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a b s t r a c t

In an adaptive and intelligent educational system (AIES), the process of learning pedagogical policies

according the students needs fits as a Reinforcement Learning (RL) problem. Previous works have dem

onstrated that a great amount of experience is needed in order for the system to learn to teach properly,

so applying RL to the AIES from scratch is unfeasible. Other works have previously demonstrated in a the

oretical way that seeding the AIES with an initial value function learned with simulated students reduce

the experience required to learn an accurate pedagogical policy. In this paper we present empirical

results demonstrating that a value function learned with simulated students can provide the AIES with

a very accurate initial pedagogical policy. The evaluation is based on the interaction of more than 70

Computer Science undergraduate students, and demonstrates that an efficient and useful guide through

the contents of the educational system is obtained.

Ó 2009 Elsevier B.V. All rights reserved.

1. Introduction

Distance education is currently a hot research and development

area. Traditionally, the courses in educational systems consist of

static pages without student adaptability. However, since 1990s,

researchers began to incorporate adaptability into their systems.

To represent the pedagogical knowledge based on Reinforce

ment Learning (RL) [1,8] allows the educational system to adapt

tutoring to students’ needs. Thus, the system is able to sequence

its content in an optimal way avoiding the definition of all static

and predefined pedagogical policies for each student. However,

RL algorithms need a great amount of experience in order to con

verge to a good action policy [1]. Moreover, if the system has not

been previously initialized to a pedagogical strategy, in the initial

trials of the learning, RL systems behave almost randomly accord

ing to a value function initialized randomly. In an educational sys

tem, to teach the students in a reasonable way in every moment is

essential, because the students could get bored and could stop

working with the system.

Some works have demonstrated that learning can be speeded

up if the value function is initialized with another which was

learned for solving a similar task with a similar model [4]. Simi

larly, initializing the value function with pre recorded experience

tuples may accelerate the learning of the action policy [10]. In pre

vious work [7], we have verified empirically with simulated stu

dents that the size of the learning phase can be reduced by

initializing the system with a pedagogical strategy, even when

the initialization does not completely match with the current stu

dents’ needs.

In this paper, we propose to initialize the pedagogical policy of

the educational system using simulated students, transferring the

knowledge of their interactions with the system. Two different

AIES have been implemented in order to obtain experimental re

sults: RLATES and IGNATES. RLATES (Reinforcement Learning in

Adaptive and inTelligent Educational System) applies RL in order

to provide the students with direct navigation support through

the system’s contents. IGNATES (Indirect Guidance iN Adaptive

and inTelligent Educational Systems) provides indirect navigation

support, but the system does not learn how to teach better to

the students. This work demonstrates that the pedagogical policy

learned with the simulated students is accurate and allows to

teach the contents of the tutor to the students using RLATES. We

also demonstrate that RLATES is able to tune the initial pedagogical

strategy according to the actual students’ needs1.

The paper is organized as follows: first, the architecture of

RLATES is summarized in Section 2. Then, the experiments setup

is described in Section 4 and the experimental results are pre

sented in Section 5. Finally, the main conclusions are given in Sec

tion 6.
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2. RLATES Architecture

RLATES adopts the typical structure of an adaptive educational

system, composed of four well differentiated modules: the student,

domain, pedagogical and interface modules [2].

The domain module contains all the characteristics of the

knowledge to teach. RLATES adopts a hierarchical knowledge

structure, where each topic (knowledge item) has been divided

into sub topics, and these into others sub topics, etc. At the

same time, each node of the tree contains tasks (definitions,

examples, problems, exercises, etc.) in several formats (image,

text, video, etc.). Fig. 1 shows one example of knowledge tree.

This model contains three topics (knowledge items) and 16

tasks, where most of the topics have two definitions, two intro

ductions and two examples in two different formats: text and

video.

The student module contains all important information about

the student in the learning process: goals, student background

knowledge, personal characteristics, historical behavior, etc. The

user model is defined as the explicit representation of learning

characteristics of each student. User models are usually used for

looking ahead in the student’s future behavior, his/her preferences

or whatever s/he needs. We have represented the student charac

teristics using the overlay model [3], where the domain module

overlays the student module showing when the student knows

or not each domain topic.

The pedagogical module decides what, how and when to teach

the domain module contents, following pedagogical decisions

according to the user needs. Based on the pedagogical module,

the system decides which is the best way to teach the knowledge

items and tasks to each student (which is the best sequence of top

ics and tasks). The definition of this problem as a Reinforcement

Learning problem allows the system to learn to teach each student

based only on previous interactions with other students with sim

ilar learning characteristics. Moreover, the system is not only able

to choose the next tasks to teach to the student, but also chooses

the format in which the knowledge is going to be taught. In previ

ous works, the pedagogical module of RLATES is formalized as a

reinforcement learning problem [7], using the Q learning algo

rithm [11] and the Boltzmann exploration/exploitation strategy.

