Abstract

In this paper, I characterize the set of interim incentive efficient allocation mechanisms for a broad class of problems with private information, which includes those associated with the provision of public goods (with or without exclusion) as well as the allocation of one or more units of a private good.

Keywords: Incomplete information, interim efficiency, Pooling of types.

* Pérez-Nievas, Departamento de Economía, Universidad Carlos III de Madrid and Universidade de Vigo. E-mail: mikel@eco.uc3m.es

** I am deeply indebted to my advisor, Prof. Diego Moreno, for his continuous encouragement and guidance. I also wish to thank Prof. Luis Corchón, Prof. Andrés Perea and Prof. Luis Úbeda for their invaluable comments.
1 Introduction

This paper focuses on general allocation problems in which a group of individuals, each of them having incomplete information about the others' characteristics, has to decide the provision of a certain good to each member of the group. Provision is costly, and the group of individuals has to decide also how to distribute the costs of provision among the members of the group. Individuals' preferences are linear and are determined by a real number that represents the individual's valuation (in terms of a numeraire) of one unit of the good. Each individual's valuation is private information. Agents' beliefs about a particular agent's valuation are common knowledge and can be represented by a continuous distribution function. Different specifications of the set of provision alternatives available and their costs determine the specific nature of the problem. Thus, the framework admits pure public goods problems with or without exclusion, trading private goods, cost sharing problems, etc.

The main objective of the present paper is to characterize the set of feasible allocation mechanisms available in this framework, and to provide a welfare analysis of these mechanisms. The notion of feasibility relevant in this context corresponds to that of incentive feasibility, see Holmström and Myerson (1983), that takes into account both the technological (or classical) constraints arising because provision of the good is costly, and the incentive constraints arising due to the informational structure of the problem. That is, feasible mechanisms are Bayesian incentive compatible and budget balanced (or budget balanced in expectations). In order to undertake a welfare analysis of mechanisms, I characterize the set of interim efficient mechanisms. The term interim refers to that stage in the decision process at which the individuals know their private information but does not know the others' private information.

A Bayesian incentive compatible, budget balanced mechanism is interim efficient if there does not exist another Bayesian incentive compatible, budget balanced mechanism that, in the interim stage, makes some agents better off without making other agents worse off. Notice that the notion of feasibility underlying the notion of interim efficiency takes into account both incentive compatibility and classical feasibility constraints.

The early literature (see e.g., d'Aspremont and Gerard-Varet (1979)) identified Bayesian Incentive Compatible, budget balanced mechanisms that are efficient ex-post; i.e., such that in every state of the individuals' information they provide an allocation that is Pareto optimal in that state. Due to the linearity of preferences, determining whether or not an allocation is Pareto optimal in a given state of the individuals' preferences depends only on the provision decision, and does not depend on the distribution of costs. Thus, whether a mechanism is ex-post efficient is independent of how it distributes the cost of provision among the individuals. Recently, Makowski and Mezzetti (1994) have characterized Bayesian incentive compatible, ex-post efficient mechanisms as (balanced) Groves mechanisms in expectations.

The fact that Groves mechanism in expectations select Pareto optimal allocations
in every state of the individuals’ information does not imply that every Bayesian incentive compatible, budget balanced mechanism is Pareto dominated (in the interim stage) by some Groves mechanism in expectations. In fact, it can be shown that the class of Groves mechanisms in expectations form a proper subset of the set of interim incentive efficient mechanisms. The interest of characterizing the whole set of interim efficient mechanisms (and not just a particular class of mechanisms in this set) arises from both normative and positive considerations.

One the normative side, there might be situations in which the set of mechanisms available is restricted by voluntary participation constraints, imposing that a mechanism provides all agents with at least the same expected interim utility they obtain with a given allocation. In many problems (see e.g., Myerson and Satterthwaite (1983), Cramton, Gibbons and Klemperer (1985), or Dearden (1997)), Groves mechanism in expectations fail to satisfy voluntary participation constraints. Therefore, exploring other mechanisms satisfying certain social objectives is interesting. Note that, if a group of individuals unanimously agree on altering a statu quo and use a new mechanism instead, selecting an interim efficient mechanism exhausts the possibilities for further improvements.

On the positive side, one might be interested in characterizing the whole set of interim efficient mechanism to explore the properties of mechanisms that arise in practice. If all decisions (including whether to use a particular mechanism) are taken at the interim stage, then the set of interim efficient mechanisms consists on those incentive compatible mechanisms for which there is no other mechanism that generates unanimous improvement. Thus, we would expect that if an agreement on a particular mechanism is reached, then that mechanism should be interim efficient.

Holmstrom and Myerson (1982) have characterized the set of interim incentive efficient mechanisms in the context of general Bayesian collective choice problems. According to this characterization, a mechanism is interim incentive efficient if it maximizes a weighted average of the agents' interim utilities (subject to Bayesian incentive compatibility and budget balance constraints), where this average is evaluated with respect to a probability (or welfare) distribution defined on the set of types. These results have been particularized to bilateral trading problems by Myerson, and to pure public good problems by Ledyard and Palfrey (1999).

These two articles characterize the provision rules solving a welfare optimization problem in the class mentioned above, and show that such provision rules maximize a linear functional among all provision rules satisfying a qualifying constraint. This constraint is needed to guarantee that the expected probability of provision corresponding to an arbitrary agent is a non-decreasing function of the agent’s types, a requirement that the provision rule of any Bayesian incentive compatible mechanism must satisfy.

According to this characterization, optimal provision rules define implicitly a type

\footnote{The provision rule of a mechanism (see section 3) is the rule selecting a provision alternative as a function of the agents’ reported types.}
dependent number for each individual, called *virtual valuation* (see Myerson, 1981), that can be regarded as the social value of providing the good to that individual. Virtual valuations depend also on the welfare distribution with respect to which the average interim utility of the mechanism is evaluated. If, for a given welfare distribution, virtual valuations are increasing functions of the agents’ types, then the qualifying constraint will never be binding for the optimal provision rule associated to the welfare distribution and a simple closed form characterization of the set of optimal provision rules can be provided. Nothing is said, however, on how to find optimal provision rules associated to welfare distributions that yield virtual valuations that are decreasing functions of the agent’s types.

In the present paper I extend these results to other problems involving provision of public or private goods, and provide a procedure to obtain optimal provision rules when virtual valuations are not monotone in type. Such procedure modifies virtual valuations in order to obtain non decreasing functions. The set of optimal provision rules is obtained then by maximizing the sum of these modified virtual valuations associated to a provision decision. As a result, optimal provision rules exhibit *pooling of types*, i.e., there exists an region in the set of possible types of one individual such that the expected probability of provision is constant for all types within such region.

In some specific contexts, pooling types might be deemed desirable. For example, pooling types might yield interesting properties in contexts in which acquiring and processing information is costly, such as those studied in Green and Laffont (1979) or Bobo (1998). These authors propose that these costs could be reduced by using a (random) sampling mechanism. However, a (non random) sampling mechanism in which people participating in the sample are self-selected (through a participation fee, for example) might also reduce these costs. Under these mechanisms, all types who decide not to participate in the sample are pooled by the mechanism. Such decision, however, may provide the designer with some relevant information. In the context of private goods, examples of mechanisms exhibiting pooling of types are double second price auctions, studied by Yoon (1996,1997).

A second objective of the paper is to analyze how the characterizations provided vary under different notions of incentive compatibility and budget balance imposed on the set of mechanisms available. I show that for every mechanism \(m \) that maximizes the average welfare (with respect to a given welfare distribution), among those Bayesian incentive compatible, budget balanced mechanisms, one can construct a dominant strategy incentive compatible, budget balanced (in expectations) mechanism \(m' \) with the same provision rule as that of \(m \) that provides every type of agent with the same interim utility he obtains with \(m \). Thus, the characterization of optimal provision rules is not altered by different requirements on the set of mechanism available. This result suggests that it might be possible to obtain interim incentive mechanisms that are robust to prior information assumptions, following the lines suggested by Mookherjee and Reichelstein (1992) and Makowski and Mezzetti (1994). Although several definitions have been provided, a robust mechanism can be defined
as a mechanism whose properties are invariant to changes in the distribution determining the agents' valuations.

The paper is organized as follows:

First (Section 2), I describe the framework and show how different specifications of the set of provision alternatives and their costs determine the specific nature of the problem. I also describe mechanisms and discuss alternative notions of incentive compatibility (Bayesian and dominant strategy incentive compatibility) and budget balance (ex-ante and ex-post) of a mechanism in this framework.

In Section 3, I characterize the set of Bayesian incentive compatible and (ex-ante) budget balanced mechanisms. I also explore how different notions of incentive compatibility and feasibility of a mechanism restrict the set of mechanisms available in this general framework. To be more precise, I show that for every Bayesian incentive compatible, ex-ante budget balanced mechanism such that its provision rule is a non decreasing function of the agents' types, one can construct a dominant strategy incentive compatible, ex-ante budget balance mechanism without altering the agents' interim utilities.

In Section 4, I characterize the set of interim efficient mechanisms as solutions to a constrained welfare optimization problem. I characterize the provision rules solving a welfare optimization problem in the class mentioned above. Contrary to the approach followed by Myerson (1985) or Ledyard and Palfrey, no restrictions are placed on the welfare distribution with respect to which the average welfare of a mechanism is evaluated. Therefore computing the provision rules that maximize the average welfare may require a procedure that modifies virtual valuations in order to obtain non decreasing functions. Finally, I use explore the properties of interim efficient mechanisms in the context of specific problems within the general framework. It is shown that some particular mechanisms, such as sampling mechanisms (in the context of a public good problem) and double second price auctions (in the context of multilateral trading problems) can be justified as interim efficient.

2 The Problem

The class of allocation problems studied in this paper are those in which a group of individuals has to decide to provide with a consumption good to each member of the group, as well as how to distribute costs of provision among the members of the group. An allocation problem in this class is represented by a set of individuals $I = \{1, 2, 3, \ldots, N\}$, a compact, convex set of provision alternatives $A \subseteq [0, 1]^N$, a continuous cost function $C : A \rightarrow \mathbb{R}$ determining the costs of provision alternatives in terms of a numeraire, and a vector $V = \{V_i : i \in I\}$ of continuous and independent random variables generating the individuals' valuations for one unit of the good. For each $i \in I$, V_i is distributed according to a distribution $F_i : \mathbb{R} \rightarrow [0, 1]$ with positive density f_i on a support $S_i \subseteq \mathbb{R}_i$. Also, it is assumed that each random variable V_i is
absolutely integrable, that is,
\[E(|V_i|) = \int_{S_i} |x_i| dF_i(x_i) < \infty. \]

Given an allocation problem \([I, A, C, V]\), an allocation is a pair
\[(a, t) \equiv (a_1, a_2, \ldots, a_N, t_1, t_2, \ldots, t_N) \in A \times \mathbb{R}^N,\]
where, for each \((a, t) \in A \times \mathbb{R}^N\) and each \(i \in I,\)

- \(a_i\) determines the amount of the consumption good that is provided to agent \(i;\)
- \(t_i\) is the tax, measured in terms of the numeraire, paid by agent \(i\) to finance the costs associated to the provision decision.

An allocation \((a, t) \in A \times \mathbb{R}^N\) is feasible if
\[\sum_{i \in I} t_i \geq C(a). \]

Each individual \(i \in I\) is assumed to have preferences representable by utility functions \(u_i : A \times \mathbb{R}^N \rightarrow \mathbb{R}\) defined, for all \((a; t) \in A \times \mathbb{R}^N,\) by
\[u_i(a; t) = v_i a_i - t_i, \]
where \(v_i\) is a realization of \(V_i\) and represents the individual's valuation for one unit of the good.\(^2\) For each \(i \in I,\) individual \(i\)'s valuation is private information. For each \(i \in I, v_i \in S_i,\) the number \(v_i\) will be also referred to as type \(v_i\) of individual \(i.\)
Let \(S = \prod_{i=1}^{N} S_i\) and let \(F : S \rightarrow [0, 1]\) denote the joint distribution of valuations. Since it is assumed that agents' valuations are independent one has, for all \(v \in S,\)
\[F(v) = \prod_{i=1}^{N} F_i(v_i). \]

This general framework allows one to study a wide variety of problems, including:

(i) Provision of public goods

These problems, studied by Green and Laffont (1979), d'Aspremont and Gerard-Varet (1979), Rob (1989), Mailath and Postlewaite (1989), Ledyard and Palfrey (1999), and many others, are allocation problem in which the good, if produced, is provided to all agents. Thus, the set of alternatives available is given by
\[A = \{a \in [0, 1]^N : a_i = a_j \ \forall i, j \in I\}. \]

\(^2\)Although it has been assumed that the set \(A\) of provision alternatives is convex, the framework can be adapted to the case in which the set of alternatives is a discrete set \(D \subseteq \{0, 1\}^N,\) and the cost function is arbitrary, provided decisions are interpreted in a stochastic fashion. In this case, a provision alternative \(a\) determines, for each \(i \in I,\) the expected provision to individual \(i.\) For a discussion on this, see the Appendix 2.1.
Also, it is commonly assumed that the cost function satisfies, for each \(a \in A \),
\[
C(a) = ca_1,
\]
for some \(c \geq 0 \).

In some problems, as those studied by Dearden (1997) it is possible to exclude the individuals from the use of the public good. These problems are represented by a set of alternatives \(A = [0, 1]^N \) and a cost function satisfying, for each \(a \in A \),
\[
C(a) = c \max \{ a_i : i \in I \},
\]
where \(c \geq 0 \) represents the costs of production of one unit the public good.

(ii) Trading private goods

This class of problems consists in allocating \(M \leq N \) units of a divisible private good among \(N \) agents. The set of alternatives is therefore given by
\[
A \equiv \left\{ a \in [0, 1]^N : \sum_{i=1}^{N} a_i \leq M \right\},
\]
and the cost function \(C \) satisfies, for each \(a \in A \),
\[
C(a) = 0.
\]

Examples of problems in this class are the allocation of a single object (if \(M = 1 \)), as in Myerson (1981) or Cramton, Gibbons and Klemperer (1985); bilateral trading problems (if \(M = 1 \) and \(N = 2 \)) as in Myerson (1981) or Myerson and Satterthwaite (1983); and double auctions (if \(M > 2 \)), as in Wilson (1985) or Yoon (1997).

(iii) Other cost sharing problems

The framework can be used to study situations in which (1) the cost depends only on the number of people for which the good is provided, and (2) providing the good for more people is costly. The set of alternatives is \(A = [0, 1]^N \) and the cost function is described by a function of the form
\[
C(a) = f\left(\sum_{i=1}^{N} a_i\right),
\]
where \(f : \mathbb{R}_+ \to \mathbb{R} \) satisfies \(f(0) = 0 \) and \(f'(0) > 0 \). Examples include highway tolls, user fees for public parks, television, etc. Other cost functions might also arise in situations in which costs of provision depend on the specific identity of the individuals for which the good is provided. For example, the cost of providing a TV signal to different regions might be different.

\footnote{If the good is divisible, then for each \(i \in I \), \(a_i \) can be interpreted as the probability that individual \(i \) gets one unit of the good.}
2.1 Mechanisms

In order to select an allocation, a mechanism is devised. Here I study direct revelation mechanisms. A mechanism in this class \(m \) is a pair of functions

\[
m = (\rho, \tau) : S \rightarrow A \times \mathbb{R}^N.
\]

For each profile of reported valuations \(\tilde{v} \in S \), \(\rho(\tilde{v}) \) determines the provision alternative selected by the mechanism, and \(\tau(\tilde{v}) = (\tau_1(\tilde{v}), \tau_2(\tilde{v}), \ldots, \tau_N(\tilde{v})) \) gives the tax paid by each individual. The functions \(\rho(\cdot) \) and \(\tau(\cdot) \) in the definition of a mechanism \(m \) will be called, respectively, the provision rule and the tax function associated to \(m \).

