
Modified Whittle estimation of multilateral models
on a lattice

P.M. Robinson∗, J. Vidal Sanz
London School of Economics, Houghton Street, London WC2A 2AE, UK

Abstract

In the estimation of parametric models for stationary spatial or spatio-temporal data on a d-
dimensional lattice, for d �2, the achievement of asymptotic efficiency under Gaussianity, and
asymptotic normality more generally, with standard convergence rate, faces two obstacles. One is
the “edge effect”, which worsens with increasing d. The other is the possible difficulty of comput-
ing a continuous-frequency form of Whittle estimate or a time domain Gaussian maximum like-
lihood estimate, due mainly to the Jacobian term. This is especially a problem in “multilateral”
models, which are naturally expressed in terms of lagged values in both directions for one or more
of the d dimensions. An extension of the discrete-frequency Whittle estimate from the time se-
ries literature deals conveniently with the computational problem, but when subjected to a stan-
dard device for avoiding the edge effect has disastrous asymptotic performance, along with fi-
nite sample numerical drawbacks, the objective function lacking a minimum-distance interpreta-
tion and losing any global convexity properties. We overcome these problems by first optimizing
a standard, guaranteed non-negative, discrete-frequency, Whittle function, without edge-effect cor-
rection, providing an estimate with a slow convergence rate, then improving this by a sequence
of computationally convenient approximate Newton iterations using a modified, almost-unbiased
periodogram, the desired asymptotic properties being achieved after finitely many steps. The asymp-
totic regime allows increase in both directions of all d dimensions, with the central limit theorem
established after re-ordering as a triangular array. However our work offers something new for
“unilateral” models also. When the data are non-Gaussian, asymptotic variances of all parameter
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estimates may be affected, and we propose consistent, non-negative definite estimates of the asymp-
totic variance matrix.

AMS 1991 subject classification: 62M30; 62F10; 62F12

Keywords: Spatial data; Multilateral modelling; Whittle estimation; Edge effect; Consistent variance estimation

1. Introduction

Consider a stationary process xt defined on a d-dimensional lattice, t being a multiple
index (t1, ..., td ) with tj ∈ Z = {0, ±1, ...}, j = 1, ..., d, and having a spectral density
f (�), � = (�1, ..., �d), � ∈ �d , � = (−�, �]. This paper is concerned with large sample
inference on an unknown m-dimensional column vector �0, given a known functional form
f (�; �), � ∈ � ⊂ Rm, such that f (�; �0) ≡ f (�), for xt observed on the rectangular
lattice N = {t : −nLi � ti �nUi , i = 1, ..., d}, nUi, nLi �0, i = 1, ..., d. Define ni =
nLi + nUi + 1, n =∏d

i=1 ni , and regard each ni = ni(n) as a function of the total number
of observations n. Though we only introduce parameter estimates that are based on such a
full lattice, our asymptotic construction regards observations as arising singly; the sequence
of estimates is defined only with respect to increase in one or the other of the ni but we can
nest the consequent n sequence in Z+ = {1, 2, ...}. A mild degree of regularity in the ni ,
across i, is implied by the following assumption.

A1. For all sufficiently large n, there exist � > 0, C1 > 0 such that

ni(n)�C1n
�, i = 1, ..., d. (1.1)

Remark 1. The inequality between arithmetic and geometric means indicates that

d∑
i=1

n−1
i (n)�dn−1/d , (1.2)

so that ��1/d, the equality here indicating that all ni increase at the same, n1/d , rate.
Assumption A1 can hold if, for all i, only one of nUi and nLi increases unboundedly with n,
so that the common random fields prescription nLi ≡ 0 is included. It is sometimes artificial
to suppose that further sampling is only possible in particular directions.

Remark 2. Domains of observation are often bounded, and “infill” asymptotics (see e.g.
[5, 40]) has appeal. This would require modelling xt continuously across the domain; our
goal is to justify useful rules of inference rather than explore issues of interpolation.

The asymptotic properties we aim for in estimating �0 are efficiency when xt is Gaussian,

and n
1
2 -consistency and asymptotic normality much more generally.
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Definition 1. An estimate �̂ of �0 is said to satisfy Property E if n1/2(�̂ − �0) converges in
distribution to a N (

0, �−1��−1) variate, where � and � are non-singular matrices given
by

� = (2�)−d

∫
�d

�(�; �0)�
′
(�; �0) d�, �(�; �) = � log f (�; �)

��
,

� = 2� + �

{
(2�)−d

∫
�d

�(�; �0) d�

}{
(2�)−d

∫
�d

�(�; �0) d�

}′
, (1.3)

the prime denoting transposition and � as defined in the following assumption.

A2. xt has representation

xt = � +
∑
j

�t−j εj ,
∑
j

∣∣�j

∣∣ < ∞,

where the εj are independent and identically distributed with zero mean, unit variance
and finite fourth cumulant, denoted �, and

∑
j denotes

∑
j∈Zd .

Remark 3. Alternative conditions to A2 such as mixing conditions and instantaneous non-
linear transformations of a weakly dependent Gaussian process (see e.g. [10,33,34,44])
would be strictly neither stronger nor weaker than A2. The linearity assumption is natural
in the context of models discussed in the following section and for the quadratic statis-
tics on which our estimates are based. Note the possibly “multilateral” character of the
representation for xt . Summability of the �j in A2 is mild by the standard of many weak
dependence conditions, and A2 would also be natural in an extension of our work to adap-
tive estimation, where efficiency improvements are achieved in the presence of unknown,
non-Gaussian distribution for εt .

Remark 4. Deriving good estimates of �0 is also of value in efficient trend estimation,
when � is replaced by a more general regression function.

The following section motivates the above setting and the estimation procedure to be
introduced, by discussing a particular class of f (�; �). Section 3 reviews the background to
the estimation problem, and Sections 4 and 5 present an estimation strategy and asymptotic
results. A Monte Carlo study of finite sample performance is reported in Section 6. Section
7 provides consistent estimates of � when xt is non-Gaussian. Proofs for Sections 4, 5 and
7 are left to Sections 8 and 9.

2. Multilateral and Unilateral ARMA Models

For z = (z1, ..., zd) having complex-valued elements, and � ∈ �, define

a(z; �) =
pU1∑

j1=−pL1

· · ·
pUd∑

jd=−pLd

aj (�)

d∏
i=1

z
ji

i , (2.1)
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b(z; �) =
qU1∑

j1=−qL1

· · ·
qUd∑

jd=−qLd

bj (�)

d∏
i=1

z
ji

i , (2.2)

for j = (j1, ..., jd), given finite integers pLi �0, pUi �0, qLi �0, qUi �0, and real-valued
functions aj (�), bj (�). We call (2.1) and (2.2) multivariate polynomials, even though
they can involve negative powers. Denoting by B = (B1, ..., Bd) the operator such that∏d

i=1 B
ji

i xt = xt−j , where t − j is the multiple index (t1 − j1, ..., td − jd), suppose xt has
the autoregressive moving average (ARMA) representation

ARMA (pL1, pU1; ...; pLd, pUd : qL1, qU1; ...; qLd, qUd) : a(B; �0)(xt − �)

= b(B; �0)εt , (2.3)

where � = Ext , εt satisfies A2 and

a(z; �) �= 0, b(z; �) �= 0, for |zi | = 1, i = 1, ..., d, � ∈ �. (2.4)

Under these conditions, f (�) is finite and positive, and we take

f (�; �) = (2�)−d |b (e(i�); �) /a (e(i�); �)|2 , � ∈ �, (2.5)

with e(z) = (ez1 , ..., ezd ). The summability condition in A2 is satisfied by (2.3), (2.4).
Special cases of (2.3) are the autoregressive (AR) model AR (pL1, pU1; ...; pLd, pUd)

when b(z; �0) ≡ 1 and the moving average (MA) model MA (qL1, qU1; ...; qLd, qUd) when
a(z; �0) ≡ 1. [25] introduced a class of model that overlaps with (2.5). [28,29] developed
other classes of models with desirable properties.

