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Abstract

In this paper, a consistent integration procedure for the thermoviscoplastic version of the complete Gurson model is proposed. With
adiabatic conditions considered and with the use of the backward Euler integration scheme, a numerical algorithm implicit in all vari
ables as well as the corresponding algorithmic operator have been developed. The proposed algorithm was implemented in a finite ele
ment code and its performance is demonstrated with the numerical simulation of different examples.

Keywords: Gurson model; Thermoviscoplasticity; Consistent integration

1. Introduction

It is well known that the mechanical properties of an
alloy will change under different strain-rate loadings. Thus,
an understanding of the constitutive behaviour of metals
over a wide range of strain rates is of importance in many
advanced processes in engineering, such as metal forming
[1], machining [2,3], structures under crashes [4] and high-
speed impact on metallic armours [5,6]. The strain-rate sen-
sitivity, defined as the amount of change of flow stress
because of a change in strain rate, greatly helps to resist
instabilities, and thus should be considered in all these pro-
cesses. Viscoplasticity, as a branch of the theory of solid
mechanics, analyses the effect of strain rate in the inelastic
properties of the material. A widely used viscoplastic for-
mulation is the overstress model (such as Perzyna [7] and
Duvaut-Lions [8]). The main feature of overstress models
is that the rate-independent yield function can become lar-
ger than zero, allowing excursions of stress states outside of
the static yield surface. With the use of the overstress mod-

els, the consistency condition is not fulfilled and the Kuhn
Tucker conditions are not applicable.

A second approach to describe viscoplastic effects is
referred to as the consistency model, first proposed by
Wang et al. [9] and used by other authors (Ristinmaa
and Ottosen [10], Winnicki et al. [11] and Heeres [12]). In
the consistency approach, a rate-dependent yield surface
is employed and it can expand and shrink not only by soft-
ening or hardening effects, but also by softening/hardening
rate effects, i.e.,

f ðr; j; _jÞ ¼ 0 at _k > 0 ð1Þ

with j being a vector including all the state variables and k

the plastic multiplier. The standard Kuhn Tucker condi-
tions for loading and unloading remain valid when using
this formulation. Furthermore, the consistency model
yields numerical algorithms with a somewhat higher con-
vergence rate than that derived by the overstress model
[11,13].

The above-mentioned processes involving high strain
rates are often accompanied by a rise in temperature due
to the dissipation of plastic work. This means that the
energy-balance equation governing temperature evolution
should involve terms arising from a thermomechanical
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1

Rectángulo

Nota adhesiva
Published in: Computer Methods in Applied Mechanics and Engineering, 2008, vol. 197, n. 13-16, p. 1280-1295



coupling. This effect cannot be avoided in most cases in
finite deformation problems, especially when the material
is heated rapidly and the amount of local heat transfer
decreases due to limited thermal diffusion. The thermody-
namic process deviates from the isothermal conditions
and approaches adiabaticity, leading to large variations
in the temperature field. Calculations should then use tem-
perature-variable mechanical properties, and thermal soft-
ening of the material should be considered since dynamic
plastic instabilities, such as adiabatic shear bands or neck-
ing, are commonly triggered by a decrease in the yield limit
with increasing temperatures [14 17]. Numerical investiga-
tions in thermoviscoplasticity are frequently related to
overstress models [18,19]. Recently, Zaera and Fernán-
dez-Sáez [20] have extended the consistency model to ana-
lyse the thermoviscoplastic behaviour of metals. They have
proposed a fully implicit scheme which is easily imple-
mented and inherits the robustness and stability of return
mapping algorithms.

The above works do not take into account the micro-
mechanics phenomena responsible for damage and fracture
when ductile metals are used. In these cases, processes can
be accompanied by major accumulated damage, causing
internal deterioration and macroscopic failure. In most
ductile metals, the damage mechanisms involve the nucle-
ation of voids at second particles, by decohesion of the par-
ticle matrix interface or by particle fracture, the further
growth of voids due to the plastic straining of the sur-
rounding matrix and, finally, the coalescence to form a
macroscopic crack.

In the continuum-mechanics framework, the most
widely used model to describe the aforementioned pro-
cesses was originally developed by Gurson [21] and further
improved by Tvergaard [22,23] and Tvergaard and Needle-
man [24] (the so-called GTN model). This model predicts
the coalescence of voids when a critical volume fraction
of them, empirically selected, is reached. Following the
plastic-limit-load approach proposed by Thomason [25] a
new criterion for void coalescence has been incorporated
into the GTN model (called the complete Gurson model
[26 28]). This complete Gurson model considers the critical
volume fraction of the void as a material- and stress-depen-
dent parameter.

Different authors have applied the Gurson model to
dynamic problems, involving inertial and high-strain-rate
effects [29 35]. Recently, Betegón et al. [36] included
strain-rate effects in the consistency model of Gurson mate-
rials and they have proposed an implicit method to integrate
the constitutive equations of ductile metallic materials under
high strain rates based on the complete Gurson model.

