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Abstract _ 

In this paper we study the dynamic behavior of the term structure of Interbank interest rates and 

the pricing of options on interest rate sensitive securities. We posit a generalized single factor 

model with jumps to take into account external influences in the market. Daily data is used to test 

for jump effects. Qualitative examination of the linkage between Monetary Authorities 

interventions and jumps are studied. Pricing results suggests a systematic underpricing in bonds 

and call options if the jump component is not inc1uded. However, the pricing of put options on 

bonds presents indeterminacies. 
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1. Introduction 

This paper addresses the modelling of the term structure of Interbank interest rates and the 

pricing of options on interest rate sensitive securities. Traditional (one or more factor) models 

have so far assumed that interest rates evolve over time in a continuous way, see Duffie 

(1992, pp. 129-139). But there are sorne circumstances where this may not be a reasonable 

assumption. One interesting case is domestic Interbank Markets which are subject to 

exogenous interventions by the Monetary Authorities in their attempts to control the money 

supply. In this case those interventions may cause jump-like behavior in observed interest 

rates. This idea is similar to Merton's (1976) analysis of stock option pricing. Merton 

suggested that bursts of information are better depicted in price behavior as jumps. Thus, one 

may infer from Merton' s suggestion that the unexpected interventions by the Monetary 

Authorities are a set of signals to the market which convey information on money supply. 

Of course many other reasons can affect interest rates in jump-like fashion, for instance 

supply or demand shocks and economic or political news. One of the targets of this paper 

is to deal with all those possible influences under the same umbrella, by positing a general 

enough model that can cope with these kinds of effects. Note also that another practical 

advantage of employing diffusion processes with superimposed discrete jumps is thatwe can 

take into account the "fat tails" usually found in the distribution of security prices. 

The artic1e is organized as follows. In Section 2 we present the theoretical background. 

Section 3 describes the econometric approach. Section 4 addresses the basic characteristics 

of our data sample. The empirical analysis is presented in Section 5. Section 6 analyzes the 
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relationship between monetary authorities interventions and the jump-like behavior of interest 

rates. Section 7 discuss the pricing of bonds and options. Finally, Section 8 surnmarizes and
 

conc1udes.
 

2. Theoretical Background 

The basic framework in this paper is the single-factor model of interest rates, in the tradition 

of Vasicek (1977), and Cox, Ingersoll and Ross (1985a,b) among others. We generalize those 

models, following the suggestions by Das (1994a), who posits the addition of a jump 

component in the process followed by the state variable. The dynamics of the interest rate 

are given by the following jump-diffusion process: 

(1) 

where, for the instantaneous riskless interest rate r, k is the coefficient of mean reversion, 

O is the long ron mean level of r, (f is the standard deviation of r, T is the elasticity 

coefficient parameter, dz is a standard Gauss-Wiener process, J is the jump magnitude in r 

which has a Normal distribution with mean p. and variance y and dll'(h) is a Poisson arrival 

process with a constant intensity parameter h. The jump and diffusion components on the 

interest rate process are assumed to be independent. Mean reversion (k > O) ensures that 

r follows a stationary process. 

Given the instantaneous interest rate r at period t, let P[r,t,T] represent the price of a 

riskless pure discount bond maturing at period T. From Ito's Lernma, the instantaneous rate 
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of retum on the bond is: 

(2) 

where subscripts denote partial derivatives. In perfect markets, the instantaneous expected 

rate of retum for any asset can be written as the instantaneous riskless rate, r, plus a risk 

premium. Therefore the risk adjusted retum on a11 zero coupon bonds must be the same. 

