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1. Introduction. The linear regression model with random regressors assumes 

y = e'x + 'u, (1) 

where y is the response variable, x is a p-dimensional vector of explanatory random 
variables, e is the vector of p unknown true regression parameters and the error u is a 
random variable stochastically independent of x. 

The classical aproach assnmes model (1) to hold exactly for all the points of the 
observed sample Z = {Zl' .... ,zn} = {(Yl'X~)', .... , (Yn'x~)'}. Nevertheless, it is often 
the case in practice that the sample contains outliers, that is, observations that do not 
follow the distribution of most of the data. Robust regression methods are based on 
the idea that it is more realistic to snppose that the model is only valid for most of the 
data, and thus they try to devise estimators that are not strongly affected by outliers. 
A robust method is one that is still valid for partially contaminated samples. The local 
robustness of an estimator refers to its stability as the amount of contamination in the 
data approaches zero, whereas the concept of global robustness concerns the behavior 
of the estimator when the sample contains a large fraction of outliers. 

A very informative and natural measure of an estimator robustness is its maximum 
bias curve, which states the maximum variation caused by a fraction E of outlier con­
tamination. Naturally, such quantity will increase with E, and eventually will become 
infinite, but we would like to make it, in some sense, as small as possible. This curve 
combines information on local and global robustness features. In order to measure the 
local robustness of an estimator we may look at the rate of convergence to zero of its 
bias curve. On the other hand, to measure global stability we can use the breakdown 
point (Hampel, 1971), which indicates the minimum fraction of contamination that 
may yield a completely uninformative value of the estimate. 

In recent years, several authors have proposed regression estimators which have a 
bias curve with both the optimum rate of convergence to zero and the highest break­
down point. Included among these estimators are the one-step GM-estimators (Simp­
son, Rupert and Carroll, 1992), the projection estimators proposed by Maronna and 
Yohai (1993) and the class of generalized T (GT)-estimators introduced by Ferretti, 
Kelmansky, Yohai and Zamar (1994). 

However, the breakdown point and the rate of convergence of the bias curve may 
not suffice to adequately describe the bias. Note that for fractions of contamination 
smaller than the breakdown point, the maximum bias will be bounded, but it may still 
be very large. On the other hand, the rate of convergence to zero gives information 
about the behavior of the estimate only for very small fractions of contamination. 
Hence it is important to have a more complete account of the bias. 

The behavior of projection estimates in terms of their maximum bias curve is very 
good. However, they are not asymptotically normal, which severely hinders the con­
struction of confidence intervals and hypothesis testing, and hence they are not very 
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adecuate for inference. Fmthermore, He and Simpson (1993) prove that they are not 
locally linear. The locally linearity property esentially means that the estimate has an 
influence function with finite second moments. 

On the other hand, one-step Gl\I-estimates and Gr-estimates also have good local 
and global propierties, but numerical computations show that the behavior of their 
maximum bias curve is not very good, specially for f near their breakdown point and 
large p. 

The propose of this article is to present an alternative class of estimators being 
simultaneously locally and globally robust. These estimators, which we will call C­
estimators, are defined as a linear convex combination of a high breakdown point 
estimator, T 1, and any other estimator T 2 . C-estimators retain the breakdown point of 
T 1 but inherit the asymptotic propierties and the behaviour in terms of local robustness 
of T 2. Therefore, if we choose a locally robust estimator as T 2 , then the resulting C­
estimator will be locally and globally robust. On the other hand, choosing the least 
squares estimator as T 2 , we will obtain a C-estimator with high breakdown point and 
as efficient as the optimal under normal errors. 

In the next section we give the basic definitions and notation. In Section 3 we define 
C-estimators. In Section 4 we stablish that C-estimators have high breakdown point, 
independently of the choice of T 2. In Section 5 we prove that C-estimators have the 
same rate of convergence and asymptotic distribution as T 2 . In the final two sections 
we propose choices of T2 that provide C-estimates which are locally robust or efficient 
under normal errors respectivily. 

2. Basic definitions and notation. Consider the linear model in (I), where 
the error u is independent of x. Let Fo be the distribution function of u and let Go 
be the distribution function of x. Then, for each e, the joint distribution function of 
(y, x')' under model (I), He, is given by 

j
Xl jXP 

He(y, x')' = -exl ...... -exl Fo(Y - e's)dGo(s). (2) 

In particular, for e = 0, namely when y is independent of x, the joint distribution 
function Ho of (y, x')' is 

Ho(y, x')' = Fo(Y) Go(x). (3) 

Let 1{ be the set of distributions on lRP+1
. To allow for a fraction E of data points 

not following model (1), we consider E-contamination neighborhoods of He of the form 

VE(He) = {H: H = (1 - f)He + fH*, H* EH}. 

Most estimators of e can be defined by functionals. Let T be an lRP valued 
functional defined on a broad subset of H which includes all the empirical distribution 

3 



fnllctions alld the contamination neighborhoods ~(H(}) for 0 < E < 0.5. If Hn is the 
distribntioll fnllction corresponding to the 9bserved sample Z, then the estimator of e 
associated with T will be en(Z) = T(Hn). 

Snppose that (y, x')' satisfies y = e'x + 'u; let x = Ax and y = ay + ,'x, where A 
is Cl P x P non singular matrix, , E IR.P and a E IR; then (y, x) satisfies y = (3'x + 'lI, 
where (3 = A,-l(ae + ,) and'/! = av.. So it will be natural to consider only eqllivariant 
estimators, i.e., T(H) = A'-l(aT(H) + I), where H is the distribution of (fj,x). 

The maximum asymptotic bias function of an estimator T is given by 

BT(E) = sup [(T(H) - e)'Co(Go)(T(H) - e)]1/2, 
HEV€(Ho) 

where Co is a positive definite affine equivariant scatter functional. The affine equi­
variance of Co means that, if G is the distribution of x and G is the distribution of 
x = Ax, where A is a p x p matrix, then 

Co(G) = ACo(G)A'. (4) 

If Co verifies (4) and T is equivariant, then BT(E) does not depend on e. 
In order to measure local robustness of an estimating functional we can use the 

contamination sensitivity of order q defined by Yohai and Zamar (1992) as 

for q ~ O. T is said to be locally stable of order q if ,T(q) < 00. He and Simpson 
(1993) prove that the optimal rate is q = 1, and therefore an estimating functional T 
will be considered locally robust if it is locally stable of order 1, namely, if BT = O(E). 