In the above-mentioned works, the thermal effects
accompanying the deformation processes at high strain
rates are not taken into account. Srikanth and Zabaras
[37] proposed a thermoplastic model coupled with ductile
damage using the GTN approach to analyse metal forming
processes. Thermoviscoplastic versions of the Gurson
model, including strain-rate and temperature effects, has

been developed by Koppenhoefer and Dodds [38], Eberle
et al. [39], Needleman and Tvergaard [40], Tvergaard and
Needleman [41], and Hao and Brock [42].

In the present paper, thermal effects are included in the
consistency viscoplastic model of void-containing materials
modelled by the Gurson constitutive equations, and a con-
sistent integration procedure for the thermoviscoplastic
version of the complete Gurson model is proposed. With
the consideration of adiabatic conditions and with the
use of the backward Euler integration scheme, a numerical
algorithm implicit in all variables as well as the correspond-
ing algorithmic operator was developed. The proposed
algorithm was implemented in the finite element commer-
cial codes ABAQUS/Standard [43] and ABAQUS/Explicit
[44] through the material subroutines UMAT and
VUMAT, respectively, and its performance is demon-
strated with the numerical simulation of different examples.

2. A themoviscoplastic version of the complete Gurson model

2.1. Basic kinematics

Let Bt � R
3 define the current configuration at time

t 2 R of a continuum body B, and B0 � R
3 the reference,

initial or undeformed configuration at time t ¼ 0 (consid-
ered coincident). Let X 2 B be a particle in the body,
X 2 B0 the position of X in the reference configuration
B0, and x 2 Bt the position of X in the current configura-
tion Bt. The motion of the body is defined by a smooth
time-dependent mapping ut : B0 ! Bt, that is x ¼ utðXÞ.
The deformation gradient F is a two-point tensor defined
by

F ¼ rXutðXÞ ¼
ox

oX
: ð2Þ

This tensor transforms an infinitesimal material vector
dX 2 B0 into the corresponding spatial vector dx 2 Bt:

dx ¼ FdX: ð3Þ
The application of the theorem of polar decomposition to
F implies:

F ¼ RU ¼ VR; ð4Þ
R being the polar orthogonal rotation tensor, U the mate-
rial or right stretch tensor and V the spatial or left stretch
tensor. The velocity of a particle vt at time t is defined con-
sistently as the time derivative of the spatial position x:

vtðxÞ ¼
ouÿ1

t ðxÞ
ot

: ð5Þ

The velocity gradient tensor l is the spatial derivative of vt,
which is given by

l ¼ rxvt ¼
ovtðxÞ
ox

¼ _FFÿ1: ð6Þ

The symmetric and skew-symmetric parts of the latter
expression supply two additional rate tensors: the rate of
deformation tensor d and the spin tensor w:
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d ¼ 1

2
ðlþ lTÞ; ð7Þ

w ¼ 1

2
ðlÿ lTÞ: ð8Þ

2.2. Decomposition of the deformation gradient and of the

rate of deformation tensor

To separate the recoverable and non-recoverable contri-
butions of the deformation gradient, the Kröner Lee mul-
tiplicative split of F is assumed [45,46]:

F ¼ FrFp; ð9Þ
Fr represents the reversible thermoelastic deformation of
the material:

Fr ¼ FeFh ð10Þ
and Fp represents the inelastic deformation of the material.
This decomposition implies the so-called plastic intermedi-
ate configuration defined by Fr 1

, which is valid only lo-
cally. We may also write the spatial velocity gradient as

l ¼ _FFÿ1 ¼ le þ FelhFe 1 þ FelpFe 1

; ð11Þ
le, lh and lp being the elastic, thermal, and plastic spatial
velocity gradients defined as

le ¼ _FeFe 1

; lh ¼ _FhFh 1

; lp ¼ _FpFp 1 ð12Þ
while taking into account that thermal deformation is as-
sumed in this work to be purely volumetric, i.e.,

Fh ¼ ½detðFhÞ�1=31; ð13Þ
where 1 is the unit second-order tensor.

For structural metals used in crashworthiness, manufac-
turing or ballistic applications, elastic strains (and rates)
are commonly very small compared to unity or to plastic
strains (and rates). With this restriction, we get the follow-
ing approximations:

Fe ¼ Ue ¼ Ve ¼ 1þOðeeÞ: ð14Þ
From this, Eq. (11) leads to

l ¼ le þ lh þ lp ð15Þ
and its symmetric part to the additive decomposition of the
rate of deformation tensor d, generally assumed for hypo-
elastic plastic materials [47,48]:

d ¼ de þ dh þ dp: ð16Þ

2.3. Constitutive equations

The elastic strain is provided by an objective time deriv-
ative of the generalized Hooke’s law:

r
r ¼ C : de ¼ C : ðdÿ dh ÿ dpÞ; ð17Þ

where r is the Cauchy stress and C is the Hooke stress
strain tensor given by

C ¼ 2GIdev þ K1
 1 ð18Þ
with G and K being elastic constants:

