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Proposition 3.6. Let pe A, pe N, and let p, , be the measure given by

du,y = |z — c[**"Vdp. Then, for the polynomzals @, (z;dp, ),
lim go,,(z; d:“p+1) _ <E 1 >p+1
o QPuiptd (2) lc| ez —1

holds 1. u. in |z| > 1 if'|c| = 1, and uniformly in |z| = 1 if |c| > 1. Furthermore,

n d
hm K ( :up+1) _ iJrl )

n Keprl ]

Proof. Lemma 3.3 implies that u,, given by du; = |z — c|2j du, belongs to the A~
class, for j=0,1,...,p+ 1. From (3.5) and Proposition 3.5, we get

Pk (i) 1
‘p+l

lim M = lim =
n Kniptl n 70 Kn+j+1 (d:upfj) |C

and

1
lim 222 "0l (pn Z d:up+1 H lim (pn+/ Z d:up+1 j) |: c 1 ):|p+ 0

(pn+j+l(z d:up j) H (EZ -1

n anerJrl

Corollary 3.7. Assume that p € N, |c| > 1, and p € N. Then,

im (1440, )] 1 (€1)) = tim S = e

holds, with ¢,,,() = (@,(), @a(€),- - 021 (0)).
Proof. It is straightforward from (3.2) and Lemma 3.1. O

Now, let u be a probability measure with T as support. Let us assume that
pe N, ceC, and p € N. Again, we write ¢,(z;dy;) the nth orthonormal
polynomial with respect to y;, and K,(z,y;dy;) the corresponding nth kernel,
j=0,1,...,p+ 1. For fixed m € N, with m > p, we define the linear operator
F: Py — C 1l as

T n(P) = /l 1 P(2)Kpi1(z,¢) du(z) = (P(2), Kpii (z,¢)) = P(c)

= (P(c), P'(c),...,P(c)).
It is easy to prove that

Fullz—c)P(2)] =P(c)B



for P € P,,, where B is the matrix

01 0 ... 0
00 2 ... 0
B = Lol : : c RwtLptl).
000 ... p
00 0 ... O

For each m > p and each j =0,..., p, we shall denote

Vi1 = ‘97"1 [(pm-H (27 d:u)] = Pu (Cv d:“)v
Vij = F (@, j(Z' dﬂjﬂ)] = ‘mej(c' d.“j+1)

LY, = Zu K e du)] = (K e eidny), o K (e edpy)),

m=j

L, ;=LY

m—j
Notice that LY is the kth row (0 <k < p) of the matrix M (m).
From (3. 4) for j=0,1,...,p, we can put

(z—¢) (mej(ZQ d:uj+l) = O‘r(»{)ﬁ/ |:¢m7j+1(z; d.“j) - ﬁgL/Kmfj(L <} d:uj) )

with

-1/2
0 ‘(pmfj+l(c; dluj)|2 () (/)m j+1(c dlu])
=1+ , B L=
Km—j(ca & d:u/) Km—/(ca < d:u/)

Thus, by applying 7
mejB = OCr(n])fj (Vm*]”rl - ﬁ’(n/)—/ mej) :

By iteration, we get

: ")
_ Vuy B B j )
Vit =0 RO o Ly B' + -+ B, L.
mfj7"'7 m m,j+17~..7 m

Since B**! =0, (3.6) becomes

[3(17)
— m—p
Vot = G LB et

m—p+17 o Sm m

ﬁi& L, 1B+ 8L
0) —m-l m
for j =p.
On the other hand, for the kernel polynomials we have (see [5])
(Z - C) (y - C)Kmfjfl (Zvy§ d:uj-H) = Kmfj(z i d,u,')
Km /( ¢ dluj) m—, /(C y7dluj)

Km*j(ca (& du_])

)

13

(3.6)

(3.7)
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from where, computing the kth derivative in z = ¢ and taking conjugate, we
obtain

0,
k(y — oK)\ T V0 edpy) = Ky (v, e duy)

Km j(y7c dluj) (C <} dl’t])
m j(C c; d:uj)

Then, applying % ,,, we get
KLy B=Ly, 6% L, (3.8)

with

5 ‘:Kmo (c,c;du;)

" Km*./(c7 G d/“‘/)
Proposition 3.8. If j =0,1,...,p, then the following statements hold
() L, ;B [M(m)]‘ xB]" = =0, forall i > j+ 1 and for all x € crH.
(ii) Ly B [M(m)] " [Lo;B']" = K i(c,c; sdu).
Proof. (i) For j = 0, we have

L, = ( Ku(c,c;dp), . ,K,(f‘0>(c,c;du)),
and

L, [M(m) " =(1,0,...,0).