Assuming that the market price per unit of risk (X(.)) for the bond is a general function that 

may depend on a, r and 7, but not on T-t, and remembering that the jump and diffusion 

components in (1) are independent, the variance of changes in r is simply the sum of the 

variances of both components. The arbitrage-free pricing partial differential equation is as 

fo11ows: 

2rP0= (k(8-r) -J(a,r,-r))P +P t +o.502 r -rPr rr 
(3) 

+ h E[p(r+J) - P(r)] 

This is the fundamental equation for the price of any zero coupon bond which has a value 

that depends solely on the instantaneous rate, r, and the time to maturity, T-t. With the 

boundary condition, 

P[r,T,T] 1.0 (4 ) 

Analytical solutions of (3) (if available) are usua11y obtained by positing that the functional 

form of the bond price is given by 

P [r, t, T] = A [ t, T] exp [ - B [ t, T] r] (5) 
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where 

(6) 

If it is not possible to find an analytical solution, numerical procedures may be used to 

approximate (3). 

Explicit expressions for A[t,T] and B[t,T] have been reported for sorne particular cases. Ahn 

and Thompson (1988) studied the case of 7=0.5 assuming a jump component equal to ody 

where ois a negative constant and the intensity of yis taken to be 1rr, Le. the jump arrival 

rate is proportional to the level of interest rateo Das (1994a) studied the cases 7=0.5 and 

7=0.0 and parameterized both the size and sign of the jump component. To our knowledge, 

expressions for A[t,T] and B[t,T] for general values of 7 have not been reported. 

The valuation framework presented aboye, can be applied to other securities whose payoffs 

depend on interest rates, such as options and futures on bonds. Theoretical work on pricing 

interest rate sensitive securities for jump-diffusion process include Ahn and Thompson 

(1988), Naik and Lee (1990), Das (1994a) and Naik and Lee (1995). In those papers analytic 

models for bond and option prices are given. However, none of these models permits the 

pricing of American options. This is unfortunate given that almost aH traded interest sensitive 

securities have American features. Furthermore, the pricing of "American-style" derivative 

securities usuaHy requires numerical methods, either by Binomial trees or by finite­

differencing methods, see Duffie(1992, Chapo 10). Recently, applications of numerical 

methods to jump-diffusion processes have been reported by Amin (1993) for the Binomial 
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tree approach and by Das (1994b) for the finite-differencing approach. In this paper we 

follow the latter approach, using the Full Implicit Finite-Differencing (FIFD) method for 

bond and option pricing. 

We now develop the procedure to solve equation (3) using the FIFD method. When using 

this method, careful specification of the boundary conditions is required. Since the state 

variable, r, varies in the range [0,00), and the process requires backward recursion in time 

on a discrete time grid of the state variable, it is hard to establish a grid over this support. 

To deal with this problem we carry out the following transformation of variable 

1 (7)Y = ~ 8 P>o1+ r 

The new state variable, y, varies in the range (0,1] and this makes the upper bound easy to 

establish. Using this transformation from r to y we obtain a transformed version of the 

Partial Differential Equation (3): 

o = P102~2-2'ty3-2't(1-y)2't-Py2(k(e- 1 ;) -A,(.))]p

+ Pw( ~ 02p2-2'ty 4-2't (l-y) 2 P] 

(8) 

which can be written as 

(9) 

where 
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A = [C2p2-2't'y3-2't' (l-y) 2't'_py2(k(S- 1 ;) -A, (.))] 
p 

(10) 
B = [ ~ a 2p2-2't'y4-2't' (l-y) 2P] 

The procedure to solve equation (8) using the FIFD method involves a two-dimensional grid 

where we have the (transformed) state variable (y) on one axis and time (t) on the other. Let 

the variable i=1,2, ... N index the state variable axis and the variable j=1,2, ...T index the 

time axis on the grid where N and Tare the number of points on each axis. We denote the 

price of a bond on the grid as p¡,j and the value of the state variable as Y¡,j' The distance 

between adjacent nodes on the i-axis is equal to m, and that between adjacent nodes on the 

j-axis is equal to q. Using this notation, we can write the differential equation (8) in 

difference equation form as follows: 

N ~l-y, 1-y "j 1 Y 
(11) 