In order to define formally the relevant properties of mechanisms, some additional notation is now introduced. For each \(v \in S \) and each \(i \in I \), the vector specifying the valuations of all agents except \(i \) will be denoted by \(v_{-i} \). Thus, any vector \(v \in S \) can be equivalently written as \(v = (v_i, v_{-i}) \), where \(i \) represents an arbitrary individual. Also, for each \(i \in I \), let \(V_{-i} \) denote the random vector determining the valuations of all agents except \(i \). Finally, for any function \(Y : S \rightarrow \mathbb{R} \), let \(E[Y(V)] \) denote the expectation of the random variable \(Y(V) \). In particular, for any \(i \in I \) and any function \(Y_{-i} : S_{-i} \rightarrow \mathbb{R} \), the expectation of the random variable \(Y_{-i}(V_{-i}) \) will be denoted by \(E[Y_{-i}(V_{-i})] \).

Since agents’ valuations are private information, mechanisms must induce agents to report their true valuations. In the literature, two alternative notions of incentive compatibility have been used. A notion of incentive compatibility, called Dominant Strategy Incentive Compatibility (DSIC), requires that reporting the true valuation be a dominant strategy for each individual in the revelation game induced by a mechanism \(m \). A mechanism \(m \equiv (\rho, \tau) \) satisfies DSIC if for all \(i \in I \), \(v_i, \tilde{v}_i \in S_i, v_{-i} \in S_{-i} \) one has

\[
v_i \rho_i(v_i, v_{-i}) - \tau_i(v_i, v_{-i}) \geq v_i \rho_i(\tilde{v}_i, v_{-i}) - \tau_i(\tilde{v}_i, v_{-i}). \tag{DSIC}
\]

A weaker notion of incentive compatibility, called Bayesian Incentive Compatibility (BIC), requires that reporting the true valuation be a Bayesian Equilibrium of the revelation game induced by \(m \). A mechanism \(m \) satisfies BIC if for all \(i \in I \), \(v_i, \tilde{v}_i \in S_i \) one has

\[
E \{v_i \rho_i(v_i, V_{-i}) - \tau_i(v_i, v_{-i})\} \geq E \{v_i \rho_i(\tilde{v}_i, V_{-i}) - \tau_i(\tilde{v}_i, V_{-i})\}. \tag{BIC}
\]

Note that nothing in the definition of a mechanism guarantees that a mechanism is feasible, in the sense that taxes paid by all agents be sufficient to cover the costs of provision. There are two possible feasibility conditions. The first condition, called \textit{ex post feasibility}, is relevant if the group of agents involved in the allocation problem does not have access to outside resources, and therefore taxes must cover costs of

\[9\]

\[4\text{Restriction to direct revelation mechanisms can be justified by the Revelation Principle (see e.g. Myerson, 1981).}\]
provision in every state of nature. More precisely, a mechanism m is feasible \textit{ex post} if for all $\bar{v} \in S$ one has
\[\sum_{i \in I} \tau_i(\bar{v}) \geq C(\rho(\bar{v})). \]
(EXPF)

A second condition, called \textit{ex ante feasibility}, is relevant if agents have access to an outside insurance market. A mechanism m is feasible \textit{ex ante} if
\[E\left(\sum_{i \in I} \tau_i(V) - C(\rho(V)) \right) \geq 0. \]
(EXAF)

In addition to feasibility, it might be required that a mechanism be \textit{non-wasteful}, in the sense that taxes paid by agents do not exceed costs of provision. A mechanism that is feasible and non-wasteful will be referred to as budget balanced. A mechanism m satisfies \textit{ex-post budget balance} if for all $\bar{v} \in S$ one has
\[\sum_{i \in I} \tau_i(\bar{v}) = C(\rho(\bar{v})). \]
(EXPBB)

A mechanism m satisfies \textit{ex ante budget balance} if
\[E\left(\sum_{i \in I} \tau_i(V) - C(\rho(V)) \right) = 0. \]
(EXABB)

It should be noticed that condition \textit{EXABB} might be meaningless when applied to mechanisms for which \textit{BIC} is not satisfied, since there is no reason to presume that the expression in the left hand of \textit{EXABB} corresponds to the actual expected taxes of such mechanisms. Notice also that a risk neutral external agent that acts as a broker for the agents using a mechanism satisfying \textit{BIC} and \textit{EXABB}, subsidizing agents when a deficit arises and collecting any surplus, would break even in expectations.

3 Incentive compatible, budget balanced mechanisms

This section discusses how different notions of incentive compatibility and feasibility restrict the set of mechanisms available in a given problem $[I, A, C, F]$. First, the set of mechanisms satisfying \textit{BIC} is characterized. It is then shown that for any mechanism $m = (\rho, \tau)$ satisfying \textit{BIC} and \textit{EXABB}, one can construct a mechanism $m' = (\rho, \tau')$ satisfying \textit{BIC} and \textit{EXPBB} that provides each agent with the same interim expected utility he obtains with m. Then, it is shown that if the provision rule of a mechanism $m = (\rho, \tau)$ satisfying \textit{BIC} is a non-decreasing function of the agents' reported valuations, then one can construct a mechanism $m'' = (\rho, \tau'')$ satisfying \textit{DSIC} and \textit{EXABB} that provides each agent with the same interim expected utility he obtains with m.

9
Bayesian incentive compatible mechanisms

Given a provision rule \(\rho : S \to A \), for each \(i \in I \), \(\hat{v}_i \in S_i \), let \(\bar{a}_i(\hat{v}_i; \rho) \) denote the expected level of provision obtained by \(i \) when he reports \(\hat{v}_i \) and all other individuals report their true valuations, that is

\[
\bar{a}_i(\hat{v}_i; \rho) = E[\rho_i(\hat{v}_i, V_{-i})].
\]

Also, given a tax function \(\tau : S \to \mathbb{R}^N \), let \(\bar{t}_i(\hat{v}_i; \tau) \) denote the expected tax paid by \(i \) when he reports \(\hat{v}_i \) and all other individuals report their true valuations, that is

\[
\bar{t}_i(\hat{v}_i; \tau) = E[t_i(\hat{v}_i, V_{-i})].
\]

Finally, write \(U_i(v_i; m) \) for the interim expected utility obtained by an arbitrary agent \(i \) whose valuation is \(v_i \) when he reports his true valuation and all other agents report also their true valuations, that is

\[
U_i(v_i; m) = v_i \bar{a}_i(v_i; \rho) - \bar{t}_i(v_i; \tau).
\]

Proposition 1 shows that Bayesian incentive compatibility imposes certain conditions on the interim expected utility corresponding to each type of agent participating in the mechanism. These conditions are also sufficient to guarantee that a mechanism satisfies BIC.

Proposition 1. A mechanism \(m = (\rho, \tau) \) satisfies BIC if and only if for all \(i \in I \):

(P.1.1) the function \(\bar{a}_i(\cdot; m) \) is non decreasing on \(S_i \),

and

(P.1.2) for all \(v_i, \hat{v}_i \in S_i \),

\[
U_i(v_i; m) = U_i(\hat{v}_i; m) + \int_{\hat{v}_i}^{v_i} \bar{a}_i(x_i; \rho) dx_i.
\]

Thus, for any mechanism \(m = (\rho, \tau) \) satisfying BIC and for each \(i \in I \), the expected level of provision obtained by \(i \) with the mechanism \(m \) must be a non-decreasing function of the individual's reported valuation. Also, an agent's interim expected utility (and interim expected taxes) is determined (except for a term whose expected value is independent of reported valuations) by the provision rule of the mechanism.

Condition (P.1.2) can be restated in terms of the agents' expected interim utilities. Let \(m \) be a mechanism satisfying (P.1.2). By setting \(\hat{v}_i = 0 \) one has, for \(v_i \in S_i \)

\[
0 \leq |U_i(v_i; m)| \leq |U_i(0; m) + v_i \bar{a}_i(v_i; \rho)| \leq |U_i(0; m)| + |v_i|.
\]
Thus, \(|\overline{U}(\cdot; m)\)| is bounded by two integrable functions. Therefore \(\overline{U}_i(\cdot; m)\) is integrable on \(S_i\) with respect to \(F_i\), and hence \(\overline{I}_i(\cdot; m)\) is also integrable on \(S_i\).

Fix \(i \in I, \overline{u}_i \in S_i\) arbitrarily, and observe that \((P.1.2)\) is satisfied for every \(v_i \in S_i\). Integrating both sides of \((P.1.2)\) with respect to \(F_i\) on \(S_i\) yields

\[
\int_{S_i} s_i \overline{a}_i(s_i; \rho) dF_i(s_i) - E(t_i(V_i; \tau)) = \overline{U}_i(\overline{v}_i; m) + \int_{S_i} \int_{v_i} \overline{a}_i(x_i; \rho) dx_i dF_i(s_i).
\]

The double integral in the right side of this equation is equivalent to

\[
\int_{S_i} \int_{v_i} \overline{a}_i(x_i; \rho) dx_i dF_i(s_i) = \int_{v_i \leq \overline{v}_i} \int_{v_i} \overline{a}_i(x_i; \rho) dx_i dF_i(s_i) + \int_{s_i > \overline{v}_i} \int_{v_i} \overline{a}_i(x_i; \rho) dx_i dF_i(s_i).
\]

Since each double integral above is invariant to changes in the order of integration (see e.g., Theorem 12.19 in Royden, 1968) one obtains, by reversing the order of integration,

\[
\int_{S_i} \int_{v_i} \overline{a}_i(x_i; \rho) dx_i dF_i(s_i) = -\int_{x_i \leq v_i} F_i(x_i) \overline{a}_i(x_i; \rho) dx_i + \int_{x_i > v_i} (1 - F_i(x_i)) \overline{a}_i(x_i; \rho) dx_i.
\]

Therefore,

\[
\overline{U}_i(\overline{v}_i; m) = \int_{x_i \leq v_i} \left(x_i + \frac{F_i(x_i)}{f_i(x_i)} \right) \overline{a}_i(x_i; \rho) dF_i(x_i) - E(\overline{a}_i(V_i; \tau)) + \int_{x_i > v_i} \left(x_i - \frac{1 - F_i(x_i)}{f_i(x_i)} \right) \overline{a}_i(x_i; \rho) dF_i(x_i).
\]

Note that since \(i \in I, \overline{v}_i \in S_i\) have been selected arbitrarily, \((3.1)\) is satisfied, for each \(i \in I, \overline{v}_i \in S_i\), by any mechanism \(m\) satisfying \((P.1.2)\).

Given a provision rule \(\rho : S \rightarrow A\), for each \(i \in I\) and \(v_i \in S_i\), write

\[
\overline{U}^\rho_i(u_i; \rho) = \int_{x_i \leq v_i} \left(x_i + \frac{F_i(x_i)}{f_i(x_i)} \right) \overline{a}_i(x_i; \rho) dF_i(x_i) + \int_{x_i > v_i} \left(x_i - \frac{1 - F_i(x_i)}{f_i(x_i)} \right) \overline{a}_i(x_i; \rho) dF_i(x_i).
\]

Thus, for any mechanism \(m \equiv (\rho, \tau)\) satisfying \((P.1.2)\), for each \(i \in I, v_i \in S_i\) one has

\[
\overline{U}_i(v_i; m) = \overline{U}^\rho_i(u_i; \rho) - E(\overline{a}_i(V_i; \tau)).
\]

It is straightforward to check that the converse is also satisfied, that is, \((P.1.2)\) is satisfied by any mechanism \(m \equiv (\rho, \tau)\) satisfying \((P.1.2')\). Note that for any mechanism \(m \equiv (\rho, \tau)\) satisfying BIC, \(\overline{U}^\rho_i(\cdot; \rho)\) gives agent \(i\)'s interim expected utility in the absence of any lump-sum taxes.
Denote by P the set of all provision rules $\rho : S \to A$ satisfying (P.1.1). A direct consequence of Proposition 1 is that it is always possible to obtain Bayesian incentive compatible mechanisms from any provision rule $\rho \in P$. Furthermore, given a provision rule $\rho \in P$, one can construct a tax function τ in such a way that the mechanism $m \equiv (\rho, \tau)$ satisfying BIC for which the vector specifying the ex-ante expected taxes paid by all individuals is equal to a prespecified $\overline{T} = \{T_i : i \in I\} \in \mathbb{R}^N$. Given $\rho \in P$, a particular construction is as follows: let $\tau : S \to \mathbb{R}^N$ be defined, for each $v \in S$, $i \in I$, by

$$\tau_i(v) = v_i \bar{a}_i(v_i; \rho) - \bar{U}_i(v_i; \rho) + \overline{T}_i.$$

Note that the mechanism (ρ, τ) satisfies (P.1.2'). Hence it satisfies BIC. Since (P.1.2') is satisfied one obtains for all $i \in I$, $v_i \in S_i$,

$$E(t_i(v_i; \tau)) = \overline{T}_i,$$

and therefore the ex-ante expected taxes paid by individual i are equal to the prespecified \overline{T}_i. In particular, if the vector \overline{T} is selected in such a way that

$$\sum_{i \in I} \overline{T}_i = E(C(\rho(V))),$$

then the mechanism $m \equiv (\rho, \tau)$ constructed as above satisfies EXABB.

Proposition 2 states this result formally.

Proposition 2. Let $\overline{T} \in \mathbb{R}^N$ be arbitrary. For every ρ satisfying (P.1.1), there exists a tax function τ such that the mechanism $m \equiv (\rho, \tau)$ satisfies BIC, and for each $i \in I$ one has $E\{\tau_i(V)\} = \overline{T}_i$.

In what follows, the set of mechanisms satisfying BIC and EXAF will be denoted by \mathcal{M}, that is

$$\mathcal{M} \equiv \{m : S \to A \times \mathbb{R}^N : m \text{ satisfies BIC and EXAF}\}.$$

Proposition 3 establishes that the tax function of any mechanism satisfying BIC and EXAF can be modified in such a way that EXPF is satisfied without altering the agents' interim utilities.

Proposition 3. For any mechanism $m \equiv (\rho, \tau)$ satisfying BIC and EXAF, there exists a tax function τ' such that $m' \equiv (\rho, \tau')$ satisfies BIC and EXPF, and for every $v \in S$, $i \in I$ one has

$$\overline{U}_i(v_i; m') = \overline{U}_i(v_i; m).$$

12
Thus, according to Proposition 3, using mechanisms satisfying BIC and EXAF but not EXPF does not introduce any new possibilities in terms of interim utilities obtained by agents. Also, by Proposition 2 that for every \(\rho \) satisfying \((P.1.1)\) there exists a tax function \(\tau \) such that the mechanism \(m \equiv (\rho, \tau) \) satisfies BIC and EXPBB. Hence, if no further requirements are imposed on the class of mechanisms to be considered available, one can restrict attention to mechanisms satisfying BIC and EXPBB.

Dominant strategy incentive compatible mechanisms

The notion of dominant strategy incentive compatibility is very attractive because it does not require any knowledge of the agents' beliefs over the other agents' types (see e.g., Ledyard, 1986). In this section, I provide a sufficient condition that guarantees that every mechanism satisfying BIC and EXAF can be modified to obtain a mechanism satisfying DSIC and EXAF without altering the agents' interim utilities. This condition imposes that the provision rule of such mechanism must be a non-decreasing function of the agents' reported valuations.

Proposition 4. Let \(m \equiv (\rho, \tau) \) be a mechanism satisfying BIC and EXAF and suppose that, for each \(i \in I \) and \(v_{-i} \in S_{-i} \), \(\rho_i(\cdot, v_{-i}) \) is non-decreasing on \(S_{-i} \). Then there exists a tax function \(\tau' \) such that the mechanism \(m' \equiv (\rho, \tau') \) satisfies DSIC and EXAF, and for all \(v \in S, i \in I \) one has

\[
U_i(v_i; m') = U_i(v_i; m).
\]

In the proof of Proposition 4, given in the Appendix, it is constructed a tax function such that the resulting mechanisms may fail to satisfy EXPF. Of course, this is consistent with the well known result that dominant strategy incentive compatible mechanisms may fail to satisfy EXPF (see e.g., Green and Laffont, 1979). In these cases the cost paid to obtain a mechanism with stronger incentive properties is a weaker feasibility requirement.