One measure of global stability is the asymptotic breakdown point, which is given 
by 

E;' = inf{E > 0: BT(E) = oo}. 

Equivariant functionals always have ET ::; 1/2 (He and Simpson, 1993) and therefore, in 
this paper, an estimating functional T will be considered globally robust ifit asymptotic 
breakdown point is ET ::; 1/2. 

Donoho and Huber (1983) give a finite sample version of the breakdown point, 
closely related to the asymptotic one. Given a sample Z = {Zl' ... , zn} of size nand 
m < n, consider the set of all possible contaminated samples that are obtained by 
replacing any m of the original data points by arbitrary values 
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The maximnm bias of the estimate e of e at the sample Z when is contamined with m 
outliers is given by 

Bn (0, Z, m) = _ snp /10(2) - O(Z)// ' 
ZEy.,(Z,m) 

where 11 11 denotes the Enclidean norm. Then, the breakdown point of 0 at Z is given 
by 

* (' ) _ min {m: Bn(O, Z,m) = oo} 
En e, Z - . 

n 

3. Definition of C-estimators. Given e E IRF, and (y, x')' with joint distribu­
tion H, let FH,e be the distribution function of Iy - e'xl. For each H E 7-{ and a E IRF 
let 

S(H,e) = FH,~(0.5) = medianHly - a'xl· 
The least-median of squares (LMS)-estimate (Rousseeuw, 1984) is defined by the func­
tional 

T(H) = arg min S(H, a). 
eERP 

(5) 

Let SP be defined as SP = {>. E IRF: PII = I}. A sample Z = {(Yl'X~)', ... , (Yn,x~)'} 
is said to be in general position if for all >. E SP verifies 

~ {i E {I, ... , n} : X Xi = O} 'S. p - 1. 

For any sample in general position, the finite-sample breakdown point of the LMS­
estimator is 

E~ (Z) = [~] - p + 2 , 
n 

and therefore its asymptotic breakdown point is E* = 0.5. However, the LMS-estimator 
is inefficient, since its rate of convergence is n 1/ 3 ; furthermore, its asymptotic distribu­
tion is not normal (Davies, 1990). 

We now introduce a new class of estimators which, although are based on the LMS, 
may not suffer from its disadvantages. Let Tl be the LMS-estimator defined in (5) 
and T2 any other functional. For each HE 7-{ define 

and 

Sl(H) = S(H, T1(H)), 

S2(H) = S(H, TdH)), 
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The definition of Tl implies that 0 :s: d(H) :s: 1 for any distribution H. 

Fix constants 0 < Cl :s: C2 < l. Let h : IR ---7 [0, 1] be a nondecreasing function 
which satisfies h(t) = 1 for t :s: Cl and h(t) = 0 for t ;:::: C2, and call a(H) = h(d(H)). 
We now define the C-estimator associated with T2(H) by 

In particular, the functional T 3 will be the Ll'vIS-estimator when d( H) < Cl, that is, 
when the median of the absolute values of the residuals of T2 is significantly larger 
than t.he minimum median at.tained by t.he Ll'vIS-est.imator. If d(H) > C2, T3 will be 
T 2 , and for the intermediate values of d(H) T3 will be a linear combination of both 
estimators. So the idea is to choose T 1 only if this estimator is significantly "better" 
than T2 in terms of the scale that yields the LMS-estimator. 

The choice of the LMS-estimator is not essential. The estimator T 1 may be re­
placed by any S-estimator whith high breakdown point. In this more general case, the 
criterium for deciding between Tl and T2 will be based on the scale which define the 
S-estimator. The results we obtain here are easily generalized to different choices of 

T l · 

4. Global robustness of C-estimators. In this section we will prove that any 
C-estimator is globally robust. 

Since we will deal with the finite sample breakdown point, we need to introduce 
the finite sample version of C-estimators. For each B E IRP and each sample Z = 
{(Yl, x~)', ... , (Yn, x~)'} of size n, denote 

Let BIn be the sample LMS-estimator, which is defined for each sample Z by 

and let B2n be any other estimator. Let 

and 

Sln(Z) = sn(Z, B1n(Z)), 

S2n(Z) = sn(Z, B2n (Z)), 
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Call Cl:n(Z) = h(dn(Z)). The finite sample C-estimator associated with e2n is defined 
by 

In order to show that C-estimators retain the high breakdown point of the LMS­
estimator, the following lemma is needed. 

LEMMA 4.1. If p > 1 and Z is in general position, then 

snp sln(.2) < 00. 

ZEy,,(Z,[~J-p+1) 

PROOF. Let Z = {Zl, ... , zn} = {(Y1, x~)', ..... , (Yn, x~)'} be a sample in general position 
and suppose that 

sup Sln(Z) = 00. 

ZEYn(Z,[~1-p+1) 

Then there exists a sequence 

with lim Sln(Zk) = 00. 
k---->oo 

Let M = max { I Y1 I, .... , I Yn I } and for each k define the set 

Ak = {-i E {l, ... ,n}: IYi k I> M}. 

Consider the sequence s(zk, 0) = median { I fj} I, .... , I fj~ I }. The definition of [hn implies 

that s(Zk, 0) 2: Sln(Zk) for all k, and hence 

so we can find ko such that k 2: ko implies s(zk, 0) > M, and hence 

(6) 

Let Bk = {i E {l, ... ,n}: ~k # Zi}. Since IYil ~ M for all i, it is clear that for every k, 
Ak C Bk, and so 

which contradicts (6). 0 
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The following result yields a very large class of estimators with asymptotic break­
down point E* = 1/2. 