+ h~ P . x Pro n] I ~] - hP·· - ---p ..
f;¡ n] PYnj PYij ~] py~] 

i=1,2, ..N, j=1,2, .. T 

The boundary conditions for pricing the bonds at maturity are simply 

(12) 
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Rearranging equation (10) we can write 

. EN ~ 1-Yn j I 1-Yij ]= p. 1 ·a· + P·.b. + p. 1 ·C, + h· P . x Pro ' 
~+ ,] ~ ~] ~ ~- ,] ~ n,] Ay 

n=l ~ n,j J}Yij 

(13) 

where 

a· = [~+~] 
~ 2m m2 

(14) 

This system of N equations is solved by backward recursion, given the boundary conditions 

for the bond. The NxT-equations system in formulae (13) can be written in matrix form: 

j = T-1, ... 1 
(15) 

x = -q(Q+Y) 

a

where Q is a N x N matrix containing the probabilities of jumping from any node Pij to Pnj • 

Pj +\ is an N x 1 vector and Y is a tridiagonal matrix where each row contains the coefficients 

j , b j and C j • Backward recursion is performed by computing the equation (15) from j=T-1 

to j = 1. For other interest rate derivative securities, which are functions of bond prices, 

appropriate boundary conditions can be imposed, and the prices can be computed off the 
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grid. This approach allows almost all forms of path-independent valuatíon. 

3. Econometric Framework 

The model to be estimated for the dynamics of the interest rate is the following jump­

diffusion process: 

dr = k(tJ - r)dt + (Jr~dz + J(§J,y2)drr(h) (16 ) 

We follow a two-step procedure. First we estímate the pure diffusion part of the model, 

setting h = O in (16). Then we estímate both the jump ,s locatíon and size using a Likelihood 

Ratio test-type statistic. Finally we estímate jointly the full diffusion-jump model. 

The pure diffusion is estimated using the discrete time technology of Chan el al. (1992), 

based on an iterated version of Hansen's GMM. The econometric specification is: 

(17) 

so that 

k = -b 8 = a (18 )
b 
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Given the parameter vector Ü=(a, (3, a, r) and the residuals et in (17), let the moment vector 

(19) 

Under the null hypothesis, if the restrictions implied by (16) are true, E[ft(ü)] =0. We replace 

E[ft(ü)] with its sample counterpart gT(Ü), using T observations, 

(2 O) 

Then, the GMM estimator is: 

(21) 

where 

(22 ) 

and V is an appropriate weighting matrix. To deal with possible residual autocorrelation and 

heteroskedasticity we employ the Newey-West corrected covariance matrix for the GMM 

model and then iterate till convergence. 

To test the overidentifying restrictions of the model we use the chi-square test. The quantity 

TJT(ü) is distributed X2 with degrees of freedom equal to the number of moment conditions 
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less the number of parameters estimated. 

Using the estimated values of the diffusion parameters, we estimate the jump locations using 

an approach based on the ideas of Aase and Guttorp (1987). Essentially the procedure is to 

compute a selected criterion function for each observation, assuming no jumps (restricted) 

and compare it with its value assuming one jump (unrestricted). In our case, the criterion 

function is the quadratic form JT(O). We compute for each observation the test statistic 

(23) 

This test is asymptotically distributed X2 with one degree of freedom, and can be interpreted 

as the normalized difference of the restricted JT(Oo) and unrestricted JT(O¡) objective 

functions. This procedure provides the location and size of the jumps with their signo 

Therefore, at each point in time, we know whether a jump ocurred or not, as well as its signo 

Thus, at each t, we can write the conditional expectation and variance of the change in the 

interest rate depending on the event at that time. Using a dummy variable D¡, i=1,2..T, 

which takes values D¡=1 ifthere is ajump and D¡=O otherwise, we obtain the moments for 

the estimation as follows: 

iE t = r t -rt-l - (a +br t-l) - dD t 

E[e: t ] = O (24) 