G ¼ E

2ð1þ mÞ ; ð19Þ

K ¼ E

3ð1ÿ 2mÞ ; ð20Þ

and Idev the unit deviatoric fourth-order tensor given by

ðIdevÞijkl ¼
1

2
ðdikdjl þ dildjkÞ ÿ

1

3
dijdkl: ð21Þ

The yield function U considered for the porous solid is the
one originally proposed by Gurson [21] and modified by
Tvergaard [22,23] and Tvergaard and Needleman [24].
Function U ¼ 0 defines the boundary of the elastic domain:

Uðq; p; r; f �Þ ¼ q2

r2
þ 2q1f

� cosh
3q2p

2r

� �

ÿ 1ÿ ðq1f �Þ2 ¼ 0; ð22Þ

where q ¼ 3
2
s : s

q

is the macroscopic effective stress,
p ¼ ÿ 1

3
r : 1 is the hydrostatic pressure and s ¼ rþ p1

the stress deviator. Also, r ¼ rðep; _ep; hÞ is the flow stress
of the matrix material, which depends on the equivalent
plastic strain ep, the equivalent plastic strain rate
_ep ep ¼

R t

0
_epðsÞds

ÿ �

, and the temperature h; q1 and q2 are fit-
ting parameters [22,23], and, finally, f � is the modified
void-volume fraction, introduced by Tvergaard and Nee-
dleman [24] to improve the prediction of final failure due
to void coalescence, given by

f � ¼
f if f < fc;

fc þ ðfuÿfcÞ
ðfFÿfcÞ ðf ÿ fcÞ if f c 6 f 6 fF;

fu if f > fF;
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where f is the volume fraction of voids (porosity), fc the
critical void-volume fraction at which voids coalesce, fF
the void-volume fraction at final failure of the material,
and fu ¼ 1=q1 the ultimate void-volume fraction. The value
of the critical void-volume fraction where coalescence be-
gins, fc, is considered here not as a constant material value,
as in the original paper of Gurson [21], but as a field quan-
tity that can be determined by the Thomason plastic limit
load criterion [25]. The main idea of Thomason model is
that void coalescence coincides with the plastic limit load
condition for localized deformation of intervoid matrix.
Zhang [26] and Zhang et al. [27] modified the plastic-lim-
it-load of Thomason, assuming that the voids grow spher-
ically, without shape changes. According to this, in a
general three-dimensional problem, void coalescence starts
if [26,27]:

r1

r
¼ c

1

r
ÿ 1

� �2

þ b

r
p

 !

ð1ÿ pr2Þ; ð23Þ

but it will not occur if r1
r
does not reach this value. Then, fc

is taken as the current value of f at the specific material
point where condition (23) is fulfilled. In Eq. (23), r1 is
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the maximum principal stress and r is the void-space ratio
defined by

r ¼
3f
4p
ee1þe2þe3

3

q

ee2þe3
p

2

ð24Þ

with e1, e2 and e3 the principal strains, c ¼ 0:1 and b ¼ 1:2
constants fitted by Thomason [25] for the non-hardening
materials. Pardoen and Hutchinson [28] proposed a depen-
dence of c with the coefficient N in the Ramberg Osgood
ðr ¼ r0ðep=e0ÞN Þ strain hardening law. From finite element
cell model analysis, where void shape, hardening, and ini-
tial void-volume fraction were varied, they found that the
following relations fit better, in average sense, to all the
cases they studied:

c ¼ 0:1þ 0:217N þ 4:83N 2; b ¼ 1:24: ð25Þ

If voids are assumed to be always spherical (complete Gur-
son model), Zhang et al. [27] found that it is more accurate
to consider:

c ¼ 0:12þ 1:68N ; b ¼ 1:2: ð26Þ

The complete Gurson model was proposed by Zhang [26],
Zhang et al. [27] and Pardoen and Hutchinson [28] using
both the modified Gurson and the Thomason criterion. Re-
cently, Betegón et al. [36] have extended this model to dy-
namic conditions.

The average void-volume fraction changes due partly to
the growth of existing voids and partly to the nucleation of
new ones:

_f ¼ _f growth þ _f nucleation: ð27Þ

Assuming that elastic strains are negligible, void growth is
due to cavity expansion:

_f growth ¼ ð1ÿ f Þdp : 1: ð28Þ

The void nucleation model used here was proposed by Nee-
dleman and Rice [49] and it considers that void nucleation
is controlled by both plastic strain and stress mechanisms,
i.e.,

_f nucleation ¼ A_ep þ Bð _rÿ _pÞ: ð29Þ

A material with void nucleation controlled by the plastic
strain can be modelled using Eq. (29) by taking A > 0
and B 0. Chu and Needleman [50] proposed a normal
distribution for nucleation with the following expression
for A and B:

A ¼ fN

sN 2p
p exp ÿ 1

2

eÿ eN

sN

� �2
" #

; B ¼ 0; ð30Þ

eN being the mean strain for nucleation, sN the correspond-
ing standard deviation, and fN the volume fraction of
nucleating particles.