Any of the pLi, pUi, qLi, qUi in (2.3) can be positive, so these ARMA structures can be
“multilateral”, and they provide a flexible approach to modelling. It is necessary that � be
identifiable from f (�; �), � ∈ �d , if xt is Gaussian or, more generally, if information is con-
fined to second moments of xt . This requires first that � be identifiable from a(z; �)−1b(z; �).
In the general ARMA case it is necessary that a and b not be over-specified, so they have
no common factor, which implies, since A2 fixes Eε2

t = 1, a suitable normalization of a

or b, such as b0(�) ≡ 1. These requirements are innocuous in the AR or MA special cases,
but |a (z; �)|2, |b (z; �)|2 need not uniquely determine a (z; �), b (z; �) . A given a(z; �),
with real-valued coefficients, can be replaced by ã(z; �) =∏d

i=1 z
ji

i a(z; �) for any positive
or negative integer ji , but this involves a trivial translation on Zd , which can be viewed as
locating the innovation at t − j rather than t (see [46]), and is thus disregarded. To indicate
a more substantive concern, write for h�1

a(z; �) =
h∏

j=1

aj (z; �), all � ∈ �, (2.6)

where the aj (z; �) are non-constant multivariate polynomials, with coefficients that can
be complex-valued. When h > 1, a(z; �) is said to be factorizable, and if aj (z; �) is not
factorizable, it is said to be irreducible (see, e.g. [45, pp. 58–62]). Denote by aj (z

−1; �)

the function obtained by replacing zi by z−1
i , for i = 1, ..., d, in aj (z; �). If all aj (z; �)

are irreducible, those of the 2h functions
∏h

j=1 aj

(
z±1; �

)
with real-valued coefficients are

indistinguishable.
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When d = 1, and t denotes time, ambiguity is commonly avoided by focussing on
"unilateral" models. Here, an irreducible factorization has h = pL1 + pU1, and a(z; �) is
indistinguishable from a (pL1+pU1)th-degree polynomial in z with all powers non-negative,
the usual automatic choice (and given (2.4) there is no loss of generality in specifying all its
zeros to be outside the unit circle, the usual "stationarity" condition). On the other hand the
requirement that coefficients be real can eliminate possibilities; for example, commencing
from a(z; �) = �1 + �2z + �3z

2, with complex-valued zeros, where �j is the j th element
of �, there is no equivalent bilateral AR(1, 1) model.

Unilateral structures have been studied when d �2 also, and these are covered as special
cases of our multilateral model. These may have a natural unilateral representation as, for
example, when d = 2 in the AR(0, 1; 0, 1) model, where

a(z; �) = 1 − �1z1 − �2z2, |�1| + |�2| < 1; b (z; �) = e�3/2. (2.7)

For (2.7) there are simple unilateralAR and (infinite) MA representations on a quadrant, such
that xt (εt ) is expressed in terms of εs (xs) for sj � tj , all j On the other hand [21,26,42,43]
discussed conditions under which models that might initially be expressed in multilateral
form have infinite AR and MA representations on a quadrant. More general representations
have also been referred to as "unilateral". Under conditions easily satisfied by (2.3), (2.4) and
A2, xt has an infinite linear MA representation in orthogonal innovations �s for s � t , with
square summable coefficients, where � denotes lexicographic order. This extends the Wold
representation theorem, and there is a corresponding unilateral infinite AR representation
if also f (�) is everywhere positive; see [10,15,26,46].

Such unilateral representations form a framework for extending to d �2 ARMA order-
determination methods and AR nonparametric spectral estimation methods; see [19,42].
They have also been employed in parametric modelling (e.g. [9,18,48]). However, for d �2
a multilateral finite ARMA given by (2.3) cannot necessarily be represented as a unilateral
finite ARMA, as demonstrated in a simple example in [46], where d = 2, m = 1, a(z; �) =
1 + �2 − �

(
z1 + z2 + z−1

2

)
, b(z; �) ≡ 1; [46] gave a closed form expression for the

unilateral infinite AR operator. Whittle [46] did not present the derivation, but it is explained

by showing its equivalence to a(z; �) (1 − �z2)
(

1 − �z−1
2

)−1
. This indicates a trick that

applies somewhat more generally; in particular when d = m = 2, a(z; �) = 1 + �2
2 −

�1z1 − �2(z2 + z−1
2 ) and b(z; �) ≡ 1,

a(z; �)(1 − �2z2)(1 − �2z
−1
2 )−1

= 1 − 2�2z2 + �2
2z

2
2 + �1�2z1z2 − �1(1 − �2

2)(1 − �2z
−1
2 )−1

is unilateral. (The same multilateral model was also considered by [20], but the unilateral
form there appears not to have the same spectral density.) However, it does not work in
general, where, even in simple cases such as d = 2, m = 1, a(z; �) = 1 − �(z1 + z−1

1 +
z2 + z−1

2 ), b(z; �) ≡ 1, as [46] also noted, formulae for unilateral representations can be
intractable. Spatial dimensions may have no natural direction, so the choice of unilateral
direction may in any case be arbitrary.

Following [46], lattice multilateral models driven by white noise, such as (2.3), have been
discussed in, for example, [1,2,4,8,10,11,22,30,32,35]. The allowance in (2.3) for the aj (�)
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and bj (�) to depend on a vector � of possibly small dimension m relative to the number,
�d

i=1 (pLi + pUi + 1) + �d
i=1 (qLi + qUi + 1) − 1, of ARMA coefficients can ease the

identification problem. Symmetry restrictions (see [1]) can be physically natural and lead
to real-valued a(z; �) or b(z; �). Inequality restrictions are easily enforced in estimation
and even when arbitrary are less drastic than choosing the direction of a unilateral model.
The structure in [31], in which h = d in (2.6) and aj (z; �) varies with zj only, can reduce
the identification problem to the familiar one when d = 1. Isotropic assumptions (e.g.
[40]) are another way of introducing parsimony. The multilateral spatial aspect itself is
only responsible for finitely many observational equivalents, compared to the uncountable
infinity due to overspecified ARMA modelling.

3. Background to Estimation and the Edge-Effect

As an alternative to maximum likelihood, the lattice literature has discussed the original,
continuous-frequency, form of estimate proposed by Whittle. Define

QC1(�) = (2�)−d

∫
�d

log f (�; �)d�, QC2(�; h) = (2�)−d

∫
�d

h(�)

f (�; �)
d�,

QC(�; h) = QC1(�) + QC2(�; h), �̂C(h) = arg min
�

QC(�; h),

for a generic even function h(�). Introduce the periodogram

I (�) = (2�)−d
∑
j

′cj cos(j.�),

where

cj = n−1
∑
t (j)

(xt − x̄)(xt+j − x̄), x̄ = n−1
∑
t∈N

xt ,

such that
∑′

j is a sum over 1 − ni �j �ni − 1, i = 1, ..., d,
∑

t (j) is a sum over −nLi � ti ,
ti + ji �nUi , i = 1, ..., d, and for d-dimensional quantities such as j that are introduced
as a multiple subscript rather than a vector we employ the notation j .� =∑d

i=1 ji�i .
For d = 1, h(�) = I (�) is usual. For a finite AR, QC2(�; I ) and its derivatives in

� are analytically evaluated as linear combinations of finitely many cj , but in MA or
ARMA models the calculation is less simple. Even in the AR case QC1(�) can be dif-
ficult to calculate. In standard parameterizations of unilateral models QC1(�) is the log
variance of the one-step-ahead predictor, and depends only on an element of � function-
ally unrelated to the remainder, for example in the AR(0, 1; 0, 1) (2.7) we have f (�; �) =
(2�)−2e�3/

∣∣∣1 − �1e
i�1 − �2e

i�2

∣∣∣2 , so that QC1(�) = �3 − 2 log(2�). However in mul-

tilateral models it generally depends on the whole of �, and does not have a neat closed
form; even in quite simple models, [46] found only infinite series representations, whose
individual terms can be complicated. Also, [48] showed, with d = 2, that the time-domain
Gaussian pseudo-likelihood can be conveniently handled (even in the presence of missing
data) in case of unilateral finite ARMA models, but for multilateral models it poses sim-
ilar difficulties to QC(�; I ) (see [1]). Given formulae for autocovariances, algorithms for
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handling block-Toeplitz matrices, such as those in the SLICOT library, can provide rapid
computation of the Gaussian pseudo-likelihood. However, convenient formulae for autoco-
variances are only available in simple versions of ARMA models, especially because of the
possibility of repeated roots in the AR operator.

A statistical drawback of �̂C(I) noted by [9] is the edge effect: for fixed j , as the ni → ∞
the bias of cj for 	j = cov(x0, xj ) is of order

∑d
i=1 n−1

i , which by (1.2) is of order no

less than n−1/d . As (1.1) suggests, �̂C(I) is n�-consistent: for d = 2 it is n
1
2 -consistent

only when both ni increase at the same rate, and even then n
1
2

(
�̂C(I) − �0

)
converges in

distribution to a variate with non-zero mean, while for d �3 �̂C(I) is never n
1
2 -consistent;

thus for d �2 �̂C(I) lacks Property E.
The computational drawbacks of �̂C(I) can be avoided by extending the discrete form

of Whittle estimate considered by [13] in the time series case d = 1. Define

QD1(�) = 1

n

∑
j∈N

log f (
j ; �), QD2(�; h) = 1

n

∑
j∈N

h(
j )

f (
j ; �)
,

QD(�; h) = QD1(�) + QD2(�; h), �̂D(h) = arg min
�

QD(�; h),

where 
j = (2�j1/n1, ..., 2�jd/nd) . Regarding QD as an approximation to QC , the
quadrature rule employed is not arbitrary, since the 
j are just sufficiently finely spaced for

�̂D(I) to have the same asymptotic properties as �̂C(I); a coarser grid, or one fixed with
respect to n, would incur asymptotic bias. QD is motivated by models in which f (�; �) has a
simple closed form. This is not always the case. The authors of Refs. [30,40,46,47] stressed
models in which the spectral density of an underlying continuous model, on Rd , has simple
form, but application of the usual “folding” formula does not produce a neat closed form
for f (�; �). However in view of (2.5), QD is convenient for multilateral ARMA models, as
well as ARMA-signal-plus-ARMA-noise ones, also motivated in [46]. Unlike when d = 1,
signal-plus-noise processes do not necessarily have finite ARMA representations, because
a non-negative multivariate trigonometric polynomial cannot necessarily be factored [23].
Likewise [38] motivated reciprocals of such polynomials without requiring an AR repre-
sentation. Also, [24] discussed an objective function based on a matrix which would be
the variance matrix of the data if xt , t ∈ Zd , form a circulant based on xt , t ∈ N. This is
equivalent to replacing the f (
j ; �) in QD(�; I ) by quantities which differ if f (�; �) is not
a finite trigonometric polynomial (so is not an MA), and are in general of complicated form.
In cases when QC1(�) is simple to calculate we might consider the hybrid objective func-
tion QC1(�) + QD2(�; I ); for example in the unilateral special case (2.7) this produces a
closed form estimate of �0 (as does QC(�; I )). In general, however, the minimum-distance
property of �̂C(I) or �̂D(I) may be lost.