E[e:~] - 02rt_
1 

- (dD t )2 = O 

where we use as a starting point the parameters estimated for the pure diffusion process. 
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4. Data Characteristics 

In this section we address the basic characteristics of our data sample. The instantaneous 

risk1ess interest rate is approximated by daily ovemight Spain Interbank offer rates!. The 

data was obtained from the Research Department, Bank of Spain, and consists of annualized 

rates. Daily data spans the period from January, 1, 1988 to March, 10, 1994. The number 

of observations is 1534. Figure 1 shows the Ovemight rate. Note the periodic "drops" in the 

ovemight rate as we11 as the significant increase in the volatility associated with the 

turbulence in the European Monetary System. It is worth mentioning that in the period from 

September, 1992 to May, 1993 the peseta was devaluated three times. 

Table 1 provides surnmary statistics of the interest rate (r) as we11 as the changes in interest 

rate (dr). The unconditional average interest rate is 13% and its standard deviation is around 

180 basis points. The mean change in interest rates is slightly negative and its volatility is 

about 33 basis points. The excess kurtosis in the distribution of changes in interest rates 

indicate the presence of fat tails in the interest rate distribution. The autocorrelation 

coefficients of the interest rate (see Table Il) are close to unity and decay quite slowly. The 

autocorrelation coefficients of the changes in interest rate are sma11 and negative. Therefore, 

mean reversion in interest rate is suggested in our sample. 

! The interest rate data is computed as the average rate for a11 transactions on a 
specified term in a given day. 
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5. Empirical Analysis 

This section presents the estimation of equation (17). First we estimate the pure diffusion 

model, which nests eight interest rate models (see Table 111) derived from the restrictions on 

the parameters a, b and 7 in eq. (17). In a second stage, we use the estimated values of the 

diffusion parameters to obtain the location, size and sign of the jumps. 

5.1 Modelling Pure Diffusion Processes 

Table IV presents the estimation results obtained for the pure diffusion processes. We 

estimate the unrestricted diffusion process derived from the equation (16) as we11 as eight 

restricted models derived through restrictions on the parameters of this model. The x2 tests 

for goodness-of-fit indicate that the Brennan-Schwartz, Cox-Ingerso11-Ross-85 and Vasicek 

models exhibit the c10sest to zero GMM minimized criterion values. The lowest x2 value 

corresponds to the Brennan-Schwartz model, which assume the highest value for 7 among 

these, and a11 three models have X2 values sma11er than 0.8. In these models a single 

parameter, 7, is restricted. As no restrictions are imposed on the parameters a and b, a11 of 

them show mean reversion. The Dothan and Cox-Ingerso11-Ross-80 models which assume 

that the parameters a and b are nu11, fit less we11 the data but none can be rejected at the 90% 

confidence level. The Black-Scholes and Merton models have x2 values in excess than 5 and 

can be rejected at the 90% confidence level. The Cox model, which assumes that the 

parameter a is equal to zero, can be rejected at the 95 % confidence level. 
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Note that models which imply mean reversion have the lowest GMM criterion x2 values. On 

the other hand, models which assume that the parameters a and/or b are null - that is, there 

is no mean reversion in interest rates - have high X2 values and are therefore not acceptable. 

The parameters estimates of the unconstrained model, which are very similar to the estimates 

of the Brennan-Schwanz model, show that the parameters a and b are different from zero 

and, hence, there is evidence of mean reversion in interest rates. Another feature of this 

model is that the estimated value for the parameter 7 is 0.96. Therefore, the conditional 

volatility of the process is very sensitive to the level of the interest rateo This value is higher 

than the values assumed by the most cornmon models as the Vasicek or Cox-Ingersoll-Ross­

85 models. 

To obtain more information on the performance of the alternative pure diffusion models, we 

test their in-sample forecasting power in relation to the level and volatility of interest rates. 