To summarize the results obtained in this section, it has been shown that for each mechanism satisfying BIC, the interim expected utility obtained by any individual of any type is completely described (except for taxes that are lump sum in expectations) by the provision rule of the mechanism. In other words, in order to determine the interim utility obtained by any individual of any type with a mechanism satisfying BIC it is sufficient to specify the expected value of these taxes (which for mechanisms satisfying EXABB must add up to zero). Condition \((P.1.2')\), which is satisfied by any mechanism satisfying BIC, provides an explicit formula to compute interim utilities corresponding to any mechanism satisfying BIC. These taxes can be constructed in such a way that EXPBB is also satisfied. In addition, if the provision rule is a non-decreasing function of the agents' reported valuations, then these taxes can be constructed in such a way that DSIC is satisfied.
4 Interim efficient mechanisms

This section explores the efficiency properties of incentive feasible mechanisms. If a group of individuals discuss the possibility of altering a statu quo mechanism and use a new mechanism, it seems plausible that the new mechanism exhausts the possibilities for further improvements. The decision whether a mechanism is to be changed is made in the interim stage. Following Holmström and Myerson (1983), mechanisms that exhaust the possibilities for further improvements are referred to as interim incentive efficient mechanisms (or simply interim efficient mechanisms). A mechanism $m \in \mathcal{M}$ is interim efficient (IE) if there does not exist any other mechanism $m' \in \mathcal{M}$ such that

\begin{align*}
\text{(E.1) for all } i \in I, v_i \in S_i \text{ one has } U_i(v_i; m') &\geq U_i(v_i; m), \\
\text{and} \\
\text{(E.2) there exists } j \in I, v_j \in S_j \text{ such that } U_j(v_j; m') &> U_j(v_j; m).
\end{align*}

A second, seemingly weaker notion of interim efficiency may be considered. A mechanism $m \in \mathcal{M}$ is weakly interim efficient (WIE) if there does not exist $m' \in \mathcal{M}$ such that for all $i \in I$ and $v_i \in S_i$ one has

$$U_i(v_i; m') > U_i(v_i; m).$$

The following Lemma establishes that the two notions of interim incentive efficiency are equivalent.

Lemma 1. Every WIE mechanism is IE.

Proposition 5 establishes that every IE mechanism is a solution to a welfare maximization problem. Let \mathcal{G} denote the set of all distribution functions $G : S \rightarrow [0,1]$ such that

$$\int_S \sum_{i \in I} |x_i| dG(x) < \infty.$$

A distribution $G \in \mathcal{G}$ will be regarded as a welfare distribution on the set S of all possible profiles of valuations. Let $\mathcal{U} : \mathcal{M} \times \mathcal{G} \rightarrow \mathbb{R}$ be defined, for each $(m, G) \in \mathcal{M} \times \mathcal{G}$, by

$$\mathcal{U}(m; G) = \int_S \left(\sum_{i \in I} U_i(x_i; m) \right) dG(x).$$
For each \((m, G)\), the number \(U(m; G)\) is interpreted as the *aggregate interim welfare* of the mechanism \(m\) (with respect to \(G\)). The aggregate interim welfare is a weighted average, evaluated with respect to a distribution function \(G\), of the agents' interim expected utilities.

Theorem 1. A mechanism \(m^* \equiv (\rho^*, \tau^*) \in \mathcal{M}\) is interim efficient if and only if there exists a welfare distribution \(G \in \mathcal{G}\) such that \(m^*\) solves

\[
\max_{m \in \mathcal{M}} U(m, G).
\] (PR1)

Recall that by Proposition 1 for every mechanism \(m \equiv (\rho, \tau) \in \mathcal{M}\), the individuals' interim utilities are determined, except for terms that are lump sum in expectations, by the provision rule \(\rho\). Also, Proposition 2 establishes that one can always obtain a mechanism \(m \in \mathcal{M}\) from any provision rule \(\rho \in \mathcal{P}\). Propositions 1 and 2 are used now to obtain an equivalent expression for the average interim welfare of a mechanism.

For each \(G \in \mathcal{G}\) and each \(i \in I\), let \(G_i : S_i \rightarrow [0, 1]\) be defined, for all \(v_i \in S_i\), by

\[
G_i(v_i) = \int_{S_{-i}} dG(v_i, x_{-i}),
\]

that is, \(G_i\) determines individual \(i\)'s marginal welfare distribution corresponding to \(G\).

Also, given an arbitrary welfare distribution \(G \in \mathcal{G}\) and for each \(i \in I\), \(v_i \in S_i\), let

\[
W_i(v_i; G) = v_i + \frac{F_i(v_i) - G_i(v_i)}{f_i(v_i)}.
\]

Finally, let \(W : P \times \mathcal{G} \rightarrow \mathbb{R}\) be defined, for each \((\rho, G) \in P \times \mathcal{G}\), by

\[
W(\rho, G) = \int_S \left[\sum_{i \in I} W_i(v_i; G) \rho_i(v) - C(\rho(v)) \right] dF(v).
\]

Recall that by Proposition 1 each \(m \in \mathcal{M}\) satisfies BIC. Hence for each \(i \in I\), \(v_i \in S_i\), \(\overline{U}_i(v_i; m)\) satisfies \((P.1.2')\). Integrating both sides of \((P.1.2')\) with respect to \(G_i\) one has, for all \(m \in \mathcal{M}\) and all \(i \in I\),

\[
\int_{S_i} \overline{U}_i(x_i; m) dG_i(x_i) = \int_{S_i} \left(x_i + \frac{F_i(x_i)}{f_i(x_i)} \right) \overline{a}_i(x_i; \rho) dF_i(x_i) - E \left(\bar{t}_i(V_i; \tau) \right) \\
- \int_{S_i} \left(\int_{x_i} \overline{a}_i(x_i; \rho) dx_i \right) dG_i(x_i).
\]

By reversing the order of integration of each iterated integral in the above expression one obtains

\[
\int_{S_i} \overline{U}_i(x_i; m) dG_i(x_i) = \int_{S_i} \left(x_i + \frac{F_i(x_i)}{f_i(x_i)} \right) \overline{a}_i(x_i; \rho) dF_i(x_i) - E \left(\bar{t}_i(V_i; \tau) \right) \\
- \int_{S_i} \overline{a}_i(x_i; \rho) G_i(x_i) dx_i;
\]
that is,
\[
\int_{S_i} U_i(x_i; m) dG_i(x_i) = \int_{S_i} \left(x_i + \frac{F_i(x_i) - G_i(x_i)}{f_i(x_i)} \right) \bar{a}_i(x_i; \rho) dF_i(x_i) - E (\bar{t}_i(V_i; \tau)).
\]
Summing up for \(i \in I \) and taking into account that EXABB is satisfied yields
\[
\sum_{i \in I} \int_{S_i} U_i(x_i; m) dG_i(x_i) = \mathcal{W}(\rho, G).
\]
Therefore,
\[
\mathcal{U}(m, G) = \mathcal{W}(\rho, G).
\]
This result is established formally in Theorem 2.

Theorem 2. For every \(G \in \mathcal{G} \), a mechanism \(m = (\rho^*, \tau^*) \in \mathcal{M} \) solves (PR1) if and only if \(\rho^* \) solves
\[
\max_{\rho \in \mathcal{P}} \mathcal{W}(\rho, G).
\]

(PR2)

In order to characterize the solutions to PR2 for a given welfare distribution \(G \in \mathcal{G} \), it is useful to distinguish between two cases, depending on the behavior of the functions \(\{W_i(\cdot; G) : i \in I\} \). For each \(i \in I \), the function \(W_i(\cdot; G) \) will be referred to as individual \(i \)'s virtual valuation function (with respect to the distribution \(G \))\(^5\).

Case 1. Monotonic virtual valuation functions

Suppose that for each \(i \in I \), the function \(W_i(\cdot; G) \) is non-decreasing on \(S_i \). Notice that if a provision rule \(\rho^* : S \rightarrow A \) satisfies for each \(v \in S \) and each \(a \in A \),
\[
\sum_{i \in I} W_i(v_i; G) \rho_i^*(v) - C(\rho^*(v)) \geq \sum_{i \in I} W_i(v_i; G) a_i - C(a),
\]
then it maximizes the functional \(\mathcal{W}(\rho, G) \) among all provision rules \(\rho : S \rightarrow A \). Since for each \(i \in I \) the function \(W_i(\cdot; G) \) is non-decreasing on \(S_i \), then each function \(\rho_i^* \) is non-decreasing on \(S_i \) and therefore \(\rho^* \in \mathcal{P} \). Thus, if each function \(W_i(\cdot; G) \) is non-decreasing on \(S_i \), then a provision rule \(\rho^* \) satisfying (4.1) solves PR2.

Given a welfare distribution \(G \), for each \(i \in I \) and \(v_i \in S_i \), the number \(W_i(v_i; G) \) can be regarded as the social value of providing the good to individual \(i \) when \(v_i \) is reported. Individual \(i \)'s virtual valuation is obtained by adding to his reported type \(v_i \) the correction term \((F_i(v_i) - G_i(v_i)) / f_i(v_i) \). In order to understand why this correction takes place, it might be useful to rewrite \(i \)'s virtual valuation associated to \(v_i \) and \(G \) as
\[
W_i(v_i, G) = v_i + \frac{(1 - G_i(v_i)) - (1 - F_i(v_i))}{f_i(v_i)}.
\]

\(^5\)See e.g., Myerson (1981)
Consider now the problem faced by a social planner who is seeking to maximize the average of the agents’ interim expected utilities (where this average is taken with respect the distribution \(G \)). A natural way to proceed is to increase the level of provision whenever someone reports a positive valuation and to decrease it when someone reports a negative one. However, increasing provision when an arbitrary individual \(i \in I \) reports a positive valuation \(v_i \) might have negative effects on expected taxes that can be collected from \(i \) if his valuation were higher than \(v_i \). If taxes paid by individual \(i \) when he reports a valuation \(v_i' > v_i \) are too high, the individual might have incentives to underreport his valuation, since reporting \(v_i \) leads to a relatively high level of provision. Thus, the value that the planner assigns to valuation \(v_i \) is corrected by,

- a term that increases with the cumulative welfare corresponding to types with valuation higher than \(v_i \), \((1 - G_i(v_i))\),
- a term that decreases with the cumulative objective probability corresponding to types with valuation higher than \(v_i \), \((1 - F_i(v_i))\)

and

- a term that decreases with the density associated to valuation \(v_i \), \(f_i(v_i) \) increases.

Finally, it should be noticed that for each \(G \in \mathcal{G} \) and each \(i \in I \) one has

\[
\int_{S_i} W_i(x_i; G) \, dF_i(x_i) = \int_{S_i} x_i \, dG_i(x_i).
\]

That is, the ex-ante expected virtual valuation of individual \(i \) equals the expectation of a random variable \(X_i \) which is distributed on \(S_i \) according to the distribution function \(G_i \).

In a recent paper, Ledyard and Palfrey (1999)\(^6\) provide a version of Theorem 1 in a pure public goods framework with linear costs, that is, in a framework described

\[\sum_{i \in I} \int_{S_i} U_i(v_i; m) \lambda_i(v_i) \, dF_i(v_i).\]

where \(\{\lambda_i : S_i \to \mathbb{R} : i \in I\} \) is a system of welfare weights satisfying, for each \(i \in I \),

\[\int_{S_i} \lambda_i(v_i) \, dF_i(v_i) = 1.\]

Notice that such functional is equivalent to \(U(m; G) \) for a distribution \(G \) satisfying

\[G_i(v_i) = \int_{x_i \leq v_i} \lambda_i(x_i) \, dF_i(x_i).\]
by a set of provision alternatives

\[A \equiv \{ a \in [0,1]^N : a_i = a_j \text{ for every } i, j \in I \}, \]

and a cost function defined, for each \(a \in A \), by

\[C(a) = Ka_1. \]

for some \(K \geq 0 \). Note that, in pure public goods problems, the provision rule of a mechanism is described by a function \(q : S \to [0,1] \) determining the (unique) level of provision corresponding to each profile of reported valuations (that is, the function verifying \(q \equiv \rho_i \equiv \rho_j \) for each \(i, j \in I \)). If for a given welfare distribution \(G \), all the individuals’ virtual valuation functions are non-decreasing, then a provision rule \(q^* : S \to [0,1] \) solves PR2 if it satisfies, for each \(v \in S \),\(^7\)

\[q^*(v) = \begin{cases} 0, \text{ whenever } \sum_{i \in I} W_i(v; G) < K, \\ 1, \text{ whenever } \sum_{i \in I} W_i(v; G) > K. \end{cases} \]

Notice that the characterization provided in Theorem 1 is somewhat incomplete, since it does not indicate how to find a solution to PR2 for the case in which some of the individuals’ virtual valuation functions are strictly decreasing on some intervals in \(S \). This case is analyzed below.

Case 2. Decreasing virtual valuation functions.

Note that a provision rule \(\rho^*: S \to A \) satisfying (4.1) might not be in the set \(P \) and therefore such provision rules are not a solution to (PR2). It can be shown, however, that the set of provision rules solving (PR2) for some \(G \in \mathcal{G} \) can always be associated to a collection of generalized virtual valuation functions.

Denote by \(\Gamma \) the class of all open intervals in the real line. An arbitrary interval in \(\Gamma \) will be represented by the symbol \((a,b)\), with \(a, b \in \mathbb{R} \cup \{-\infty, \infty\} \). Given \(G \in \mathcal{G} \) and \(i \in I \), a function \(W_i^* (\cdot ; G) : S_i \to \mathbb{R} \) is a generalized virtual valuation function with respect to \(G \) if (a) it is continuous and non decreasing on \(S_i \), and (b) there exists a (possibly empty) countable collection \(\{ C_k : k \in K \} \) of disjoint intervals in \(\Gamma \) such that, for each \(v_i \in S_i \), one has

\[W_i^*(v_i; G) = \begin{cases} \int_{C_k} W_i(x_i; G) dF_i(x_i) / \int_{C_k} dF_i(x_i) W_i(v_i; G), & \text{if } v_i \in C_k \text{ for some } k \in K, \\ 0, & \text{otherwise} ; \end{cases} \]

and

\[\int_{x_i \leq v_i} W_i^* (x_i, G) dF_i(x_i) \leq \int_{x_i \leq v_i} W_i (x_i, G) dF(x_i). \]

\(^7\)A condition which corresponds to Ledyard and Palfrey’s virtual cost benefit criterium.
Condition (b.1) implies for every $k \in K$,

$$\int_{C_k^i} W^*_i(x_i; G) dF(x_i) = \int_{C_k^i} W_i(x_i; G) dF(x_i).$$

Therefore,

$$E[W^*_i(V_i; G)] = \int_{S_i} W^*_i(x_i; G) dF(x_i) = \int_{S_i} W_i(x_i; G) dF(x_i) = \int_{S_i} x_i dG_i(x_i).$$

Summarizing, a generalized virtual valuation is obtained by flattening $W_i(\cdot; G)$ on those regions on which $W_i(\cdot; G)$ is decreasing in such a way that the expected value of $W_i(V_i; G)$ is preserved. Note also that a non-decreasing function $W_\& (\cdot; G)$ is a generalized virtual valuation function (with respect to G) since the pair

$$[W^*_i(\cdot; G), C_i] = [W_i(\cdot; G), \emptyset]$$

satisfies (b.1) and (b.2).

Lemma 2. For every $G \in \mathcal{G}$ and every $i \in I$, a generalized virtual valuation function with respect to G always exists.

The proof of Lemma 2 proceeds by constructing a generalized virtual valuation function from an arbitrary $G \in \mathcal{G}$. The procedure by which a virtual valuation function is modified to obtain a generalized virtual valuation function is closely related to a procedure applied by Maskin and Riley (1989) in the context of multiunit auctions.8

Theorem 3. Let $G \in \mathcal{G}$ be arbitrary and let ρ^* be a provision rule satisfying, for each $v \in S$ and $a \in A$

$$\sum_{i \in I} W^*_i(v_i; G) \rho^*_i(v) - C(\rho^*(v)) \geq \sum_{i \in I} W_i(v_i; G) a_i - C(a), \quad (T.3)$$

for some collection $\{W^*_i(\cdot; G) : i \in I\}$ of generalized virtual valuation functions with respect to G. Then ρ^* solves PR2.

I conclude this section with some examples of interim efficient mechanisms in different contexts.