The same edge-effect bias is found in �̂D(I) as in �̂C(I), with respect to which [9]
suggested replacing I (�) by the almost-unbiased

I∗(�) = (2�)−d
∑
j

′c∗
j cos(j.�),
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where

c∗
j =

{
n/

d∏
i=1

(ni − |ji |)
}

cj .

With nLi ≡ 0 and the nUi increasing, [9] showed that �̂C(I∗) can satisfy Property E, thereby
avoiding edge-effect bias similar to A2; see also [16]. Dahlhaus and Künsch [6] criticized
�̂C(I∗) as lacking a minimum-distance interpretation and possibly being harder to locate
than the minimizer of an objective function that is guaranteed non-negative, citing numerical
experience in support.

Theoretical properties of �̂D(I∗) are disastrous. It suffices to look at the very simple case
of a unilateral AR(1) with d = m = 1 , xt = �xt−1 + εt , |�0| < 1, where

QD2(�; I∗) = c∗
0(1 + �2) − 2�

(
c∗

1 + c∗
n−1

) = QC2(�; I∗) − 2�x1xn.

Since x1xn does not converge to a non-degenerate random variable (its variance tending
to (1 − �2

0)
−2 in the Gaussian case), �̂D(I∗) is not even consistent (see also the bound

given by [25] for trapezoidal approximation of periodogram averages). In QD2(�; I ) we
have cn−1 = x1xn/n = Op(n−1) instead of c∗

n−1 = x1xn, so the "aliasing" of lags causes
no asymptotic problem, as demonstrated by [13] in case d = 1. These observations may
explain the large numerical discrepancy between �̂C(I∗) and �̂D(I∗) found by [30].

In [48] the edge effect was handled in a Gaussian pseudo-likelihood by trimming out
observations near the edges, thereby retaining non-negativity of the objective function.
Dahlhaus and Künsch [6] proposed an estimate �̂C(IT ), where IT is the periodogram of
tapered xt , so IT and QC(�; IT ) (plus a quantity independent of �) are always non-negative;

for d �3 and the ni increasing at the same rate, �̂C(IT ) is n
1
2 -consistent and asymptotically

normal, and fully satisfies Property E when a bandwidth number is suitably chosen.

4. Estimates with Property E

We propose an estimate of �0 that enjoys some computational advantages of discrete-
frequency Whittle and achieves Property E, without tapering (but with a form of bandwidth),
in a quite general class of processes that includes the ARMA class and ones in which
autocorrelation falls off much more slowly. Arbitrarily large d are covered, with arbitrary
relative rates of increase of the ni subject to A1. We introduce first a truncated version of
I∗(�),

Ig(�) = (2�)−d
∑

· · ·
∑

|ji |�g(ni ),i=1,...,d

c∗
j e

−ij.�,

where g(x) satisfies assumption

A3. g(x) is a positive, integer-valued, monotonically increasing function such that

g(x) → ∞ as x → ∞,
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and for all sufficiently large positive x

g(x)�C2x, some C2 < 1.

Remark 5. Due to the latter property of g, the Ig(
j ), when averaged over j , are immune to
the aliasing problems affecting the I∗(
j ). The truncation also has effects that are negligible
asymptotically but may be significant in finite samples, where it is a source of bias, but also
reduces variance due to the c∗

j for large j . There is sensitivity to choice of g, though an
overall sample size n that justifies large sample inference in a given parametric model might
entail individual ni that are not very large, in which case the number of candidate integers
g(ni) may not be great. A simple choice is g(x) = [x/2]. The aliasing can alternatively
be avoided without truncating but instead evaluating I∗ over a finer grid of frequencies, as
in [25], but ambiguity is only transferred, the computations are heavier, and no asymptotic
efficiency is gained.

Like I∗, Ig is not guaranteed non-negative, so QD(�; Ig) has numerical properties similar

to those of QC(�; I∗) criticized in [6] and we do not discuss �̂D(Ig). Theorem 5 of [37]
suggests that finitely many Newton iterations, based on QD(�; Ig) and commencing from an
n�-consistent estimate, for any � ∈ (0, 1

2 ], will satisfy Property E, building on development
by [17] and others of the observation in [27] that a single Newton step can convert an

n
1
2 -consistent estimate into an asymptotically efficient one.
Define

r(�) = 1

n

∑
j∈N

�(
j ; �)

{
Ig(
j )

f (
j ; �)
− 1

}
, R(�) = 1

n

∑
j∈N

�(
j ; �)�′
(
j ; �).

We propose two alternative recursions. For � = 1, 2, given an initial estimate �̂
(�)

[1] of �0,
define

�̂
(1)

[u+1] = �̂
(1)

[u] + R
(
�̂
(1)

[1]
)−1

r
(
�̂
(1)

[u]
)

, u�1, (4.1)

�̂
(2)

[u+1] = �̂
(2)

[u] + R
(
�̂
(2)

[u]
)−1

r
(
�̂
(2)

[u]
)

, u�1. (4.2)

Thus, {�̂(1)

[u]} entails no updating of the inner product matrix R, though �̂
(1)

[1] = �̂
(2)

[1] implies

�̂
(1)

[2] = �̂
(2)

[2] . Both sequences approximate solutions to the estimating equations r(�) = 0,
which are first-order conditions for minimizing QD(�; Ig) . They are both forms of Gauss–
Newton iteration. Newton–Raphson famously numerically converges faster, in a suitable
neighbourhood of the target, and [37] showed that this can be matched by faster statistical
convergence. Robinson [37] stressed the improvements gained by further iterations on an
estimate that already has Property E, in reducing the stochastic order of the difference
between the iterated estimate and its target, with possible implications for matching higher-
order efficiency. In our case Property E is the goal, the difference between R and the Hessian
used in Newton–Raphson is of relatively small order, and Property E would be achieved no
faster. Moreover, the Hessian is more complicated to compute than R, and unlike R is not
guaranteed non-negative definite, thereby presenting possible convergence problems.
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We introduce the following additional assumptions.

A4. For � as in A1 and g−1 the inverse function of g given in A3, the autocovariance
function 	j = cov(x0, xj ) satisfies

∑
j

{
d∑

i=1

g−1(|ji |)1/(2�)

} ∣∣	j

∣∣ < ∞.

A5. In a neighbourhood of �0, f (�; �) is positive and thrice boundedly differentiable in �;
f (�; �) and its first three derivatives in � are continuous in � at � = �0.

A6. � is positive definite.

A7. For � = 1, 2, �̂
(�)

[1] = �0 + Op(n−�), for some � ∈ (0, 1
2 ).

Remark 6. Assumption A4 controls the bias. For ARMA models (2.3), f (�) is analytic so
the 	j decay exponentially; thus A4 holds for any � > 0 and for g(x) ∼ x�, any � > 0,
allowing heavy truncation in Ig . Again in an ARMA context, A5 relies on smoothness of the
functions aj (�), bj (�), while the standard identifiability condition A6 rules out common
roots in a(z; �0) and b(z; �0). We postpone discussion of A7 until Section 5.

Theorem 1. Under Assumptions A1–A7:

(i) �̂
(1)

[u] satisfies Property E for all

u > (2�)−1; (4.3)

(ii) �̂
(2)

[u] satisfies Property E for all

u >
�n(�)

�n( 1
2 )

. (4.4)

The proof is left to Section 8. It follows from the inequality xx > ( 1
2 )

1
2 for 0 < x < 1

2
that (4.1) requires at least as many iterations as (4.2), indicating a benefit of updating R in
(4.2).

Remark 7. Küveri [25] established Property E for an estimate minimizing a discretized
form of QC(�; I∗) that uses a finer grid than in QD(�; I∗), assuming xt is Gaussian and
d = 2; [25] also considered Newton iteration but from a purely numerical perspective, not
discussing the choice of initial value or showing achievement of Property E after finitely
many steps.