THEOREM 4.1. If P > 1 and Z is a sample in general position, then the fimte 
sample b'l'eakdown point of any C -est'imator satisfies 

* (' ) [~] -p+2 
En e:3 n, Z 2: -"--"-----

n 

PROOF. Suppose that E~ (e3n , z) < ([~l - p + 2) /n for some sample Z in general 
position. Then there exists a sequence, 

such that k~ IIe3n (Z k) 11 = 00. Since the breakdown point of the LMS-estimator for any 

sample in general position is E~(ein, Z) = ([~ 1 - p + 2) In, then tim sup Ilein (Z k) 11 < 00, so 
k-.oo 

it has to be 

which implies 

(7) 

For each k call Ak = e2n(zk)/ Ile2n (Z k)ll. Without loss of generality we can assume that 

tim Ak = A for some A ESP. Let D = {i E {l, .... ,n}: XXi =I a}. For all i E D we have 
k-.oo 

A - k / 

. 1 ,- k / I' e2n (Z ) Xi 11 A - k 11 hm Yi - e 2n (Z ) Xi = hm Yi -11 A 11 e2n(Z ) 
k-.oo k-.oo e2n(Z k) 

= I Yi - A/Xi kl!..~ 1182n (Z k)111 = 00, 

so for each L > 0 we can find kL such that k 2: kL implies IYi - e2n (Z k)/xil > L for all 
i E D. 

For each k E 1N, let C k = {i E {I, ... , n} : :;;/ = Zi}' Fix L > 0 and k 2: kL . For every 

i E (Ck n D) we have 
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Since Z is in general position, ~Dc :s: p - 1; on the other hand, it is clear that for all k, 
~Ck :s: [%J - p + 1 , and hence 

and hence S2n(Z k) > L. This yields lim S2n(Z k) = 00, and due to the previous lemma, it 
k-->= 

follows th"t 

which contradits (7). 0 

5. Asymptotic Distribution. C-estimators inherit the asymptotic distribution 
of e2n under the following assumption 

(HI) The median of lul under Fo is unique. 

Call So this median, namely So = Fiiol,e(O.5) = Fiiol,0(O.5), here and throughout. 

Along this section we assume that the data comes from an uncontaminated distri­
bution: and hence, Hn will be the empirical distribution function corresponding to a 
sample of size n coming from a distribution He given by (2). We will use the following 
notation: 

Before stating the asymptotic distribution of C-estimators we will prove the follow­
ing two lemmas. 

LEMMA 5.1. Let (Yl,X~)', ... ,(Yn,x~)' be i.i.d. observations with distribution He 
verifying (2). Assume that Fo satisfies (HI) and let en be any sequence of consistent 
estimators of e. Then, the sequence Sn = median{IYl - e~xll,·· ... ) IYn - e~xnl} is 
consistent for so· 
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Pn.oOF. vVe can assume without loss of generality that the true parameter is e = 0, 
i.c .. data come from Ho given by (3). 

Fix E > 0 and D > O. In orther to prove the lemma we must show that PHa [Sn > SO+E] < b 
and PlIo[sn < So - E] < (j for sufficiently large n. 

Let 

It is clear that (HI) implies T > O. For every n we have 

PHo [ Sn > So + El::; PHo [~{ i E {I, .... , n} : IUi - B~Xi I > So + E} 2: ~] < 

:S PHo [~{i E {I, .... , n} : ILLil + IIBn1111xi11 > So + E} 2: ~] :S 

:S PHo [~{i E {l, .... ,n}: (ILLil > So +~) or (1lBnllllxill >~)} 2:~] < 

::; PFo [~{ i E {I, .... , n} : IUil > So + ~} 2: n (~ - T) ] + 

+PHo [~{i E {I, .... ,n}: (1lBnllllxill >~)} 2: nT]. 

For each i, define the random variable 

Since the LLi'S are i.i.d., also are the Ni's, and hence we have 

where':!:" denotes convergence in distribution, so we can find nl such that n 2: nl implies 

PFo [~{ i E {l, .... , n} : IUil > So + ~} 2: n (~ - r)] = 

= P Fo [~Ni 2: n (~ - r) 1 = PFo [~Ndn 2: ~ - r 1 < ~. 
Let K be a constant such that PGo [ Ilxll > K] :S r /2. For each i, define 
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Since tIll' llfi ':-; arc i.i.d .. wc llave 

n 

if Ilxi II :S K, 

if Ilxill > K. 

LM;/n ~ E(Md = PGo [llxlll > K] < ~ < r, 
i=l 

and hence there exists n2 such that n ;::: n2 implies 

Since en ~ 0, we can find another number, n3, such that n;::: n3 implies 

For n ;::: max { n2, n3 } we have 

PHo [~{i E {l, ..... ,n}: Ilenllllxill >~} > nr] = 

= PHo [~{i E {I, ..... , n} : Ilenllllxill > ~} > nr I lien 11 :S 2~] PHo [lI en ll :S 2~] + 

+ PHo [~ {i E {I, ..... , n} : Ilenllllxill > ~} > nr jllenll > 2~] PHo [llenll > 2~] :S 

• [ A E] 8 :S PGo [~{~ E {I, ..... ,n} : Ilxill > K} > nr 1 + PHo lenll> 2K < 2' 

Let no = max {nl, n2, n3 }. Clearly, PHo[sn > So + El < 8 for n ;::: no· 

Proving that PHo [8n < So - El < 8 for sufficiently large n is similar. 0 

LEMMA 5.2. Let (Yl'X~)', ... , (Yn'x~)' be i.i.d. random variables with distribution 
He given by (2). Assume that Fo satisfies (HI) and suposse that e2n is a sequence of 

consistent estimates of B. Then n k an ~ 0 for all k E JR. 

PROOF. By the previous lemma we have SIn ~ So and 82n ~ So, and therefore 
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which implies lim PHe [ dn :::; cl = 0 for any c < 1 . Hence, for all E > 0, 
n--'oo 

The next theorem establishes that a C-estimator has the same asymptotic distri­
bution as T 2 . 

THEOREM 5.1. Let (Y1'X~)', ... , (Yn,x;J' be i.i.d. with distribution He given by (2) 

where Fo satisfies (H 1). If the estimator ihn verifies n k ({hn - a) ..:!... Z faT some f..: :::: 0 
and some distribution Z, then the resulting C -estimator also verifies n k (B3n - a) ..:!... Z. 