Thus, the statement follows immediately. Assume it is true for 0,1,...,7 — 1.
Then, if £ = 1, we obtain from (3.8)

B M (m)] ' xB7)"
L, B M(m)] ' [xB]".

L, B [M(m) ' xB]" =L,
_ 5(1)

m—j+1
The induction hypothesis gives
L, B M(m)] ' xB) =L B M(m)] ' xB7",
and, for k=2,...,jin (3.8),

Lo B M(m)) [xB)" = 2L B2 () [x B =

m— /+2

>—Al\)

O 1M (m)] " xB"
]L [M(m)] " [xB]

j—1

1 —— i
:]T!(O,...,O7 1,0,...,0)(BT) x7T=0
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follows, taking into account that

o 0 -~ 0 0

............................ l

0O 0 -~ 0 0
(BT)": 0 0 0

0 U 0 0

0 0 T 0

(ii)) For j = 0, we have
L, [M(m)] 'L = (1,0,...,0)L = K,,(c,c;dp).

Assume that our hypothesis is true for 0,1,...,7 — 1. From (3.8) and the first
statement,

Lo B (M(m)] " [L, B =1 B M (m)] 7 [L, B8] =

'm—j+1
1. _ o H
=3 LY [M(m)] "' [L,—;B']
PN
P .
=5 (0,...,0,1,0,...,0) (B")'L]_,

- Km—j(c7 C; d:uj)

follows, fork=1,...,5. O

Corollary 3.9. {L,, B’} , is an orthogonal basis in C”*! for the inner product
"1 E
x[M(m)] y™.

Notice that (3.7) gives also an orthogonal decomposition for v, (with
respect to the inner product X[M(m)]’lyH) forj=0,....,p— 1.

Corollary 3.10. If p € A and |c| = 1, then
lim |v,,_ ;4 B [1\/1(,,,)}—1[‘,"14+1 Bi]H _ |c‘2(pfi+1) 1

holds for i =0,...,p.
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Proof. Because the orthogonality of the decomposition (3.6), we have
VB M ()] [V B
) ol

m—jo y %m

Vot [M(m)] 'V

m+1
o

"L, B M(m)] ' [L,,B"

)
B

i—1 0
G o

o

2 _
+ |8 L [M ()] 'L

But, Corollary 3.7 implies that
lim (vmﬂ [M(m)] 'V ) = || - 1.

m+1

®) = |c|™" and, by Proposition 3.8 (i),

m—.

On the other hand, lim,, «

2 _ , - ;d )|2
(k) ‘ L Bk M 1 L B/» H — M
ﬁm—k m—k [ (m)} [ m—k ] Kmfk(c7 & d:uk) ’

(k=0,...j/), which tends to |¢|* — 1 when m — oo (Lemma 2.6). Thus, we have

e =1 = el tim (v B M m)] [ 5]

el (Jef = 1) + ol — 1,
and
lim v”’*]'Bj-*—1 [M(m)]71 I:vn17ij+1:|Hi| - |C|2(p7j) -1

holds for j =0,...,p — 1. So, the Proposition is true fori = 1,...,p. Fori = 0,
we recover Corollary 3.7. O

Lemma 3.11. Let x4, ..., X; be vectors in a complex vector space with an inner
product [-,-]. Then,

k k
Z\[xi,xjﬂgk Z[x,-,x,—].
ij 1 i1

Proof. By the Cauchy Schwarz’s inequality we have

fo,xj]| < ([xixi] - [Xj>xf])l/2 < % (i xi] + [x7,x]).