In Fig. 2, how the Q learning algorithm is adapted to the tutor do

main is explained, based on the definition of the Reinforcement

Learning components for an adaptive and intelligent educational

system.

In each step for each student, the system chooses a task to show

to the student (an action to execute), based on the Q table. Then,

the system evaluates by a test if the student has understood the

knowledge shown in the last task. After that, the system receives

the immediate reward and update the Q table entry according to

this reward.

Finally, the interface module facilitates the communication be

tween the system and the student. The adaptive techniques used in

the interface module of the RLATES system are described in Section

4.1, where direct navigation support (based on the pedagogical

module) and indirect navigation support (based on the domain

knowledge) are distinguished.

3. System functional phases

The use of RLATES requires four phases in order to adapt better

to each student in every moment of the interaction:

Student clustering: RLATES requires to cluster the students

according to their learning characteristics

(level of knowledge, the Web pages format

that they prefer, etc.). The system maintains

one Q table for each cluster of students. This

allows the system to adapt better to each

student cluster. In this work the clustering

is performed by using expert knowledge

based on evaluations of students, but an

automatic approach could be used [9].

System initialization: We model each student cluster with infor

mation provided by a human expert about

student learning characteristics and relation

ships between topics in the Database

domain. The result is a Markov Decision Pro

cess (this is a simplification, given the behav

ior of real students can hardly be called

Markovian.). An MDP for the domain model

described in Fig. 1 is shown in Fig. 3, where

only the actions that produce state transi

tions appear. For the construction of the

MDP, two kinds of information is provided

by the expert: on the one hand, the is prere

quisite relationships between topics; on the

other hand, preferences on the students

about the format and the type of the con
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Fig. 1. Example of domain model.
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tents. It is important to notice that the infor

mation provided by the expert is only used

to build the MDP, not to directly learn to

teach the students. From the MDP obtained,

an initial Q Table is generated using the Q

Learning algorithm, which seeds the follow

ing phase.

System Training: In this phase, the system interacts with real

students and explores new pedagogical

alternatives in order to teach the system

knowledge, sequencing the domain content

in different ways. At the same time the sys

tem interacts with the students and updates

the appropriate Q table, adapting the teach

ing policy according to their necessities

based only on previous interaction with

other students.

System Use: When the system has converged to a good

pedagogical strategy, it is time to use this

information to teach other students with

similar learning characteristics. These stu

dents will achieve their knowledge goals in

the best way the system has learned.

4. Experimentation setup

In order to study the scalability of RLATES, we have performed

experiments with the domain model shown in Fig. 1. More than

seventy students have interacted with the systems, all of them

2nd course undergraduate students of Computer Science at Uni

versidad Carlos III de Madrid. The experimentation environment

has been carefully studied in order to avoid the effects of the noisy

variables. Some rules have been applied [5] and blind experiments

have been carried out.

4.1. System versions

In order to evaluate the advantages of adapting the teaching

strategies according to the student characteristics, we have imple

mented two versions of the educational system. The first one is

RLATES (Reinforcement Learning in Adaptive and inTelligent Edu

cational Systems). The second one is IGNATES (Indirect Guide Nav

igation in Adaptive and inTelligent Educational Systems).

The interface is very similar in both system versions, where the

content page is divided in two frames. The left frame contains the

system knowledge structured as a tree. The right frame shows to

the student a task (definition, introduction, example, etc.) about

the current topic (marked in bold red at the knowledge tree).

The main difference between RLATES and IGNATES is the navi

gation support system, explained next for each system.

The students interacting with the IGNATES system are guided in

an indirect way through the knowledge tree (notice that to guide in

an indirect way to the students is better than not guide at all). The

student chooses the next topic to visit, based only on the informa

tion provided by the system and changes the color of the knowl

edge tree links (using annotation). This information summarizes

which topics the student has previously visited (blue links), which

are passed (the student answered a test correctly; green links) and

which ones are not (orange links). When the student clicks on a

tree link (a specific topic), the system shows him/her all the infor

mation about the topic (definitions, introductions, examples, tests,

etc.).

The interface of the IGNATES system is really similar to the

interface of RLATES (see Fig. 4), but the Next and Previous buttons

have different functionalities. If the student clicks in the Next but

ton the system shows him/her the next topic of the knowledge

tree, and if s/he clicks the Previous button, the system shows

him/her the previous topic in the knowledge tree. In this system,

the student also decides when s/he is ready to answer the test

about a specific topic and when to finish the interaction.