8Their procedure, however, is applied to a specific welfare optimization problem, namely, the maximization of the seller's revenue.
5 Examples

5.1 The role of exclusion in public good problems

Consider a public good problem with linear costs, that is, a problem described by a set of provision alternatives

\[A \subseteq [0,1]^N, \]

and a cost function defined, for each \(a \in A \), by

\[C(a) = c \max \{ a_i : i \in I \}; \]

where \(0 < K < N. \)

Ledyard and Palfrey (1999) have explored the properties of several provision rules solving \(PR2 \) in this environment, under the assumption that the public good is non-excludable (i.e., assuming \(A \equiv \{ a \in [0,1]^N : a_i = a_j \forall i,j \in I \} \)). Since the results obtained above allow for different specifications of the set of alternatives, one can study the effects of introducing exclusion by comparing the solutions to \(PR2 \) when exclusion is allowed (i.e., if \(A \equiv [0,1]^N \)) with those studied by Ledyard and Palfrey.

Note that if exclusion is not possible, then solutions to \(PR2 \) satisfy

\[
\rho^*_i(v) = \begin{cases}
0, & \text{if } \sum_{i \in I} W^*_i(v_i; G) < K \\
1, & \text{if } \sum_{i \in I} W^*_i(v_i; G) \geq K,
\end{cases}
\]

for some collection of generalized virtual valuation functions \(\{ W^*_i(\cdot; G) : i \in I \} \). If exclusion is possible, then it satisfies

\[
\rho^*_i(v) = \begin{cases}
1 & \text{if } W^*_i(v_i; G) \geq 0 \text{ and } \sum_{j \in I : W^*_j(v_j; G) \geq 0} W^*_j(v_j; G) \geq K \\
0 & \text{otherwise.}
\end{cases}
\]

Thus, per capita expected provision of the public good, that is,

\[
\frac{E \left(\sum_{i \in I} \rho^*_i(V) \right)}{N}
\]

is higher if exclusion is possible. The intuition behind this result is clear: exclusion plays a role in ameliorating the free rider problem, since by underreporting their true valuations the agents might be excluded from the use of the public good.\(^9\)

\(^9\)The role of exclusion in ameliorating the free rider problem has been recently discussed by Dearden (1997). His main argument, however, relies on the assumption that the agents select the mechanism that maximizes the agent's ex-ante utilities, subject to individual rationality constraints.
5.2 Mechanisms exhibiting pooling of types

5.2.1 Interim efficient Stochastic Mechanisms

Consider a pure public good problem with linear costs as the one described in the above example. Assume also that, for each \(i \in I, V_i \) is distributed uniformly on \([0, 1]\) and \(0 < K < N \). An interesting class of interim efficient mechanisms arising in this framework are those associated to welfare functions that “jump” at a given point in the interior of its support \(S \equiv [0, 1]^N \). For example, let \(G \) be given for all \(v \in S \) and \(i \in I \) by

\[
G_i(v_i) = \begin{cases}
0, & \text{whenever } v_i < \frac{K}{N}, \\
1, & \text{whenever } v_i \geq \frac{K}{N}.
\end{cases}
\]

Then for each \(i \in I \), the function

\[
W_i^*(v_i; G) = \begin{cases}
2v_i & \text{if } v_i < \frac{K}{2N}, \\
\frac{1}{2} & \text{if } \frac{K}{2N} \leq v_i \leq \frac{K}{2N} + \frac{1}{2}, \\
2v_i - 1 & \text{if } v_i > \frac{K}{2N} + \frac{1}{2},
\end{cases}
\]

is a generalized virtual valuation function. By Theorem 3, a provision rule \(\rho^* \) such that

\[
\rho_i^*(v) = \begin{cases}
0, & \text{if } \sum_{i} W_i^*(v_i; G) < K, \\
1, & \text{if } \sum_{i} W_i^*(v_i; G) > K,
\end{cases}
\]

solves \((PR2)\).

Note that the random variable \(\sum_{i} W_i^*(V_i; G) \) is not continuous, and therefore \(\rho^* \) might select an arbitrary alternative \(a \in A \) with probability

\[
\Pr \left[\sum_{i} W_i^*(V_i) = K \right] = \prod_{i \in I} \Pr \left[\frac{K}{2N} \leq V_i \leq \frac{K}{2N} + 1 \right] = \left(\frac{1}{2} \right)^N.
\]

Recall that if the set \(A \) represents the set of all stochastic decisions on a discrete set \(D \subseteq \{0, 1\}^N \), then a provision alternative \(a \) is interpreted as a stochastic decision. In particular, if \(a \notin \{0, 1\} \), then more than one alternative in \(D \) can be selected with positive probability.

5.2.2 Sampling mechanisms

Consider again the same public good problem and let \(G \) be given for all \(v \in S \) and \(i \in I \) by

\[
G_i(v_i) = \begin{cases}
0, & \text{whenever } v_i < \frac{1}{4}, \\
1, & \text{whenever } v_i \geq \frac{1}{4}.
\end{cases}
\]

Then for each \(i \in I \),

\[
W_i(v_i; G) = \begin{cases}
2v_i & \text{if } v_i < \frac{1}{4}, \\
v_i & \text{if } v_i \geq \frac{1}{4}.
\end{cases}
\]
Thus, virtual valuations are strictly decreasing on some interval in \(S_i \). For each \(i \in I \), the function

\[
W_i^*(v_i; G) = \begin{cases}
0 & \text{if } v_i < \frac{1}{2} , \\
2v_i - 1 & \text{if } v_i \geq \frac{1}{2} ,
\end{cases}
\]

is a generalized virtual valuation function with respect to \(G \). For each \(v \in S \), let

\[
n(v) = \# \left\{ i \in I : v_i > \frac{1}{2} \right\} .
\]

Also, Then a provision rule \(\rho^* \) such that

\[
\rho^*_i(v) = \begin{cases}
0, & \text{if } \sum_{i: \nu_i > \frac{1}{2}} v_i \leq \frac{K+n(v)}{2} , \\
1, & \text{if } \sum_{i: \nu_i \geq \frac{1}{2}} v_i > \frac{K+n(v)}{2} ,
\end{cases}
\]

solves \((PR2) \). Observe that an interim efficient mechanism (associated to the distribution \(G \)) can be implemented by a (non random) sampling mechanism (with a sample size given by \(n(v) \)) such that people participating in the sample (i.e., those whose valuation is higher than \(\frac{1}{2} \)) are (self-)selected through a participation tax.

Sampling mechanisms may be deemed desirable in contexts in which acquiring and processing information is costly, such as those studied in Green and Laffont (1979) or Bobo (1998). These authors propose that these costs could be reduced by using a (random) sampling mechanism. However, a (non random) sampling mechanism in which people participating in the sample are (self-)selected (through a participation fee, for example) may also reduce these costs, and the decision whether to participate or not may provide the designer with some relevant information.

5.2.3 A second-price double auction with participation charges

Another example of mechanisms exhibiting pooling of types with other interesting properties arises in the context of private goods. Yoon (1997), has studied the properties of double second price auctions (with participation charges) in multilateral trading problems. Recall that a multilateral trading problem consists in allocating \(M \leq N \) units of a private good among \(N \) agents. The set of alternatives is therefore given by

\[
A \equiv \left\{ a \in [0, 1]^N : \sum_{i=1}^{N} a_i \leq M \right\} ,
\]

and the cost function \(C \) satisfies, for each \(a \in A \),

\[
C(a) = 0.
\]

Suppose also that the set of agents is formed by a set \(J \) of \(M \) sellers and a set \(B \subseteq I \) of \(N - M \) buyers. The sellers have property rights over the goods that are traded. To
simplify things, assume that the individuals’ valuations are independent, identically distributed on an interval \([0, v]\).

A double second-price auction (with participation charges) is a two price mechanism such that:

- an external agent, acting as a mediator, announces a participation charge \(\delta_B\) for the buyers and \(\delta_J\) for the sellers, that allows the agents to participate in the mechanism. A seller who decides not to participate retains the good he owns;

- those agents who decide to participate report their valuations to the mediator, who orders these reported valuations in a list \(v^1, v^2, \ldots, v^K, v^{K+1}, \ldots, v^{K+L}\), where \(K\) is the number of sellers that decide to participate and \(L\) is the number of buyers who decide to participate;

- those agents reporting the \(K\) highest valuations are provided with one unit of the good;

- all those buyers who actually buy the good pay a price \(p_B = v^K\); while those sellers who actually sell the good receive a price \(p_J = v^{K+1}\).

Thus, a double second-price is an extension of Vickrey (1961) second-price auction to markets with more than one seller and participation charges. Yoon (1997a, 1997b) has demonstrated that for an appropriate selection of the participation charges, a double second-price auction satisfies \(EXABB\) and induces voluntary participation (in the interim stage) from both the buyers and the sellers. In addition, for all agents who participate, reporting the true valuation is a dominant strategy, and unrealized gains from trade converge to zero as the number of individual becomes large.

Clearly, a double second-price auction with participation charges exhibits pooling of types. More precisely, let \(v_b(\delta_B)\) and \(v_j(\delta_J)\) be the lowest type of buyer and, respectively, the highest type of a seller who decide to participate. Taking into account that the \(S_i = S_j\) for any two agents \(i, j \in I\), it follows that the provision rule of a second price double auction satisfies, for each \(v \in S\),

\[
\sum_{i \in I} W^*(v_i)\rho_i(v) = \max_{a \in A} \left\{ \sum_{i \in I} W^*(v_i)\rho_i(v) \right\},
\]

where \(W^*\) is an arbitrary non-decreasing function \(W^*: [0, v] \rightarrow \mathbb{R}_+\) such that

\[
W^*(\cdot) \text{ is strictly increasing on } [v_b(\delta_B), v_j(\delta_J)]; \tag{5.3}
\]

\[
W^*(v_b(\delta_B)) = W^*(0); \tag{5.4}
\]

and

\[
W^*(v_j(\delta_J)) = W^*(v). \tag{5.5}
\]
Thus, in order to check whether a double second-price auction satisfying EXABB is interim efficient it is sufficient to show that there exists a function $W^* : [0, v] \rightarrow \mathbb{R}$ satisfying (5.3), (5.4) and (5.5) and a distribution $G^* : [0, v]^N \rightarrow [0, 1]$ such that W^* is a generalized virtual valuation function with respect to G.

Consider, for example, a double second-price auction satisfying EXABB and such that $\delta_J = 0$ and $\delta_B > 0$ (that is, only buyers pay participation charges). Note that for such participation charges one has $v_J(\delta_J) = v$ and $v_B(\delta_B) > 0$. In order to obtain a generalized virtual valuation function W^* satisfying (5.3), (5.4) and (5.5), let $\alpha \in [0, 1]$ be arbitrary and let G^α be a distribution function satisfying, for each $i \in I, v_i \in S_i$,

$$G^\alpha_i(v_i) = \alpha + (1 - \alpha) F_i(v_i).$$

Note that for each $i \in I, v_i \in S_i$ one has

$$W_i(v_i; G^\alpha) = v_i - \alpha \frac{1 - F_i(v_i)}{f_i(v_i)}.$$

Observe also that there exists α^* such that

$$W_i(v_i; G^\alpha) = 0.$$

Let now G^* be defined, for each $i \in I, v_i \in S_i$,

$$G^*_i(v_i) = \begin{cases} 0, & \text{if } v_i < v^*_i; \\ G^\alpha_i(v_i) & \text{if } v_i \geq v^*_i; \end{cases}$$

where v^*_i is selected in such a way that

$$\int_0^{v_B(\delta_B)} W_i(x_i; G^*)dF_i(x_i) = 0$$

is satisfied. It is straightforward to check that such distribution G^* always exists. Furthermore, if $F_i = F_j$ for any two $i, j \in I$, and each function $W_i(\cdot; G^1)$ is strictly increasing on $[0, v]$, then every generalized virtual valuation function $W_i(\cdot; G^*)$ satisfies (5.3), (5.4) and (5.5). Therefore a budget balanced double second-price auction such that $\delta_J = 0$ is interim efficient.

Note that this example shows that a given (budget balanced) double second-price auction can be justified as interim efficient for a wide range of distributions generating the agents' valuations (to be more precise, for all those distributions that yield equal marginal distributions for any two individuals and such that each function $W_i(\cdot; G^1)$ is strictly increasing on $[0, v]$). Thus, interim efficiency of some double second price auctions is robust to changes in the specification of the distribution generating the agents' valuations.\footnote{It should be noticed that the participation charges required to achieve budget balance are still dependent on the prior distributions, and therefore one might argue that double auctions are not robust to prior information assumptions. Note, however, that prior information only determines the participation charges and does not affect the rule determining the volume and terms of trade.}

Although Wilson (1985) has shown that other
trading mechanisms, such as k-double auctions (See also Chaterjee and Samuelson (1983)), achieve interim efficiency when when the number of traders is sufficiently large, a k-double auction have two unsatisfactory features. First of all, a k-double auction imposes on participants a severe informational and computational burden. Second of all, a k-double auction might have infinitely many different equilibria, as shown by Leninger, Linhart and Radner (1989).

6 Concluding Remarks

Throughout the paper, no restrictions are imposed on the welfare distributions associated to the set of interim incentive efficient mechanisms. Thus, the whole range of interim efficient mechanisms, including those that exhibit pooling of types, is characterized. As suggested in the examples in Section 5, there might be situations in which mechanisms exhibiting pooling of types yield other interesting properties from both normative and positive considerations.

A possible extension of this work is to analyze the robustness of interim incentive mechanisms to prior information assumptions, following the lines suggested by Mookherjee and Reichelstein (1992) and Makowski and Mezzetti (1994). Although several definitions have been provided, a robust mechanism can be defined as a mechanism whose properties are invariant to changes in the distribution determining the agents’ valuations. Note that, since it has been shown that any interim efficient mechanism can be constructed in such a way that it satisfies DSIC, incentive compatibility of any interim efficient mechanism does not depend on the distribution determining the agents’ valuations.

In spite of this, determining whether a given mechanism is interim efficient requires also that its provision rule maximizes the sum of the agent’s virtual valuations, which in general depends on the prior information held by agents. As suggested in the examples, second price double auctions constitute an exception that might be worth exploring, since they maximize the sum of the agents’ virtual valuations for a wide range of specifications of the distribution generating the agents’ valuations.