Hence,

3 || <

ij 1

k
[X,‘, Xi] . O
1

N —

2 ([xl-,x,-] + [xj,xj]) =k

i
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Lemma 3.12. If p € A and |c| > 1, then for fixed numbersi € Z and j, k, h € N,
the following statements are fulfilled

@0 |<pnﬁ,(c d)l = O(loP (o)),
(i) K57 (e e )] = Ol (e) o1 (©)]).
Proof. (i) If z= ¢ (|c| > 1) in Proposition 3.6, then
j+1
i @n(6308521) ¢ 1Y
im———=| - —5—— .
" @ (C) lel el —1

On the other hand, from Lemma 2.4 we have

k—1 _ ! e
<pgk><c;du,+1>_goi+,ﬁl<c>(@k ”(Z;du,~+1)> %D (c;duy,y)

k - k k—1 k—1
o) oW @\ ol ol li(e)

Since Lemma 2.5 (i) and the wuniform convergence  of
- k-1 .
(%= (z; dﬂj+1))/(P,(z+j+)1 (z), we can write

B B 1
li <P5,k>(c§ d,“j+1) T ‘Pﬁlk 1)(C§ dﬂj+1) [ c 1
im 5 = lim D == — .
Tl (c) el Jef -1

Py jr1\C Pt jt1

Furthermore, lim, (¢",(2))/@®(z) = 2 1. u.in |z| > 1. Then, the first statement
follows.
(i1)) Choose z = ¢ in Lemma 2.6 (ii). Then,

K edn) 1

fim = q ) =1
(pn+[+1(c7 luj)(pn+i+l(c7 :u/)

n

and it is enough to use (i). O

Theorem 3.13. If pe .V and |c|>1, the spectral radius of [M(n)]™',
p([M(n)]™"), tends to zero when n — cc.

Proof. For each n € N, denote V =L, B”/(j=0,...,p). Thus (Corollary
3.9), ( )p o.1s an orthogonal bas1s in C*' with respect to the inner product
x[M(n+p)] 'y,
It is necessary to prove that lim, (x [M(n)]"'x*)/||x||* = 0, for all x # 0.
However, if (u”)? ; is an orthonormal basis of C**! for each n, and

J
X =3 %X u( , from Lemma 3.11 we have
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-1 D o e w® H
X[M(}’l)] XH Zi,j Xin W; [ (I’I)] Xjn uj
||X||2 Z |xin|2

zwuwm[ﬂH
sl >, bl

03w ) o]

H
Hence, it is enough to prove that lim, u" [M ()] {uf.”)} =0, or

lim — ’ —0, (3.9)
when (ul(- ))l o 1s orthogonal (for each n).

So, we will orthogonalize ( ) by usmg the Gram Schmidt method, and, at
once, we will study (3.9). Thus let ( ) be the orthogonal basis such that

1
N R S T B!
k 0

where the G,E/)’s (which depend on n) are given by

[ ]
oV {“k} : .
0 =—————, k=0,....j-1;,j=1,...,p

I

If we consider

v
p=J
50, (p = NKo(c e5du, ),y (5_]];)! ,Slﬂko (e,e3dm, )5
then
pP—J
u? = | 0,20, (p = ) Kusslescidi,_),0,...,0

follows for j =0,...,p. From here, we have

1 KUY (c,c;d,upfj)

n+j

9(/ _ 7
(j—k)! Kn+k(c,c;dup7,()

k=0,....—1; j=1,....p.
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By using Lemma 3.12, we obtain
, G4 (c)
oV — @ n 3.10
o] =e(|%er ) (10
= 0(lg, (). Also, 1lim, (¢ (c))/¢{(c) =0 (1 <k <), from

(n)
and ’ u;

where [0 < |0Y| for k = 0,...,;j and n large enough.
We will use induction to prove that

™ 1A f(n " j -h) ()2
G-+ ) [u”] :@<Hho|¢s ><c>|>

2 2(j+2
"% 0,07

u”

with j=0,...,p, or, equivalently, taking into account that ‘
2
O(l@a(c)),

sty i e TsE )
; [ ( +p)] {/} ( |(pn(c)|21

In fact, if j =0,
n — n " n — n1H
ul M+ )] |u’ | = VO MO p)] T Vi) = Kasle i dry)
= 0(lg.(0)),
according to Corollary 3.10. Assume that the hypothesis is true for j — 1. Then,

o ) ul] = VO G V]