PROOF. Note that 

( I) d dAd 
By LEMMA 5.2 , n k-1 3 ctn --? 0 and ctn --? 0; furthermore nk(e2n - e) --? Z and 

n1/3(81n -e) converges in distribution to a certain random variable eT (Rousseeuw and Leroy, 

1987). Hence nk(03n - 02n) ~ 0 which implies nk(03n - e) has the same limit distribution as 
k A 

n (e2n - e). D 

6. Locally robustness of C-estimators. In this section we establish the local 
robustness of the C-estimators that combines the LMS with a GM-estimator. 

GM-estimators are the best known class of estimators which are locally stable of 
order 1. For each H E H, a GM-estimate of regression is obtained by solving for a an 
equation of the form 

EH [~ (y - a'x, Ilxl/c) xl = 0, 

where ~ : IR 2 
---t IR satisfies the following properties: 

AI. ~(u, v) is continuous except for a finite number of points. 

A2. ~(u, v) is odd with respect to u for all v. 

(8) 

A3. For all v, the function ~(u, v) is nondecreasing with respect to u for u > 0 
and strictly increasing at tL = o. 

Moreover I/xllc = (x'Co(G)x)1/2, where Co is a robust scatter matrix satisfying the 
affine equivariance propierty (4). 
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,¥) is finite for the Gl\l-estimator defined by (8) if and only if its function 'lj; verifies 

sup 14{u, v) vi < 00. (9) 
1L ,V 

However, IvIaronna, Bustos and Yohai (1989) proved that the breakdown point of 
GM-estimators tends to zero as p increases, and therefore global stability of these 
estimators is satisfactory only for small p. 

In this section we prove that taking a GM-estimator as T 2 , the resulting C-estima­
tor, T 3 , will also verify ,¥} < 00. \\le will require some additional assumptions. 

(H2) Fo is absolutely cOlltirmous, with density fo which is symmetric, continuous 
and strictly decreasing for 'U 2': o. 

(H3) SUP>'ESP PGo [A'x = 0] = o. 

In order to prove that the C-estimators based on GM are locally stable of order 
one, we will use the following five lemmas. 

LEMMA 6.1. Let the functions l, h : IR? --t [O,lJ and s : IR --t IR+ defined by 

l(t, k) = inf PHo [Iy - tA/xi :S k] , 
>'ESP 

h(t, k) = sup PHo [Iy - tA'xl :S k], 
>'ESP 

and 
s(t) = inf S(Ho, tA). 

>'ESP 

Assume that Fo satisfies (H2) and Go satisfies (H3). Then 

(i) l(t, k) is continuous in t for all k > O. 

(ii) h (t, k) is strictly decreasing with respec~ to I t I for every k > O. 

(iii) s(t) is a strictly increasing function of Itl. 

PROOF. 

(i) Fix k > 0 and let tn be any sequence of real numbers with lim tn = to. Since the 
n-->oo 

function p(A) = PHo [ Iy - tA'xl ::; k] is continuous with respect to A, and by compactness of 
SP, we can find AO E SP such l(to, k) = P Ho [ Iy - toAoxl ::; k] and a sequence {>..n}nEN C SP 
such that for each n, l(tn,k) = PHo [ Iy - tnA~xl':::; k]. 

- -
Assume without loss of generality that lim An = A for some A ESP. Since 

n-->oo 
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for all 11, we have 
PHa [Iy - to:\'xl ::; k] ::; PHo [Iy - tOA~xl ::; k] , 

which yields lim l(tn, k) = l(to, k) 0 
n---+oo 

(ii) Frorn (H2) it is straightforward that for each k > 0 the function PI'a [ I'Ll -1ll1 ::; k] is 
strictly decreasing with respect to Irnl, and hence, the conditional probability 

'h.(t, A, k, x) = PHo [ IlL - tXxl ::; k Ix] 

is a strictly decreasing function of It I for every k > 0, every A E SP and every x E IRP such 
that Xx =I- O. 

Fix k > 0 and Itll < It21; for any A E SP we have 

for all x E IR, and equality holds only if Xx = 0, which has null probability under Go because 
of (H3); therefore, 

P Ho [ Iy - tlA'X::; k] > PHo[ Iy - t2A'X::; k]. 

Take AI, A2 ESP such that h(tl' k) = PHo [Iy - tlA~xl ::; k] and h(t2, k) = PHo [Iy- t2A2xl ::; k]. 
We have 

and thus h( t, k) is strictly decreasing with respect to Itl· 0 

(iii) Let Itll < It21; from (ii) and (H2) we have that 

sup PHo [Iy - t2Xxl ::; S(tl)] < sup PHo [Iy - tlXxl ::; S(tl)] = ~, 
).,ESP ).,ESP 2 

LEMMA 6.2. Let Tl be the LMS-estimator defined in (5). Under the assumptions 
in Lemma 6.1, 

lim sup 11 Tl(H)11 = O. 
£la HEV.(Ho) 

PROOF. Fix 8 > 0 ; we have to prove that there exists EO > 0 such that IITl(H)11 < 8 
for all H E v;,o(Ho). Let 

k = s(8) - So 
2 ' 

1 
w = PFo[ IlLl ::; So + k]- 2' 

14 



and 
1 

,. = 2 - h(o, So + k). 

The previous lemma implies that lL' > 0 and'/" > O. Put 

and 

W 
E) = -)-, 

}+w 

T 
E2 = -)-. 

}+1' 
For any H E Vc 1 (Ho) we have 

and thcrefore' S(H,O) ::: So + k. On thc other hand, LEMMA 6.1 also implies that for each 
HE Vc 2 (Ho) and each e E JRP with lIell > 0, 

PH[ Iy - e'xl ::: So + k] ::: (1 - E2)PHo [Iy - e'xl ::: So + k] + E2 ::: (1 - E2) h ( lIell, So + k) + E2 < 

< (1 - E2) h(o, So + k) + E2 = (1 - E2) (~ - 1') + E2 = ~, 
and hence S(H, e) > So + k. 

Let EO = min{El,E2}. It is clear that for all H E Vco(Ho) we have S(H,O) < S(H,e) for 
any e E JRP with Ilell > 0, so it has to be IIT)(H)II < o. 0 

LEMMA 6.3. Define the functions 

get) = inf IEHo [ 'l/J(y - tXx, IlxlIG) Xxll 
)..ESP 

and 
net) = inf IIEHo ['l/J(y - tXx, IlxlIG) xlii· 

)..ESP 

Suppose that'l/J satisfies AI, A2 and A3, Fa satisfies (H2) and Go satisfies (H3). Then 

(i) get) is a nondecreasing function of It I and verifies get) > ° for all t =I- o. 

