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Abstract

Using the formalism of quantizers and dequantizers, we show that the characters
of irreducible unitary representations of finite and compact groups provide kernels
for star products of complex-valued functions of the group elements. Examples
of permutation groups of two and three elements, as well as the SU(2) group,
are considered. The k-deformed star products of functions on finite and compact
groups are presented. The explicit form of the quantizers and dequantizers, and
the duality symmetry of the considered star products are discussed.
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1 Introduction

Traditionally the finite symmetry groups and their irreducible representations are used
to describe the properties of crystals and electrons in solids. Also for the description of
phase transitions, one needs to know the change of symmetry structure and correspond-
ing group representation properties. In the last years, there is a growing interest in
constructing quantum mechanics of finite or discrete phase spaces [1, 2, 3]. Besides, in
the context of quantum computations [4] one often considers finite-dimensional Hilbert
spaces associated with qubit or, more generally, qudit states. Therefore, it is quite nat-
ural to study the phase-space realizations of quantum systems suitably associated with
representations of finite or compact groups. The description of states of a quantum
system by means of Wigner (quasi-)distributions in the case of continuous position and
momentum variables has been considered in a wide variety of contexts [5, 6, 7, 8]. It
relies on considering the phase space (a symplectic vector space) as a quotient of the
Heisenberg–Weyl group by its centre. Thus a unitary representation of this group —
or, equivalently, a projective unitary representation of the vector group (the symplectic
vector space) — may be regarded as an immersion of this space as a smooth submani-
fold of the Weyl algebra generated by the unitary operators. This particular immersion
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allows to pull-back the C
∗-algebra of operators and, therefore, allows to induce a star

product on the functions on the phase space (see, e.g., [9, 10, 11]). This product may
be expressed by means of a kernel function constructed out of the unitary operators
associated with points of the symplectic vector space. This procedure may be gener-
alized to any manifold as long as a suitable orthonormality condition is implemented.
We have considered several instances of this procedure in the past [12, 13, 14, 15].
The Weyl–Wigner approach we have described has been considered very often also for
quantum systems with a finite-dimensional carrier Hilbert space [1, 2, 3].

The aim of this paper is to find the connection of the properties of quantum sys-
tems, which have symmetries described by finite or compact symmetry groups (crys-
tallographic groups, permutation groups, rotation group), with the star-product quan-
tization approach. In the context of mathematical formulation, the aim of this paper is
to consider the immersion of finite or compact groups in the space of unitary operators
acting on some Hilbert space and pull-back the C

∗-algebra of operators to describe
nonlocal and noncommutative products on the space of functions. Such mathematical
construction provides the possibility to discuss the properties of quantum systems asso-
ciated with physical observables identified with operators using a classical-like approach
where the observables are identified with functions on phase space. But the multiplica-
tion rule for these functions is determined by a specific star-product procedure. Some
examples of crystallographic and permutation groups are presented to illustrate the
procedure.

The paper is organized as follows.
In Sect. 2, we recall some basic facts about star products. In Sect. 3, we focus on

the special case of finite groups. Next, in Sect. 4, some formulae involving characters
are derived, and we illustrate our results by means of examples in Sect. 5. Finally, in
Sect. 6, conclusions are drawn.

2 General aspects of star products

The construction of a Weyl system, when considered from the point of view of the
immersion of the symplectic vector space into the group of unitary operators U(H)
acting in some Hilbert space H, may be described in the following way. We consider a
manifold M and a couple of maps U : M → U(H) and D : M → U(H) usually called
dequantizer and quantizer, respectively, with the following property:

Tr Û(~x)D̂(~x′) = δ(~x− ~x′). (1)

With any operator Â acting in the Hilbert space H we can associate a function on M
by setting:

fA(~x) = Tr
(

ÂÛ(~x)
)

. (2)

Conversely, with each function one associates an operator by setting:

Â =

∫

fA(~x)D̂(~x) d~x. (3)

The role the operator-valued maps Û and D̂ (that we will also call ‘basic operators’ in
the following) play in these formulae explains their names.
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The star product of functions induced by the operator product is defined by

(fA ⋆ fB) (~x) := fAB(~x). (4)

The kernel function or ‘structure constants’ implementing the associative product has
the following expression involving the couple quantizer–dequantizer:

K(~x, ~y, ~z) = Tr
(

D̂(~y)D̂(~z)Û(~x)
)

. (5)

hence:

(fA ⋆ fB) (~x) =

∫∫

K(~x, ~y, ~z)fA(~y)fB(~z) d~yd~z. (6)

From the definition we find that the associativity condition is trivially satisfied:

(fA ⋆ fB) ⋆ fC = fA ⋆ (fB ⋆ fC) . (7)

At this point, the skew-symmetrization provides us, in a natural way, with a Lie
algebra of functions on M defined by means of the integral kernel

C (~x, ~y, ~z) = Tr
([

D̂(~y), D̂(~z)
]

Û(~x)
)

, (8)

which, in a synthetic way, may be written as

C (~x, ~y, ~z) → C~x~y~z. (9)

It should be noticed that, restricting to real part of the algebra, the symmetrized
product provides us with a Jordan algebra. The compatibility condition between the
two products would then provide us with a Lie–Jordan algebra.

3 The case of finite groups

Let us restrict now our attention to finite groups. Let G be a group with N elements,
G = {g1, g2, . . . , gN}. It is well known that all the irreducible representations of such a
group are finite-dimensional and unitarizable and satisfy the orthogonality conditions
(see, for example [16, 17])

N
∑

k=1

u(s)
mn(gk)u

∗(p)
αβ (gk) = δmαδnβ

N

Ns
δsp, (10)

where Ns is the dimension of the representation u(s) (the dimension of the vector space
where u(s) acts). We may replace previous association ~x→ Û(~x), ~x→ D̂(~x) with maps
G→ U(H) given by

gk → u(gk), gk → u−1(gk)
N

Ns
. (11)

With the help of these maps, we can define complex-valued functions on G, forming
the group algebra (see, e.g., [16, 17]), associated with operators (matrices) on H(s) by
setting

f
(s)
A (gk) = Tr

(

Au(s)(gk)
)

=

Ns
∑

m=1

(

Au(s)(gk)
)

mm
(12)
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or
f

(s)
A (gk) =

∑

m,j=1

Amju
(s)(gk)jm. (13)

Again the “reconstruction” of the matrix from the function is provided by

Anj =
Ns

N

N
∑

k=1

f
(s)
A (gk)u

∗

jn(gk)

=
Ns

N

N
∑

k=1

f
(s)
A (gk)u

−1
nj (gk)

=
Ns

N

N
∑

k=1

f
(s)
A (gk)unj(g

−1
k ). (14)

This shows that there is a one-to-one correspondence between complex-valued functions
on G and operators in H(s). We should stress that the operator associated with a given
function depends on the chosen representation.

The kernel of the star product corresponding to the operator product is given by

K(g1, g2, g3) = Tr

{

(

Ns

N

)2

u−1(g2)u
−1(g3)u(g1)

}

. (15)

Recalling the definition of characters of a representation, we find that up to normal-
ization the kernel function is represented by a character of the group G that we are
considering.

The associative algebra generated by these basic operators has structure constants
given by

acas ≡
Tr

(

u(ga)u(gs)u
−1(gc)

)

Tr1k
. (16)

If we use a deformed product [13] by means of a fixed unitary transformation k, we
have

acas(k) ≡
Tr

(

u(ga)ku(gs)ku
−1(gc)

)

Tr1k
. (17)

Following [15] we can also define the dual star product by exchanging the role of
quantizers and dequantizers

Ûd(~x) →
Ns

N
u−1(gk) (18)

and
D̂d(~x) → u(gk). (19)

Thus, our main result amounts to say that structure constants of the associative
product induced on finite groups by operators acting on some Hilbert space carrying
an irreducible representation are given by characters of the group representation we are
considering.

Therefore, the tables of characters available in the literature allows us to construct
in explicit manner families of associative products on F(G,C).

4



The construction we have considered shows, very clearly that it is not necessary
that the map G → U(H) be a group representation. Indeed we may consider a set S
with a measure ds and an algebra A of operators and require that

Tr D̂(s)Û(s′) = δ(s, s′),

where δ(s, s′) stays for a Kronecker δ or a Dirac delta as the case may be.
Then out of the basic operators we may define

fA(s) = Tr
(

AÛ(s)
)

along with
(fa ⋆ fb) (s) = Tr ÂB̂Û(s).