Other extensions, such as relaxing the assumption of independent types or allowing for non linear utility functions appear to be more difficult open questions.
Appendix A. Stochastic allocations in discrete problems

Consider a problem described by \([I, D, C_D, V]\), where \(I\) and \(V\) are defined as in section 1; \(D \subseteq \{0, 1\}^N\) is an arbitrary discrete set of alternatives; and \(C_D\) is an arbitrary function \(C_D : D \to \mathbb{R}\). Analogously to the class of problems described in section 1, a feasible allocation is defined as pair \((d, t) \in D \times \mathbb{R}^N\) such that \(\sum_{i \in I} t_i \geq C_D(d)\). For each \(i \in I\), utility obtained by \(i\) at an allocation \((d, t) \in D \times \mathbb{R}\) is given by \(v_id_i - t_i\), where \(v_i\) is a realization of \(V_i\). Denote by \(\Delta(D)\) the set of probability distributions over the set \(D\). Note that since \(D\) is discrete, the set \(\Delta(D)\) is represented by the simplex in \(\mathbb{R}^{|D|}\), where \(|D|\) denotes the cardinality of \(D\), that is,

\[
\Delta(D) \equiv \left\{ Q : D \to [0, 1] : \sum_{d \in D} Q(d) = 1 \right\}.
\]

Suppose that allocations are selected in the following fashion. First, a provision \(d \in D\) is selected randomly from a distribution \(Q \in \Delta(D)\). Then, each individual \(i \in I\) pays a tax \(T_i(d)\), where \(d\) is the selected alternative. A stochastic decision is therefore represented by a pair of functions

\[(Q, T) : D \to [0, 1] \times \mathbb{R}^N\]

such that

\[
\sum_{d \in D} Q(d) = 1.
\]

Note that once a provision alternative is selected, taxes are selected in a deterministic fashion; due to linearity of preferences, allowing for stochastic taxes does not introduce any new possibilities in terms of the individuals' expected utilities. A stochastic decision \((Q, T)\) is feasible in \([I, D, C_D, V]\) if for all \(d \in D\) such that \(Q(d) > 0\) one has

\[
\sum_{i \in I} T_i(d) \geq C_D(d).
\]

For each \(i \in I\), the expected provision obtained by \(i\) with a stochastic decision \((Q, T)\) is given by

\[a_i(Q) = \sum_{d \in D} Q(d)d_i.\]

Also, let \(t_i(Q; T)\) the expected tax paid by \(i\) with \((Q, T)\), that is,

\[t_i(Q; T) = \sum_{d \in D} Q(d)T_i(d)\]

Thus, for each type \(v_i \in S_i\) of individual \(i\), the individual's expected utility when a stochastic decision \((Q, T)\) is taken equals,

\[\sum_{d \in D} Q(d) [v_id_i - T_i(d)] = v_ia_i(Q) - t_i(Q; T)\]
Given $Q \in \Delta(D)$, let $a(Q) = \{a_i(Q) : i \in I\}$. Also, let $A \subseteq [0, 1]^N$ and $C : A \to \mathbb{R}$ be defined, respectively, by

$$A \equiv \{a \in [0, 1]^N : \exists Q \in \Delta(D) : a = a(Q)\}$$

and

$$C(a) = \min_{Q \in \Delta(D)} \left\{ \sum_{d \in D} Q(d)C_D(d) : a = a(Q) \right\}$$

Clearly, A is compact and convex and C is continuous. Thus, given a profile of valuations $v \in S$ and for each stochastic decision (Q, T) that is feasible in $[I, D, C_D, V]$, there exists an allocation $(a, t) \in A \times \mathbb{R}$ that is feasible in $[I, A, C, V]$ and yields the same utility to all individuals in I. It is now shown that the converse is also true, that is, for each (a, t) that is feasible in $[I, A, C, V]$, there exists a stochastic decision (Q, T) that is feasible in $[I, D, C_D, V]$ and yields the same utility to all individuals in I. To prove this statement is satisfied, let (a, t) be an arbitrary feasible allocation in $[I, A, C, V]$. Then select $Q^* \in \Delta(D)$ such that Q^* solves

$$\min_{Q \in \Delta(D)} \left\{ \sum_{d \in D} Q(d)C_D(d) : a(Q') = a \right\}.$$

For each $i \in I$, let

$$c_i = \frac{1}{N-1} \sum_{j \in I \setminus \{i\}} t_j - \frac{1}{N} \sum_{d \in D} Q^*(d)C(d)$$

Also, let $T : D \to \mathbb{R}^N$ be defined, for each $d \in D$ and each $i \in I$, by

$$T_i(d) = \frac{C(d)}{N} + a_i + t_i - \frac{1}{N-1} \left(\sum_{j \in I \setminus \{i\}} t_j \right).$$

Summing across I one obtains, for each $d \in D$,

$$\sum_{i \in I} T_i(d) = C(d) + \sum_{i \in I} c_i.$$

Note that

$$\sum_{i \in I} c_i = \sum_{i \in I} t_i - \sum_{d \in D} Q^*(d)(C(d)) = \sum_{i \in I} t_i - C(a).$$

Therefore, the fact that (a, t) is feasible in $[I, A, C, V]$ implies $\sum_{i \in I} c_i > 0$. It follows that for each $d \in D$ one has $\sum_{i \in I} T_i(d) > C(d)$, therefore establishing that (Q^*, T) is feasible in $[I, D, C_D, V]$. To show utilities obtained by the individuals with (a, t) equal the expected utilities obtained with (Q^*, T), note from the definition of T that for each $i \in I$ one has

$$t_i(Q^*, T) = \sum_{d \in D} Q^*(d)T_i(d) = t_i.$$

27
Therefore one has, for each \(v \in S, i \in I \),

\[
v_i a - t_i = v_i a(Q^*) - t_i(Q^*, T).
\]

Thus, both allocation problems are equivalent in terms of utilities obtained by agents.

Appendix B. Proofs

Throughout the appendix, the following notation is used. Let \(\mathcal{B} \) be the class of all Borel sets in \(\mathbb{R}^N \). For any increasing, right continuous, bounded function \(G : \mathbb{R}^N \to \mathbb{R} \), let \(\mu : \mathcal{B} \to \mathbb{R}_+ \) be the unique measure\(^{11}\) satisfying, for all \((a, b) \in \mathcal{B},
\]

\[
\mu(a, b) = G(b) - G(a).
\]

For any function \(f : \mathbb{R} \to \mathbb{R} \) and any Borel set \(B \in \mathcal{B} \), the Lebesgue integral \(\int_B f \, d\mu \) will be denoted by \(\int_B f(x) dG(x) \). For intervals of the form \((a, b) \subset \mathbb{R}^N \) the Lebesgue integral \(\int_{(a,b]} f(x) dG(x) \) will also be denoted by \(\int_{a}^{b} f(x) dG(x) \).

The linear space formed by all bounded, Borel measurable functions \(f : \mathbb{R}^N \to \mathbb{R} \) will be denoted by \(L^\infty [G] \). For any \(p : 1 \leq p < \infty \), the linear space formed by all Borel measurable functions \(f : \mathbb{R}^N \to \mathbb{R} \) such that

\[
\left(\int_{\mathbb{R}^N} |f(x)|^p \, dG(x) \right)^{\frac{1}{p}} < \infty
\]

will be denoted by \(L^p [G] \).

Proposition 1. A mechanism \(m \equiv (\rho, \tau) \) satisfies BIC if and only if for all \(i \in I : \)

(P.1.1) the function \(\bar{a}_i(\cdot; m) \) is non decreasing on \(S_i; \) and

(P.1.2) for all \(v_i, \bar{v}_i \in S_i, \)

\[
U_i(v_i; m) = U_i(\bar{v}_i; m) + \int_{v_i}^{\bar{v}_i} \bar{a}_i(x_i; \rho) \, dx_i.
\]

Proof. Sufficiency is proved first. Consider a mechanism \(m \equiv (a, t) \) satisfying (P.1.1) and (P.1.2). Since (P.1.2) is satisfied one has, for any \(i \in I \) and any two valuations \(v_i, \bar{v}_i \in S_i, \)

\[
U_i(v_i; m) - U_i(\bar{v}_i; m) = \int_{v_i}^{\bar{v}_i} \bar{a}_i(x_i; \rho) \, dx_i;
\]

therefore,

\[
v_i \bar{a}_i(v_i; \rho) - \bar{t}_i(v_i; \tau) - (\bar{v}_i \bar{a}_i(\bar{v}_i; \rho) - \bar{t}_i(\bar{v}_i; \tau)) = \int_{v_i}^{\bar{v}_i} \bar{a}_i(x_i; \rho) \, dx_i. \quad (B.1)
\]

\(^{11}\)See Proposition 3.12 in Royden (1968, p.301).
By adding \((v_i - \hat{v}_i) \bar{a}_i(\hat{v}_i; \rho)\) to both sides of \((B.1)\) one obtains,
\[
v_i \bar{a}_i(v_i; \rho) - \bar{t}_i(v_i; \tau) - [v_i \bar{a}_i(\hat{v}_i; \rho) - \bar{t}_i(\hat{v}_i; \tau)] = \int_{\hat{v}_i}^{v_i} \bar{a}_i(x_i; \rho) dx_i - (v_i - \hat{v}_i) \bar{a}_i(\hat{v}_i; \rho).
\]

Taking into account that \(\bar{a}_i(\cdot; \rho)\) is non-decreasing on \(S_i\) yields
\[
\int_{\hat{v}_i}^{v_i} \bar{a}_i(x_i; \rho) dx_i - (v_i - \hat{v}_i) \bar{a}_i(\hat{v}_i; \rho) \geq 0.
\]

Hence,
\[
v_i \bar{a}_i(v_i; \rho) - \bar{t}_i(v_i; \tau) \geq v_i \bar{a}_i(\hat{v}_i; \rho) - \bar{t}_i(\hat{v}_i; \tau),
\]
therefore establishing that \(m\) satisfies \(BIC\).

To prove necessity, it is shown that \((P.1.1)\) and \((P.1.2)\) are satisfied for any mechanism \(m\) satisfying \(BIC\). Let \(m \equiv (a, t)\) be a mechanism satisfying \(BIC\) and consider an arbitrary agent \(i \in I\) and any two valuations \(v_i, \hat{v}_i \in S_i\). Since \(m\) satisfies \(BIC\) one has
\[
v_i \bar{a}_i(v_i; \rho) - \bar{t}_i(v_i; \tau) \geq v_i \bar{a}_i(\hat{v}_i; \rho) - \bar{t}_i(\hat{v}_i; \tau)
\]
and
\[
\hat{v}_i \bar{a}_i(v_i; \rho) - \bar{t}_i(\hat{v}_i; \tau) \geq \hat{v}_i \bar{a}_i(\hat{v}_i; \rho) - \bar{t}_i(\hat{v}_i; \tau).
\]

Adding terms in each side of the inequalities yields
\[
(v_i - \hat{v}_i) (\bar{a}_i(v_i; \rho) - \bar{a}_i(\hat{v}_i; \rho)) \geq 0.
\]

Thus, for any two valuations \(v_i, \hat{v}_i \in S\) one has \(\bar{a}_i(v_i; \rho) \geq \bar{a}_i(\hat{v}_i; \rho)\) whenever \(v_i \geq \hat{v}_i\), and therefore \(\bar{a}_i(\cdot; \rho)\) is a non-decreasing function, which establishes \((P.1.1)\).

To prove \((P.1.2)\) is satisfied, use again the inequalities \((P.2)\) and \((P.3)\) to obtain
\[
\bar{a}_i(\hat{v}_i; \rho) (v_i - \hat{v}_i) \leq \bar{U}_i(v_i; m) - \bar{U}_i(\hat{v}_i; m) \leq \bar{a}_i(v_i; \rho) (v_i - \hat{v}_i).
\]

Therefore, \(\bar{U}_i(\cdot; m)\) is non-decreasing on \(S_i\) since \(\bar{a}_i(\cdot; \rho)\) is non-negative on \(S_i\). Also, since \((B.4)\) is satisfied for any two \(v_i, \hat{v}_i \in S_i\) one has, for any \(\hat{v}_i \in S_i\)
\[
\bar{U}_i(v_i; m) = \sup_{v_i < \hat{v}_i} \bar{U}_i(v_i; m) = \inf_{x_i > v_i} \bar{U}_i(v_i; m).
\]

Hence, \(\bar{U}_i(\cdot; m)\) is continuous on \(S_i\).

Given \(v_i \in S_i\), denote by \(\bar{U}_i'(v_i+; m)\) and \(\bar{U}_i'(v_i-; m)\) the right-hand and left-hand derivatives of \(\bar{U}_i(\cdot; m)\) at \(v_i\). Note that \((B.4)\) implies
\[
\bar{U}_i'(v_i+; m) = \inf_{x_i > v_i} \left\{ \frac{\bar{U}_i(x_i; m) - \bar{U}_i(v_i; m)}{(x_i - v_i)} \right\} = \inf_{x_i > v_i} \bar{a}_i(v_i; \rho),
\]

29
Thus, if \(\bar{a}_i(\cdot; \rho) \) is continuous at a point \(v_i \in S_i \), then \(\bar{U}_i(\cdot; m) \) is differentiable at \(x_i \) and
\[
\bar{U}_i'(x_i; m) = \bar{a}_i(x_i; \rho).
\]

Since \(\bar{a}_i(\cdot; \rho) \) is non-decreasing, it is continuous almost everywhere (with respect to Lebesgue measure) and therefore one has, for almost all \(v_i \in S_i \),
\[
\bar{U}_i(v_i; m) = \bar{a}_i(v_i; \rho).
\]

Since \(\bar{U}_i(\cdot; m) \) is continuous and its right-hand derivative is non-decreasing on \(S_i \), it is convex and hence absolutely continuous on \(S_i \) (Propositions 5.17 and 5.18 in Royden, 1968). Furthermore, every absolutely continuous function is the indefinite integral of its derivative (Theorem 5.14 in Royden, 1968) and therefore one has, for any two \(v_i, \bar{v}_i \in S_i \),
\[
\int_{v_i}^{\bar{v}_i} \bar{a}_i(x_i; \rho) \, dx_i = \bar{U}_i(v_i; m) - \bar{U}_i(\bar{v}_i; m). \tag{B.5}
\]
which establishes \((P.1.2) \) and therefore completes the proof of Proposition 1.11.

Proposition 3. For any mechanism \(m \equiv (\rho, \tau) \) satisfying BIC and EXABB, there exists a tax function \(\tau' \) such that \(m' \equiv (\rho, \tau') \) satisfies BIC and EXPBB, and for every \(v \in S, i \in I \) one has
\[
\bar{U}_i(v_i; m') = \bar{U}_i(v_i; m). \tag{B.6}
\]

Proof. Let \(m \equiv (\rho, \tau) \) be a mechanism satisfying BIC and EXABB. It is first shown that there exists a tax function \(\tau' \) such that the mechanism \(m' \equiv (\rho, \tau') \) satisfies BIC, EXPBB and \((B.6) \). The proof proceeds by constructing \(\tau' \) as follows: for each \(i \in I \), let
\[
c_i = E \left[\left(\frac{1}{N-1} \right) \left(\sum_{j \in I \setminus \{i\}} \bar{t}_j(V_j; \tau) \right) - \frac{C(\rho(V))}{N} \right],
\]
and let \(\tau' : S \to \mathbb{R}^N \) be defined, for each \(\bar{v} \in S \) and each \(i \in I \), by
\[
\tau'_i(\bar{v}) = \bar{t}_i(\bar{v}_i; \tau) + \frac{C(\rho(\bar{v})) - E[C(\rho(\bar{v}, V_i))]}{N} + c_i - \frac{1}{N-1} \left[\sum_{j \in I \setminus \{i\}} \left(\bar{t}_j(\bar{v}_j; \tau) - \frac{E[C(\rho(\bar{v}_j, V_j))]}{N} \right) \right].
\]

30
It is shown that $m' \equiv (\rho, \tau')$ satisfies (B.6) and BIC. From above one has, for any $i \in I, \bar{v}_i \in S_i$

$$\bar{t}_i(\bar{v}_i; \tau') = t_i(\bar{v}_i; \tau) + c_i - \left(\frac{1}{N-1}\right) E \left(\sum_{j \in I \setminus \{i\}} \bar{t}_j(V_j; \tau^*)\right) + \frac{1}{N} E[C(\rho(V))]$$

$$= t_i(\bar{v}_i; \tau)$$

Thus, m' satisfies for any $i \in I, \bar{v}_i \in S_i$,

$$\bar{U}_i(\bar{v}_i; m') = \bar{U}_i(\bar{v}_i; m).$$

Hence by Proposition 1, m' satisfies BIC provided m satisfies BIC. To show m' satisfies $EXPBB$, note that for each $v \in S$ one has

$$\sum_{i \in I} \tau'_i(v) = C(\rho(v)) + \sum_{i \in I} c_i.$$

On the other hand, from the definition of $c = (c_1, c_2, \ldots, c_N)$ and that m satisfies $EXABB$

$$\sum_{i \in I} c_i = E \left[\left(\sum_{i \in I} \bar{t}_i(V_i; \tau)\right) - C(\rho(V))\right] = 0,$$

which implies

$$\sum_{i \in I} \tau'_i(v) = C(\rho(v)).$$

Therefore m' satisfies $EXPBB$. This completes the proof of Proposition 3. ||

Proposition 4. Let $m \equiv (\rho, \tau)$ be a mechanism satisfying BIC and $EXABB$ and suppose that for each $i \in I$ and $v_{-i} \in S_{-i}$, $\rho_i(\cdot, v_{-i})$ is non-decreasing on S_{-i}. Then there exists a tax function τ' such that the mechanism $m' \equiv (\rho, \tau')$ satisfies $DSIC$ and $EXABB$, and for all $v \in S, i \in I$ one has

$$\bar{U}_i(v_i; m') = \bar{U}_i(v_i; m).$$

Proof

Let $m \equiv (\rho, \tau)$ be a mechanism satisfying BIC and $EXABB$ and suppose that, for each $i \in I, v_{-i} \in S_{-i}$, $\rho_i(\cdot, v_{-i})$ is non-decreasing. A tax function τ' such that $m' \equiv (\rho, \tau')$ satisfies $DSIC$ and $EXABB$ is constructed as follows. For each $i \in I$, let $T_i : S_{-i} \to \mathbb{R}$ be an arbitrary integrable function (with respect to F), and let $v^* \in S$ be arbitrary. Let now $\tau' : S \to \mathbb{R}^N$ be defined, for each $v \in S, i \in I$, by

$$\tau'_i(v) = v_i \rho_i(v) - \int_{v_i}^{v^*} \rho_i(x_i, v_{-i})dx_i - T_i(v_{-i}).$$
Note that for every $i \in I$, $v_i, \tilde{v}_i \in S_i, v_{-i} \in S_{-i}$ one has

$$v_i \rho_i(v) - \tau'_i(v) - [v_i \rho_i(\tilde{v}_i, v_{-i}) - \tau'_i(\tilde{v}_i, v_{-i})] = \int_{v_i}^{v_i} \rho_i(x_i, v_{-i}) dx_i - (v_i - \tilde{v}_i) \rho_i(\tilde{v}_i, v_{-i}).$$

Since for each $i \in I, v_{-i} \in S_{-i}$, $\rho_i(\cdot, v_{-i})$ is non-decreasing one has

$$\int_{v_i}^{v_i} \rho_i(x_i, v_{-i}) dx_i - (v_i - \tilde{v}_i) \rho_i(\tilde{v}_i, v_{-i}) \geq 0.$$

Thus,

$$v_i \rho_i(v) - \tau'_i(v) - [v_i \rho_i(\tilde{v}_i, v_{-i}) - \tau'_i(\tilde{v}_i, v_{-i})] \geq 0 \quad (B.7)$$

Therefore the mechanism $m' \equiv (\rho, \tau')$ satisfies DSIC. Note also that $(B.7)$ holds for any arbitrary selection of the function $T_i(\cdot)$. Thus, there is no loss of generality in assuming that each function $T_i(\cdot)$ in the definition of τ' is selected to satisfy

$$E_i(V_i; \tau') = E_i(V_i; \tau).$$

Thus, m' satisfies EXABB. Since both m and m' satisfy BIC, they both satisfy $(P.1.2')$. Taking into account that both mechanisms have the same provision rule one obtains, for each $i \in I, v_i \in S_i$,

$$\bar{U}_i(v_i; m') = \bar{U}_i(v_i; m),$$

which establishes that m and m' yields the same interim expected utilities to all agents. This completes the proof of proposition 4.1.