= T
+ > 00w M(n+p) ! [0V

ki 0

Since Lemma (3.11) and (3.10),

OnY; [ < k(e ed
uj [ (n+p)] uj X n+j(cvcy .up—j)

2 -1 H
. j n -1 n
o O 5 o+ 1 o]
kO

= 0(lo,(F) +c<‘m 2)

@,(c)
x - @(Hh o |eM (c)| )

2%k
k0 ¢, ()]
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Keeping in mind that lim, (¢Y=%(c))/¢!(c) = 0, for 1 <k <, the induction
process is finished. Hence,

p(M(n+p) ™) = (H—%75L>

o, (
), (3.11)

~(af

with = 1/(p+ 1) > 0, and, thus, p([M(n + p)]”') tends to zero (Lemma 3.4).
(]

l+i
i’l

Now, we will explain not only how to expand the polynomial ¢, ,(z;d,, )
in terms of ¢,,,(z) and ¢, (z), but also to find several asymptotic properties
for the expansion coefficients.

Let us consider (3.3)

M ((Pn+l(z)

— @ () M) K,z )", (3.12)

where ¢, ,(c) == ¢, (c;dp), K,(z,¢) :=K,(z,c;dn), Kn1 :=x,41(dp), and
¢ € C. Define

T,(2) = [t0(2), T (2); -+ Tup(2)] " i= (M ()] [Ko(z, )] (3.13)

. b6 j T
Notice that & [K,(z,¢)] |
that

=", (zdp,,,) =

. 1s the jth column of M(n) (0<j<p). It follows

z

Tr(llz:)(c)zéijv i?j:O7"'apa

and, for n = p,

z—c) )
‘c,,i(z):( 7 ), i=0,...,p.

Substituting (3.13) in (3.12), we have
) Ky p(d.“p+l) [

Knt1

(Z >P+1 an—P (Z d,up+l Pnt1 (Z> — @, (C) T” (Z)] ) (314>

for all n = p. Remark that, for n = p, the bracket in the second member is the
difference between ¢,,,(z) and his Taylor polynomial of degree p.

Proposition 3.14. The sequence (T,(2)), ., satisfies the following recurrence
relation
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Kn+1(dﬂ) p+1
— (z—c @,_,(z;dp
Kn*p(dﬂpﬂ) ( ) p( p+l)
H

X [M(n+1)]" [@,1(c)]

Toa(s) = T,() +

Proof. We have
M(n+1)[T,1(z) = T,(2)] = M(n+ 1) T, 11 (2)
— M)+ [0,(0)]" 0,11 ()] Tul2):
Then, because (3.13), it follows
M(n+ 1) [Ty1(2) = To@)] = K (2.0)]" — Kz 0" = [@,1(0)]"
X ,51(0) T,(2)
= [0,:1(0)]" [001(2) = 0,01 (€) Tu(2)],

and, from (3.14), we can conclude the proof. O

Applying the operator %, in the Christoffel Darboux formula (2.1), we
obtain

T l(1 =32)Ku(z,)] = K, (v, ¢) [(1 = ye) I — 7B
=05 () @ni(€) = 0,1 (V) @11 (C),
where
0,1(0) 1= [#31(0), 911 (€)s- - 010100

So, if z¢ # 1,

* * _ _l
K,(z,c) = Pa1 (2) @14 (€) — (/inﬂ(z) @,11(C) %
I —cz I —cz

is obtained. Remember that B is nilpotent (B**! = 0). Thus,

K,(z.¢) = ?:1(2) 0511 (¢) = @,11(2) @11 () 2”: (1 —Zzz B)k. (3.15)

1—-zc s

Proposition 3.15. If ¢ # 0, then, for each n = p + 1 there are two polynomials
P(z;n) and Q(z;n), such that
(1 =22 (2= )" @y (z:d1,00) = P(z30) 9,(2) + Oz n) 9}, (2).

with deg P(z;n) = p+ 1 and deg Q(z;n) < p.
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Proof. Carrying (3.15) on (3.12), we obtain
(Z_ C)erl(Pnfpfl (Z;d.uerl)

:¢[ (+i -1 [wxcw"] )

0

p

—<p;<z>2(1_f7<pn<c>[M<n—1>rl

k0

¢Z(C)B"1 :

From here, we get

Plz:m) = oot GHp) [(1 — et z,,: #(1 =22 e () [M(n— 1)

x[@,(c)B"] H]
0tz =~ LS (1 oyt (0= 1)) [gi08".