(ii) net) ~ get) for all t E IR. 

PROOF. 

(i) For every A E SP and x E JRF, define the function 

q)..,x(t) = EFo [ 'ljJ(y - tA'x, IlxIIG)] . 
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It is easy to show that (H2) and A2 imply that q>.,x(t) is odd with respect to t: morcover A3 
implies that q>.,x(t) is a nonillcreasing function of t if Xx> 0 and a nondecreasing function if 
Xx < O. Therefore, q>.,x(t)Xx is an oeld and nonincreasing function of t, which implies that 
thc function 

is even and nondecreasing with respect to Itl. 

By compactness of SP and continuity of g, for each t E IR we can find At E SP such that 
g(t) = g(At, t). Then, for Itll < IH we have 

and hence g( t) is a nondecreasing function of Itl. 

Fix now to i- O. By A3 and (H2) we get that q>.,x(to)Xx = 0 if and only if Xx = 0, which 
has nulle probability under Go. Thereby, g(A, to) > 0 for any A E SP and. in particular, 
g(to) = g(Ato' to) > O. D 

(ii) Using the Cauchy-Schwartz inequality we get 

IIEHo [1jJ(y - tA'X, Ilxllc )xlll = IIAII IIEHo [1jJ(y - tXx, Ilxllc )xlll 2: 

2: I),' EHo [1jJ(y - tA'X, Ilxllc )xll = g(A, t) 

for all t E IR and A ESP. Since the function IIEHo [1jJ(y - tXxllxllc) xlii is continuous with 
respect to A, a straighforward argument show that n(t) 2: g(t) D 

LEMMA 6.4. Assume that 1jJ satisfies AI, A2, A3 and (9), Fo satisfies (H2) and 
Go satisfies (H3). Let T2 be the GM-estimator based on 1/J. Then 

hm snp IIT2(H) 11 = o. 
dO HEVE(Ho) 

PROOF. Let A = sUPu,v 1'Ij! (It, v) vi + 1. Given 8 > 0, put 

g(8) 
EO = g(8) + A . 

LEMMA 6.3 implies that EO > O. We will prove that IIT2(H)11 < 8 for any H E Voo(Ho)· 

For each H E Voo(Ho) we have that T 2(H) verifies the equality 

for some arbitrary distribution H*, and hence verifies 
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IIEHo [V) (y - T2(H)'x, Ilxlld xlii = ~ IIEf{* [V) (y - T 2(H)'x, Ilxllc) xlii < 
1 - EO 

< ~A=g(~). 
1 - (0 

Suppose that IIT2 (H) II 2: ~. Then, by LEMMA 6.3 we would have 

which contradicts (10). 0 

(10) 

LEMMA 6.5. S'Uppose that all the assumptions in Lemma 6.4 hold. Let T 1 be the 
LMS-estimatoT and let T2 be the GM-estimator based on 'l/;. Then, for any b > 0 there 
exists EO > 0 such that H E ~o(Ho) implies So - b < Sl(H) ::; S2(H) < So + b. 

PROOF. Given D > 0, put 

1 - PFo [ lul :::::; So - Dj r = ~2 _---"-..::...c.... ___ ....:. 

2 

and 
PFo [ lul :::::; So + Dj - ~ 

w = 2 . 

Clearly (H2) implies that w > ° and r > 0. Let 

LEMMA 6.1 implies that PHo [ Iy - B'xl :::::; So - Dj:::::; 1/2 - 21" for all B E lRP, whereby, for any 
distribution H E 11;:1 (Ho), 

PH [ Iy - B'xl :::::; So - DJ :::::; (1 - EllPHo [ Iy - B'xl :::::; So - DJ + El :::::; (1 - Ell ( t -21") + El < ~, 

so S(H,B) > So - D, and in particular Sl(H) = S(H, Tl(H)) > So - D. 

On the other hand, LEMMA 6.1 also implies that 

. 1 
11m l(t, So + k) = 1(0, So + k) = - + 2w, 
t->O 2 

so we can find to > 0 such that It I < to implies 

1 
l(t,so+k»"2+ w . 
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Furthermore, by LEMMA 6.4, we can find 102 > 0 such that H E ~2(Ho) implies IIT2(H)1I < to. 
Put 

. { w} 103 = mm 102, -1-- . 
2"+w 

For each H E ~3 (Ho) we have 

Plf[ Iy - T 2(H)'xl < So + 8] ;::: (1 - (3)PHo[ Iy - T2(H),xl < So + 8] ;::: 

;::: (1 - (3)1(IIT2(H)II, So + k) > (1 - (03) (~ + tu) ;::: ~, 
and hence S2 (H) < So + 8. 

Now it is enough to take EO = min {El, E3}. D 

The next theorem establish the local robustness of the C-estimators considered in 
this section. 

THEOREM 6.1. Suppose that all the assumptions in Lemma 6.4 hold. Let T 1 be 
the LMS-estimator, T2 be the CM-estimator based on 'ljJ and let T3 be the resulting 
C -estimator. Then T 3 is locally stable of order one. 

Let 
PROOF. We can suppose without loss of generality that the true parameter is e = o. 

8 = (1 - C2)SO . 
1 + C2 

(H2) implies that 8 > 0, and then, by LEMMA 6.5, we can find EO > 0 such that for all 
H E ~o (Ho) is Sl (H) > 80 - 8 and S2(H) < So + 8, and hence 

d(H) = Sl(H) So - 8 = 
S2(H) > So + 8 C2, 

so T3(H) = T2(H). This yields 

for any q > 0, and then (9) implies that 

,¥] = ,¥1 < 00. 0 

7. Numerical evaluation of C-estimators. The main goal of this section is 
to assess the performance of locally and globally robust regression estimates and to 
investigate the behavior of hybrid estimates proposed in section 6, which are simulta­
neously locally and globally robust. To this effect we have computed the maximum 
asymptotics bias of these C-estimators and conducted a Monte Carlo study. 
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From the results in previous sections, it follows that C-estimators constructed with 
a Gl'vI-estimator as T2 havc the following properties: 

- Their asymptotic brcakdowll poillt is E-*r3 = 0.5. 