On the other hand, the students interacting with the RLATES

system are guided directly by the Next button at the interface right

frame. In this system, the students can see the knowledge tree,

where the color of the links follows the annotation rules of the

IGNATES system, but they can not click on these links. The students

are only allowed to click on the Next button to keep on learning.

Fig. 2. Q-learning adapted to educational system domain.

Fig. 3. MDP modelling simulated students’ behavior.
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When the student clicks the Next button, the system provides

him/her several links (see Fig. 4a). Each link shows a specific topic

tasks (definition, introduction, example, etc.) in a specific format

(image, text, etc.). The system chooses the five most appropriate

tasks for the student to learn according to the Reinforcement

Learning algorithm and the Boltzmann exploration/exploitation

policy provided by the pedagogical module, as defined previous

works [7].

Then, the student decides which is the best task to learn next

and in which format to do it, based on the system recommenda

tion, providing him/her an interaction control feeling. When the

student chooses a specific action, the system shows him/her only

two tags (see Fig. 4b). The first tag shows the tasks chosen for

the student and the second one shows a test. The student must an

swer the test in order to continue. Depending on whether s/he

passes the test or not, a knowledge state transition is generated.

This state transition is used to update the Q table.

It is important to notice that, in order to study the learning evo

lution of the system, the students interactwith RLATES sequentially.

5. Results

In the following experiments, we study the performance of

RLATES, and compare it with the performance of IGNATES. The per

formance of both systems is measured by using three features: (i)

the number of web pages (actions) that they need to show to each

student so that the student learns the contents of the course; (ii)

the total time that each student is interacting with each system;

and (iii) the final student’s level of knowledge after the interaction

with the systems.

Fig. 5a shows the number of web pages required by RLATES to

teach the content of the AIES. The x axis shows the number of stu

dents that have interacted with the system. The figure is divided in

two parts. In the left, we show the learning performance when

simulated students interact with RLATES. The simulated students

follow the model provided by the expert (and represented by the

MDP shown in Fig. 3). Initially, RLATES needs around 90 actions

to teach the content of the AIES to the simulated students. How

ever, after only 10 students interacting with the system, the perfor

mance decreases down to 10 actions. After the 150 simulated

students, the pedagogical policy is tuned, obtaining a performance

of only eight actions.

Then, the Q table obtained with the simulated students is used

to initialize the pedagogical module of RLATES with actual stu

dents. The result of the interaction with the actual students is

shown in the right part of Fig. 5(a). Notice that the unit of the x axis

differs to the left part of the figure. For the initial students, RLATES

needs around 10 actions to teach the content of the AIES. However,

while the students are learning the tutor’s contents, RLATES also

modifies the pedagogical policy according to their actual learning

characteristics by tuning the Q table obtained with the simulated

students. Then, the policy is improved, and after a while, some stu

dents only need to visit three Web pages.

For comparison, we also include in the right part of the figure

the number of Web pages visited by a different set of students that

interact with IGNATES. We can observe how the students interact

ing with IGNATES visit more Web pages that students interacting

with RLATES, even when RLATES is still tuning the teaching policy.

That demonstrates that the pedagogical policy used by RLATES is

very useful for the students.

Fig. 4. RLATES interface.
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Fig. 5b shows the time that the students take to learn the con

tent of the AIES. We can conclude that the students interacting

with RLATES need less time (on average) to finish the interaction

than the students interacting with IGNATES. Again, this is an indi

cation that the RLATES teaching policy is good.

Finally, the level of knowledge of the students after their inter

actions with the systems is studied. The students had to carry out

an exam with open ended questions and they were evaluated by a

human tutor. The IGNATES student average qualification was 9.58

(marking from 0 to 10) and the RLATES student average qualifica

tion was 9.62. With respect to the standard deviation, the IGNATES

student standard deviation between the interactions was 0.37 and

the RLATES student standard deviation was 0.35. Then, we can con

clude that there is not significant differences between the student’s

final level of knowledge.

In the literature additional evaluations for different domain

models can be found showing qualitatively similar results [6].

6. Conclusions

In this paper, we present empirical results demonstrating the

pedagogical module of an AIES can be described as a RL problem.

In this way, the system is able to update the pedagogical policy

automatically according to the students’s needs in each moment

of the interaction, based only on previous experience with other

students with similar learning characteristics. Moreover, we dem

onstrate that a value function learned with simulated students de

fined as MDPs can provide the AIES with a very accurate initial

pedagogical policy.

More than 70 undergraduate students have interacted with the

system, demonstrating two main issues: first, the direct navigation

support based on reinforcement learning is really useful for the

students to learn the contents of the educational system; second,

the previous pedagogical policy initialization with simulated stu

dents reduces the system Training phase.
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