Lemma 1. Every WIIE mechanism is IIE.

Proof. Consider an arbitrary $m \in M$. It is shown that if there exists $m' \in M$ satisfying $(E.1)$ and $(E.2)$, then there exists m'' satisfying, for all $v \in S$ and $i \in I$,

$$\bar{U}_i(v_i; m'') > \bar{U}_i(v_i; m). \quad (B.8)$$

which establishes Lemma 1.

(1) Note that to obtain m'' is trivial if there exists $j \in I, \epsilon > 0$ such that, for each $v_j \in S_j$ one has

$$\bar{U}_j(v_j; m') > \bar{U}_j(v_j; m) + \epsilon. \quad (B.9)$$

To see why, suppose such $j \in I, \epsilon > 0$ exist and let $\overline{T} \in \mathbb{R}^N$ be defined, for all $i \in I \setminus \{j\}$, by

$$\overline{T}_i = E_i(V_i; \tau') - \frac{\epsilon}{N-1}$$

and, for $i = j$, by

$$\overline{T}_j = E_i(V_j; \tau') + \epsilon.$$
Using Propositions 1 and 2, there exists a mechanism $m'' \in M$ with the same provision rule as that of m' whose tax function satisfies, for all $i \in I$,

$$E_i (V_i; \tau') = T_i.$$

Note that such mechanism m' yields, for all $i \in I \setminus \{j\}$,

$$\bar{U}_i (v_i; m'') = \bar{U}_i (v_i; m') + \frac{\epsilon}{N-1} > \bar{U}_i (v_i; m')$$

and, for $i = j$,

$$\bar{U}_j (v_j; m'') = \bar{U}_j (v_j; m') - \epsilon > \bar{U}_i (v_j; m).$$

Therefore m'' satisfies (B.9).

(2) It is now that a mechanism m'' satisfying (E.1), (E.2) and (B.9) can be constructed from any m' satisfying (E.1) and (E.2) but not (B.9). Construction is as follows. Let $j \in I$, $v_j, \hat{v}_j \in S_j, \epsilon > 0$ be such that

$$\bar{U}_j (\hat{v}_j; m') - \bar{U}_j (v_j; m) > \epsilon$$

and

$$0 \leq \bar{U}_j (v_j; m') - \bar{U}_j (v_j; m) < \epsilon$$

Note that such $j \in I$, $v_j, \hat{v}_j \in S_j, \epsilon > 0$ exists since m' satisfies (E.1) and (E.2) but not (B.9). Construction of m'' depends on whether $v_j > \hat{v}_j$ or $\hat{v}_j > v_j$. Suppose first that $v_j > \hat{v}_j$. From (P.1.2) one obtains

$$\left[\overline{a}_j (x_j; \rho') - \overline{a}_j (x_j; \rho) \right] dx_j < 0,$$

which taking into account that both ρ and ρ' are non-decreasing functions implies

$$\overline{a}_j (v_j; \rho) > \overline{a}_j (\hat{v}_j; \rho).$$ \hspace{1cm} (B.10)

Let a be such that

$$\overline{a} (v_j - \hat{v}_j) = \int_{\hat{v}_j}^{v_j} \overline{a}_j (x_j; \rho) dx_j,$$ \hspace{1cm} (B.11)

which exists provided $\overline{U}_j (\cdot; m)$ is continuous. Since (B.10) is satisfied, there exists $v_j^* > \hat{v}_j$ such that, for every $v_j \in (\hat{v}_j, v_j^*)$ one has,

$$\overline{a} (v_j - \hat{v}_j) > \int_{\hat{v}_j}^{v_j} \overline{a}_j (x_j; \rho) dx_j.$$ \hspace{1cm} (B.12)

Let now let $\rho^*: S \rightarrow A$ be defined, for each $v \in S$ and $i \in I \setminus \{j\}$, by

$$\rho^*_i (v) = \rho'_i (v),$$

33
and for each \(v \in S \) and \(i = j \), by
\[
\rho^*_j(v) = \rho'_j(v) + I_{[v_j, v'_j]}(v) \left[\bar{a} - \rho'_j(v) \right];
\]
where \(I_{[v_j, v'_j]} : S_j \rightarrow \{0, 1\} \) is the characteristic function of the interval \([v_j, v'_j] \). Such provision rule yields, for each \(i \in I \setminus \{j\} \) and each \(v_i \in S_i \)
\[
\bar{a}_i(x_i; \rho^*) = \bar{a}_i(x_i; \rho');
\]
and for each \(v_j \in S_j \),
\[
\bar{a}_j(v_j; \rho^*) = \begin{cases}
\bar{a}_j(v_j; \rho'), & \text{if } v_j \notin [\hat{v}_j, v'_j], \\
\bar{a}, & \text{if } v_j \in [\hat{v}_j, v'_j].
\end{cases}
\]
Since \(\bar{a} \in [\bar{a}_j(\hat{v}_j; \rho), \bar{a}_j(v'_j; \rho)] \), the function \(\bar{a}_j(\cdot; \rho) \) is increasing on \(S_j \). By Proposition 2, there exists a tax function \(\tau^* \) such that the mechanism \(m^* = (\rho^*, \tau^*) \in \mathcal{M} \) satisfies, for each \(i \in I \),
\[
E\bar{t}_i(V_i; \tau^*) = E\bar{t}_i(V_i; \tau').
\]
By Proposition 1 such mechanism satisfies (P.1.2) and therefore one obtains, for each \(i \in I \setminus \{j\} \) and \(v_i \in S_i \),
\[
U_i(v_i; m^*) = U_i(v_i; m'),
\]
and for any \(v_j \in S_j \)
\[
U_j(v_j; m^*) = \begin{cases}
U_j(v_j; m'), & \text{if } v_j \notin [\hat{v}_j, v'_j], \\
U_j(\hat{v}_j; m') + \bar{a}(v_j - \hat{v}_j) & \text{if } v_j \in [\hat{v}_j, v'_j].
\end{cases}
\]
Since (B.12) is satisfied one has, for all \(v_j \in [\hat{v}_j, v'_j] \)
\[
U_j(v_j; m^*) - U_j(v_j; m) > \epsilon.
\]
Thus, \(m^* \) satisfies (B.9) for any \(v_j \in [\hat{v}_j, v'_j] \). The case for which \(v'_j < \hat{v}_j \) is entirely analogous. Proceeding recursively, \(m^* \) can be constructed in such a way that (B.9) is satisfied for any arbitrary \(v_j \in S_j \). Then, proceeding as in stage (1), a mechanism \(m^* \) that yields higher interim utilities to all agents and all possible valuations can be obtained. This completes the proof of Lemma 1.\

Proposition 4. A mechanism \(m^* = (\rho^*, \tau^*) \) is interim incentive efficient if and only if there exists a welfare distribution \(G \in \mathcal{G} \) such that \(m^* \) solves
\[
\max_{m \in \mathcal{M}} U(m, G).
\]
Proof. To prove necessity, let \(m^* \equiv (p^*, r^*) \) be an arbitrary interim efficient mechanism and consider the sets

\[
\mathcal{H} \equiv \left\{ s : S \to \mathbb{R} \in L^1[F] : s(v) > \sum_{i \in I} U_i(v_i; m^*), \forall v \in S \right\},
\]

and

\[
\mathcal{U} \equiv \left\{ s : S \to \mathbb{R} \in L^1[F] : \exists m \in \mathcal{M} : s(v) = \sum_{i \in I} U_i(v_i; m), \forall v \in S \right\}.
\]

Note that since \(m^* \) is interim efficient, \(\mathcal{H} \) and \(\mathcal{U} \) are two disjoint, convex subsets of the linear space \(L^1[F] \), with both sets having a non-empty interior. By the separating hyperplane theorem (Theorem 10.20 in Royden, 1968), there exists a non zero bounded linear functional \(l : L^1[F] \to \mathbb{R} \) separating \(\mathcal{H} \) and \(\mathcal{U} \), that is, there exists a bounded linear functional \(l \) defined on \(L^1[F] \) and a real number \(r \) such that

\[
l(s^h) \geq r
\]

for all \(s^h \in \mathcal{H} \), and

\[
l(s^m) \leq r
\]

for all \(s^m \in \mathcal{U} \). The function \(s^* \equiv \sum_i U_i(\cdot; m^*) \) belongs to \(\mathcal{U} \). Therefore, for each \(s^h \in \mathcal{H} \) one has

\[
l(s^h) \geq l(s^*).
\] (B.13)

Moreover, since \(m^* \) is interim efficient one has, for each \(s^m \in \mathcal{U} \),

\[
l(s^*) \geq l(s^m)
\] (B.14)

By Riesz's Representation Theorem (Theorem 11.29 in Royden, 1968) for every bounded linear functional \(l : L^1[F] \to \mathbb{R} \) there exists a function \(g : S \to \mathbb{R}^N \in L^\infty[F] \) such that for all \(s \in L^1[F] \) one has

\[
l(s) = \int_S g(x)s(x)dF(x).
\]

Hence from (B.13) and (B.14), \(g \) satisfies, for each \(s^h \in \mathcal{H} \) and \(s^m \in \mathcal{U} \),

\[
\int_S g(x)s^h(x)dF(x) \geq \int_S g(x)s^*(x)dF(x) \geq \int_S g(x)s^m(x)dF(x).
\] (B.15)

It follows that for each \(s^h \in \mathcal{H} \) and \(m \in \mathcal{M} \) one has

\[
\int_S g(x)s^h(x)dF(x) \geq \int_S g(x)\left(\sum_{i \in I} U_i(x_i; m^*)\right)dF(x) \geq \int_S g(x)\left(\sum_{i \in I} U_i(x_i; m)\right)dF(x).
\] (B.16)
Since the mechanism \(m_0 = (0,0) \in \mathcal{M} \), the above inequality implies
\[
\int_S g(x)s^h(x)dF(x) \geq \int_S g(x)\left(\sum_{i \in I} U_i(x_i; m^*)\right) dF(x) \geq 0.
\]
I show now that \(g \) is non-negative almost everywhere on \(S \), that is
\[
\int_{\{x \in S : g(x) < 0\}} dF(x) = 0.
\]
To see this, suppose not, and consider a function \(s \in \mathcal{H} \) defined, for all \(v \in S \), by
\[
s(v) = s^*(v) + \alpha I\{g(v) < 0\}(v),
\]
where \(\alpha > 0 \) is selected in such a way that
\[
\int_S g(x)s(v)dF(x) < 0.
\]
Note such function \(s \) exists provided \((B.17)\) is not satisfied. Thus \(s \notin \mathcal{H} \), a contradiction that establishes \((B.17)\).

Let \(G : S \to [0,1] \) be defined, for all \(v \in S \), by
\[
G(v) = \frac{1}{\int_S g(x)dF(x)} \left(\int_{x \leq v} g(x)dF(x) \right).
\]
Taking into account that \(g \) is bounded (and hence integrable with respect to \(F \)), it follows that \(G \) is a nonnegative, absolutely continuous, non-decreasing function on \(S \), and satisfies \(\int_S dG(x) = 1 \). Note that, for each \(i \in I \) one has
\[
\int_S \left(\sum_{i} |x_i| \right) dG(x) \leq \sup\{g(x) : x \in S\} E\left(\sum_{i \in I} |V_i|\right) < \infty
\]
provided \(E\left(\sum_{i \in I} |V_i|\right) \leq \infty \). Hence, \(G \in \mathcal{G} \). Finally, from the inequalities in \((B.16)\) one has, for any \(m \in \mathcal{M} \),
\[
\int_S \left(\sum_{i \in I} U_i(x_i; m^*) \right) dG(x) \geq \int_S \left(\sum_{i \in I} U_i(x_i; m) \right) dG(x),
\]
which establishes that \(m^* \) maximizes \(\mathcal{U}(\cdot, G) \) on \(\mathcal{M} \), therefore completing the proof of the \textit{Only if} statement in Theorem 1.

To prove sufficiency, let \(m^* \) be a solution to \(PR1 \) for some \(G \in \mathcal{G} \). To prove it is interim efficient, suppose not. By \textit{Lemma 1}, there exists a mechanism \(m \in \mathcal{M} \) such that
\[
\bar{U}_i(v_i; m) > \bar{U}_i(v_i; m^*) \text{ for all } i \in I, v_i \in S_i
\]
Therefore
\[\int_S \left(\sum_{i \in I} \overline{U}_i(x_i; m') \right) dG(x) \geq \int_S \left(\sum_{i \in I} \overline{U}_i(x_i; m^*) \right) dG(x), \]
which contradicts that \(m^* \) solves \(PR1 \). This completes the proof of Theorem 1.1.

Lemma 2. For every \(i \in I \) and every \(G \in \mathcal{G} \), a generalized virtual valuation function with respect to \(G \) always exists.

Proof. Recall that a real valued function \(W_i^*(\cdot; G) \) defined on \(S_i \) is a generalized virtual valuation function with respect to \(G \) if (a) it is continuous and non decreasing on \(S_i \), and (b) there exists a (possibly empty) countable collection \(\{ C_k^i : k \in K \} \) of disjoint intervals in \(\Gamma \) such that, for each \(v_i \in S_i \) one has

\[
W_i^*(v_i; G) = \begin{cases}
\frac{\int_{C_k^i} W_i(x_i; G) dF_i(x_i)}{\int_{C_k^i} dF_i(x_i)} & \text{if } v_i \in C_k^i \text{ for some } k \in K. \\
W_i(v_i; G), & \text{otherwise};
\end{cases} \quad (b.1)
\]

and

\[
\int_{x_i \leq v_i} W_i^*(x_i, G) dF_i(x_i) \leq \int_{x_i \leq v_i} W_i(x_i; G) dF_i(x_i). \quad (b.2)
\]

To show Lemma 2 is satisfied, let \(i \in I, G \in \mathcal{G} \) be arbitrary. It is now shown that one can always find a collection \(C^i = \{ C_k^i : k \in K \} \) of intervals in \(\Gamma \) and a function \(W_i^*(\cdot; G) \) such that (a) and (b) are satisfied.