Theorem 3.16. Let € A" and |c| > 1. Then, for the polynomials P(z;n) and
O(z;n) given in Proposition 3.15,

- p+1
lim P(z;n) = {ﬁ (c— z)} . lim Q(z;n) =0

l. u. in C.

Proof. If p = 0, then

(1-22)(z = ¢) 9,1 (z:dp) = P(z:n) 0,(2) + Oz m) 9} (2),

where
2

p(Z, I’l) _ anllgd:ul) [(1 _ ZZ) + |§0’1(C)| ]7
Ao Kai(diy) @,(c) @5(c)

Q(Za }’l) - Kn K,,,] (C, C‘) 9
and deg P(z;n) = 1, deg O(z; n) <0.
~ From (2.2), Lemma 2.6 (i), and Proposition 3.5, the above statement for
P(z;n) and Q(z;n) can be deduced in a straightforward way.

_ Assume that our assertion is true for p — 1. There are two polynomials
P(z;n) and Q(z;n)such that

(1=22f (= ) 9, ,(zdw,) = Pzn) 9,(2) + Oz 1) 0, (3.16)
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with deg P(z;n) = p and deg Q(z;n) <p — 1, and

lim P(z;n) = [% (c— z)]p, lim Q(z;n) = 0,

[. u.in C.
But, if 4 € .47, then also u, € /. Hence, there exist two polynomials D(z; n)
and E(z;n), with degD(z;n) = 1, degE(z;n) <0, such that
(1 - EZ)(Z - C) (pn—p—l(z; d:uerl) = D(Z? n) (pn—p(z; d:up)
+E(zn) @,_,(z:du,). (3.17)
Then, lim, D(z;n) = (¢/|c|) (¢ — z), lim, E(z;n) =0 [. u. in C.

Write P*(z;n) = 22 P(1/z;n) and Q" (z;n) = 21 O(1/z;n). From (3.16), we
have

(1-cz)f (z = cf 9, (z:d1,) = P'(z:n) 9, (2) + 20 (z:n) 9, (2),
and, from (3.17), we get

(1 =22 (2= )" @y (55 diyer) = PEin) 0,(2) + Olz50) 0} (2),
with

P(z;n) = D(z;n) P(z,n) +zE(z;n) O’ (z;n),

O(z;n) = D(z;n) O(z; n) + E(z;n) P*(z; ),

and our results follow. O

4. Orthogonal polynomials related to a Sobolev-type inner product

Let (¢,),cn be an orthonormal polynomial sequence related to a probability
measure u supported in T which induces an inner product (+,-) on P. Forc € C
and 4 € C"*17*D (p e N), we define in P the Sobolev-type inner product

<f>g> = (f7g) + Zf(i)(c)aiig(j)(c)7
ij 0
with 4 = (a;)t; (. If we write f(z) = [f(2), /(2), ...,/ (2)], then
{f.8)=(f,8) +f(c)4[g(c)]".
We say that y, € P, is the nth (left) orthonormal polynomial with respect to
(Y,(2),2y=0 (k=0,1,....n—1)

(W Y] = 1.
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The definition for the right orthonormal polynomials is analogous. Both of
them are the same when A is an Hermitian matrix, because (-, -) is Hermitian.

Proposition 4.1. Assume that \, exists. Then,
V() = 2 0,(2) =, ()4 K, 2] (4.1)
holds, where vy, > 0 is the leading coefficient of .

Proof. Notice that ,(z) — (y,/x,) ¢,(z) € P,_;. Then, we have

(1) = 2 0,00, Kia(02)) =06 = 22 0,00

n

On the other hand,

(m) L), Ko (y,z>) = o). Krr(0,2))
) Kor(022)) — U () A K1 (2,0)]T
= ¥, (04K, 1 (z,0)]". O

Proposition 4.2. Assume that \, exists. Then,
V() [ +AM(n = 1)] = = g, (c) (42)
holds.