Remark 8. Our methods and theory can be extended relatively straightforwardly to mul-
tivariate xt , with the proviso that the identifiability problem for multivariate versions of the
ARMA models of Section 2 will be more acute; cf. [7] in case d = 1.
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5. Initial Estimates

The �̂
(�)

[1] are likely to be implicitly-defined extremum estimates that do not attempt edge-

effect correction. A promising candidate on computational grounds is �̂D(I), which has the
desired minimum-distance interpretation, minimizing the objective function QD(�; I ) −
n−1∑

j∈N log I (
j ) − 1, which is always non-negative and vanishes only when I (
j ) =
f (
j ; �) for all j ∈ N. In the AR case of (2.3) with a(z; �) linear in �, QD(�; I ) is globally
convex for all finite n, so that hill-climbing procedures commencing from any starting value
will always converge. To indicate how A7 is satisfied, we introduce the following additional
assumptions.

A8. � is a compact subset of Rm.
A9. �0 is an interior point of �.

A10. f (�; �) �= f (�; �0), � ∈ � − {�0}, for all � in a subset of �d of positive measure.

A11.
∑
j

(
d∑

i=1
|ji |
) ∣∣	j

∣∣ < ∞.

Theorem 2. Under Assumptions A1, A2, A5, A6 and A8–A11,

�̂D(I) − �0 = Op(n−�), as n → ∞. (5.1)

The rate in (5.1) was anticipated in Section 3, but in view of A7 formal justification seems
desirable, especially as we later discuss a modified estimate. Theorem 2 relates to results
in [9,13,24], so we only comment briefly on the proof. Consistency, with no rate, may be
established much as in [13], using A2, A5 and A8–A10. Using A5, A6, the mean value
theorem is then applied to the first-order conditions for a minimum of QD(�; I ), around
�0, as if a central limit theorem is to be proved, but (�/��)QD(�0; I ) is then seen to take
the order of its expectation, n−� (applying A11 and (8.17) of Section 8). A11 is milder
than A4, and could be relaxed at cost of a slower rate than in (5.1) and possible increase in
the number of recursions needed to achieve Property E. A8 is nearly costless for ARMA
models in view of stationarity and invertibility requirements, and need not apply to scale
estimation, as a simple elimination indicates.

When the ni increase at the same rate, we have � = 1/d, and Table 1 indicates the min-

imal values of u, u(1) and u(2), satisfying (4.3) and (4.4) when �̂
(�)

[1] = �̂D(I) for � = 1, 2.

For the practically most typical d , �̂
(1)

[u] dominates on computational grounds. If the ni in-
crease at varying speeds, � < 1/d so for � = � the u(�), and the gap between them, can
increase.

Table 1
Minimum values u(�), � = 1, 2, of u satisfying (4.3) and (4.4) when � = 1/d.

d : 2 3 4 5 6 7 8 9 10
u(1) 2 2 3 3 4 4 5 5 6
u(2) 2 2 3 3 3 3 4 4 4
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Since �̂D(I) is real-valued and only implicitly-defined, strictly speaking it cannot be
obtained by finite computation. In practice one is content with accuracy to a given number
of decimal places and such a solution can be reached, using numerical search of QD(�; I ),

possibly combined with iteration, but even this can be expensive, especially when m is large.
From our statistical perspective we want only to satisfy A7, which does not necessarily
require a search that is exhaustive but rather one over a grid that becomes suitably finer

as n increases. Robinson [37] showed, for a quite general objective function with an n
1
2 -

consistent optimizer, that of order nm� search points suffice to achieve an n�-consistent
estimate, �� 1

4 . To correspondingly approximate �̂D(I), define by Gn a set of points that is
regularly-spaced throughout �, and such that #{� : � ∈ Gn}�C3n

m�, C3 > 0, and denote

�̂
(s)

D (I ) = arg min
�∈Gn

QD(�; I ).

Theorem 3. Under Assumptions A1, A2, A5, A6 and A8–A11,

�̂
(s)

D (I ) − �0 = Op(n−�), as n → ∞, (5.2)

for ���/2.

We omit the proof because it largely applies Theorem 8 of [37], whose conditions are
checkable much as would be done in proving Theorem 2; [37] requires that
sup� |QD(�; I ) − Q(�)| = Op(n−�) for � = 1

2 , where Q(�) is the probability limit of
QD(�; I ), whereas only � = � is possible, explaining the weaker result (5.2) that emerges
by following his method of proof.

The strategy justified in Theorems 1 and 3 stresses statistical and computational consid-
erations to achieve Property E in a finite, relatively well-defined, number of simple steps.
However, a comprehensive search of QD(�; I ), guided by advice from numerical analysis,
and iterating (4.1) or (4.2) to achieve numerical convergence, would obviously be desirable.

6. Monte Carlo Study of Finite-Sample Performance

A Monte Carlo study was carried out to study the finite-sample performance of our
estimates. We first consider the simple symmetric multilateral model

xt = 
0εt + �0
0

1∑
j1=−1

· · ·
1∑

jd=−1
j �=(0,...,0)

εt−j . (6.1)

This is an MA (1, 1; ...; 1, 1) representation defined as in Section 2 with a(z; �) ≡ 1,
bj (�) = 
 for j = (0, ..., 0), bj (�) = 
� for j = (±1, ...,±1), and bj (�) ≡ 0 otherwise,
taking � = (�, �)′. [11] discussed a similar model. We deduce that

f (�; �) = 
2

(2�)d
{1 + �vd(�1, ..., �d)}2 ,
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where

vd(�1, ..., �d) =
d∏

j=1

(1 + 2 cos �j ) − 1.

An "invertibility" condition satisfying (2.4) is

∣∣�0

∣∣ < (3d − 1
)−1

. (6.2)

For given n∗, we generated NID(0, 1) εt for t� = 0, ±1, ...,±(n∗ + 1), � = 1, ..., d,

and then xt t ∈ N = {t : t� = 0, ±1, ...,±n∗, � = 1, ..., d}, using (6.1). Thus we study
only the regular case nLi = nUi = n∗, i = 1, ..., d, with n = (2n∗ + 1)d .

The experiment was carried out for d = 2 and 3, with the following specifications:

d = 2 : �0 = 0.05, 0.1; 
0 = 1; (n, g) = (121, 2), (121, 5), (361, 4), (361, 9),

d = 3 : �0 = 0.015, 0.03; 
0 = 1; (n, g) = (125, 1), (125, 2), (343, 1), (343, 3),

where g = g(ni) = g(2n∗ + 1). The g’s were determined by the rules g = [n∗/2] and
g = [n∗], noting that n∗ = 5, 9 for d = 2 and n∗ = 2, 3 for d = 3. The n∗ were chosen so
as to make n relatively stable across d . Note that (6.2) is satisfied.

The initial estimate �̂[1] = �̂
(1)

[1] = �̂
(2)

[1] was computed according to the scheme justified in
Theorem 3. Notice that our parameterization allows 
 to be eliminated, leaving an objective
function

M(�) = log 
̂2
(�) + 2

n

∑
j∈N

log
{
1 + �vd(
j )

}
,

where


̂2
(�) = (2�)d

n

∑
j∈N

I (
j ){
1 + �vd(
j )

}2 .

We took �̂[1] =
(
�̂[1], 
̂2

(�̂[1])
)′

, where �̂[1] minimizes M(�) over a set G
(d)
n , such that

G(2)
n =

{
r : r = j

16n
1
4

, j = 0, ±1, ...; |r| < 1/8

}
,

G(3)
n =

{
r : r = j

52n1/6 , j = 0, ±1, ...; |r| < 1/26

}
,

indicating equally-spaced points over the set (6.2). Thus G
(2)
n contains about 4n

1
4 points,

and G
(3)
n about 4n1/6. Notice that Gn of Theorem 3 contains of order n1/d points on the

basis of m = 2 and � = 1/d , since it was assumed there that an m-dimensional search is

carried out. Due to the elimination of 
 we can get the n1/(2d) -consistency of �̂
(s)

D (I ) in the
statement of Theorem 3 by searching over G

(d)
n .
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Table 2
Monte Carlo bias (standard deviation) with d = 2, � = 0.05

n, g 121, 2 121, 5 361, 4 361, 9

�̂[1] -.0081 (.0275) -.0081 (.0275) -.0046 (.0147) -.0046 (.0147)

�̂(1)
[3] -.0065 (.0291) -.0046 (.0280) -.0032 (.0145) -.0028 (.0145)

�̂(2)
[3] -.0064 (.0290) -.0046 (.0279) -.0032 (.0145) -.0027 (.0145)

Table 3
Monte Carlo bias (standard deviation) with d = 2, � = 0.10

n, g 121, 2 121, 5 361, 4 361, 9

�̂[1] -.0184 (.0265) -.0184 (.0277) -.0097 (.0148) -.0047 (.0148)

�̂(1)
[3] -.0083 (.0331) -.0088 (.0277) -.0064 (.0144) -.0058 (.0145)

�̂(2)
[3] -.0087 (.0324) -.0089 (.0276) -.0064 (.0144) -.0058 (.0145)

Table 4
Monte Carlo bias (standard deviation) with d = 3, � = 0.015

n, g 125, 1 125, 2 343, 1 343, 3

�̂[1] -.0053 (.0125) -.0053 (.0125) -.0044 (.0091) -.0044 (.0091)

�̂(1)
[4] -.0038 (.0168) .0023 (.0197) -.0015 (.0113) .0000 (.0113)