First we use the fitted values for equation (17) to compute the time series of conditional 

expected interest rates changes and conditional variances for the unrestricted and the eight 

restricted models. Then, we compute the R/ (j = 1, 2) statistics. These two values are 

reponed in the two last columns of Table IV and show (for each model) the proponion of 

the total variation in the ex post interest rates changes or squared interest rates changes that 

can be explained by the conditional expected interest rates changes and conditional volatility 

measures, respectively. 

The R¡2 value is the measure related to the actual interest rate changes. The unrestricted and 

Brennan-Schwartz models have the best explanatory performance and are closely followed 
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by the Cox-Ingersoll-Ross-85 and Vasicek models. The remaining models have no 

explanatory power. In the case of the R2
2 statistic, which measures the degree of the model's 

explanatory power of the volatility of the interest rate changes, the highest value corresponds 

also to the unconstrained and the Brennan-Schwartz models, which are followed by the Cox­

Ingersoll-Ross-85, Cox and Black-Scholes models. Therefore, these two measures, which 

indicate the predictive power of the models, provide a classification of the alternative models 

which is very similar to the one obtained when parameters of the pure diffusion models were 

estimated. Given the previous results, we choose the Brennan-Schwartz process as a tentative 

model for the pure diffusion part of the Interbank interest rate. 

5.2. Modelling Jumps 

Once we have estimated the pure diffusion models, we use those results to estimate the jumps 

location. After applying the econometric procedure described in Section 3, we find 77 jumps 

in the sample. Figure 2 plots the time series of the interest rate and the location of the jumps. 

The surnmary statistics of the jumps are reported in Table V. The mean jump size is about 

7 basis points and its volatility (measured by the standard deviation) is around 140 basis 

points. The arrival frequency of the jumps is 5.02% and, therefore, there is approximately 

one jump per month. The distribution of jump sizes is shown in Figures 3 and 4. Separating 

the jumps by their sign, there are 37 positive jumps while the remaining 40 are negative. The 

mean of the negative jumps is 100 basis points and the mean of the positive jumps is 123 

basis points. The distribution of the negative jumps has a lower variance than the distribution 

of the positive jumps. 
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Once the location of the jumps is known, we are able to include this information in our 

model by means of dummy variables. This is done by estimating the two models in equations 

(25)-(26) and (27)-(28). 

The first model includes one dummy variable that indicates the moment when a jump 

ocurred: 

r t - r t-l = a + br t-l + dD t + €t 
(25) 

where 

D = {l if there is a jump 
t (26)

O otherwise 

We also estimate a second model with two dummy variables which distinguish between 

positive and negative jumps: 

(27 )
where 

D; = {l if there is a positive jump 
O otherwise 

(28) 

if there is a negative jump= {lD~ 
O otherwise 

The parameter estimates for the two jump-Brennan-Schwartz models are shown in Table VI. 
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The a and b coefficients are both significant1y different from zero pointing out that mean 

reversion is present in our sample, even after taking account of jumps. The coefficient 

associated with the jump dummy variable is not different from zero. When different effects 

are allowed for positive and negative jumps the coefficients are statistically significant. The 

degree of fit of the model with jumps is similar to the model without jumps, as measured by 

the R2
• However, when separate variables are inc1uded for positive and negative jumps the 

degree of fit increases substantially. Therefore we conc1ude that taking into account the 

presence of a jump process increases the model' s explanatory power. 

6. Monetary Authorities Interventions 

In this section we investigate the extent to which interventions by the Bank of Spain (Spain's 

Monetary Authority) are responsible for at least part of the jump-like behavior of interest rate 

time series. The Bank of Spain (BS) uses a "target" interest rate (Tipo de Intervencion, TI 

henceforth) in open market transactions. Periodically, the BS makes interventions in the 

Interbank market, offering money for lending or borrowing at the TI rateo Data for the TI 

rate was obtained from the Research Department of the Bank of Spain. Short term rates tend 

to track the TI rate rather c1osely. This can be noticed from the regression results in Table 