- They are locally stable of ordcr 1, that is, I~) < 00. 
3 . 

- Under the uncontaminated model they are '17,1/2 consistent and asymptotically 
normal. 

Hence they are asymptotically normal estimators with the best possible breakdown 
point, the best order of convergence to zero of the maximum bias function and the best 
order of consistency. However, as we explained in section 1, these properties are not 
sufficient to guarantee a complete robllst behavior. 

7.1. Asymptotic bias. A more complete understanding of an estimator's behavior 
is obtained by computing the maximum bias for mass point contaminated distribution, 
which is defined by 

B;'(E) = sup [(T((l - E)He + u5y,x) - 8)'Co(Go)(T((1 - E)He + EOy,x) - 8)]1/2, 
(y,x')' 

where Oy,x is the point mass distribution that gives probability 1 to (y, x')', and Co is 
a functional that satisfies the eqllivariance condition in (4). 

We have computed numerically the maximum bias under mass point contamination 
for C-estimators in the case that He is Np+1 (0,1). By equivariance, there is no loss of 
generality in standardizing the distribution. 

We have taken the estimator T2 to be that with minimax bias within the class GM. 
Martin, Yohai y Zamar (1989) prove that this estimator corresponds to the function 
'ljJ(u, v) = sgn(u)jv, and therefore is defined by 

or equivalently 

. (IY - 8'XI) 
T2(H) = arg ~ID EH IIxll ' (11) 

with IIxll = (x'L:X)-l, where L: is the covariance matrix of x. Since L: is unknown it 
has been replaced by the robust covariance estimator based on projections proposed 
by Maronna, Stahel y Yohai (1992). 
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In order to simplify the calculations we have taken Cl = C2 = C, so that the functional 
T 3 is of the form 

Since GM-estimators depend 011 the number of regressors, we have considered dif­
fercnt values of p. Tables 7.1 to 7.5 present the values of BT3 for several values of p, E 

and c. 

Tables also include the values of B* for the LMS-estimator and the Gl\I-estimator 
in (11) and for two more clases of estimators having both high breakdown point and 
bounded contamination sensitivity of order 1: the generalized T-estimators, which we 
will denote here by GT, and the one-step GM-estimators, denoted as GlVIl. The GT­
estimate considered here is the same as in section 3 of Ferreti et a1. (1994). GM 1 is a 
one-step Newton-Raphson version of the Ryan type GM-estimate with 1P-function in 
the family 

1Pc(x) = ctanh(x/k), 

and weight function w(x) = 1/lxl. Simpson and Yohai (1997) show that when k -----t 0 
the corresponding gross error sensitivity tends to the lower bound for locally linear 
functionals. This value is attained by the minimax GM-estimate found by Martin et 
a1. (1989) and given in (11). The values of k for each p are chosen to match the gross 
error sensitivity of GT and may be found in Table 4.2. of Ferreti et a1. (1994). 

The robust covariance matrix estimate used in GMl and GT is in the Donoho­
Stahel family (see Donoho, 1982, Stahel, 1981, and Maronna and Yohai, 1995). The 
specific definition of this estimate requires the choice of another weight function w*. 
Based on the results of Maronna and Yohai (1995), we took w*(u) = min(l, l/u) where 
l is the square root of the 95% percentile of a x-squared distribution with p degrees of 
freedom. 

Table 7.1: Maximum bias of several C-estimators that combines LMS and GM, of 
GT-estimator and of GM I-estimator for p = 2 

p=2 I E = .05 I E = .10 I E = .15 I E = .20 I 
BTLMS(E) 0.53 0.83 1.14 1.52 
BTGM(E) 0.11 0.26 0.47 0.83 

c =.9 0.22 0.66 1.09 1.51 

Bh c =.8 0.11 0.38 0.86 1.47 
c =.7 0.11 0.26 0.57 1.19 
c =.6 0.11 0.26 0.47 0.83 

BOT 0.25 0.43 0.76 1.32 

BOMl 0.15 0.31 0.51 0.75 
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Table 7.2: IvIaximnm bias of several C-estimators that combines LMS and C~I, of 
Or -estimator and of C M I-estimator for p = 5 

p = 5 I E = .05 I E = .10 I E = .15 I E = .20 I 
BTu/S(E) 0.53 0.83 1.14 1.52 
BTGA/(E) 0.18 0.47 1.23 ex:) 

C =.9 0.25 0.77 1.14 1.75 
B* T3 C =.8 0.18 0.51 1.14 2.04 

C =.7 0.18 0.47 1.23 2.39 

BCr(E) 0.25 0.56 1.50 2.15 
BCM1(E) 0.18 0.42 0.74 2.29 

Table 7.3: Maximnm bias of several C-estimators that combines LMS and C~I, of 
GT-estimator and of CIvIl-estimator for p = 10 

p = 10 I E = .05 I E = .10 I E = .15 I E = .20 I 
BTLAfS(E) 0.53 0.83 1.14 1.52 
BTGM(E) 0.26 0.82 ex:) ex:) 

C =.9 0.31 0.83 1.14 1.75 
B:r3 

C =.8 0.26 0.83 1.61 2.04 
C =.7 0.26 0.82 1.92 2.39 

BCr( E) 0.32 0.95 1.60 2.15 
BCl\fl (E) 0.37 0.75 2.03 5.99 

Table 7.4: Maximum bias of several C-estimators that combines LMS and CM, of 
GT-estimator and of CM I-estimator for p = 15 

p = 15 I E = .05 I E = .10 I E = .15 I E = .20 I 
BTu"JS(E) 0.53 0.83 1.14 1.52 
BTGM(E) 0.33 1.29 ex:) ex:) 