The plastic rate of deformation is given by the associ-
ated flow rule:

dp ¼ _k
oU

or
ð31Þ

and separating into its deviatoric and hydrostatic
component:

dp ¼ _k ÿ 1

3

oU

op
1þ oU

oq
n

� �

ð32Þ

with n being the unit vector in the deviatoric stress space:

n ¼ 3

2

s

q
: ð33Þ

The thermal rate of deformation tensor, assumed to be iso-
tropic, is written as

dh ¼ a _h1 ð34Þ
with a being the coefficient of thermal expansion. Under as-
sumed adiabatic conditions (no heat flux) and plastic work
as the only volumetric heat source, the balance of energy
gives:

qcp _h ¼ vr : dp; ð35Þ

where q is the actual density, cp the specific heat and v the
Quinney Taylor coefficient. According to the principle of
mass conservation, density is expressed as

q ¼ q0

detðFÞ : ð36Þ

Under the assumption that the rate of equivalent plastic
work in the matrix material equals the macroscopic rate
of plastic work, it follows that:

r : dp ¼ ð1ÿ f Þr_ep: ð37Þ
The formulation of the model is completed by introducing
the Kuhn Tucker loading/unloading complementary
conditions:

kP 0; U 6 0; kU ¼ 0 ð38Þ
and the consistency condition

k _U ¼ 0: ð39Þ

3. Consistent integration procedure

To integrate the above set of nonlinear rate equations,
incremental objectivity is achieved by rewriting them in a
neutralized configuration [51 53]. To formalize this
approach, being - a spatial skew-symmetric tensor, we
may generate a group of rotations R such that:

_R ¼ -R; Rðt 0Þ ¼ 1 ð40Þ

with

- ¼ ÿ-
T ð41Þ

and

R
ÿ1 ¼ RT: ð42Þ
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Typical choices of - include the spin tensor w and the ten-
sor X defined as

X ¼ _RRT; ð43Þ
where R is the polar rotation tensor. The Cauchy stress ten-
sor and the rate of deformation tensor are rotated as

rR ¼ RT
rR; dR ¼ RTdR: ð44Þ

Time differentiation of the rotated Cauchy stress leads to:

_rR ¼ RTð _rþ r-ÿ -rÞR ¼ RT
r
r
R; ð45Þ

where r
r coincides with the Jaumann stress rate if - ¼ w.

The Hughes Winget algorithm [54] is used to compute R in
this case with an approximated formula valid for small
increments. If - is chosen to be equal to X (and then
R ¼ R), r

r coincides with the Green Naghdi McInnis
stress rate. Thus, a complicated objective stress rate can
be computed as a simple time derivative. Taking advantage
of the orthogonality of R, the symmetry of the Cauchy
stress and rate of deformation tensors and the isotropy of
the elastic tensor ðCR ¼ CÞ, we find that the equations de-
fined above, in which tensors are involved, are form-identi-
cal in the corotational configuration but with spatial
variables now replaced by rotated variables:

_rR ¼ C : dR ÿ dh
R
ÿ d

p

R

ÿ �

; ð46Þ

dh
R
¼ a _h1; ð47Þ

d
p

R
¼ _k

oU

orR
¼ _k ÿ 1

3

oU

op
1þ oU

oq
nR

� �

; ð48Þ

p ¼ ÿ 1

3
rR : 1; q ¼ 3

2
sR : sR

r

;

rR ¼ sR ÿ p1; nR ¼ 3

2

sR

q
; ð49Þ

qcp _h ¼ vrR : d
p

R
; ð50Þ

rR : d
p

R
¼ ð1ÿ f Þr_ep; ð51Þ

_f ¼ ð1ÿ f Þdp
R
: 1þ A_ep þ Bð _rÿ _pÞ; ð52Þ

and all the constitutive equations of the model involving
only scalars remain changeless.

3.1. The solving algorithm

Within the finite element method, the integration pro-
cess is local in space, that is, it occurs at quadrature points
of the finite elements. The incremental integration of the
constitutive model is regarded as a strain-driven process
in which the total strain tensor increment at each quadra-
ture point is given at a certain time and both the stress
and the state variables should be updated. The re-writing
of the above equations in the corotational configuration
guarantees incrementally objective stress update [51 53].

Within the frame of the neutralized configuration, the
classical return mapping algorithm is proposed to solve

the above equations [51,52]. The return is performed at
time n + 1 with the corresponding updated rotated stress:

rRnþ1
¼ r

trial
Rnþ1 þ Drh

R
þ Drret

R
; ð53Þ

where rotated trial stress is given by

r
trial
Rnþ1

¼ rRn
þ C : ðDeRÞ ð54Þ

with rRn
being the rotated stress at time n:

rRn
¼ RT

nrnRn; ð55Þ
and DeR the increment of total deformation in the neutral-
ized frame, which could be determined by an objective
approximation of the rate of deformation tensor dnþ1=2 cal-
culated by the midpoint rule (see [51,52]):

DeR ¼ DtdRnþ1=2 ¼ DtRT
nþ1=2dnþ1=2Rnþ1=2: ð56Þ

A fully implicit backward Euler scheme is used to correct
the trial stress:

Drh
R
¼ ÿ3KaDh1; ð57Þ

Drret
R

¼ ÿC : Dk ÿ 1

3

oU

op

� �

nþ1

1þ oU

oq

� �

nþ1

nRnþ1

� �

: ð58Þ

Using the variables introduced by Aravas [55]:

Dep ¼ ÿDk
oU

op

� �

nþ1

; Deq ¼ Dk
oU

oq

� �

nþ1

: ð59Þ

Eq. (58) can be written as

Drret
R

¼ ÿKDep1ÿ 2GDeqnRnþ1
: ð60Þ

The updated deviatoric stress is then given by

sRnþ1
¼ strial

Rnþ1
ÿ 3GDeq

sRnþ1

qnþ1

: ð61Þ

This last equation clearly shows the proportionality be-
tween sRnþ1

and strial
Rnþ1

, which could be equally stated as

sRnþ1

qnþ1

¼
strial
Rnþ1

qtrialnþ1

ð62Þ

or

nRnþ1
¼ ntrial

Rnþ1
; ð63Þ

where qtrialnþ1 ¼ 3
2
strial
Rnþ1

: strial
Rnþ1

q

. This equation shows that the
value of the unit vector nRnþ1

can be simply determined
from the value of the rotated elastic deviatoric stress pre-
dictor strial

Rnþ1
.

Separating Eq. (53) into deviatoric and hydrostatic com-
ponents according to (60), the resulting equations of the
updated rotated stress are

pnþ1 ¼ ptrialnþ1 þ KDep þ 3KaDh; ð64Þ
qnþ1 ¼ qtrialnþ1 ÿ 3GDeq: ð65Þ

After some algebra, the equations in (59) can be written as

Dep
oU

oq

� �

nþ1

þ Deq
oU

op

� �

nþ1

¼ 0: ð66Þ
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The evolution of the four state variables h; f ; ep; _ep are
given

Dh ¼ vðqDeq ÿ pDepÞ=ðqcpÞ;

Df ¼ ð1ÿ f ÞDep þ ADep þ BðDrÿ DpÞ;

Dep ¼ ðqDeq ÿ pDepÞ=ðð1ÿ f ÞrÞ;

D_ep ¼ Dep

Dt

ð67Þ

with variables evaluated in n + 1 (omitted for simplicity)
and Dt known.

This set of four evolution equations can be written as
[55]:

DH ¼ hðDep;Deq; p; q;HÞ ð68Þ

with H being a vector containing h; f , ep and _ep variables.
The problem of integration is reduced to the solution of

the following set of eight non-linear equations:

Dep
oU

oq
þ Deq

oU

op
¼ 0;

Uðp; q;H aÞ ¼ 0;

p ¼ ptrial þ KDep þ 3KaDh;

q ¼ qtrial ÿ 3GDeq;

DH ¼ hðDep;Deq; p; q;HÞ;

ð69Þ

solved using a standard method (Newton Raphson).
The updated rotated stress is equal to:

rRnþ1
¼ 2

3
qnþ1n

trial
nþ1 ÿ pnþ11 ð70Þ

and rnþ1 is obtained by the updated rotated stress being
pushed to the spatial configuration by Rnþ1:

rnþ1 ¼ Rnþ1rRnþ1
R

T
nþ1: ð71Þ

4. Algorithmic tangent operator

For infinitesimal strain problems Simo and Taylor [56]
proposed the use of a consistent tangent operator that is,
in general, different from the continuum tangent moduli
and dependent on the algorithm used for the integration of
the constitutive equations by enforcement of the consistency
condition at the end of the step tnþ1. For Gurson materials,
an explicit expression of the tangent operator consistent with
the Euler backward algorithm has been given by Aravas [55]
and Zhang [57]. The use of this kind of tangent operator pre-
serves the quadratic rate of asymptotic convergence of iter-
ative solution schemes based on the Newton method. For
the finite transformation regime, we followed an algorithmic
strategy similar to that proposed by Lin and Brocks [58], Lin
et al. [59] and Doghri [52]. First, the rotated tangent opera-
tor, JR, is calculated in the neutralized frame and afterwards,
is rotated with Rnþ1.

To determine JR, we proceed as follows:

JR ¼ orR

oeR

� �

nþ1

¼ oDrR

oDeR

� �

nþ1

: ð72Þ

From Eqs. (53) and (54):

rRnþ1
¼ rRn

þ C : DeR ÿ Deh
R
ÿ Deret

R

ÿ �

: ð73Þ

Deriving the discretized Eq. (73), and considering sepa-
rately the hydrostatic and deviatoric components, we get:

dDrR ¼ C : dDeR ÿ C : dDeh
R
ÿ C : dDeret

R

¼ ð2GIdev þ K1
 1Þ : deR ÿ KdDep1

ÿ 2GdDeqnR ÿ 2GDeqdnR ÿ 3Kadh1; ð74Þ

where n + 1 is omitted for simplicity.
From Eqs. (64) and (65):

dp ¼ dptrial þ KdDep þ 3KadDh;

dq ¼ dqtrial ÿ 3GdDeq:
ð75Þ

Deriving the plastic flow (66), yield (22), and the evolution
of the four-state variables (68), and after some algorithmic
manipulations, the following set of equations results:

Table 1

Thermal, elastic, and viscoplastic parameters of the materials considered

Material A

(4340 Steel)

Material B

(Armco Iron)

Material C

(Electronic Copper)

E (MPa) 208,000 209,000 124,000

m 0.3 0.3 0.3

q0 (kg/m3) 7830 7890 8960

K1 (MPa) 792 175 90

K2 (MPa) 510 380 292

n 0.26 0.23 0.31

K3 0.014 0.06 0.025
_�e0 (s 1) 1 1 1

m 1.03 0.55 1.09

h0 (K) 298 294 298

hm (K) 1793 1811 1331

v 0.9 0.9 0.9

cp (m2 K 1 s 2) 477 452 383

a (K 1) 1.2 � 10 5 1.2 � 10 5 1.7 � 10 5

Table 2

Parameters of the Gurson model for the materials considered

Material A

(4340 Steel)

Material B

(Armco Iron)

Material C

(Electronic Copper)

q1 1.5 1.25 1.5

q2 1.0 0.95 1.0

f0 0.004 0.0004 0.001

fN 0.1 0.005 0.1

sN 0.3 0.025 0.3

en 0.1 0.05 0.1

fF 0.2025 0.06 0.025
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dDep ¼ C11dp
trial þ C12dq

trial ð76Þ
dDeq ¼ C21dp

trial þ C22dq
trial

dH ¼ Ck1dp
trial þ Ck2dq

trial; k ¼ 3; 4; 5; 6 ð77Þ

with all Ckj coefficients known.

Concretely, the derivation of h can be written as

dh ¼ C31dp
trial þ C32dq

trial; ð78Þ

bearing in mind that:

Fig. 1. Single element test cases and boundary conditions: (a) uniaxial extension, (b) volumetric expansion and (c) constrained uniaxial extension.
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dptrial ¼ ÿKðdeRÞkk;
dqtrial ¼ 3

2qtrial
strial
R

: dstrial
R

;

dstrial
R

¼ 2G deR ÿ 1

3
ðdeRÞkk1

� �

;

nR ¼ ntrial
R

¼ 3

2qtrial
strial
R

;

dnR ¼ dntrial
R

¼ 3

2qtrial
dstrial
R

ÿ 3

ð2qtrialÞ2
dqtrialstrial

R
:

ð79Þ

From Eqs. (74) and (79), the rotated tangent operator can
be written as

JR ¼ Kð1þ KC11 þ 3aKC31Þ1
 1þ 2Gÿ 6
G2Deq

qtrial

� �

Idev

þ 3KG

qtrial
ðC12 ÿ 3aC32Þ1
 strial

R
ÿ 3KG

qtrial
C21s

trial
R


 1

þ 9
G2

ðqtrialÞ2
ÿC22 þ

Deq

qtrial

� �

strial
R


 strial
R

: ð80Þ

It should be noted, that there is no matrix inversion in-
volved in this process, and the symmetry of this operator
is also not preserved.

Since the incremental constitutive equations were
derived on the corotational basis, JR corresponds to this
frame and it should be pushed forward to obtain the tan-
gent operator by using the rotation matrix Rnþ1,

ðJÞijkl ¼ ðRnþ1ÞiIðRnþ1ÞjJðRnþ1ÞkKðRnþ1ÞlLðJRÞIJKL: ð81Þ

This leads to a tensor J with a mathematical structure iden-
tical to JR:

J ¼ Kð1þ KC11 þ 3aKC31Þ1
 1þ 2Gÿ 6
G2Deq

qtrial

� �

Idev

þ 3KG

qtrial
ðC12 ÿ 3aC32Þ1
 strial ÿ 3KG

qtrial
C21s

trial 
 1

þ 9
G2

ðqtrialÞ2
ÿC22 þ

Deq

qtrial

� �

strial 
 strial ð82Þ
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with

strial ¼ Rnþ1s
trial
R
R

T
nþ1: ð83Þ

5. Numerical results

The performance of the proposed algorithm was proved
by performing two kinds of analysis. Firstly, three single-
element cases have been considered with the algorithm
implemented in the commercial finite element code ABA-
QUS/Standard [43] through the user subroutine UMAT.
In this code, all tensors are relative to the Jaumann corota-
tional basis. Secondly, different Taylor cylinder impact
tests have been simulated, using in this case the subroutine
VUMAT that implements the proposed algorithm in the
commercial code ABAQUS/Explicit [44]. In this code, all
tensors are relative to the Green Naghdi McInnis corota-
tional basis.