VII. The regression of the short rate on the contemporaneous TI rate is highly significant. 

AIso the TI one-day lag is found to be significant. This reflect the fact that BS sets the TI 

rate after the start of the interbank trading session. The results in Table VII suggest that 

about 50 % of the total variance in the short rate is explained by its relationship with the TI 

rateo 
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We compare a change in the BS target rate with the occurrence of a jump as derived in the 

jump-diffusion modelo If both occur together, we assume that the jump was caused by the 

BS intervention. There were a total of 77 jumps in the interest rate and 160 BS target rate 

changes. Jumps and changes in the BS target rate coincide on 22 days. The summary 

statistics for these jumps and the associated changes in the BS target rate are reported in 

Table VIII. The mean jump size is near zero and the jumps volatility, indicated by their 

standard deviation is about 160 basis points. Therefore, this restricted set of 22 jumps is 

more volatile than the whole set of 77 jumps. In a similar way to the whole set of jumps, the 

highest jump sizes occur in the last twenty months of our sample periodo 

In the 22 days where BS actions and jumps occurred together, there were 10 positive and 12 

negative jumps. Therefore, in this restricted set of jumps, the proportion of positive and 

negative jumps is similar to the proportion we found in the whole sample. Their average, in 

the restricted set of jumps, are greater than the values obtained in the whole sample and, 

similarly, the positive jumps mean value is greater than the (absolute value of the) mean 

value of negative jumps, which is in excess of 110 basis points. 

We build a window of 5 days around the BS target rate change in order to check if the 

market was able to anticipate (or reverse) a BS move. If we find that the change in the BS 

target rate is preceded by a jump in the market in the prior week, this may be interpreted as 

anticipation. The results are displayed graphically in Figure 5. In this figure, the x-axis 

represents the number of days by which the BS intervention precedes the jump (a negative 

value indicates the number of days between a jump and a posterior BS rate change). The 

highest peaks of this figure correspond to the central value (number of days in which a BS 
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action and a jump occur simultaneously) and to the extreme values (days in which a BS 

action and a jump are separated by five days). Another interesting feature of this figure is� 

its syrnmetry.� 

Therefore, we may say that sorne, but not aH, jumps are related with the monetary 

authorities' interventions but perhaps there are also other factors (e.g. exchange rate shocks) 

that should be taken into account if we want to explain the occurrence of jumps in our 

sample. In conclusion, it seems that the analysis indicates that about one third of jump-like 

shocks are coincident with BS actions. Moreover, it is not very clear whether the market was 

able to either anticipate or reverse a BS move systematicaHy. 

7. Pricing Derivatives 

For illustrative purposes, we implement the algorithm described in section 2 to price bonds 

with maturities of 3 months and 1 year and also a 3 month option on a 1 year bond2
• The 

options, puts and calls, are priced under pure-diffusion and jump-diffusion assumptions. We 

price both European and American Options. The following parameter values are used: 

a = 0.149, b = -0.008, 0=0.0088, .\(.) = O 
(29 ) 

iJ. = O, 'Y = 1.392, h = 12.3, 't' = 1. O 

The strike price is 0.95. The parameters in (29) are those of the model estimated for the 

2 Many other pricing simulations for bonds and options were performed. The bond 
pricing simulation was performed for maturities ranging frem 1 year to 10 years. The option 
pricing simulation was performed for 3, 6 and 9 months options on bonds of different 
maturities. Detailed results are available on request. 
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overnight interest rate which follows a jump-enhanced Brennan-Schwartz process. 

Table IX contains the results. Given that the pricing results for European and American call 

options are identical, we report both joint1y. There are sorne interesting facts. The price of 

a one year bond is higher under the jump-diffusion model. This is the well-known 

"asyrnmetric" effect, caused by the asyrnmetry of the bond pricing function. This feature of 

high prices will increase with the duration of the bond. AIso, options will increase in value 

because the jumps induce "fat tails" into the distribution of bond prices. This is the "time 

value" effect. In the case of calls, both effects, asyrnmetric and time value, result in the 

option increase in value. However, in the case of puts, the asyrnmetric effect reduces the 

option value whereas the time value effect increases its value. The trade-off between these 

two forces leaves the jump-diffusion value of the put indeterminate in comparison with the 

pure-diffusion case. 