Proof. Taking derivatives of order p in (4.1) for z = ¢,

v, (c) :,i—:%@ — ¥, ()AM(n—1). O

Proposition 4.3. If \, exists, then we get

" (00, 0) =$ W U — W, () A [, ()]

Kn

Proof. From

W,(z) = i ¢,(z) + (lower degree terms),

— ,(z) + (lower degree terms),
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we obtain

(Vs 02) = 22 (0, 9,).
W, 0) = (W, 01) — V()4 [, (0))"
_ <wn, = wn> () Ay )
= %wn, V) — () Alp, (). D

Theorem 4.4. If det[I + AM(n — 1)] # 0, then the nth Sobolev-type orthonormal
polynomial \, exists if and only if det[I + AM (n)] # 0.

Proof. Assume that det[/ + AM(n — 1)] # 0. Define the polynomial
V,(2) = 9,(2) = @, () [ +AM(n = 1)] A [K,1(z,0)]". (4.3)

Then, if we derive p times in the above expression and we evaluate it in z = ¢,
we have

¥,(c) = ¢,(c) = @, () I +AM(n—1)] ' AM(n — 1)
= @, () [ +A4M(n—1)]".
Fork=0,1,...,n— 1, we get
(Yo 00) = (s 1) + Wa(0) A ()]

= (00 0) — 9, ([ + AM(n — D] 4 [, ()]
¥, () Afpu))".

Thus, if £ < n, (¥,, ¢;) = 0 follows immediately. For £ = n we have
(o, 0,) = 1+ ¥a(0) A1, ()] = 1+ 9,(c) [ +AM(n = 1)] "4, (c)]".

Now, consider the matrix identities

I Alp, )"\ [I+AMn—1) —A[p,()]"
0 1 ®,(c) 1
_ (I+AM(n) o>

@,(c) 1)
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<1+AM<n 1) -4 [«pn(cﬂ”)

0,(c) 1
e [ +AM(n—1)] '4le,()]"
0 1

(1 +AM(n—1) 0 )
- ?,(c) L+ @, () [ +4M(n—1)]"4[p, ()" )’
whose determinants are equal. Then

det[l + AM(n)] = det[l + AM(n — 1)] (1 o) +AMn—1)"
x Alp,(c)]")

and so

 det[I+AM(n)]
T det[l +AM(n—1)]°

(Vo 0,) = L+ ,(c) [ +4M(n = 1)] " 4p,(c))"

From here, the statement follows.
Besides, notice that y,(z) = ¥,(2)/| < ¥, ¥, > |'/> = 7,2 + (lower degree
terms), with y, > 0, verifies

@) = (0,2) — @I+ AM = 1] AR (o)) T (4d)

If A4 is positive semidefinite, 4 + [M(n — 1)]”" is positive definite (n > p + 1),
according to Proposition 2.1. Hence, we get

det[l + AM(n —1)] = det[M(n — 1)] x det (A +[M(n— 1)]*‘) >0
and, thus

Corollary 4.5. Let A be positive semidefinite. Then, the Sobolev-type orthonor-
mal polynomial sequence exists for n = p + 1.

Remark. From (4.2) and Proposition 4.3

2
Kn Kn
(5) =1+ w@ap el =1+ 0 alp )" @5)
follows.

Now, we are going to study the behavior of the nth Sobolev-type ortho-
normal polynomial ¥, in terms of the matrix 4 which will be considered as a
parameter.
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Theorem 4.6. Let A be a positive definite matrix. Write a = 1/(p(47")), where
p(M) is the spectral radius of M. Then, for fixed n € N,

(}glolc lpﬂ‘f»p‘f»] (Z7A) = (Z - c)!H‘l (Pn(z; d:up+1)
holds 1. u. in C.

[Notice that ¢ — oo is equivalent to the fact that all eigenvalues of 4 tend to
00.]

Proof. From (4.4),

Yntp+1 (4)

Knipt1

X ((pn+p+l (Z) - (P71+p+1 (C) [A71 + M(I’l + p)]71 [KVH-P(Z’ C)]T)

l/jn-%-p-%—l (Z7A) =

holds because A is nonsingular. From (4.5) and (4.2), we get

H

(%) =1+ (Pn+p+1(c) ["471 +M(n +p)]71 [(p,,+p+1(c)] .