The reconstruction of Â is again permitted by using D̂(s), it is

Â =

∫

fA(s)D̂(s) ds.

Of course, when S is finite-dimensional the measure will be a concentrated measure
and the integral is replaced by a sum.

Elsewhere [13] we have considered deformations of the operator product by setting

Â ·K̂ B̂ = Â · K̂ · B̂.

If we use this deformed product on the space of operators, we induce a deformed product
also on the associated functions on S as given in (17).

These observations should be kept in mind when we want to classify associative
products on F(G,C). We should stress, however, that the identification of the struc-
ture constants with characters requires that we consider a group G and its unitary
representations.

4 Some formulae for characters of finite groups

It is now possible to use the identification of structure constants with characters to
derive easily some identities that characters must satisfy. The function associated with
the unity operator will be just the character of irreducible representation

fI(gk) = Tr (Iu(gk)) = χ(gk). (20)

The relation I · I = I implies

N2
s

N2

N
∑

k,s=1

χ(gk)χ(gs)χ
(

g3g
−1
k g−1

s

)

= χ(g3) (21)

and similarly for the dual star product.
Thus one has identity (21) which must be satisfied by characters of irreducible

representations. On the other hand, the dual star-product scheme yields

(

Ns

N

)2 N
∑

k,k′=1

χ(g−1
k )χ(g−1

k′ )χ
(

gkgk′g
−1
s

)

= χ(g−1
s ). (22)
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Since
1 · g = g, (23)

one has

N2
s

N2

N
∑

gkgk′
=1

χ(gk)χ(ggk′)χ
(

gsg
−1
k g−1

k′

)

= χ(ggs). (24)

Another composition formula for characters of finite (or compact) groups

χ(gs)χ(gt) =
N

Ns

∑

r

χ
(

gsg
−1
r gtgr

)

(25)

is presented, for example, in [16, 17]. One can see that our formulae (22) and (24) are
consistent with (25).

5 Examples

5.1 A group with two elements

Let us consider the reflection group G = {I, P} containing the identity and the reflec-
tion.

The group can be realized as group of two matrices

g1 =

(

1 0
0 1

)

, g2 =

(

0 1
1 0

)

.

The space of functions
f : {I, P} → C

is isomorphic to C
2, therefore the associative products on these functions can be con-

sidered as products on vectors of a two-dimensional complex vector space. If we use
Dirac notation, we find

| f〉 =

(

f(1)
f(2)

)

. (26)

The product of two functions f1, f2 is given by

(f1 ⋆ f2) (k) =

2
∑

ka,kb=1

K(ka, kb, k)f1(ka)f2(kb), (27)

the kernel function (or the structure constants) is

K(ka, kb, k) = χ
(

gagbg
−1
k

)

. (28)

The reflection group G contains two elements — identity I = g1 and reflection
P = g2. There are two irreducible one-dimensional representations R(s) given in table

g1 g2
1 1

(29)
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and
g1 g2
1 −1

. (30)

Thus this group can create two-dimensional Lie algebra. Also this group can be
considered as permutation group of two elements

g1 = 12, g2 = 21. (31)

Any function on the group G has two values

f(1) ≡ f(g1), f(2) ≡ f(g2). (32)

The characters in (29) and (30) coincide with matrix elements. So our kernel being
a function of three variables each having two values reads for representation (29)

K(gk1 , gk2 , gk) = 1. (33)

Thus in this case, one has

f1(k) ⋆ f2(k) = f1(g1)f2(g1) + f1(g1)f2(g2) + f1(g2)f2(g1) + f1(g2)f2(g2). (34)

In the vector form, we get the result of star-product of two vectors

| ψ〉1⋆ | ψ〉2 =| ψ〉, (35)

where vector | ψ〉 has equal components

| ψ〉 =

(

f
f

)

(36)

and
f = f1(1)f2(1) + f1(1)f2(2) + f2(1)f1(2) + f2(1)f1(2). (37)

For the case of representation (30), one has the kernel

K(g1, g1, g1) = 1, K(g1, g1, g2) = −1, K(g1, g2, g1) = −1, K(g1, g2, g2) = 1. (38)

