MATLAR ttorresponding linear evaluation equations.

The second experiment assessed how the relative perfoem@nthie MPI policy on two-bandit in-
stances depends on a common constant startup-delay trafssfealue ¢ and discount factor — there
are no shutdown penalties. A sample of 100 instances (withtdi@ bandits) was randomly generated
with MATLAB. In every instance, parameter values for eacihdibwere independently generated: tran-
sition probabilities (obtained by scaling a matrix with &mm[0, 1] entries — dividing each row by its
sum) and active rewards (Uniform[0, 1]). For each instakeel,...,100 and startup cost-discount fac-
tor combination in the rangéyp,3) € [0.5,0.99 x [0.5,0.95 — using a 0.1 grid — the optimal objec-

tive value 3 ¥.°Pt and the objective values of the MP$ ¢)'MP) and the benchmarkd(¥)-bench policies
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average aoc><(105)

Figure 6: Exp. 1(b): Arithmetic Operation Count of Switcfpiindex Algorithms vsg.

were computed, along with the corresponding relative stitnaity gap of the MPI policyAK-MP! 2
100(3 (K.opt _ g (K.MP1y /1.9(k).0pY| " and the suboptimality-gap ratio of the MPI over the benatknmolicy
p):MPLbench2 1009 (K.MPI _ g (k).opty /(9 (k).bench_ g (k).opty __ scaled as percentages. The latter were then
averaged over the 100 instances for e@xiB) pair, to obtain the average valua¥”' andpMP!.bench

Ojective values) (K)-opt g (k) .MPI gnq.g (k).bench\yere evaluated as follows. First, the correspondialgie
functionss VPt 9 K-MPI and9®PeN  \were computed as mentioned above. Then, the

((ag,i1),(83,i2))" ~ ((ag,i1),(23 i2)) ((ay5i1),(a3 1i2))

objective values were evaluated as

1 k
,9<k>.néF S ,9(<(g;g).(0’i2)), 1 e {opt, MPI,bench}, (29)
i1,12€N

where each bandit has state spate {1,...,n}, with n = 10. Notice that (29) corresponds to assuming
that both bandits are initially passive.

Figure 7 plotsAMP! vs. thegp — notice the invertedp-axis we use throughout — for multiple discount
factors 3, using cubic interpolation for smoothing. Such a gap stirt8 asg approaches 1 (as the opti-
mal policy is then recovered), then increases up to a maxiwaloe, which is less than.08%, and then
decreases to 0 ag gets smaller. Such a pattern is consistent with intuitiam: stmall enoughp, both the
optimal and the MPI policies will initially pick a bandit arefay on it thereafter. Since the best bandit can

be determined through single-bandit evaluations, the Rty will identify it. Notice also thatnMP! is not
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monotonic inG.
Figure 8 shows corresponding plots for the suboptimalitg-atiopMPPenchof the MPI over the bench-

mark policy. They show that the average suboptimality gaphfie MPI policy is in each case less than 45%
of that for the benchmark policy. Such a ratio takes the valfier ¢ small enough, as the MPI policy is
then optimal. Finally, the ratio increases wjih

Dependence o for Multiple Bs Dependence of for ¢ = 0.95
0.18% 0.18%

T T
= =
< <
0% 094
0.99 0.5 0.5 0.95
@ B
Figure 7: Exp. 2: Average Relative Suboptimality Gap of MBIli&.
Dependence o for Multiple 8s Dependence of for ¢ = 0.99
45% 45%
= =
Q Q
0% 0%
0.99 0.5 0.5 0.95
@ B

Figure 8: Exp. 2: Average Suboptimality-Gap Ratio of MPlioBenchmark Policy.

The third experiment was setup as the previous one, butdemsi a constant startup deldyfor each
bandit, so thatp = BT. Figures 9 and 10 display the results, showing that the MiRtypwvas optimal
for T > 2, had a relative suboptimality gap of no more tha@6%, and improved substantially on the
benchmark Gittins-index policy, as the suboptimality-gaiio remains below 2%.

The fourth experiment investigated the effect of asymmeiinstant startup delay transform values, as
these vary over the randex, @) < [0.8,0.99)2, in two-bandit instances witB = 0.9. The left contour plot
in Figure 11 shows that the average relative suboptimadify af the MPI policyAMP!, reaches a maximum

value of about 4%, vanishing as botlm andg approach unity, and as either gets small enough. The right
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Figure 9: Exp. 3: Average Suboptimality Gap of MPI Policy.

Dependence o for Multiple s Dependence offforT =1
2%, 2%

MPI.bench
p

MPI.bench
p ’

0,
s 0.95

B
Figure 10: Exp. 3: Average Suboptimality-Gap Ratio of MPéoBenchmark Policy.

contour plot shows that the suboptimality-gap rgf' reaches maximum values of about 50%, vanishing
as eitherg, or @ gets small enough.

The fifth experiment evaluated the effect of state-depenstantup delay parametegs as the discount
factor varies. Uniform[0.9, 1] i.i.d. state-dependentrtsa costs were randomly generated for each in-
stance. The left pane in Figure 12 plots the average relstikeptimality gap vs. the discount factor, which
shows that such a gap remains belad4%. The right pane shows that the average suboptimaljy-ato
pMPlbenchremains below 20%.

The sixth and last experiment evaluated the relative padoce of the MPI policy on three-bandit
instances as a function of a common startup delay paranpeéerd discount factor, based on a random
sample of 100 instances of three 8-state bandits each. Ebriestance, the startup cost-discount factor
combination was varied over the range, 3) € [0.5,0.99] x [0.5,0.95]. The results are shown in Figures
13 and 14, which are the counterparts of experiment 2's Eiguand 8. Comparison of Figures 7 and 13
reveals a slight performance degradation of the MPI pdipgrformance in the latter, though the average

gapAMP! remains quite small, below.26%. Comparison of Figures 8 and 14 reveals similar valuethéo
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Figure 11: Exp. 4: Average Relative Performance of MPI Bol&. (¢, @), for 3 = 0.9.
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Figure 12: Exp. 5: Average Performance of MPI Policy for &@ependent Startup Delays.
ratio pMPLbench_

8. Concluding Remarks

We have addressed the important extension of the classit-anoled bandit problem that incorporates
both costs and delays for switching bandits. The paper ha®ulstrated the practical applicability of the
index policy based on the index introduced by Asawa and Tedrmek(1996), by introducing an efficient
index algorithm and providing experimental evidence of lear optimality of such a policy. The mode
of analysis has been based on deploying the powerful inaex#ieory for restless bandits introduced by
Whittle (1988) and developed by the author in recent worlusTthe Asawa and Teneketzis index has been
shown to be precisely the Whittle index of the bandits of @wnan their natural restless reformulation.
To establish indexability and compute the index we haveayequl the LP-indexability approach recently
introduced in Niflo-Mora (2007), which extends the eafi@1i-indexability approach in the author’s earlier

work. This paper demonstrates the relevance of such anstatersince the restless bandits analyzed herein
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Figure 13: Exp. 6: Counterpart of Figure 7 for Three-Band#tdnces.
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Figure 14: Exp. 6: Counterpart of Figure 8 for Three-Band#tdnces.

0
8

have been proven to be LP-indexable, yet are not PCL-indexab
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