Thus, since M (n + p) is positive definite and lim, .., 4! = 0, it follows that

H

lim (%) =1+ (Pn+p+1(c) [M(n +p)}71 [(pn+p+l(cﬂ

000 Vn+p+l (A
2
_ Knipt+l
Kn (dlup+l)

Furthermore,
Knip+1 Knip+l p+1
—— WV (5A) - (2= )" @, (zdu,,,)
yn+p+l (A) e Kn (d:up+1) i

= upt (@) (MO + P = ™+ MO+ p)] ) [Koy (2]

Let n be fixed, and let us consider an arbitrary compact subset H C C. Then,
’Kni; z,c ’ is uniformly bounded in H. For ¢ — oo, we obtain from here that

lm 4,0 (z4) — &~ " 0,z diye)] = 0

lbuuim C. O
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Theorem 4.7. Let p € N and |c| > 1. If A is a nonsingular matrix, then there is
no € N such that the (left) orthonormal polynomial \y, with respect to a Sobolev-
type inner product

{f, 8 = f(2)g(z)du(z) +f(c) A[g(c)]”

ERE

exists for all n = ny.

Proof. Since Theorem 4.4, we can guarantee that there exists ¥, for all n > ny,
when det(/ + AM(n — 1)) # 0. Notice that

det[ + AM(n — 1)] = det (4) - det[M(n — 1)] - det (1 LA M- 1)]-1).

As lim, p([M(n—1)]"") = 0, then lim, det(I + A '[M(n—1)]"") = det (/) = 1
(Theorem 3.13), that is, there exists ny € N such that det[/ +AM(n —1)] > 0,
forn>=ny. O

By using (4.1), then

02) = 1 (042) — @)+ AM(n = 1] A K,z 0))").

If we denote
R,(2) := [+ AM(n)] 4 [K,(z.0)]", (4.6)

it follows that

V() :V— [0,(2) — @,(c) Ry 1 (2)): 4.7)

The R,(z) are the analogous expressions to the T,(z), which are defined in
(3.13), and those verify a similar relationship to the one given in Proposition
3.14:

Proposition 4.8. Assume that [ + AM(n+ 1) and I+ AM(n) are nonsingular
matrices. Then,

Kn+1 H

R,.i(z) =R,(2) + = I+ AM(n+ 1)] "4 [0,,,(0)]" ¥, (2)

Yn+1

holds.
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Proof. The nonsingularity of / + AM(n+ 1), and I + AM(n) implies that the
polynomial y,,, exists. Thus, we have

[+ AM(n+1)][Rys1 (2) — R, (2)] = [+ AM(n+ 1)] Ry (2)
~[1+aM )+ 49,0 ()] " ,00(0) | RA(2).
From here, according to (4.6),
[+ AM (1 + 1)]Ry1 () = Ro(2)] = 4 (K (. 0)]" = Ko (z,0)]")
~ 4[0,1(0]" 0,11 (OR,(2)

=4 [‘Pn+1 c)} [(/)n+1 §Dn+1(c) n(z )]
= Alpu(]" 2 0

n+1

Proposition 4.9. Assume that , exists. Then, there exist two polynomials
PA(z;n), and Q" (z;n), with deg PA(z;n) = p+ 1 and deg Q"(z;n) < p, such that

(1 =22y, (2) = P(zn) 9,(z) + Q' (z:n) 9,(2)
holds for ¢ # 0.

Proof. In the same way as in Proposition 3.15, we obtain

Pi(zin) = 22 ((1 —e e Y A (- el + M- )

Kn

x [@,(c) Bk]H>

O'(zn) = =23 F(1 =22 F () + Mn—1)] '[9 ()B]". O

0

5. Asymptotic behavior for i,

We will assume that u € A, |c| > 1 and 4 is a nonsingular matrix. In these
conditions, Theorems 3.13 and 4.7 hold, and the existence for the nth Sobolev-
type orthonormal polynomial , = y,z" + (lower degree terms) for n large
enough is guaranteed.