This kernel provides the result of the product

| ψ̃〉 =| ψ̃1〉⋆ | ψ̃2〉, (39)

where vector | ψ̃〉 has two components

| ψ̃〉 =

(

f̃

−f̃

)

, (40)

where
f̃ = f1(1)f2(1) − f1(1)f2(2) − f1(2)f2(1) + f1(2)f2(2). (41)

The structure constants of Lie algebra obtained by means of the kernels of the associa-
tive products are equal to zero for both kernels

Cγαβ = 0. (42)
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Thus we got Abelian algebras of dimension two.
We give explicit forms of these products, point-wise product, and standard convo-

lution product.

For example, point-wise product of two vectors

(

x1

x2

)

and

(

y1

y2

)

gives

(

x1

x2

)

⋆

(

y1

y2

)

=

(

x1y1

x2y2

)

(43)

and convolution product gives
(

x1

x2

)

⋆

(

y1

y2

)

=

(

x1y1 + x2y2

x2y1 + x1y2

)

. (44)

The constructed products give correspondingly
(

x1

x2

)

⋆

(

y1

y2

)

=

(

x1y1 + x1y2 + x2y1 + x2y2

x1y1 + x1y2 + x2y1 + x2y2

)

(45)

and
(

x1

x2

)

⋆

(

y1

y2

)

=

(

x1y1 − x1y2 − x2y1 + x2y2

−x1y1 + x1y2 + x2y1 − x2y2

)

. (46)

One can see that product (44) is compatible1 with the convolution product (45)
provided that the vectors satisfy the condition: x1 = x2 and y1 = y2. Analogously,
for vectors under the condition x1 = −x2 and y1 = −y2 product (45) is compatible
with (44). This means that the two products (44) and (46) are compatible. One
can take superposition of two kernels K(s)(g1, g2, g3) corresponding to both different
irreducible representations s = 1, 2 given by (33) and (38). This superposition satisfies
the associativity equation being determined by the convolution product (44).

5.2 Quaternionic group

We consider a group G with eight elements in the representation provided by the Pauli
matrices. If we properly redefine the trace, they are orthonormal. We have

E = σ0, P = −σ0, K = iσ1, L = iσ2,

(47)

M = iσ3, K ′ = −iσ1, L′ = −iσ2, M ′ = −iσ3,

where the space of functions f : {0, 1, 2, . . . , 7} → C is represented by C
8 and we find

the kernel function given below.
The abstract group multiplication table obtained using explicit form of the Pauli

matrices

σ0 =

(

1 0
0 1

)

, σ1 =

(

0 1
1 0

)

,

(48)

σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0
0 −1

)

1We recall that two associative products are said to be compatible if a linear combination of their
structure constants defines again an associative product [18].
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reads

P 2 = E, K2 = L2 = M2 = K ′2 = L′2 = M ′2 = P, KL = M,

LM = K, MK = L, K ′L′ = M ′, L′M ′ = K ′, M ′K ′ = L′, (49)

K ′K = LL′ = MM ′ = E, LK = M ′, ML = K ′, KM = L′.

Other products of the group elements follow from this table easily. The group has five
irreducible representations due to the decomposition

8 = 12 + 12 + 12 + 12 + 22.

There are four one-dimensional and one two-dimensional representations. The repre-
sentations are unitary ones. The characters of the representations are given in the
following table of characters:

E P L K M L′ K ′ M ′

1 1 1 1 1 1 1 1
1 1 1 −1 −1 1 −1 −1
1 1 −1 1 −1 −1 1 −1
1 1 −1 −1 1 −1 −1 1
2 −2 0 0 0 0 0 0

The first four rows in the table are characters of the one-dimensional representations
satisfying the rules of group-element multiplication given in table (49). The last row
contains characters of two-dimensional irreducible representation given by (47).

Now one can construct kernel of star product for a given group following the method
described and using explicitly the properties of the Pauli matrices.