8. Conclusion 

This paper has presented a single-factor model for the term structure of the Interbank interest 

rate, when the instantaneous rate follows a jump-diffusion process. The empirical 

implementation suggests that jump-diffusions better explain interest rate behavior than pure­

diffusion models. Sorne economic implications of jump activity are explored with an analysis 

of changes in the Bank of Spain target rateo As a result, sorne, but not all, jumps are found 

to be related with Central Bank interventions. Additionally, we price European-style and 

American-style interest rate contingent claims (bond and options) using the finite-differencing 

approach, enhanced to deal with partial differential equations derived in a jump-diffusion 
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rnodel. The existence of jurnps affects bonds and can options very rnuch like in the case of 

stocks. We find underpricing if the jurnps are not taken into account. However the put 

options pricing present sorne indeterminacies. 
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Table I. ¡"terest Rates: Descriptive Statistics 

This table provides surnmary statistics of the ovemight Spain Interbank interest rate (r,) as well as the changes in this interest rate (r, - r,.,). 

Means. standard deviations. skewness coefficients and excess kurtosis are computed from January 1988 through March 1994. Raw data 

is in percentage terms. 

Number of Standard Skewness Excess� 

Variables Observations Mean Deviation Coefficient Kurtosis� 

rt 1534 13.003 1.8363 -0.424 -0.496 

rt - rt_1 1533 -0.0035 0.3368 3.0023 98.507 

Table 11. ¡"terest Rates: Correlatio" Structure 

This table shows correlation coefficients of order j, denoted by Pj. of the ovemight Spain Interbank interest rate (rt ) as well as the changes 

in this interest rate (r, • r,.¡). These coefficients are computed from January 1988 through March 1994. N denotes the number of 

observations. Raw data is in percentage terms. 

Variables N PI P2 P3 P4 Ps P6 

rt 1534 0.9809 0.9656 0.9542 0.9450 0.9366 0.9287 

rt - rt_1 1533 -0.113 -0.114 -0.067 -0.009 -0.013 0.052 
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Table 111. Alternative Pure Diffusion Processes 

This table shows !he altemative pure diffusion models !hat reflect !he dynamics of!he imerest rateo These processes derive from restrictions 

on !he paramelers a. b and T in !he syslem of equalions 

(17) 

Model a b 7� 

Merton (1973) --- O O� 

Vasicek (1977) --- --- O� 

Cox, Ingersoll and Ross (1985b) --- --- 0.5� 

Dothan (1978) O O 1� 

Black and Scholes (1973) O --- 1� 

Brennan-Schwartz (1980) --- --- 1� 

Cox, Ingersoll and Ross (1980) O O 1.5� 

Cox (1975) O --- ---�

Unrestricted --- --- --­
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Table V. Jumps Size: Descriptive Statistics 

This table provides surnmary statistics of lhe jumps located in lhe interest rates series from January 1988 lhrough March 1994. We report 

statistics for lhe following variables: JUMP" which denotes jumps size, JUMPPOS" which includes lhe size of positive jumps, and 

JUMPNEG" which includes lhe size of negative jumps. N denotes, for each type, lhe number of located jumps. 

Number Standard Skewness Excess� 

Variables of Jumps Mean Deviation Coefficient Kurtosis� 

JUMPt 77 0.07037 1.392555 0.7515 3.90682� 

JUMPPOS t 37 1.2313 0.985046 3.4132 14.3367� 

JUMPNEGt 40 -1.00348 0.659994 -3.59903 16.5665� 

Table VI. Estimates of the Jump-Diffusion Models 

This table contains the parameter estimates (wilh t-statistics in parenlheses) of the LWO altemative jump-diffusion models for Spain Interbank 

interest rates. The sample perlad is from January 1988 to March 1994. The parameters are estimated by means of lhe Generalized Melhod 

of Moments and lhey are obtained from equations (25)-(26) and (27)-(28). 