Some previous definitions are needed. Let \(v_i^* \in S_i \) be such that

\[
W_i(v_i^*; G) = \int_{S_i} W_i(x_i; G) dF_i(x_i).
\]

Also, let \(h^1 : \Gamma \rightarrow \mathbb{R} \) and \(h^2 : \Gamma \rightarrow \mathbb{R} \) be defined, for all \((a, b) \in \Gamma \), by

\[
h^1(a, b) = \int_a^b (W_i(b, G) - W_i(x_i, G)) dF_i(x_i),
\]

and

\[
h^2(a, b) = \int_a^b (W_i(a, G) - W_i(x_i, G)) dF_i(x_i),
\]

Let

\[
C^1 \equiv \{ (a_k^i, b_k^i) \in \Gamma : k \in K^1 \}
\]

be a (possibly empty) collection of intervals in the set \(S_i^1 = \{ x \in S_i : x \leq v_i^* \} \) constructed as follows. Let \((a_1^i, b_1^i) = \emptyset \) if \(W_i(\cdot; G) \) is non-decreasing on \(S_i^1 \); otherwise, let

\[
b_1^i = \sup \{ b < v_i^* : h^1(a, b) < 0 \text{ for some } a < b \}.
\]
$$a^1_k = \begin{cases} \inf\{a \in S_i : h^1(a, b^1_i) < 0\}, & \text{if } \{a \in S_i : h^1(a, b^1_i) < 0\} \text{ is bounded}, \\ -\infty, & \text{otherwise}. \end{cases}$$

To complete the construction of C^1 for $k \geq 2$, let $(a^1_k, b^1_k) = \emptyset$ if either one of the following is satisfied:
$$\left(a^1_{k-1}, b^1_{k-1}\right) = \emptyset,$$
$$a^1_{k-1} = -\infty,$$

or
$$h^1(a, b) > 0 \text{ for all } (a, b) \in \Gamma : a < a^1_{k-1};$$
otherwise, let
$$b^1_k = \sup\{b < a^1_{k-1} : h^1(a, b) < 0 \text{ for some } a < b\},$$

and
$$a^1_k = \begin{cases} \inf\{a \in S_i : h^1(a, b^1_i) < 0\}, & \text{if } \{a \in S_i : h^1(a, b^1_i) < 0\} \text{ is bounded}, \\ -\infty, & \text{otherwise}. \end{cases}$$

Let now
$$C^2 \equiv \left\{(a^2_k, b^2_k) \in \Gamma : k \in K^2\right\}$$
be a (possibly empty) collection of intervals defined as follows. For $k = 1$, let $(a^2_1, b^2_1) = \emptyset$ if $W_i(\cdot, G)$ is non-decreasing on the set $S_2 = \{x \in S_i : x \geq v^*_i\}$; otherwise, let (a^2_1, b^2_1) be defined by
$$a^2_1 = \inf\{a > v^*_i : h^2(a, b) < 0 \text{ for some } b > a\}$$
and
$$b^2_1 = \begin{cases} \sup\{b \in S_i : h^2(a^2_1, b) < 0\}, & \text{if } \{b \in S_i : h^2(a^2_1, b) < 0\} \text{ is bounded}, \\ \infty, & \text{otherwise}. \end{cases}$$

To complete the definition of C^2 for $k \geq 2$, let $(a^2_k, b^2_k) = \emptyset$ if either one of the following is satisfied:
$$\left(a^2_{n-1}, b^2_{n-1}\right) = \emptyset,$$
$$a^2_{k-1} = +\infty,$$

or
$$h^2(a, b) > 0 \text{ for all } (a, b) \in \Gamma : a > b^2_{k-1};$$
otherwise, let
$$a^2_k = \inf\{a > b^2_{k-1} : h^2(a, b) < 0 \text{ for some } b > a\},$$

38
and
\[b_k^2 = \begin{cases} \sup \{ b \in S_i : h^2(a_k^2, b) < 0 \}, & \text{if } \{ b \in S_i : h^2(a_k^2, b) < 0 \} \text{ is bounded}, \\ +\infty, & \text{otherwise}. \end{cases} \]

Let now
\[C^i \equiv \{(a_k, b_k) \in \Gamma : k \in K\} \]
be a collection of intervals constructed as follows. If either \(b_1^i < v_i^* \) or \(v_i^* < a_1^2 \) is satisfied, then let
\[C^i = C^1 \cup C^2; \]
and if \(b_1^i = v_i^* = a_1^2 \), then let \(C^i \) be the collection formed by the interval \((a_1^1, b_1^i)\) and all intervals in \(C^1 \cup C^2 \) except the intervals \((a_1^1, b_1^i)\) and \((a_1^2, b_1^i)\).

Observe that \(C^i \) has been constructed in such a way that for each \(k \in K \) such that \((a_k, b_k)\) is non-empty one has

- \[W_i(a_k; G) = W_i(b_k; G) = \frac{\int_{a_k}^{b_k} W_i(x_i; G) \, dF_i(x_i)}{\int_{a_k}^{b_k} dF_i(x_i)} \text{ whenever } a_k > -\infty \text{ and } a_k < \infty; \quad (B.18) \]
- \[W_i(a_k; G) = \int_{a_k}^{b_k} W_i(x_i; G) \, dF_i(x_i) \text{ whenever } a_k > -\infty \text{ and } b_k = \infty; \quad (B.19) \]
- \[W_i(b_k; G) = \frac{\int_{a_k}^{b_k} W_i(x_i; G) \, dF_i(x_i)}{\int_{a_k}^{b_k} dF_i(x_i)} \text{ whenever } a_k = -\infty \text{ and } b_k < \infty; \quad (B.20) \]
and
\[W_i(v_i^*; G) = \frac{\int_{-\infty}^{v_i^*} W_i(x_i; G) \, dF_i(x_i)}{\int_{-\infty}^{\infty} dF_i(x_i)} \text{ whenever } a_k = -\infty \text{ and } b_k = \infty. \quad (B.20) \]

With this observation in mind, let now \(W_i^*(\cdot; G) : S_i \to \mathbb{R} \) be defined, for all \(v_i \in S_i \), by
\[W_i^*(v_i; G) = \begin{cases} \frac{\int_{c_k}^{v_i} W_i(x_i; G) \, dF_i(x_i)}{\int_{c_k}^{v_i} dF_i(x_i)} & \text{if } v_i \in C_k^i \text{ for some } k \in K, \\ W_i(v_i; G), & \text{otherwise}; \end{cases} \quad (B.21) \]

Clearly, \(W_i^*(\cdot, G) \) satisfies \((b.1)\).

I show now that \(W_i^*(\cdot, G) \) is continuous and non-decreasing on \(S_i \). To show this, observe first that \(C^i \) has been constructed in such a way that, for each \(k \in K \),
\(W_i^* (\cdot ; G) \) is non-decreasing on the interval \((b_k, a_{k+1})\). Since \(G_i \) is non-decreasing and right continuous, this implies that \(G_i \) is continuous on \((b_k, a_{k+1})\). Therefore \(W_i^* (\cdot ; G) \) (and hence, \(W_i^* (\cdot ; G) \)) is continuous and non-decreasing on \((b_k, a_{k+1})\). Also, for each \(k \in K \), \(W_i^* (\cdot ; G) \) is constant through \((a_k, b_k)\). Thus, in order to show \(W_i^* (\cdot , G) \) is continuous and non-decreasing on \(S_i \), it suffices to show that \(W_i^* (\cdot , G) \) is continuous at every \(v_i \) such that there exists \(k \in K \) for which either \(v_i = a_k \) or \(v_i = b_k \) is satisfied. Using (B.1) and (B.18) to (B.21) one obtains, for any such \(v_i \),

\[
\lim_{x_i \to v_i} W_i^* (v_i; G) = W_i^* (v_i; G) = W_i (v_i; G), \tag{B.22}
\]

which establishes \(W_i^* (\cdot , G) \) is continuous and non-decreasing on \(S_i \).

I show now that \(W_i^* (\cdot , G) \) satisfies (b.2). Since \(W_i^* (\cdot , G) \) satisfies (b.1), it is sufficient to show that for each \(k \in K \) and each \(v_i \in (a_k, b_k) \) one has

\[
\int_{a_k}^{v_i} [W_i^* (x_i; G) - W_i (x_i; G)] dF_i(x_i) \leq 0,
\]

that is

\[
\int_{v_i}^{b_k} [W_i^* (x_i; G) - W_i (x_i; G)] dF_i(x_i) \geq 0, \tag{B.23}
\]

In order to show (b.2) is satisfied, suppose not. Then there exists \(k \in K \) and \(v_i \in (a_k, b_k) \) such that

\[
\int_{v_i}^{b_k} [W_i^* (x_i; G) - W_i (x_i; G)] dF_i(x_i) < 0. \tag{B.24}
\]

Note that (B.24) implies there exists \(b > b_k \) such that

\[
\int_{a_k}^{b} [W_i (b; G) - W_i (x_i; G)] dF_i(x_i) < 0, \tag{B.25}
\]

By construction \(b_k \) is the largest \(b \) for which (B.25) is satisfied, which contradicts that \(b > b_k \). This establishes that \(W_i^* (\cdot ; G) \) satisfies (b.2). This completes the proof of Lemma 2.]

Theorem 3. Let \(G \in \mathcal{G} \) be arbitrary and let \(\rho^* \) be a provision rule satisfying, for each \(v \in S; a \in A \),

\[
\sum_{i \in I} W_i^* (v_i; G) \rho_i^* (v) - C(\rho^* (v)) \geq \sum_{i \in I} W_i (v_i; G) a_i - C(a) \tag{T.3}
\]

for some collection \(\{ W_i^* (\cdot ; G) : i \in I \} \) of generalized virtual valuation functions with respect to \(G \). Then \(\rho^* \) solves PR2.

Proof. Let \(G \in \mathcal{G} \) be arbitrary and let \(\rho^* \) be a provision rule satisfying (T.3) for some collection \(\{ W_i^* (\cdot ; G) : i \in I \} \) of generalized virtual valuation functions with respect to \(G \). For each \(i \in I \), let \(h_i : S_i \to \mathbb{R} \) be defined, for each \(v_i \in S_i \), by

\[
l_i (v_i) = W_i^* (v_i; G) - W_i (v_i; G).
\]

40
Let now $\mathcal{H} : P \rightarrow \mathbb{R}$ be defined, for each $\rho \in P$, by

$$\mathcal{H}(\rho) = \int_S \left[\sum_{i \in I} \rho_i(x) W_i^*(x_i; G) - C(\rho(x)) \right] dF(x)$$

$$= \int_S \left[\sum_{i \in I} \rho_i(x) (W_i(x_i, G) + h_i(x_i)) - C(\rho(x)) \right] dF(x),$$

that is

$$\mathcal{H}(\rho) = W(\rho, G) + \sum_{i \in I} \int_{S_i} h_i(x_i) \bar{a}_i(x_i; \rho) dF_i(x_i).$$

Clearly, ρ^* maximizes $\mathcal{H}(\cdot)$ on P. To show such provision rule maximizes $W(\cdot, G)$ on P, recall first that for any provision rule $\rho \in P$, each function $\bar{a}_i(\cdot; \rho)$ is non-decreasing on S_i. For each $i \in I$, let $C_i \equiv \{C^i_k : k \in K\}$ be a collection of intervals such that the pair $[W_i^*(\cdot; G), C^i]$ satisfies (a) and (b). Such collection exists provided $W_i^*(\cdot; G)$ is a generalized virtual valuation function. Note also for each $i \in I$, the function h_i satisfies, for each B such that $B \notin \cup_{k \in K} C^i_k$ and each $v_i \in B$,

$$h_i(x_i) = 0.$$

Therefore the term

$$\int_{S_i} h_i(x_i) \bar{a}_i(x_i; \rho) dF_i(x_i)$$

can be written equivalently as

$$\int_{S_i} h_i(x_i) \bar{a}_i(x_i; \rho) dF_i(x_i) = \sum_{k \in K} \int_{C^i_k} h_i(x_i) \bar{a}_i(x_i; \rho) dF_i(x_i).$$

For each $i \in I$, let $H_i : S_i \rightarrow \mathbb{R}_-$ be defined, for each $v_i \in S_i$, by

$$H_i(v_i) = \int_{x_i \leq v_i} h_i(x_i) dF_i(x_i).$$

Taking into account that the function $W_i^*(\cdot; G)$ satisfies (a) and (b) one obtains, for each $k \in K$ and each $v_i \in (a_k, b_k)$

$$H_i(v_i) \leq 0 \quad \text{and} \quad H(b_k) = 0.$$

Also, note that

$$\int_{a_k}^{b_k} h_i(x_i) \bar{a}_i(x_i; \rho) dF_i(x_i) = \int_{a_k}^{b_k} \bar{a}_i(x_i; \rho) dH_i(x_i),$$

which, integrating by parts and taking into account that $\bar{a}_i(\cdot; \rho)$ is non-decreasing yields

$$\int_{a_k}^{b_k} \bar{a}_i(x_i; \rho) dH_i(x_i) \geq H_i(b_k) \bar{a}_i(b_k; \rho) - H_i(a_k) \bar{a}_i(a_k; \rho) \geq 0.$$
Also,

$$\bar{a}_i(v_i; \rho^*) = \bar{a}_i(a_k; \rho^*) = \bar{a}_i(b_k; \rho^*).$$

Then,

$$\int_{\mathcal{S}_i} h_i(x_i)\bar{a}_i(x_i; \rho^*)dF_i(x_i) = \sum_{k \in K} \bar{a}_i(a; \rho^*) \int_{a_k}^{b_k} h_i(x_i)dF_i(x_i) = 0.$$

Since i is arbitrary one has, for any provision rule $\rho \in P$,

$$\mathcal{H}(\rho^*) = \mathcal{W}(\rho^*, G) \geq \mathcal{W}(\rho, G) + \sum_{i \in I} \sum_{k \in K} \int_{a_k}^{b_k} h_i(x_i)\bar{a}_i(x_i; \rho)dF_i(x_i) \geq \mathcal{W}(\rho, G),$$

which establishes that ρ maximizes $\mathcal{W}(\cdot, G)$ on P. This completes the proof of Theorem 2.11.
References

Business Economics Series

00-01 (01) Alejandro Balbás and Mª José Muñoz
"Measuring Arbitrage Profits in Imperfect Markets"

00-02 (02) Juan A. Lafuente
"Intraday Return and Volatility Relationships Between the Ibex 35 Stock Index and Stock Index Futures Markets"

00-03 (03) Ashish Arora, Andrea Fosfuri and Alfonso Gambardella
"Markets for Technology and Their Implications for Corporate Strategy"

00-04 (04) Jaime Bonache Pérez and José Pla Barber
"When are International Managers a Cost Effective Solution? An Exploratory Study in a Sample of Spanish MNCs"

00-05 (05) Juan Angel Lafuente
"Optimal Hedging Under Departures from the Cost-of-Carry Valuation: Evidence from the Spanish Stock Index Futures Markets"

Economics Series

00-06 (01) Alfonso Alba Ramírez and María Tugores
"Training and Transitions out of Employment in Spain"

00-15 (02) Alfonso Alba, Gema Álvarez and Raquel Carrasco
"The Effect of Female Participation on Fertility in Spain: How does it Change as the Birth Comes Closer?"