If we denote the elements in (47) as

E = g1, P = g−1, K = g2, L = g3,

(50)

M = g4, K ′ = g−2, L′ = g−3, M ′ = g−4

and apply for the two-dimensional representation the formula for characters, we obtain
the star-product-structure constants which are nonzero of the form

Ks
mn =

1

4

[

χ
(

gmgng
−1
s

)]

. (51)

Here only elements K±1
mn, K

m
±1n, and Km

n±1 with n = ±m differ from zero, the other
structure-constant elements are zero. For example,

K1
11 = −K−1

11 = K−1
−11 = −K1

1−1 = 1/2. (52)

Since the antisymmetric part of the kernel of the star product is nonzero, the corre-
sponding Lie algebra structure constants read

Csmn = Ks
mn −Ks

nm =
1

4
Tr

(

[gm, gn] g
−1
s

)

. (53)
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The obtained Lie algebra is a subalgebra of the eight complex linear transformations
acting on C

2 which define a four-dimensional complex vector space. By construction,
the Lie algebra coincides with the Lie algebra of the GL(2, C) group, i.e., the complex-
ification of the Lie algebra of U(2).

There exists another finite group with 8 elements. This group is the symmetry group
of the square on a plane with four vertices at (1, 1), (1,−1), (−1, 1), and (−1,−1). This
group contains four reflections with respect to lines which are axes of the Cartesian
coordinates and the axes rotated by angle 2π/4. There are also three rotations by
angles 2π/4, 2π/2, and 3π/2 denoted, respectively, as C4, C

2
4 , and C2

4 and the identity
element E. We denote these elements as E, C4, C

2
4 , C3

4 , Σ1, Σ2, σ13, and σ24. The
elements Σ1 and Σ2 are reflections in the ordinate and abscissa lines, respectively, and
the elements σ13 and σ24 are reflections with respect to bisectrices connecting vertices of
the square. The group has a two-dimensional representation realized by Pauli matrices
of the form

E C4 C2
4 C3

4 Σ1 Σ2 σ13 σ24

σ0 iσ3 −σ0 −iσ3 −σ2 σ1 −σ1 σ2

We denote the elements as E = g1, C4 = g2, C
2
4 = g3, C

2
4 = g4, Σ1 = g5, Σ2 = g6,

σ13 = g7, and σ24 = g8. Then the multiplication table for this group is

g1 g2 g3 g4 g5 g6 g7 g8
g1 g1 g2 g3 g4 g5 g6 g7 g8
g2 g2 g3 g4 g1 g8 g7 g5 g6
g3 g3 g4 g1 g2 g6 g5 g8 g7
g4 g4 g1 g2 g3 g7 g8 g6 g5
g5 g5 g7 g6 g8 g1 g3 g2 g4
g6 g6 g8 g5 g7 g3 g1 g4 g2
g7 g7 g6 g8 g5 g4 g2 g1 g3
g8 g8 g5 g7 g6 g2 g4 g3 g1

The table of characters of the unitary irreducible representations is given below

E C4 C2
4 c34 Σ1 Σ2 σ13 σ24

2 0 −2 0 0 0 0 0
1 1 1 1 1 1 1 1
1 −1 1 −1 −1 −1 1 1
1 −1 1 −1 1 1 −1 −1
1 1 1 1 −1 −1 −1 −1

One can see that tables of characters of quaternionic group and symmetry group of
square are identical. This means that star products described by the characters of
irreducible representations are also the same. It is not trivial and intuitively not obvious
why two different groups provide the same structure constants. In fact, these two finite
groups of order eight can be mapped one into the other to be considered as different
realizations of the same abstract group. The map consists of the shift of the group
elements by left or right multiplication by another element of the group.

Let us describe the procedure in detail.
Given a group G with N elements g1, g2, . . . , gN . Let g1 be identity element in the

group g1 = E. Let us have table of multiplication in the given group like

gkgj = gs.

10



With respect to given identity element g1, one has inverse element g−1
1 , g−1

2 , . . . , g−1
N .