C =.9 0.34 0.98 1.26 1.75 
B* T3 C =.8 0.33 1.28 1.61 2.04 

C =.7 0.33 1.28 1.92 2.39 

BCr(E) 0.36 1.12 1.60 2.15 

BCM1(E) 0.42 1.02 3.07 9.68 
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Table 7.5: Maximum bias of several C-estimators that combines LMS and Gl\I, of 
GT-estimator and of G:LvIl-estimator for p = 20 

p = 20 I E = .05 I E = .10 I E = .15 I E = .20 I 
BTLMS(E) 0.53 0.83 1.14 1.52 
BTGM(E) 0.39 2.36 00 00 

c =.9 0.39 1.04 1.36 1.75 
B* T3 c =.8 0.39 1.28 1.61 2.04 

c =.7 0.39 1.28 1.92 2.39 

BCT ( E) 0.42 1.12 1.60 2.15 
BCAI1 (E) 0.42 1.27 3.35 8.44 

Since the values of E considered are smaller than the asymptotic breakdown point 
of T 3, E.'i:-

3 
= 0.5, then B.'i:-3 will be finite in all cases. In addition, Bh is bounded 

between B.'i:-Lf,[S and BTGAJ , and approaches BTLMS as c increases. 

Note that, for all p, there exists c such that the maximum bias for mass point 
contamination of T3 is less than that of the GT-estimator for all the values of E. This 
value of c is highlighted in the tables. For large values of p, the bias of the estimator 
T 3 corresponding to this choice of c is also less than T G Ml, for all E. When the number 
of regressors is small, T3 behaves somewhat worse than TGMl for some values of E, but 
it is much better for most values of E. 

7.2. 1\1 ante Carlo finite sample size results. In order to understand and com-
pare the behavior of the C-estimators for finite sample size, we have n111 a simulation 
experiment. The estimates includes in our study are, 

1. The least median of squares estimate (LMS). 

2. The generalized T estimates (GT) proposed Ferreti et al. (1994). 

3. The one-step Newton-Raphson GM-estimates (GM1) introduced by Simpson et 
al. (1992). 

4. The C-estimator of the form introduced in section 6 (C). 

The GT and GM1-estimators considered here are the same as in subsection 7.1. 

As in the previous subsection, we consither the C-estimator that combines the 
LMS with the GM-estimator given by (11). LMS is computed by resampling with 1000 
subsamples. The values of the constants are Cl = C2 = 0.6 for p = 2, Cl = 0.6 and 
C2 = 0.8 for p = 5, and Cl = 0.7 and C2 = 0.9 for p = 10, for all the sample sizes. 
We have analysed differents values of Cl and C2, but for shortness we only include the 
values that provide the best results. 
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Because of efficiellcy cOllsideratiolls, we also included the one-step reweighted least 
squares versions of the fom estimates listed above (see ROllsseeuw and Leroy, 1987). 
Given the illitial estimat.e T, the corresponding one-step reweighted estimate is a 
weighted LS with weights tu; = W((Yi - T'xd/&), where 

& = 1.481 median IYi - T'xi\. 

Following Rousseeuw and Leroy. we use the "hard rejection" weight function tu (t) = 
I (It I ::::; a), with CL = 2.5. The goal of this one-step reweighted least squares estimat.es is 
t.o gain efficiency under normal errors while preserving the robust.ness propert.ies of the 
init.ial estimates. The reweighted estimates will be denoted by RLMS, RGM1 , RGT 
and RC. 

We consider again a regression model without intercept. And we analize three 
different values of p (2, 5 and 10) and three sample sizes (n = 60,100 and 140). The 
number of replications is 500. Each sample contains n(l- E) observat.ions (y,x')' from 
et Np+l (0,1) and nE ident.ical observat.ions equal t.o (y, (10,0, ... ,0)) (E ranges from 0 t.o 
.50 wit.h increments of .05). 

For each estimate and sampling situation, we compute the total mean squared error 

1 (m p ) 
lvlSE = m ~t;~; , 

where Ti = (Til,"" Tip), (i = 1, ... , m). The value of the "contaminating" slope, 
sl = g/10 is changed with increments of 0.05 in searching for the maximum value of 
the MSE. For shortness, we only report the overall maximum MSE for each estimat.e, 
p and E. The results are given in Tables 7.6, 7.7 and 7.8. 

From these tables we can see that there is not and overall best robust estimate. 

In general, re\veighting improves the performance of the estimates. Therefore, t.he 
following comments focus on t.he reweighted estimates RGT, RG M 1 and RC. 

For p = 2 the best estimat.or is RGM1 for E ::::; 0.15 if n = 60 and for E ::::; 0.10 if 
n = 100 or n = 140. In the rest of the cases, the performance of the RC-estimator is 
better. 

For p = 5, the RC-estimator is uniformily better than RGT and RGMl. 

For p = 10, RGT has the best performance for E ~ 0.10 if n = 60, for E ~ 0.15 
if n = 100, for E = 0.20 if n = 140, and RC is the best estimator in all the other 
situations. 
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Table 7.6: Simulation Results for n = 60. Maximum Mean Squared Errors 

n p f LS L~IS GT GM1 C RLMS RGT RG~n RC 
60 2 0.00 0.036 0.186 0.075 0.074 0.087 0.060 0.043 0.042 0.044 

0.05 0.257 0.097 0.101 0.107 0.149 0.086 0.077 0.105 
0.10 0.458 0.195 0.198 0.232 0.344 0.185 0.132 0.210 
0.15 0.825 0.502 0.488 0.467 0.712 0.477 0.316 0.448 
0.20 l.580 2.232 l.305 0.957 1.424 2.010 l.175 0.972 

;) 0.00 0.097 0.380 0.157 0.148 0.119 0.183 0.117 0.119 0.117 
0.05 0.535 0.245 0.243 0.207 0.350 0.207 0.215 0.205 
0.10 1.030 0.798 0.753 0.435 0.844 0.705 0.706 0.414 
0.15 2.298 2.057 2.359 1.186 2.036 1.916 l.942 l.216 
0.20 5.193 4.602 9.105 2.916 4.926 4.283 6.942 3.356 

10 0.00 0.205 0.649 0.349 0.382 0.306 0.493 0.316 0.295 0.301 
0.05 l.007 0.648 0.716 0.503 0.853 0.606 0.562 0.511 
0.10 2.178 l.495 3.271 l.433 2.031 1.452 l.817 l.711 
0.15 5.432 3.598 21.592 30972 5.241 3.467 9.122 6.458 
0.20 16.034 9.830 145.585 17.841 15.835 9.679 73.092 16.451 