�̂(2)
[3] -.0040 (.0165) -.0020 (.0197) -.0015 (.011) -.0002 (.0110)

Both sequences of iterations (4.1) and (4.2) were pursued. Property E is first achieved
by �̂(1)

[3] and �̂(2)
[3] for d = 2, and by �̂(1)

[4] and �̂(2)
[3] for d = 3 . We report Monte Carlo bias

and standard deviation, on the basis of 100 replications, for d = 2 with � = 0.05 in Table
2, d = 2 with � = 0.01 in Table 3, d = 3 with � = 0.015 in Table 4, and d = 3 with
� = 0.03 in Table 5. A constant feature is that the outcomes of iterations (4.1) and (4.2)
were almost identical, which is in line with the theory since both employ the minimum
number of iterations necessary to achieve Property E. Biases are predominantly negative.
The bias-reductions achieved in Table 2 are not great though the bias of �̂[1] is about 16% of
� when n = 121, and nearly 10% when n = 361, and the percentage reductions are about
20% and 30% respectively. These are greater in Table 3, more than halving the bias in case
of the smaller sample size. As feared, the iterations produce overall a worsening in standard
deviation (though there is a slight improvement for d = 2 and n = 361). For d = 2 and
n = 121 the smaller g does worst, for d = 3 and n = 125 it does best; though we expect to
reduce variability by omitting long lags from the periodogram, it could be increased by also
omitting short ones. As expected, biases were mostly smaller for the larger g. Notice the
enormous percentage bias reductions achieved by (4.1) and (4.2) when d = 3 and n = 343.
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Table 5
Monte Carlo bias (standard deviation) with d = 3, � = 0.03

n, g 125, 1 125, 2 343, 1 343, 3

�̂[1] -.0115 (.0121) -.0015 (.0121) -.0089 (.0091) -.0089 (.0091)

�̂(1)
[4] -.0038 (.0224) .0051 (.0314) -.0001 (.0151) .0006 (.0132)

�̂(2)
[3] -.0048 (.0202) .0017 (.0214) .0006 (.0179) -.0000 (.0123)

Table 6
Monte Carlo bias (standard deviation) with d = 4, � = 0.015

n, g 625, 1 625, 2 2401, 1 2401, 3

�̂[1] -.0067 (.0094) -.0067 (.0094) -.0050 (.0050) -.0050 (.0050)

�̂(1)
[5] .0022 (.0104) .0044 (.0129) .0005 (.0066) .0006 (.0060)

�̂(2)
[4] .0024 (.0108) .0042 (.0123) .0005 (.0066) .0006 (.0060)

Table 7
Monte Carlo bias (standard deviation) with d = 4, � = 0.03

n, g 625, 1 625, 2 2401, 1 2401, 3

�̂[1] -.0150 (.0090) -.0150 (.0090) -.0123 (.0048) -.0123 (.0048)

�̂(1)
[5] -.0024 (.0125) .0020 (.0155) .0010 (.0072) .0004 (.0072)

�̂(2)
[4] -.0031 (.0128) .0028 (.0167) .0011 (.0075) .0005 (.0071)

The spatio-temporal model with d = 4,

xt = 
0εt + �0
0

1∑
j1=−1

1∑
j2=−1

1∑
j3=−1

(j1,j2,j3)�=(0,0,0)

εt1−j1,t2−j2,t3−j3,t4−1,

was also simulated. This is unilateral with respect to the fourth, "time" dimension, and

f (�; �) = 
2

(2�)4

{
1 + �2v3(�1, �2, �3) + 2�v3(�1, �2, �3) cos �4

}
.

We took 
2
0 = 1 �0 = 0.015, 0.03 and (n, g) = (625, 1), (625, 2), (2401, 1), (2401, 3), the

n resulting from n∗ = 2 and 3. Tables 6 and 7 mostly reveal little difference between the
outcomes of (4.1) and (4.2). Both recursions definitely worsen standard deviation, but there
are substantial absolute bias reductions, which seem especially welcome as �̂[1] exhibits
biases between -�/3 and -�/2; the recursions also mostly reverse the sign of the bias.
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7. Variance Matrix Estimation

When xt is Gaussian, estimates satisfying Property E are asymptotically efficient, and
have limiting variance matrix 2�−1, so Theorem 1 can be applied in approximate inference
on �0 by consistently estimating � by �̂ = R(�̂), where �̂ is any consistent estimate of
�0. More generally, if we can partition � in the ratio ma : mb as � = (�′

a, �
′
b)

′, and corre-
spondingly �(�; �) = (

�a(�; �)′, �b(�; �)′
)′, such that

∫
�d �a(�; �0)d� = 0 and �b(�; �0)

is constant, then the leading ma × ma sub-matrix of �−1��−1 is twice the inverse of the
leading ma × ma sub-matrix of � (which is block-diagonal), irrespective of whether or
not � = 0. Such circumstances occur in standard unilateral parameterizations of ARMA
models, where mb = 1 and (2�)−d

∫
�d log f (�; �)d� = log �b, say, but not in non-standard

parameterizations, such as signal-plus-noise and multilateral models, as the discussion of
QC1(�) in Section 3 suggests. Here, asymptotic inference requires consistently estimating
�, for which several approaches have been suggested in case d = 1.

For unilateral models, [14] proposed a consistent estimate of �, involving time-domain
filtering, that is advantageously guaranteed to be non-negative definite (n.n.d.), but seems
difficult to extend to multilateral spatial models. The frequency-domain proposal in [41],
for estimating

∫
�2 �(�, �)f4(�, �, −�) d� d�, where f4 is the fourth cumulant spectral

density of xt , and � is a continuous function on �2, does seem to be extendable, in-
deed it does not assume linearity of xt so it affords some robustness. However, it is
somewhat complicated, it requires choice of a kernel function and bandwidth, and the
resulting estimate of � does not seem to be necessarily n.n.d. Chiu [3] proposed that
n−2∑

j∈N

∑
k∈N �(
j )�(
k)I (
j )I (
k), with � now a continuous function on �, con-

sistently estimates something with an additive component (2�)−1
∫
�2 �(�)�(�)f4(�, −�, �)

d� d�, the others being functionals of f and easily estimable. However, this estimate is ac-

tually uninformative about f4; it equals
{
n−1∑

j∈N �(
j )I (
j )
}2 →p

{
(2�)−1

∫
� �(�)

f (�)d�}2.
A simple estimate of � that is clearly n.n.d. is

1

n

∑
j∈N

�(
j ; �̂)�′ (
j ; �̂
){ I (
j )

f (
j ; �̂)
− 1

}2

. (7.1)

Consistency is anticipated due to the approximate independence, across the 
j , of the factor
in braces in (7.1). Eq. (7.1) can advantageously still be consistent when � lacks the simple
structure in (1.3) which is due to the linearity in A2; for example under �-mixing, which
would require a moment condition of order greater than 4. We study in more detail an
estimate which exploits linearity, seems new even in case d = 1, and applies also to long
range dependent processes.

Since � is consistently estimated by �̂, and � by �̂ = n−1∑
j∈N �(
j ; �̂), it suffices to

estimate �. Given ε̂t , t ∈ N, introduce

�̂2 = n−1
∑
t∈N

ε̂2
t , �̂4 = n−1

∑
t∈N

ε̂4
t . (7.2)
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An obvious estimate of � is �̃ = �̂4 − 3, but 2�̂ + �̃�̂�̂
′

is not necessarily n.n.d. However,

since 2
(
�̂ − �̂�̂

′)
and

(
�̂4 − �̂2

2

)
�̂�̂

′
are both n.n.d., so is their sum 2�̂+

(
�̂4 − �̂2

2 − 2
)

�̂�̂
′
, which is also consistent for � if �̂2 and �̂4 are consistent for Eε2

t and Eε4
t (explaining

the introduction of �̂2 despite Eε2
t = 1 being given). It remains to obtain ε̂t that achieve

this property.
For finite AR models, this is straightforward. Define

ε̂
(1)
t = a

(
B; �̂

)
(xt − x̄) , t ∈ N,

with a given by (2.1) and xs replaced by x̄ when s /∈ N. Other models, in particular
multilateral MA and ARMA ones, may be difficult to invert, and require proxies for xs

for all s /∈ N. For such models we develop an approach of [36] (intended for unilateral
models with d = 1) which assumes knowledge of �(z; �) of z and � such that f (�; �) =
(2�)−d |� (e(i�); �)|−2; for example in the ARMA model (2.3), �(z; �) = a(z; �)/b(z; �).

Define w(�) = {(2�)dn}− 1
2
∑

t∈N xte
it.� and

ε̂
(2)
t = (2�)d/2n− 1

2
∑
j∈N

�
(
e(i
j ); �̂

)
w(
j )e

−it ·
j , t ∈ N. (7.3)

When expressed in the time domain, (7.3) effectively treats xt on Zd as a circulant, with
observations on N repeated periodically; we show that, as with �̂D(I), the consequent error
is asymptotically negligible, and (7.3) is computationally advantageous when � is a simple
function, as in ARMA models, and in making double use of the fast Fourier transform.
Robinson [36] studied convergence of ε̂

(1)
t , ε̂

(2)
t and their use in kernel probability density

estimation (in the unilateral d = 1 case) but did not employ them in estimating moments.
We introduce the following assumptions.