Model a b cJl d d+ d- R2� 

(25)-(26) 0.1490 -0.0082 0.0088 0.0113 ---- ---- 0.0064� 

(2.46) (-1. 77) (-43.74) (0.28) 

(27)-(28) 0.1248 -0.0070 0.0030 ---- 1.1533 -1.08 0.5441 

(3.17) (-2.33) (-46.27) (31.19) (29.84) 
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Table VII. The Short Rate and the TI Rate 

This table provides regression results on the relationship between the short rate and the TI rateo The sample period is from January 1988 

to March 19940 The regression is corrected for first order autocorrelation (coefficient 4» and is ron on contemporaneous and one lagged 

values of the BS target rate TI. Robust standard errors are computed using the Newey-West covariance matrix estimatoro 

Variables Constant TI(t) TI(t-1) ~ Adj. R2 D-W 

Estimate -0.122 0.882 0.146 0.827 0.472 2.10 

t-stat -0.301 15.53 2.57 53.19 

Table VIII. Coincidence between Jumps and BS Actions. Jumps Size: Descriptive 

Statistics 

This table provides surnmary statistics of the jumps that occur simultaneously with a change in the BS target rateo The sample period is 

from January 1988 through March 1994. We report these statistics for the following variables: JUMPBS,. which denotes jumps size, 

JUMPPSBS" which includes the size of positive jumps, and JUMPNGB5" which shows the size of negative jumps. N denotes. for each 

type, the number of located jumps. 

Number Standard Skewness Excess� 

Variables of Jumps Mean Deviation Coefficient Kurtosis� 

JUMPBSt 22 0.01111 1.60083 -0.4879 1.6869 

JUMPPSBS¡ 10 1.3962 0.8150 1.4609 2.0053 

JUMPNGBS t 12 -1.1431 1.0729 -2.9163 9.0796 

29 



Table IX. Examples oC Pricing Bonds and Options using the FIFD method 

This table contains bond values for maturities of 3 months and 1 year al differenl values of the currenl ovemighl raleo Values are for zero­

coupon bonds with face values of 1.0 and r=0.08. 0.09.0.10.0.11.0.12. The arrival rate is h= 12.3 jumps per year. and the jumps are 

dislribuled - N(O. 1.392). The other paramelers are a=0.149. b=-0.008. u=0.0088. >'=0.0. Oplion prices are compuled for lhe lhree 

month oplion on the one year discount bond. The slrike price is 0.95. The pricing resulls are identical for European and American call 

oplions. 

Security r=0.08 r=0.09 r=O.lO r=O.l1 r=0.12� 

Diffusion� 

Bond (3m) 0.9791 0.9779 0.9756 0.9748 0.9722� 

Bond (ly) 0.9295 0.9232 0.9176 0.9108 0.9042� 

Call 0.0087 0.0051 0.0022 0.0011 0.0003� 

Put(Euro) 0.0021 0.0051 0.0087 0.0116 0.0131� 

Put(Amer) 0.0097 0.0176 0.0192 0.0271 0.0342� 

Jump-Diff� 

Bond (3m) 0.9794 0.9782 0.9758 0.9749 0.9725� 

Bond (ly) 0.9297 0.9234 0.9177 0.9110 0.9046� 

Call 0.0091 0.0054 0.0026 0.0015 0.0008� 

Put(Euro) 0.0021 0.0051 0.0087 0.0116 0.0131� 

Put(Amer) 0.0097 0.0176 0.0190 0.0271 0.0340� 
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Overnight Interbonk Interest Rote 1988-1994 
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Variable: JUMPIND RT� 
Graphic:� 

Jumps Indicotor and Interest Rote 1988-1994 
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11

Distribution of Jumps Size 
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Relation between Jumps and as Aetions 
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