For calculations, the materials chosen were the ARM-
CO IRON, selected by Worswick and Pelletier [33], and

the 4340 Steel, widely used in industry (for the single-ele-
ment cases) and an Oxygen-free electronic copper for the
Taylor cylinder impact test. All materials are modeled
using the Johnson Cook flow equation [60] given by

r ¼ ðK1 þ K2 epð ÞnÞ 1þ K3 ln max 1;
_ep

_e0

� �� �� �

ð1ÿ h�mÞ:

ð84Þ

This equation considers the hardening effects of plastic
strain, plastic strain rate and the softening effect of temper-
ature in a multiplicative way. The first is defined through a
Ludwig law with three constants K1; K2, and n. The strain-
rate effect is taken into account through a linear function
with respect to the logarithm of the plastic strain rate, with
a slope equal to K3. The function ‘‘max” allows to define a
lower limit of plastic strain-rate sensitivity, _e0. The param-
eter m defines the temperature sensitivity, where h� is a
homologous temperature defined as
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h� ¼ hÿ h0

hm ÿ h0
ð85Þ

and h0 and hm the reference and melting temperatures,
respectively.

The model proposed by Johnson and Cook is probably
the most widely used among those accounting for plastic
strain, plastic strain rate and temperature effects, since
numerous efforts have been made in the past to determine
their parameters for a large number of metallic materials.

The corresponding properties and parameters for the
three materials, including the initial porosity f0, are given
in Tables 1 and 2.

5.1. Single-element test cases

The following three single-element test cases were ana-
lysed (see Fig. 1): (a) uniaxial extension, (b) volumetric
expansion and (c) constrained uniaxial extension.

The three of them were previously chosen by Worswick
and Pelletier [33] and Betegón et al. [36] in 2D plane-strain
conditions and the first two were used by Aravas [55] in 2D
plane-stress and 3D quasi-static conditions, respectively.

The initial element dimensions l0x ; l0y and l0z were set
equal to 1 mm and, for comparison, the axial engineering
strain rate _ez ¼ vz=l

0
z used to run the cases took the values

of 1, 102, and 104 s 1.
Figs. 2 4 show, for each load case, the evolution of a

stress (axial stress in uniaxial extension and constrained
uniaxial extension, hydrostatic stress in volumetric expan-
sion) normalized by the static yield stress, as a function
of a strain (axial strain in uniaxial extension and con-
strained uniaxial extension, logarithmic volumetric strain
in volumetric expansion) for different strain rates and for
both materials.

These results show that the strain rate increases both the
stress level as well as the strain where the maximum stress
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takes place. These findings are analogous with previous
results [33,36].

The softening effect of temperature can be observed
especially in the first loading case (uniaxial extension)
and Armco Iron (material B). The stronger effect in this
case agrees with the increase in the homologous tempera-
ture. For the other loading cases the thermal effect is neg-
ligible compared to the strain-rate one.

The porosity evolution with the strain corresponding to
the first loading case is given in Fig. 5 for the two materials
considered and the different conditions studied. As can be
seen, the porosity is practically unaffected by either the
strain rate or the temperature.

Figs. 6 and 7 give the same information for the volumet-
ric expansion case and uniaxial constrained case, respec-
tively. These curves differ from those of the first case due
to the high triaxiality developed in these configurations.
However, the effect of temperature is negligible and the

observed variation with the strain rate agrees with the
results of Betegón et al. [36].

The convergence behaviour of the algorithm is shown in
Table 3, which gives the maximum residual force in each
iteration for the first time increment corresponding to the
uniaxial extension case for a strain rate _ez ¼ 104 and with
consideration of thermal effects. It is worth noting that
the tangent operator developed provides a quadratic rate
of convergence.

5.2. Taylor cylinder impact test

To illustrate the performance of the developed algo-
rithm in more complex loading configurations involving a
large number of elements, seven different Taylor cylinder
impact tests have been analysed. This test consists of
launching a circular cylinder with an initial velocity against
a rigid surface. During the impact, the large amount of
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plastic deformation in the specimen produces a shape that
for the years has been used to estimate dynamic properties
of the materials [61]. This kind of test has been analysed by
Worwick and Pick [32], but without considering thermal
effects.

The cylinder geometries and initial impact velocities
selected (see Table 4) correspond to experiments performed
by House [62] on oxygen-free electronic copper (see Tables
1 and 2 for the material properties).

The numerical models consist of 650, 1200, 1500, 1900
and 2500 four-node bilinear axisymmetric quadrilateral ele-
ments, with reduced integration and hourglass control for
each of the five different specimens given in Table 4 (tests
1 5, respectively). A mesh example is given in Fig. 8 corre-
sponding to specimen number 1. It can be observed that a
fine mesh is generated in the vicinity of the impact face
where large inelastic deformations are expected to occur,
while a relatively coarse discretization is used in the rest
of the cylinder where it is expected to remain nearly
undeformed.

Table 4 shows the numerical and experimental values
[62] of the ratio of final and initial radio of the cylinder
ðRf=RiÞ, and of the ratio of final and it initial length
ðLf=LiÞ for the seven cases analysed. The error level, calcu-
lated as: error ¼ ð�Þexpÿð�Þnum

ð�Þexp
, is in all cases less than 12%. This

value is acceptable, particularly if one considers that in the
cylinders can undergo misalignment during impact [32].