A12. For all � ∈ �d , � (e(i�); �) is boundedly differentiable in a neighbourhood of �0,
it is non-zero and has absolutely convergent Fourier series at � = �0, and xt has
representation

�(B; �0)(xt − �) = εt , t ∈ Zd ,

where the εt are independent and identically distributed with zero mean, unit variance
and finite fourth moment �̇4.

A13. �̂ = �0 + Op(n−�) for � > 1
4 .

Remark 9. A12 implies knowledge of a factorization of f (�; �), but it entails no strength-
ening of the fourth moment condition in A2, and holds for stationary and invertible ARMA
processes with coefficients that are smooth in �, as well as for many processes with long-
range dependence; there, the summability of �j assumed in A2 will not hold, but square
summability does, as under A12, while in long-range-dependent models AR weights are
typically absolutely convergent. It would be possible to still cover ARMA processes by
strengthening A12 but relaxing A13 to only consistency of �̂. However, in the context of

17



estimating �−1��−1, we already have an n
1
2 -consistent estimate of �0, though the �̂

(�)

[1] in
A7 also satisfy A13 if � = 1/d for d �3.

The following theorem is proved in Section 9.

Theorem 4. Let Assumptions A12 and A13 hold. Then with �(z; �) = a(z; �) for i = 1,
as n → ∞

�̂(i)
2 →p Eε2

0, �̂(i)
4 →p Eε4

0, i = 1, 2. (7.4)

If, further, Assumptions A1, A2, A5 and A6 hold,

2�−1 +
(
�̂(i)

4 − �̂(i)2
2 − 2

) (
�̂

−1
�̂
) (

�̂
−1

�̂
)′

, i = 1, 2, (7.5)

are non-negative definite and as n → ∞ converge in probability to �−1��−1.

8. Proof of Theorem 1

Introduce the artificial estimate

�̂ = �0 + R(�0)
−1r(�0).

It suffices to show that �̂ has Property E and

�̂
(�)

[u] − �̂ = op(n− 1
2 ), � = 1, 2, (8.1)

when u satisfies (4.3) for � = 1 and (4.4) for � = 2.
The first statement follows on showing

n
1
2 r(�0) →d N (0, �) (8.2)

and

R(�0) →p �. (8.3)

With respect to the second write, with �̃
(1)

[u] = �̂
(1)

[1] , �̃
(2)

[u] = �̂
(2)

[u],

�̂
(�)

[u+1] − �̂ = �̂
(�)

[u] − �0 + R
(
�̃
(�)

[u]
)−1

r
(
�̂
(�)

[u]
)

− R(�0)
−1r(�0)

=
{
R
(
�̃
(�)

[u]
)−1 − R(�0)

−1
}

r(�0) +
{
Im + R

(
�̃
(�)

[u]
)−1

S̃
(�)
[u]
}(

�̂
(�)

[u] − �0

)
,
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where Im is the m-rowed identity matrix and S̃
(�)
[u] is the matrix obtained by evaluating each

row of S(�) = (�/��′) r(�) at a point on the line segment between �̂
(�)

[u] and �0. On showing

∥∥∥∥R (�̃(�)

[u]
)−1 − R(�0)

−1
∥∥∥∥ = Op

(∥∥∥�̃(�)

[u] − �0

∥∥∥) , (8.4)∥∥∥Im + R
(
�̃
(�)

[u]
)

S̃
(�)
[u]
∥∥∥ = Op

(∥∥∥�̃(�)

[u] − �0

∥∥∥+ n− 1
2

)
, (8.5)

where ‖A‖ = {tr(AA′)
} 1

2 for any matrix A, we deduce

�̂
(�)

[u+1] − �̂ = Op

((
n− 1

2 +
∥∥∥�̂(�)

[u] − �0

∥∥∥) ∥∥∥�̃(�)

[u] − �0

∥∥∥) .

As in [37] we have the solutions

�̂
(1)

[u+1] − �̂ = Op

(∥∥∥�̂(1)

[1] − �0

∥∥∥u+1
)

+ op(n− 1
2 ) = Op

(
n−(u+1)�

)
+ op(n− 1

2 ),

�̂
(2)

[u+1] − �̂ = Op

(∥∥∥�̂(2)

[1] − �0

∥∥∥2u)
+ op(n− 1

2 ) = Op

(
n−2u�

)
+ op(n− 1

2 ),

whence (8.1) holds under (4.3) and (4.4) respectively.
The proof of (8.4) involves standard application of the mean value theorem, given A5,

A6 and (8.3), which follows immediately from continuity of �(�; �0). The proof of (8.5)
uses similar arguments, the fact that

Im + R(�)−1S(�) = Im − R(�)−1n−1
∑
j∈N

�(
j ; �)�′
(
j ; �)

Ig(
j )

f (
j ; �)

+R(�)−1n−1
∑
j∈N

�2 log f (
j ; �)

����′
{

Ig(
j )

f (
j ; �)
− 1

}
,

and arguments employed in the proof of (8.2), which we now consider.
Write �(�) = �(�; �0)/f (�) and then r(�0) = r1 + r2, where

r1 = n−1
∑
j∈N

�(
j )
{
Ig(
j ) − EIg(
j )

}
,

r2 = n−1
∑
j∈N

�(
j )
{
EIg(
j ) − f (
j )

}
.

For brevity of proof assume � = 0 and replace xt − x̄ by xt ; it is straightforward to show

that this has negligible effect, x̄ being n
1
2 -consistent for � under A2. Now

EIg(�) − f (�) = (2�)−d
∑

· · ·
∑

j :|ji |>g(ni), some i

	j cos(j.�).
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This is bounded by

K

d∑
i=1

∑
|ji |>g(ni)

∑
· · ·
∑

|jk |<∞,k �=i

∣∣	j

∣∣ � K

d∑
i=1

n
−1/(2�)
i

∑
|ji |>g(ni)

g−1(|ji |)1/(2�)

×
∑

· · ·
∑

|jk |<∞,k �=i

∣∣	j

∣∣ = o(n− 1
2 )

under A1 and A4, K being a generic, positive constant. Thence r2 = o(n− 1
2 ) and it suffices

to establish (8.2) with r(�0) replaced by r1.
Introduce the Cesaro sum of the multiple Fourier series of �(�),

�L(�) =
∑
�∈AL

d∏
i=1

(
1 − |�i |

L

)
��e

−i�.�,

for � = (�1, ..., �d), AL = {� : |�i | �L, i = 1, ..., d} and

�� = (2�)−d

∫
�d

�(�)ei�.�d�.

Fix �1 > 0. By continuity of �(�) we can choose L such that

sup
�

|�(�) − �L(�)| < �1. (8.6)

Writing

r1L = n−1
∑
j∈N

�L(
j )
{
Ig(
j ) − EIg(
j )

}
,

r1 − r1L has mean zero and variance

n−2
∑
j∈N

∑
k∈N

�̃L(
j )�̃L(
k)cov
{
Ig(
j ), Ig(
k)

}

= {(2�)dn}−2
∑
j∈N

∑
k∈N

�̃L(
j )�̃L(
k)

{∑
u

′′∑
v

′′cov(c∗
u, c

∗
v)e

i(v.
k−u.
j )

}
, (8.7)

where �̃L(�) = �(�) − �L(�) and
∑′′

u = ∑ · · ·∑|ui |�g(ni )
, i = 1, ..., d. The proof that

(8.7) = o(n−1) is somewhat different from that (in the time series literature) when Ig is
replaced by I in r1L. With n(u) = �d

i=1(ni − |ui |), the term in braces in (8.7) is∑
u

′′∑
v

′′[n(u)n(v)]−1
∑
s(u)

∑
t (v)

{
	t−s−u	t+v−s + 	t−s	t−s+v−u

+ cum (xs, xs+u, xt , xt+v)} ei(v.
k−u.
j )
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=
∑
u

′′∑
v

′′[n(u)n(v)]−1
∑
s(u)

∑
t (v)

[∫
�d

∫
�d

f (�)f (�)

×
{
ei(t−s−u).�−i(t+v−s).� + ei(t−s).�−i(t−s+v−u).�

}
d� d�

+�
∑

�

�s−��s+u−��t−��t+v−�

]
ei(v.
k−u.
j ). (8.8)

The contribution to (8.7) from the first term in braces in (8.8) is

{(2�)dn}−2
∫
�d

∫
�d

∑
j∈N

∑
k∈N

�̃L(
j )�̃L(
k)
∑
u

′′∑
v

′′ {n(u)n(v)}−1

×e−iu.(�+
j )−iv.(�−
k)
∑
s(u)

∑
t (v)

ei(t−s).(�−�)f (�)f (�) d� d�

= {(2�)dn}−2
∫
�d

∫
�d

⎧⎨
⎩
∑
j∈N

�̃L(
j )
∑
u

′′n(u)−1e−iu.(�+
j )
∑
s(u)

eis.(�−�)

⎫⎬
⎭

×
⎧⎨
⎩
∑
k∈N

�̃L(
k)
∑

v

′′n(v)−1eiv.(
k−�)
∑
t (v)

eit.(�−�)

⎫⎬
⎭ f (�)f (�) d� d�.