Let us consider the set G̃ = g̃1, g̃2, . . . g̃N with g̃k = gkg0, where g0 is chosen as one of
N elements of the group G. Now one can introduce a new (with respect to the initial
one) multiplication table in the set G̃ using the following rules (⋆ rules)

g̃k ⋆ g̃j = (gkg0) g
−1
0 (gjg0) = g̃s = gsg0. (54)

The structure constants of the new product coincide with those of the previous one. The
new rule uses idea of the so-called k-product of matrices as mentioned in Sect. 3 and
considered, e.g., in [13] (or k-deformed product of matrices) where the rule of product
– row by column – is modified by inserting a chosen matrix k when one multiplies two
matrices a and b. This means that

a · b→ a ·k b = akb. (55)

This matrix product is associative. The new group multiplication (54) just uses the
analog of the rule (55) where the element g−1

0 plays the role of matrix k. This means
that in terms of the initial identity element g1 and the “deforming” shift element g0
the new identity in G̃ reads

Ẽ = g1g0 = g0 = g̃1. (56)

In fact,
g̃k · g̃1 = gkg0g

−1
0 g1g0 = gkg0 = g̃k. (57)

Also
Ẽ ⋆ g̃k = g0g

−1
0 gkg0 = g̃k.

Thus with the new deformed multiplication rule one has the new identity element
and reproduces the multiplication table of the initial group. Exactly this happens in
the case of the quaternionic group and the symmetry group of square. Nevertheless,
the realization of symmetry operations physically is quite different in both cases. For
example, the identity element for symmetry of square means that one is doing no
operation with square. The identity element which in the deformed group (quaternionic
group) is reflection, physically differs from ‘doing-no-operation’. These findings are in
line with our general considerations at the end of Sect. 3.

5.3 Example of C3v group

The group of permutations of three elements is the group of symmetry of the equilateral
triangle. The elements are:

g1 = 1, g2 = u1, g3 = u2, g4 = u3, g5 = C3, g6 = C2
3 , (58)

here C3 is a cyclic permutation and u1, u2, u3 are permutations, odd ones. There are
three irreducible representations with table of characters of the form

g1 g2 g3 g4 g5 g6
1 1 1 1 1 1
1 −1 −1 −1 1 1
2 0 0 0 −1 −1

(59)
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Let us discuss one-dimensional representations.
Given a 1×1 matrix A which is a number. The symbol of this operator reads

fA(g) = Au(g) = Tr (Au(g)) . (60)

In the case of identity representation, the reconstruction formula reads

A =
1

6

6
∑

k=1

fA(gk) =
1

6
6A = A. (61)

Analogously reconstruction formula can be obtained for the second one-dimensional
representation with characters given in the second line of (59).

The considered operators A and B, acting in a one-dimensional Hilbert space, are
numbers. The product of two operators AB is just product of these numbers. The
star-product of the symbols in this case reads

fAB(g) = Tr (ABu(g)) = ABu(g) = fA(g) ⋆ fB(g). (62)

Let us check that this formula is coherent with the formula with the star-product
kernel

fA(g) ⋆ fB(g) =
∑

g1g2

[

Tr

(

1

N
u−1(g1)

1

N
u−1(g2)u(g)

)]

fA(g1)fB(g2)

=
1

N2

∑

g1g2

Au(g1)Bu(g2)u
−1(g1)u

−1(g2)u(g)

= ABu(g) (63)

Thus we checked that the formula yields the result shown in (62). Now one can apply
the same kernel to use the star-product of functions on the whole group. In this case,
a function on the group can be considered as a 6-vector. The product of the functions
is equivalent to the star-product of two 6-vectors. If one uses as a kernel of the star-
product the character of identity representation, one gets

~f1 ⋆ ~f2 = ~f, (64)

where the 6-vector ~f has all six components equal to x and this number x is expressed
in terms of the components of the vectors f1s and f2k as

f =
1

36

6
∑

k=1

6
∑

s=1

f1kf2s. (65)

In the case of antisymmetric representation, the components of the vector ~f have
different signs corresponding to even and odd permutations. One can check that these
two star-products are not equivalent.

The Lie algebra structure constants are equal to zero if characters of irreducible
representations have the properties

χ
(

g1g2g
−1
3

)

= χ
(

g2g1g
−1
3

)

or χ
(

g−1
1 g−1

2 g3
)

= χ
(

g−1
2 g−1

1 g3
)

(66)
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for all the elements g1, g2, g3.
In the case of C3v group, for all its one-dimensional irreducible representations,

equality (66) holds. In view of this, the Lie algebras associated with these irreducible
representations of this group are Abelian ones.