Table 3

Maximum residual force for the first time increment

Material A (4340 Steel) Material B (Armco Iron)

Iteration 1 124 181

Iteration 2 1.27 1.76

Iteration 3 1.76e 2 4.056e 2

Iteration 4 2.3e 4 3.177e 4

Cases of uniaxial extension and _ez 104 sÿ1 considering thermal effects.
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Once numerical and experimental results have proved to
be analogous, information concerning the evolution of sev-
eral variables can be derived. Following the analysis made
by Worwick and Pick [32] without consideration of thermal
effects, the temporal evolution of hydrostatic stress and
porosity in three elements has been determined. These ele-
ments are located on the cylinder axis at the impact face, at
2 and 4 mm away from the impact face, respectively. More-
over, the temperature evolution in these three elements has
been computed.

The information given below corresponds to simulated
test number 5 (see Table 4) with the initial cylinder length

and diameter of 56.96 and 7.595 mm, respectively, and ini-
tial impact velocity of 153 m/s.

Fig. 9 shows contours of the porosity, f, at 32 and 55 ls
after impact, respectively. According to the results
obtained by Teng et al. [63] for Taylor cylinder impact test-
ing, damage by void growth is localized mainly in two
zones of the specimen’s tip: axis and periphery. The first
one leads to the so-called confined-fracture in the Taylor
specimen, which may generate a number of internal voids
and even cracks inside the specimen although no cracks
are visible on the surface. The second one may cause petal-
ling at higher velocities due to the propagation of radial
cracks towards the symmetry axis. The periphery of the cyl-
inder nose moves backwards during mushrooming and the
contact with the rigid wall is discontinued directly after
impact. Then tensile hoop stresses predominate and the tri-
axiality becomes positive, leading to damage growth.

Fig. 10 plots the history of hydrostatic stresses, normal-
ized by the yield stress, for the three elements on the axis.
From 0 to 2.3 ls, the dimensionless hydrostatic stress is
negative and reaches a maximum of 10.3 at 0.7 ls in the
impacting face. After that the contact with the rigid wall
is discontinued for a few microseconds, these results being
consistent with those of Worswick and Pick [32] and Teng
et al. [63]. The hydrostatic stress changes to tension and
this leads to void growth. During this period, several oscil-
lations become visible at the element in the impacting face.
These are due to radial unloading stress waves travelling
round and round from the lateral surface to the axis [63].
As the gap closes, the compression becomes again domi-
nant reaching a second maximum, and voids generated
may initially close. This is consistent with the results shown
in Fig. 11: in periods with negative hydrostatic stress (com-
pressive stresses), there is a negative evolution of porosity;
meanwhile, in periods corresponding to positive hydro-
static stress, an increase in the f values occur. Similar
behaviour was also found by Worswick and Pick [32].
The maximum value of the void-volume fraction is reached
in the element located at 2 mm with a value of 0.011 at time
6 ls after impact.

Fig. 12 shows the evolution of homologous temperature,
h�, with time for the three aforementioned elements. In this
case, a maximum value of 0.15 is reached for the element in
the impact face at 45 ls after impact. Although plastic
deformation continues until this moment, as can be

Fig. 8. Finite element mesh for the cylinder with initial geometry

corresponding to specimen of test number 1. The impact face is located

at z = 0.

Table 4

Taylor test results for oxygen free electronic copper

Simulated test Initial diameter (mm) Initial length (mm) Impact velocity (m/s) Rf=Ri Lf=Li

Exp. Sim. Error (%) Exp. Sim. Error (%)

1 7.595 11.39 191 1.58 1.76 11.4 0.78 0.70 10.3

2 7.595 22.79 200 1.87 2.06 10.2 0.74 0.68 8.1

3 7.595 30.38 175 1.74 1.86 6.9 0.78 0.72 7.7

4 7.595 37.97 200 1.94 2.08 7.2 0.72 0.72 0

5 7.595 56.96 153 1.55 1.61 3.9 0.83 0.75 9.6

6 7.595 56.96 156 1.57 1.64 4.5 0.83 0.74 10.8

7 7.595 56.96 189 1.94 1.91 1.5 0.73 0.66 9.6
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deduced from the temperature increase, the void growth
stops long before.

6. Conclusions

Reliable characterisations of materials at high strain
rates and temperatures and precise modelling of ductile
damage processes are necessary for the simulation of many
advanced processes in engineering. This work presents a
computational framework for finite strain thermovisco-
plastic constitutive equations, coupled to the complete
Gurson model. Following the consistent viscoplastic
approach and using a fully implicit scheme, the discretized
constitutive equations are presented in a corotational
framework. The solution of these equations allows to
update stress and state variables, and their differentiation
leads to a closed form of the tangent operator. The method
inherits the robustness and stability of classical return map-
ping algorithms, which were tested through the simulation
of a single 3D element submitted to different load paths, as
well as Taylor cylinder impact tests. These simulations also
highlight the influence of the thermal effects on the soften-
ing of Gurson materials.
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