Table 7.7: Simulation Results for n = 100. Maximum Mean Squared Errors 

n p E LS LMS GT GM1 C RLMS RGT RGM1 RC 
100 2 0.00 0.022 0.126 0.043 0.044 0.052 0.031 0.025 0.025 0.028 

0.05 0.220 0.067 0.068 0.091 0.123 0.076 0.060 0.091 
0.10 0.452 0.170 0.160 0.224 0.340 0.189 0.122 0.199 
0.15 0.851 0.492 0.436 0.471 0.712 0.524 0.320 0.304 
0.20 l.628 2.368 l.185 0.947 l.440 2.256 1.270 0.914 

5 0.00 0.055 0.370 0.084 0.083 1.012 0.089 0.065 0.065 0.062 
0.05 0.525 0.153 0.156 0.139 0.232 0.149 0.157 0.134 
0.10 0.982 0.649 0.551 0.518 0.596 0.591 0.537 0.433 
0.15 l.837 1.797 l.782 1.852 l.323 1.713 1.452 l.391 
0.20 3.600 3.642 6.682 3.775 2.885 3.380 5.315 3.144 

10 0.00 0.118 0.878 0.165 0.337 0.193 0.208 0.146 0.142 0.152 
0.05 1.226 0.388 0.560 0.562 0.445 0.362 0.369 0.309 
0.10 2.152 0.996 2.431 2.251 1.092 0.971 1.468 0.823 
0.15 4.153 2.091 14.112 5.316 2.691 1.986 7.754 2.368 
0.20 9.368 4.636 89.347 12.323 7.044 4.298 46.765 8.072 
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Table 7.8: Simulatioll Results for n = 140. Maximum Mean Squared Errors 

11 P E LS LMS GT GM1 C RLMS RGT RGM1 RC 
140 2 0.00 0.015 0.087 0.029 0.026 0.032 0.020 0.017 0.017 0.017 

0.05 0.182 0.055 0.051 0.051 0.113 0.069 0.055 0.059 
0.10 0.412 0.147 0.135 0.124 0.349 0.176 0.115 0.141 
0.15 0.829 0.458 0.379 0.317 0.762 0.526 0.330 0.306 
0.20 1.650 2.362 1.087 0.852 1.538 2.225 1.336 0.862 

5 0.00 0.037 0.100 0.058 0.055 0.059 0.048 0.043 0.043 0.043 
0.05 0.229 0.123 0.116 0.116 0.171 0.131 0.144 0.121 
0.10 0.619 0.614 0.510 0.427 0.553 0.576 0.531 0.479 
0.15 1.238 1.817 1.579 1.396 1.160 1.747 1.419 1.431 
0.20 2.628 3.606 5.955 3.144 2.484 3.368 4.890 2.892 

10 0.00 0.078 0.124 0.106 0.111 0.125 0.098 0.092 0.093 0.093 
0.05 0.281 0.306 0.289 0.273 0.243 0.296 0.264 0.245 
0.10 0.756 0.913 1.636 0.896 0.712 0.893 1.322 0.789 
0.15 1.601 1.831 8.359 1.814 1.564 1.770 6.043 1.678 
0.20 3.412 3.635 39.204 3.612 3.349 3.348 29.426 3.406 

Therefore, the performance of C-estimators is very good for p = 5 and for other 
values of p becomes better than GT and GM1 as E increase. 

8. A C-estimator as efficient as the LSE. In this section we propose an 
estimator that, although is not locally robust, has very interesting properties. 

The most widely used estimator in regression is the Least Squares Estimator (LSE), 
which is defined by the functional 

TLsE(H) = arg min EH [(y - B'X)2] . 
OERP 

(12) 

It is known that when the distribution H is normal the LSE is efficient, since its 
covariance matrix attains the Rao-Cramer bound matrix. 

However TLs is neither globally nor locally robust. In fact, BT(E) = 00 for all 
E > 0, and therefore its breakdown point is zero and it is not locally stable for any 
q > O. 

We now analyze the properties of the C-estimator with T2 as the LSE. By results 
in Section 5, it follows that the asymptotic covariance matrix of T3 coincides with that 
of T 2 , and then, the assymptotic efficiency of this C-estimator under normality is 
optimal. 

Consequently, the C-estimator constructed with the LSE has the following proper­
ties: 
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- Its asymptotic break down point is E* = 0.5. 

- Under the uncontaminated model, it is n l / 2 consistent and asymptotically nor-
mal. 

- If data are normally distributed, it has the same efficiency as LSE. 

In addition, this C-estimator can be computed in S-Plus, since this program calcu­
lates the Ll'vIS and LS-estimators. So the C estimator that we propose in this section 
is very easy to compute. 

Obviously, this estimator will not be locally robust, given that the LSE is not locally 
stable of any order q > O. But it has maximum breakdown point and its efficiency is 
optimal under normal errors. 

We have calculated the maximum bias for mass point contaminated distribution of 
this estimator for several values of E and Cl = C2 = c. In this case, the bias does not 
depend on the number of regressors. Since BT2 (E) = 0 for all E > 0, it is clear that 
will red nce the maximum bias taking C close to one. Note that for large c, BT3 ( E) is 
very close to BTLMS(E). 

The calculations are in Table 8.1. 

Table 8.1: Maximum bias of the C-estimator that combines LMS and LS 

I Contaminacion I E = 0.05 I E = 0.10 I E = 0.15 I E = 0.20 I 
I BTLMS(E) I 0.53 I 0.83 I 1.14 I 1.52 I 

BTc(E) C = 0.99 0.55 0.85 1.16 1.54 
c = 0.95 0.64 0.93 1.24 1.63 
c = 0.9 0.76 1.04 1.36 1.75 
c = 0.8 0.99 1.28 1.61 2.04 
c = 0.7 1.27 1.56 1.92 2.39 
c = 0.6 1.59 1.92 2.32 2.85 
c = 0.5 2.03 2.39 2.86 3.49 
c = 0.4 2.64 3.09 3.66 4.43 
c = 0.3 3.63 4.21 4.95 5.97 
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