In the case of k-deformed star-product, one has deformed kernels

Kk(g1, g2, g3) =
N2
s

N2
Tr

(

ku(g−1
2 g3g

−1
1 )

)

=
N2
s

N2
fk(g

−1
2 g3g

−1
1 ) (67)

and

Kd
k(g1, g2, g3) =

Ns

N
Tr

(

ku(g2g
−1
3 g1)

)

. (68)

Let us consider in detail the two-dimensional representation of the group consisting
of 6 elements gk (or group C3v). Its table of multiplication reads

g1g1 = g1, g1g2 = g2, g1g3 = g3, g1g4 = g4, g1g5 = g5, g1g6 = g6,

g1g2 = g2, g2g2 = g3, g2g3 = g1, g2g4 = g5, g2g5 = g6, g2g6 = g4,

g3g1 = g3, g3g2 = g1, g3g3 = g2, g3g4 = g6, g3g5 = g4, g3g6 = g5,

g4g1 = g4, g4g2 = g6, g4g3 = g5, g4g4 = g1, g4g5 = g3, g4g6 = g2,

g5g1 = g5, g5g2 = g4, g5g3 = g6, g5g4 = g2, g5g5 = g1, g5g6 = g3,

g6g1 = g6, g6g2 = g5, g6g3 = g4, g6g4 = g3, g6g5 = g2, g6g6 = g1.

The matrices of two-dimensional irreducible representation read

g1 =

(

1 0
0 1

)

, g2 =

(

ϕ 0
0 ϕ−1

)

, g3 =

(

ϕ2 0
0 ϕ−2

)

,

g4 =

(

0 1
1 0

)

, g5 =

(

0 ϕ
ϕ−1 0

)

, g1 =

(

0 ϕ2

ϕ−2 0

)

,

where ϕ = e2πi/3 corresponds to rotation by 2π/3.
According to the construction of symbol of the operator Â with the matrix

A =

(

a11 a12

a21 a22

)

(69)

one has the following values of the function f(g) on the permutation group

fA(gk) =
1

3
Tr

(

a11 a12

a21 a22

)

g−1
k . (70)

The reconstruction formula for the matrix A can be written in terms of quantizer
operator and it reads

A =
1

3

[

(a11 + a22) g1 +
(

a11ϕ+ a22ϕ
−1

)

g3 +
(

a11ϕ
−1 + a22ϕ

)

g2

(a12 + a21) g4 +
(

a12ϕ
−1 + a21ϕ

)

g5 +
(

a12ϕ+ a21ϕ
−1

)

g2
]

. (71)

We used dual formula for star-product. The Lie algebra constructed by means of the
structure constants obtained with the character formula yields in the basis

y1 = g2 − g3, y2 = g4, y3 = g5,

(72)

y4 = g1, y5 = g2 + g3, y6 = g4 + g5 + g6
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the following commutation relations:

[y1, y2] = 2y2 + 4y3 − 2y6, [y2, y3] = −y5,

(73)

[y3, y1] = 2y3 + 4y2 − 2y6, [y1, y6] = [y2, y6] = [y3, y6] = 0.

The operators y4, y5, and y6 commute with all the other operators. The Lie algebra
obtained is a direct sum of a five-dimensional Lie algebra and a one-dimensional one.
The five-dimensional Lie algebra is an extension of the Heisenberg–Weyl algebra defined
by (y2, y3, y5). The nontrivial structure constants are

C2
12 = 2, C3

12 = 4, C5
23 = −1, C2

31 = 4, C3
31 = 2, C6

12 = −2, C6
31 = −2. (74)

Analogously, k-deformed kernel can be constructed for star product. Also k-deformed
Lie-algebra structure constants can be expressed in terms of the characters.

5.4 Example of SU(2) group

The construction can be applied also for a compact group G. One has only to make
change in (11) since instead of sum one has integral over compact group, i.e.,

∫

dµ(g)u(s)(g)mnu
ν(p)
αβ (g) = δmαδuβ

V

Ns
δsp, (75)

where dµ(g) is invariant Haar measure and

∫

dµ(g) = V (76)

is group volume. Superindices (s) and (p) describe the Casimir operators eigenvalues
distinguishing different irreducible representations of the compact groups.