00-17 (03) Andrei M. Gomberg, Francisco Marhuenda and Ignacio Ortuño-Ortín
"Equilibrium in a Model of Endogeneous Political Party Formation"

00-18 (04) Francisco Marhuenda and Felipe Pérez Martí
"On Altruism, Efficiency and Public Goods"

00-19 (05) Francisco Marhuenda
"Behavioral Heterogeneity Revisited: Further Examples"

00-20 (06) Mikel Pérez-Nievas
"Interim Efficient Allocation Mechanisms"

Statistics and Econometrics Series

00-07 (01) Andrés M. Alonso, Daniel Peña and Juan Romo
"Forecasting Time Series with Sieve Bootstrap"

00-08 (02) Martín González and Jesús Gonzalo
"A Threshold Unit Root Model (TUR) for Interest Rates"
00-09 (03) Juan J. Dolado, Jesús Gonzalo and Laura Mayoral
"Long Range Dependence in Spanish Political Opinion Poll Series"

00-10 (04) Rosa Elvira Lillo and Miguel Martín
"Identifiability of Differentiable Bayes Estimators of the Uniform Scale Parameter"

00-11 (05) Rosa Elvira Lillo
"Note on Characterization Problem of Nagaraja and Nevzorov"

00-12 (06) Rosa Elvira Lillo and Miguel Martín
"Characterizations Involving Conditional Expectations Based on a Functional
Derivative Approach"

00-13 (07) Félix Belzunce, Rosa Elvira Lillo, José María Ruiz and Moshe Shaked
"Stochastic Comparisons of Nonhomogeneous Processes"

00-14 (08) Rosa Elvira Lillo, Asok K. Nanda and Moshe Shaked
"Preservation of Some Stochastic Orders by Order Statistics"

00-16 (09) Wolfgang Haerdle, Stefan Sperlich and Vladimir Spokoiny
"Structural Tests in Additive Regression"

DOCUMENTOS DE TRABAJO 2000

Series de Economía

00-01 (01) Antonio García Romero
"El efecto de la estancia postdoctoral en la productividad científica"

Series de Estadística y Econometría

00-02 (01) José Ramón Cancelo y Antoni Espasa
"Análisis cuantitativo de los precios de la vivienda: Principales resultados e
implicaciones sobre el funcionamiento del mercado de la vivienda en España"

Series de Historia Económica e Instituciones

00-03 (01) M. Mar Cebrián
"Contratos de transferencia de tecnología y crecimiento de la Economía Española: 1959-1972"

00-04 (02) Juan Carmona
"Información y crédito en el campo español entre 1850 y 1930. ¿Por qué los bancos
rurales y las cooperativas no consiguieron extirpar la práctica de la usura?"
Fernando Carlos Ramos Palencia
"El consumo familiar de bienes duraderos y semiduraderos en la Castilla Pre-industrial: Palencia, 1750-1850"
<table>
<thead>
<tr>
<th>WORKING PAPERS 1999</th>
</tr>
</thead>
<tbody>
<tr>
<td>Business Economics Series</td>
</tr>
<tr>
<td>99-01 (01)</td>
</tr>
<tr>
<td>“Power in the firm and managerial career concerns”</td>
</tr>
<tr>
<td>99-06 (02)</td>
</tr>
<tr>
<td>“Short-termism as optimal experimentation policy”</td>
</tr>
<tr>
<td>99-07 (03)</td>
</tr>
<tr>
<td>“How Does Financial Theory Apply to Catastrophe-Linked Derivatives? An Empirical Test of Several Pricing Models”</td>
</tr>
<tr>
<td>99-17 (04)</td>
</tr>
<tr>
<td>“Markets for technology (why do we see them, why don’t we see more of them, and why we should care”</td>
</tr>
<tr>
<td>99-18 (05)</td>
</tr>
<tr>
<td>“An integrated typology of green manufacturing profiles”</td>
</tr>
<tr>
<td>99-30 (06)</td>
</tr>
<tr>
<td>“Collusion via Signalling in Open Ascending Auctions with Multiple Objects and Complementarities”</td>
</tr>
<tr>
<td>99-33 (07)</td>
</tr>
<tr>
<td>“Costly Financial Crises”</td>
</tr>
<tr>
<td>99-35 (08)</td>
</tr>
<tr>
<td>“On the effectiveness of several market integration measures. An empirical analysis”</td>
</tr>
<tr>
<td>99-39 (09)</td>
</tr>
<tr>
<td>“R&D and Debt Financing”</td>
</tr>
<tr>
<td>99-40 (10)</td>
</tr>
<tr>
<td>“Integration versus segmentation in a dealer market”</td>
</tr>
<tr>
<td>99-41 (11)</td>
</tr>
<tr>
<td>“The State of Strategic Human Resource Measurement in Spanish Banks”</td>
</tr>
<tr>
<td>99-46 (12)</td>
</tr>
<tr>
<td>“Organizational culture as a determinant of technology assimilation”</td>
</tr>
<tr>
<td>99-47 (13)</td>
</tr>
<tr>
<td>“Rethinking utility analysis: A strategic focus”</td>
</tr>
<tr>
<td>99-61 (14)</td>
</tr>
<tr>
<td>“The Role of Environmental Accounting in Organizational Change: An Exploration of Spanish Companies”</td>
</tr>
<tr>
<td>99-64 (15)</td>
</tr>
<tr>
<td>“How Does Liquidity Behave? A Multidimensional Analysis of Nyse Stocks”</td>
</tr>
<tr>
<td>99-67 (16)</td>
</tr>
<tr>
<td>“Conflicts of interest, employment decisions, and debt restructuring: Evidence from Spanish firms in financial distress”</td>
</tr>
<tr>
<td>99-70 (17)</td>
</tr>
<tr>
<td>“Financial Service Firm’s Entry-Mode Choice, Network Linkages and Cultural Diversity: Spanish Companies in Latin America”</td>
</tr>
<tr>
<td>99-81 (18)</td>
</tr>
<tr>
<td>“Exploring the internalization rationale for international investment: Wholly owned subsidiary versus technology licensing in the worldwide chemical industry”</td>
</tr>
</tbody>
</table>
Carmen Arguedas
"Environmental standards and costly monitoring"

Maite Martinez-Granado
"Testing Labour Supply and Hours Constraints"

Rafael Salas
"Multilevel Interterritorial Convergence and Additive Multidimensional Inequality Decomposition"

Ricardo Mora
"Third-Generation Mexican American Workers in the South-West: A Case of Wage Discrimination?"

Ricardo Mora
"Wage Inequality and Structural Change"

Ezra Einy, Diego Moreno and Benyamin Shitovitz
"The bargaining set of a large economy with differential information"

Antonio Romero-Medina and José Alcalde
"Simple mechanisms to implement the core of college admissions problems"

Antonio Romero-Medina and José Alcalde
"Sequential decisions in the college admissions problem"

Ezra Einy, Diego Moreno and Benyamin Shitovitz
"Fine value allocations in large exchange economies with differential information"

Klaus Desmet
"A Perfect Foresight Model of Regional Development and Skill Specialization"

Klaus Desmet
"A Simple Dynamic Model of Uneven Development and Overtaking"

Oscar Bajo and Rafael Salas
"Inequality Foundations of Concentration Measures: An Application to the Hannah-Kay Indices"

M. Angeles de Frutos and Lambros Pechlivanos
"Second-Price Common-Value Auctions under Multidimensional Uncertainty"

Diego Moreno and John Wooders
"Prices, Delay, and the Dynamics of Trade"

Juan Delgado and Diego Moreno
"Coalition-proof Supply Function Equilibria in Oligopoly"

Michele Boldrin and Ana Montes
"Intergenerational Transfer Institutions: Public Education and Public Pensions"

Andrés Perea, Mathijs Jansen and Dries Vermeulen
"Player Splitting in Extensive Form Games"

Andrés Perea and Jeroen Swinkels
"Selling Information in Extensive Form Games"

Albert Burgos
"Learning to deal with risk: What does reinforcement learning tell us about risk attitudes?"

M. Boldrin, J.J. Dolado, J.F. Jimeno and F. Peracchi
"The Future of Pension Systems in Europe: A Reappraisal"
99-56 (21) J.I. Dolado, F. Felgueroso and J.F. Jimeno
“The Causes of Youth Labour Market Problems in Spain: Crowding Out, Institutions, or Technology Shifts?”

99-57 (22) M. Balmaseda, J.I. Dolado, and J.D. López-Salido
“The Dynamic Effects of Shocks to Labour Markets: Evidence from OECD Countries”

99-59 (23) Victoria Osuna

99-62 (24) Marco Celentani and José Ignacio Conde
“The political economy of international private insurance and fiscal policy”

99-63 (25) Theisa I. Garner, Javier Ruiz-Castillo and Mercedes Sastre
“The influence of demographics and household specific price indices on expenditure based inequality and welfare: A comparison of spain and the United States”

99-66 (26) Praveen Kujal and Celia Costa Cabral
“The role of commitment and the choice of trade policy instruments”

99-71 (27) Berthold Herrendorf, Ákos Valentinyi and Robert Waldmann
“Ruling out Multiplicity and Indeterminacy: The Role of Heterogeneity”

99-76 (28) Ezra Einy, Diego Moreno and Benyamin Shitovitz
“Information Advantage in Cournot Oligopoly”

99-80 (29) J.I. Dolado, F. Felgueroso and J.F. Jimeno
“Youth Labour Markets in Spain: Education, Training and Crowding-Out”

99-82 (30) Sergi Jiménez Martin, José M. Labeaga and Maite Martinez Granado
“Health Status and Retirement Decisions for Older European Couples”

99-86 (31) Salvador Barberá and Andrés Perea
“Supporting Others and the Evolution of Influence”

Economic History and Institutions Series

99-15 (01) James Simpson
“Cooperation and cooperatives in southern European wine production: the nature of successful institutional innovation 1880-1950”

99-20 (02) Joan R. Rosés
“Explaining the early industrialisation: a view from Catalonia (1830-1861)”

99-28 (03) James Simpson
“The Agrarian Crisis in the Late Nineteenth Century Spain: a Reconsideration”

Statistics and Econometrics Series

99-03 (01) Stefan Profi and Stefan Sperlich
“Non-Uniformity of Job-Matching in a Transition Economy: A Nonparametric Analysis for the Czech republic”

99-10 (02) Regina Kaiser and Agustín Maravall
“Short-Term and Long-Term Trends, Seasonal Adjustment, and the Business Cycle”

99-12 (03) Francesc Marmol. Alvaro Escribano and Felipe M. Aparicio
“A New Instrumental Variable Approach for Estimation and Testing in Cointegrating Regressions”

99-19 (04) Rosario Romera
“Distributional aspects in partial least squares regression”
Walter Krämer and Francesc Mármol
"Ols-Based Asymptotic Inference in Linear Regression Models With Trending Regressors and Ar(p)-Disturbances"

Walter Krämer and Francesc Mármol
"The Power of Residual-Based Tests for Cointegration When Residuals Are Fractionally Integrated"

Víctor Aguirregabiria (University of Chicago) and César Alonso Borrego (Universidad Carlos III de Madrid)
"Labour Contracts and Flexibility: Evidence from a Labor Market Reform in Spain"

Juan J. Dolado, Jesus Gonzalo and Laura Mayoral
"A Fractional Dickey-Fuller Test"

Lorenzo Pascual, Juan Romo and Esther Ruiz
"Effects of Parameter Estimation on Prediction Densities: A Bootstrap Approach"

Miguel A. Delgado and José M. Vidal
"On Universal Unbiasedness of Delta Estimators"

Miguel A. Delgado and Javier Hidalgo
"Bootstrap goodness-of-fit tests for FARIMA models"

Antonio J. Conejo, F. Javier Nogales and Francisco J. Prieto
"A New Decomposition Method Applied to Optimization Problems Arising in Power Systems: Local and Global Behaviour"

Miguel A. Delgado y José M. Vidal
"Global rates of convergence for the bias of singular integral estimators and their shifted versions"

Jesús Gonzalo and Raquel Montesinos
"Stochastic Threshold Unit Root Models"

Regina Kaiser and Agustin Maravall
"Seasonal Outliers in Time Series"

Jesus Gonzalo and Tae-Hwy Lee
"Permanent and Transitory Components of GDP and Stock Prices: Further Analysis"

Politis, D.N., Romano, J.P., and Wolf, M.
"On the Asymptotic Theory of Subsampling"

Politis, D.N., Romano, J.P., and Wolf, M.
"Subsampling, symmetrization, and robust interpolation"

Miguel A. Delgado. José C. Fariñas y Sonia Ruano
"Firms productivity and the export market: a nonparametric approach"

Juan José Dolado, Jesus Gonzalo and Francesc Mármol
"A Primer on Cointegration"

Sonia Hernández and Víctor J. Yohai
"Locally and globally robust estimators in regression"

Francesc Marmol
"How Spurious Features Arise in Case of Cointegration"

Juan José Dolado and Francesc Marmol
"Asymptotic Inference for Nonstationary Fractionally Integrated Processes"

Miguel Ángel Delgado and Inmaculada Fiteni
"Bootstrap test for parameter instability"
Santiago Velilla
“Variable Deletion, Confidence Regions and Bootstrapping in Linear Regression”

J. A. Gil, D. Peña and J. Rodríguez
“Trends in statistical research productivity by journal publications over the period 1985-1997”

J. A. Gil, D. Peña and J. Rodríguez
“Statistical research in Europe: 1985 - 1997”

Daniel Peña and Javier Prieto
“The kurtosis coefficient and the linear discriminant function”

Ana Pérez and Esther Ruiz
“Finite Sample Properties of a QML Estimator of Stochastic Volatility Models with Long Memory”

Uwe Hassler
“Nonsense Regressions Due to Time-Varying Means”

Uwe Hassler
“Cointegration Testing in Single Error-Correction Equations in the Presence of Linear Time Trends”

Juan M. Rodriguez-Póo, Stefan Sperlich and Ana I. Fernández

Ulrike Gra hoff, Joachim Schwalbach and Stefan Sperlich
“Executive Pay and Corporate Financial Performance: An Explorative Data Analysis”

Stefán Sperlich, Dag Tjostheim and Lijian Yang
“Nonparametric Estimation and Testing of Interaction in Additive Models”

Onésimo Hernández-Lerma and Rosario Romera
“Limiting Discounted-Cost Control of Partially Observable Stochastic Systems”

Joseph P. Roman and Michael Wolf
“Subsampling Intervals in Autoregressive Models with Linear Time Trend”

Laura Mayoral Santamaría
“A New Minimum Distance Estimation Procedure for ARFIMA Processes”

DOCUMENTOS DE TRABAJO 1999

Series de Economía

José Luis Ferreira e Iñigo Herguera
“Relación entre los mercados spot y de futuros en un contexto oligopoliástico”

José Luis Ferreira e Iñigo Herguera
“Régimen institucional del mercado spot y del mercado de futuros en distintos países”

Diego Moreno
“Competencia vía funciones de oferta en el mercado español de producción de energía eléctrica”

Diego Moreno
“Relaciones de propiedad cruzadas en mercados oligopoliásticos”

Ramon Maria-Dolores
“Variaciones en el Tipo de Intervención del Banco de España: Un Enfoque Alternativo”

J.J. Dolado, F. Felgueroso y J.F. Jimeno
“Los Problemas del Mercado de Trabajo Juvenil en España: Empleo, Formación y Salarios Mínimos”
Series de Economía de la Empresa

99-04 (01) Maria José Álvarez Gil, Jerónimo de Burgos Jiménez y José Joaquín Céspedes Lorente
"¿Hay hoteles verdes en España? Un análisis exploratorio"

99-05 (02) Ignacio Hernando y Josep A. Tribó
"Relación entre contratos laborales y financieros: Un estudio teórico y empírico para el caso español"

99-08 (03) Carlos Larrinaga
"El Estado de Valor Añadido y la Naturaleza Social de la Contabilidad"

99-09 (04) Carlos Larrinaga
"Perspectivas Alternativas de Investigación en Contabilidad: Una revisión"

99-14 (05) Mª José Álvarez Gil, Jerónimo de Burgos Jiménez y José Joaquín Céspedes Lorente
"Estrategia medioambiental, contexto organizativo y rendimiento: Los establecimientos hoteleros españoles"

99-16 (06) Mª José Álvarez Gil, Fernando Gutiérrez y Domi Romero
"Prioridades competitivas y sistemas de información en la empresa manufacturera española del siglo XVIII: análisis de un caso"

99-18 (07) Clara Cardone y Leonardo Cazorla
"Estrategias de entrada de la banca española en América Latina: Análisis teórico y Empírico"

99-19 (08) María Jesús Nieto y Josep A. Tribó
"Determinantes de la emisión de deuda negociable en las empresas españolas"

Series de Estadística y Econometría

99-15 (01) Felipe Miguel Aparicio Acosta
"La Enseñanza de Estadística en Ingeniería de Telecomunicaciones"

Series de Historia Económica e Instituciones

99-01 (01) Xavier Cuadras-Morató, Angel S. Fernández Castro y Joan R. Rosés
"La influencia de la productividad en la consolidación de los grupos regionales de la banca privada española. 1900-1914"

99-06 (02) Pedro Fraile
"El pesimismo económico en la España contemporánea"

99-07 (03) Pedro Fraile
"Nacionalismo y corporativismo en la Economía de la España contemporánea"

99-13 (04) James Simpson y Juan Carmona
"¿Son los contratos agrarios un factor determinante del crecimiento económico? El ejemplo de la aparcería en los siglos XIX-XX"