By the Schwarz inequality and A5 this is bounded by a constant times

{(2�)dn}−2

⎧⎪⎨
⎪⎩
∫
�d

∫
�d

∥∥∥∥∥∥
∑
j∈N

�̃L(
j )
∑
u

′′n(u)−1e−iu.(�+
j )
∑
s(u)

eis.(�−�)

∥∥∥∥∥∥
2

d� d�

×
∫
�d

∫
�d

∥∥∥∥∥∥
∑
k∈N

�̃L(
k)
∑

v

′′n(v)−1eiv.(
k−�)
∑
t (v)

eit.(�−�)

∥∥∥∥∥∥
2

d� d�

⎫⎪⎬
⎪⎭

1
2

= n−2
∑
u

′′n(u)−1

∥∥∥∥∥∥
∑
j∈N

�̃L(
j )e
−iu.
j

∥∥∥∥∥∥
2

since
∑

s(u) 1 = n(u). For |ui | �g(ni), i = 1, ..., d, A3 implies that n(u)−1 �Kn−1, so
the last displayed expression is bounded by a constant times

n−3
∑
u

′′
∥∥∥∥∥∥
∑
j∈N

�̃L(
j )e
−iu.
j

∥∥∥∥∥∥
2

�n−3
∑
u

′′′
∥∥∥∥∥∥
∑
j∈N

�̃L(
j )e
−iu.
j

∥∥∥∥∥∥
2

, (8.9)
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where
∑′′′

u is the sum
∑ · · ·∑1−ni �ui �ni ,i=1,...,d . Because

0∑
u�=1−n�

e2�i(k�−j�)/n� =
n�∑

u�=1

e2�i(k�−j�)n� = n�1(j� = k�) (8.10)

for 1�j�, k� �n�, it follows that the bound in (8.9) is

2dn−2
∑
j∈N

∥∥�̃L(
j )
∥∥2 �2d�2n−1.

The contribution to (8.7) from the second term in braces in (8.8) is readily found to be of
the same order. The contribution to (8.7) from the fourth cumulant term in (8.8) is bounded
by

Kn−2
∑
u

′′∑
v

′′ {n(u)n(v)}−1

∥∥∥∥∥∥
∑
j∈N

�̃L(
j )e
−iu.
j

∥∥∥∥∥∥
∥∥∥∥∥
∑
k∈N

�̃L(
k)e
iv.
k

∥∥∥∥∥
×
∑
s(u)

∑
t (v)

∑
�

∣∣�s−��s+u−��t−��t+v−�

∣∣

�Kn−4
∑
u

′′∑
v

′′

⎧⎪⎨
⎪⎩
∥∥∥∥∥∥
∑
j∈N

�̃L(
j )e
−iu.
j

∥∥∥∥∥∥
2

+
∥∥∥∥∥
∑
k∈N

�̃L(
k)e
iv.
k

∥∥∥∥∥
2
⎫⎪⎬
⎪⎭

×
∑
s(u)

∑
t (v)

∑
�

∣∣�s−��s+u−��t−��t+v−�

∣∣

�Kn−4
∑
u

′′
∥∥∥∥∥∥
∑
j∈N

�̃L(
j )e
−iu.
j

∥∥∥∥∥∥
2∑

s(u)

∑
�

∣∣�s−�

∣∣∑
t

∣∣�t−�

∣∣∑
v

∣∣�t+v−�

∣∣

�Kn−3
∑
u

′′
∥∥∥∥∥∥
∑
j∈N

�̃L(
j )e
−iu.
j

∥∥∥∥∥∥
2

�K�2n−1

as before.
We now wish to show that for fixed L

n
1
2 r1L →d N (0, �L) , (8.11)

where

�L = 2

(2�)d

∫
�d

�L(�)�′
L(�)f (�)2d�

+�

{∫
�d

�L(�)f (�) d�

}{∫
�d

�′
L(�)f (�) d�

}
.

Using (8.10),

r1L = (2�)−d
∑
�∈AL

d∏
i=1

(
1 − |�i |

L

)
��

(
c∗
� − 	�

)
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for n sufficiently large, because then L + g(ni) < ni for all i and there is no contribution
from aliased terms. In view of A2,

c∗
� − 	� = n(�)−1

∑
j

∑
k

�j�k

∑
t (�)

{
εt−j εt+�−k − 1(j = k − �)

}
. (8.12)

Fix �2 > 0. We may choose M such that

∑
j /∈AM

∣∣�j

∣∣ < �2.

The difference between (8.12) and

q�,M = n(�)−1
∑

j,j+�∈AM

�j�j+�

∑
t (�)

(
ε2
t−j − 1

)

+n(�)−1
∑

j∈AM

∑
k∈AM

k �=j+�

�j�k

∑
t (�)

εt−j εt+�−k (8.13)

has mean zero and variance that is readily shown to be O
(
�2n

−1
) = o(n−1) as �2 → 0. In

view of the Cramer–Wold device we seek to establish asymptotic normality of

n
1
2
∑
�∈AL

a�q�,M (8.14)

for arbitrary a�, not all zero. In other words, we establish asymptotic normality of a linear
combination of finitely many terms of the forms

n
1
2 n(�)−1

∑
t (�)

{
εt−j εt+�−k − 1

}
, j �= k − �,

and

n
1
2 n(�)−1

∑
t (�)

(
ε2
t−j − 1

)
,

since L and M are fixed.
We map Zd into Z+ in order to employ a standard martingale central limit theorem

for triangular arrays. There is considerable literature on asymptotic theory for random
fields, including work based on multilateral models, e.g. [22], on the basis of unidirectional
increase, i.e. with only the nUi increasing. For k�1, denote by C

(d)
k the lattice points

on the surface of the d -dimensional cube with vertices (±k, ...,±k); there are m
(d)
k =

(2k + 1)d − (2k − 1)d such points. Consider an arbitrary ordering of the points j ∈ C
(b)
k ,
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namely j
(k)
(1) , ..., j

(k)

(m
(d)
k )

. Introduce a function � : Zd → Z+ such that

�(0, ..., 0) = 1

�
(
j

(1)
(1)

)
= 2, ...,�

(
j

(1)

(3d−1)

)
= 3d ,

...
...

�
(
j

(k)
(1)

)
= (2k − 1)d + 1, ...,�

(
j

(k)

((2k+1)d−(2k−1)d )

)
= (2k + 1)d ,

and so on. For example, in case d = 2 we might have the "spiral" ordering

j
(k)
(1) = (−k, k), j

(k)
(2) = (−k, 1 − k), ..., j(3d−1) = (1 − k, −k).

When nLi = nUi = n∗ for all i, so N = A2n∗+1 , the (2n∗ + 1)d observations have thus
accumulated first at {0, ..., 0}, followed by C

(d)
1 , ..., C

(d)
n∗ , in that order.

For more general circumstances, define

�n(j) = �(j) − # {k : k /∈ N; �(k) < �(j)} , j ∈ N;
thus, having ordered on Amax(nLi, nUi, i = 1, ..., d) we drop points outside N and then
close up the gaps, re-labelling and preserving the order. Introduce the triangular array �n(s),
1�s�n, of iid variates with zero mean, variance 1 and fourth cumulant �, such that

�n

(
�n(j)

) = εj , j ∈ N.

Considering now the contribution to (8.14) from the "squared" terms ε2
t−j in q�,M ,

∑
t (�)

(
ε2
t−j − 1

)
(8.15)

differs from∑
t∈N

(
ε2
t − 1

)
(8.16)

by

O

⎛
⎝ d∑

i=1

d∏
j=1,j �=i

nj

⎞
⎠ = O

(
n

d∑
i=1

n−1
i

)
= O

(
n1−�

)
(8.17)

terms, uniformly in j ∈ AM , � ∈ AL. Thus, because the ε2
t − 1 are iid with zero mean and

finite variance, the difference between (8.15) and (8.16) is Op

(
n(1−�)/2

)
. As for product

terms, note that in∑
t (�)

εt−j εt+�−k (8.18)

we have for each summand either �(t − j) > �(t + � − k) or �(t − j) < �(t + � − k).

Overall there are n − O
(
n1−�

)
summands, and, possibly after finite translation across
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Zd , each can be written in the form �n(s)�n(s − rsn(j, k, �)) for suitable s and positive
integer rsn(j, k, �). Thus because these summands are uncorrelated across s, (8.18) differs

by Op

(
n(1−�)/2

)
from

n∑
s=1

�n(s)�n (s − rsn(j, k, �)) .

It follows from this discussion that (8.14) differs by op(1) from n− 1
2
∑n

s=1 un(s), where

un(s) =
{
�2
n(s) − 1

} ∑
�∈AL

a�{n/n(�)}
∑

j,j+�∈AM

�j�j+�

+�n(s)
∑
�∈AL

a�{n/n(�)}
∑∑

j∈AM,k∈AM

k �=j+�

�j�k�n (s − rsn(j, k, �)) .