For spin j = 1/2 (defining representation), one has that

g =

(

α β
−β∗ α∗

)

, α = cos
θ

2
ei(ϕ+ψ)/2, β = sin

θ

2
ei(ϕ−ψ)/2. (77)

The symbol of a spin operator (matrix A) reads

fA(g) = Tr

(

A11 A12

A21 A22

)(

α β
−β∗ α∗

)

. (78)

One has inverse relation using the quantizer

A =

∫

2

V
dµ(g) fA(g)g−1. (79)

The kernel of star-product reads

K(g1, g2, g3) =
4

V 2
Tr

[(

α∗
3 −β3

β∗3 α3

)(

α∗
2 −β2

β∗2 α2

)(

α1 β1

−β∗1 α∗
1

)]

. (80)
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The dual kernel reads

K(d)(g1, g2, g3) =
2

V
Tr

[(

α1 β1

−β∗1 α∗
1

)(

α2 β2

−β∗2 α∗
2

)(

α∗
3 −β3

β∗3 α3

)]

. (81)

Analogous explicit formulae can be given using known matrix elements of irreducible
representations of SU(2) group in terms of Euler angles. The star-product of two
functions on SU(2) group given as the kernel (80) reads

(f1 ⋆ f2) (g) =

∫

K(g1, g2, g)f1(g1)f2(g2) dµ(g1) dµ(g2), (82)

where the SU(2)-group elements g1, g2, g are labelled by Euler angles. The measures
dµ(g1) and dµ(g2) are known Haar measures of the SU(2) group. The kernel can be
taken from (80) and (81).

One can easily calculate the Lie algebra structure constants by calculating traces

C(g1, g2, g3) =
4

V 2
Tr

[[(

α∗
3 −β3

β∗3 α3

)

,

(

α∗
2 −β2

β∗2 α2

)](

α1 β1

−β∗1 α∗
1

)]

(83)

and

C(d)(g1, g2, g3) =
2

V
Tr

[[(

α1 β1

−β∗1 α∗
1

)

,

(

α2 β2

−β∗2 α∗
2

)](

α∗
3 −β3

β∗3 α3

)]

. (84)

The structure constant are not zero.
In fact, we present Lie group structure constants (84) in explicit form

C(d) (α1, β1, α2, β2, α3, β3) =
2

V
{(β2β

∗

1 − β1β
∗

2)α∗

3 + (α1β2 − α2β1 + β1α
∗

2 − β2α
∗

1) β
∗

3

−β3 (β∗2α1 − α∗

2β
∗

1 + α∗

1β
∗

2 − β∗1α2) + α3 (β∗2β1 − β∗1β2)} . (85)

The structure constants both for star product and Lie product are strongly related
to the used irreducible two-dimensional representation of SU(2) group. If one considers
an arbitrary function on SU(2) group Φ(α, β), it can be decomposed into series con-
necting all the irreducible representations. The star-product kernel constructed makes
projection to the components in these series which belong to the chosen irreducible
representation. One can see this phenomenon for the group of two elements.

Thus, the functions (vectors) of the form

| f〉 =

(

f
f

)

being multiplied by kernel induced by identity representation keep this form yielding
result (45).

The functions (vectors) of the form

| Φ〉 =

(

x
−x

)

being multiplied by the same kernel yield as result zero function

| Φ1〉⋆ | Φ2〉 = 0.

Thus the kernel provides projection on the functions corresponding to the irreducible
representation.
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6 Conclusions

We now point out the main results of the paper.
We have shown that there exists a star product of complex-valued functions on fi-

nite and compact groups. The kernels generating such products are expressed in terms
of characters of irreducible unitary representations of these groups. Thus, the known
tables of the characters induce star products on the functions over the groups (in group
algebras). The relations of the kernels associated with different irreducible representa-
tions (for example, the compatibility of the structure constants) needs further study.
The star-product kernels provide in the standard manner Lie algebra structure con-
stants. Therefore, we found a relation between finite (and compact) group irreducible
representations and star-product kernels along with the structure constants of the re-
lated Lie algebras. We hope to study in detail the mutual compatibility of the obtained
structure constants in a future publication. In particular, we shall address the decom-
position of the group algebra into minimal ideals and the structure of the space of
unitary representations of a given finite group G.
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