The un(s) thus comprise a martingale difference array. Denote by Fs,n the 
-field of events
generated by �n(t), t �s. It follows from [12, Chapter 2], [39] that if

lim
n→∞ n−1

n∑
s=1

Eu2
n(s) (8.19)

is positive and finite and

n−1
n∑

s=1

E
{
u2

n(s)1
(
|un(s)| ��3n

1
2

)}
→ 0, all �3 > 0, (8.20)

n−1
n∑

s=1

[
E
{
u2

n(s)

∣∣∣Fs−1,n

}
− Eu2

n(s)
]

→ p 0, (8.21)

then

n− 1
2

n∑
s=1

un(s) →d N (0, 
2),

where 
2 is given by (8.19).
To prove (8.20) write un(s) = u1n(s) + u2n(s), where u1n(s) consists of the terms in

{�2
n(s) − 1}. It suffices to show that

n−1
n∑

s=1

E
{
u2

in(s)1
(
|uin(s)| > �sn

1
2

)}
→ 0, all �3 > 0, i = 1, 2.

For i = 1 this follows from identity of distribution and finite fourth moment of the �n(s),
boundedness of n/n(�) and summability of the �j . For i = 2 it follows from the same facts
after applying Cauchy and elementary inequalities.
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Next consider (8.21), which is equivalent to

n−1
n∑

s=1

⎡
⎢⎢⎢⎣
⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∑
�∈AL

a�

n

n(�)

∑
j∈AM

∑
k∈AM

k �=j+�

�j�k�n (s − rsn(j, k, �))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

2

−E

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∑
�∈AL

a�

n

n(�)

∑
j∈AM

∑
k∈AM

k �=j+�

�j�k�n (s − rsn(j, k, �))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

2⎤
⎥⎥⎥⎦

+2Eε3
0n

−1
n∑

s=1

⎧⎨
⎩
∑
�∈AL

a�

n

n(�)

∑
j,j+�∈AM

�j�j+�

⎫⎬
⎭ (8.22)

×

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
∑
�∈AL

a�

n

n(�)

∑
j∈AM

∑
k∈AM

k �=j+�

�j�k�n (s − rsn(j, k, �))

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

→p 0

because the squared terms in �2
n(s) − 1 contribute nothing due to independence. For any

fixed j(i), k(i) ∈ AM and �(i) ∈ AL, i = 1, 2, consider

n−1
n∑

s=1

{�n(s − rsn1)�n(s − rsn2) − E�n(s − rsn1)�n(s − rsn2)} , (8.23)

where rsni = rsn
(
j(i), k(i), �(i)

)
. Now (8.23) has mean zero and variance

n−2
n∑

s=1

n∑
t=1

[E�n(s − rsn1)�n(t − rtn1)E�n(s − rsn2)�n(t − rtn2)

+E�n(s − rsn1)�n(t − rtn2)E�n(s − rsn2)�n(t − rtn1)

+cum {�n(s − rsn1), �n(t − rtn1), �n(s − rsn2), �n(t − rtn2)}]. (8.24)

All summands are finite. Summands for s = t contribute O(n−1). For s �= t , there is a
difference from the case d = 1 in that the rsni depend on n, but because C

(d)
k has O(kd−1)

lattice points as k → ∞, and the surface of N has O
(∑d

i=1
∏d

j=1,j �=i nj

)
lattice points,

and because of (8.17), it follows that rsni = O(n1−�) uniformly as n → ∞. Thus, splitting
the sum into two parts, one containing terms for which |s − t | �n1−�/2 and one terms
for which |s − t | > n1−�/2 the first component contributes O(n−�/2) to (8.24), and the
second, zero. Since only finitely many terms of form (8.23) are involved, and because

clearly n−1∑n
i=1 �n (s − rsn(j, k, �)) = Op(n− 1

2 ), (8.21) is established.
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We can evaluate (8.19) as

∑
�∈AL

∑
m∈AL

a�am

⎧⎨
⎩
∑

i∈AM

∑
j∈AM

∑
k,k−i+j−�+m∈AM

�i�j�k�k−i+j−�+m

+
∑

i∈AM

∑
j∈AM

∑
k,k+i−j−�+m∈AM

�i�j�k�k+i−j+�+m

+�

⎛
⎝ ∑

j,j+�∈AM

�j�j+�

⎞
⎠
⎛
⎝ ∑

j,j+m∈AM

�j�j+m

⎞
⎠
⎫⎬
⎭ .

Since this differs by O(�2) from

∑
�∈AL

∑
m∈AL

a�am

⎧⎨
⎩
∑

i

∑
j

∑
k

�i�j�k(�k−i+j−�+m + �k+i−j+�+m) + �	�	m

⎫⎬
⎭

=
∑
�∈AL

∑
m∈AL

a�am

[
(2�)−d

∫
�d

f (�)2 exp {i(� − m)� + i(� + m)�} d� + �	�	m

]

we deduce (8.11) via Bernstein’s lemma. From (8.6), �L → � as L → ∞, so we then
likewise deduce (8.2). �

9. Proof of Theorem 4

Given (7.4), we have already justified the claims about (7.5), and for (7.4) we only prove
the second statement with i = 2, because the other proofs are easier. We have

�̂(2)
4 − �4 = n−1

∑
t∈N

(
ε̂
(2)4
t − ε4

t

)
+ n−1

∑
t∈N

(
ε4
t − �4

)
.

The second term on the right is op(1) by the law of large numbers, while by the identity
x4 − y4 = (x − y)(x3 + x2y + xy2 + y3) and H ölder’s inequality the first term is op(1) if

n−1
∑
t∈N

(
ε̂
(2)
t − εt

)4 →p 0. (9.1)

Write

ε̂
(2)
t − εt = Et + Ft ,

where

Et = (2�)d/2n− 1
2
∑
j∈N

{
�
(
e(i
j ); �̂

)
− �

(
e(i
j ); �0

)}
w(
j )e

−it.
j ,

Ft = (2�)d/2n− 1
2
∑
j∈N

�
(
e(i
j ); �0

)
w(
j )e

−it.
j − εt .

Again, for brevity we assume � = 0 and replace xt − x̄ by xt .
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By direct calculation, using (8.10) again,

Ft =
∑
s /∈N

�t−sxs +
∑
s∈N

xs

∑
k �=0

�t−s+k(n),

where �j = (2�)−d
∫
�d � (e(i�); �0) e−ij.�d� and k(n) = (k1n1, ..., kdnd). It follows from

A12 that xt has a linear representation as in A2 but with the �j possibly being only square-
summable. Nevertheless,

Ex4
t = 3

⎛
⎝∑

j

�2
j

⎞
⎠

2

+
∑
j

�4
jEε4

t−j �K

⎛
⎝∑

j

�2
j

⎞
⎠

2

< ∞.

Thus

E

(∑
s /∈N

�t−sxs

)4

�K

(∑
s /∈N

|�t−s |
)4

�K
∑
s /∈N

|�t−s | .

It follows that

n−1
∑
t∈N

E

(∑
s /∈N

�t−sxs

)4

� Kn−1
∑
t∈N

∑
s /∈N

|�t−s |

� Kn−1
∑
j

∣∣�j

∣∣ d∏
�=1

{|j�| 1 (|j�| �n�) + n�1 (|j�| �n�)} ,

which tends to zero as n → ∞ by summability of the �j and the Toeplitz lemma. Beginning
in the same way,

E

⎛
⎝∑

s∈N

xs

∑
k �=0

�t+s+k(n)

⎞
⎠

4

�K

⎛
⎝∑

s∈N

∑
k �=0

∣∣�t−s+k(n)

∣∣
⎞
⎠

4

.

For any of the finitely many k such that |k�| �1 for all �, and k� �= 0 for some �,

n−1
∑
t∈N

(∑
s∈N

∣∣�t−s+k(n)

∣∣)4

� Kn−1
∑
t∈N

∑
s∈N

∣∣�t−s+k(n)

∣∣

� Kn−1
∑
j∈N2

∣∣�j

∣∣ d∏
�=1

|j�| ,

where N2 = {j : |j�| �2n�, � = 1, ..., d}. This is o(1) as before. Denoting by K the remain-
ing k ∈ Zd , by elementary inequalities the proof that n−1∑

t∈N EF 4
t → 0 is completed

28



by the calculation

n−1
∑
t∈N

(∑
s∈N

∑
k∈K

∣∣�t−s+k(n)

∣∣)4

�K

d∑
�=1

∑
j :|j�|�n�

∣∣�j

∣∣→ 0,

by summability of �j .
Finally,

n−1
∑
t∈N

E4
t �n−1

(∑
t∈N

E2
t

)2

(9.2)

and from (8.10)∑
t∈N

E2
t = (2�)d

∑
j∈N

∣∣∣� ((e(i
j ); �̂
)

− �
(
e(i
j ); �0

)∣∣∣2 I (
j )

� K

∥∥∥�̂ − �0

∥∥∥2 ∑
j∈N

I (
j )�K

∥∥∥�̂ − �0

∥∥∥2∑
t∈N

x2
t

with probability approaching 1 as n → ∞, in view of A12 and A13. Then (9.2) =
Op(n1−4�) = op(1) for � > 1

4 . This completes the proof of (9.1). �
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