Proposition 5.1. lim, «,/y, = |c/"*".
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Proof. From (4.5), we get
K\ det[I + AM(n)]
</_> T det[[ + AM(n — 1)]
~ det[M(n)] det[l + A7 [M(n)] "]
~ det[M(n—1)] .det ([—i—A—l[M(n _ 1)]71) )

Now, by using Theorem 3.13, we obtain
lim det (1 A [M(n)rl) —1
and, thus, we conclude that

(K 2:im det [M(n)]
g (/) b det[M(n —1)]

_ |c|2p+2’

= tim (1 + ¢, () M(n = D] [, ()"

according to (3.2) and Corollary 3.7. 0O

Theorem 5.2. lim, y,(z)/o,(z) = (¢/|c| - (z — ¢)/ez — V)P uniformly in |z| > 1,
or, equivalently, lim, ¥,(2)/(¢,_, 1(z;dp, 1)) = (z — ¢t uniformly in |2) > 1.

Proof. Note that the equivalence for these both conditions follows immediately
from Proposition 3.6.

We shall denote ,(z) = (1/k,)0,(),  @,(z:dnyr) = (1/ku(diyr)) @,
(z;dw,.), and ¥, (z) = (1/7,)¥,(z) the corresponding nth monic orthogonal
polynomials. From (3.14) and (4.7), we have

(Z - C>p+l (/A)nfp—l (27 d:up+1) lﬁn(Z) _ (Pn (C) [Rn—l (Z) - Tn—l (Z)]

?,(2) @,(2) ?,(2)
_ 2,IR1(z) =T, (2)]
,(2) '
We prove that
lim [%(c) .T"I(Zq)o_(zl;“(z)} =0 (5.1)

uniformly in |z| > 1.
As A is nonsingular, we get

Roi(2) = (14 M- 1]747) T,



according to (3.13) and (4.6). Hence,

i) PR g [1— (14 -y ) ]

T —1 (Z)
)
holds and, thus,
,1(2) =R, 1(2) - L
i) 2R < @) b= D)
. | s RTEN]
H“*W(1NA> @)

Here, the matrix norm ||C|| = y/p(C CH) is used. Because p([M(n)]™") tends to
I+ M- 1)}71/1*1)71” = 1. Thus, to prove (5.1) is equiv-

zero, then lim,, ‘
alent to prove

TG,

lim g, (e)]| p(M(n — 1)) =

uniformly in |z| > 1.
First, from (3.11) (Theorem 3.13), we get

Ipr@WM>

@, ()

p(M(n—1)]") = <

and thus

\H%¢@WN)
¢ M(n—1 =0 —————

e

follows, with »=1/(2p+3)>0. Hence lim, ||o,(c)||p((M(n—1)]"") =0
(Lemma 3.4).

(p@) (p(p_k

[0, ()]
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Furthermore, by considering (3.13) and (3.15) we can obtain the following
upper bound

T, ) PO - DI K, (2, )|

lp,(z)] @, (2)]
oM -1 ||e@ -
ST |fem ™ ‘kz‘&’“”
Now,
p(M(n— D) || 242 g 0) — g, (e)
?,(2)
<o =01 (el 1+ 2209 HZE;:)
with
| el _ "
0z @i (c o Z P * (c)
‘(pn(z) ||(pn(c)H ‘ nZ (; n C ) ’

where the first factor is uniformly bounded by 1 in |z| > 1, and the second one
tends to zero (Lemma 2.4 and (2.2)). Also, z/(1 —¢z) and 1/(1 —¢z) are
uniformly bounded by 1/(|c| — 1) in |z| > 1.

In these conditions,

i [T 2] <y "B”,M tim oM — 1)) llg, )] =

p
w e @l T (el - "

follows immediately.

Hence
A B ) @y (7.d14)
meE) $,(2) ’
ie.,
Kn V,(2) . Ky (z— c)”“ Pryet (= d,upﬂ)

=11
m e @@ K (dity) ?u(2)
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But, Propositions 3.6 and 5.1 yield

. Ky . Kn
Im —=Ilm ——MF.
L n K”*P*I (dlup+1)

So, the statement is proved. [
Corollary 5.3. There is no € N such that, for n = ny, the nth Sobolev-type or-

thonormal polynomial \, has exactly p+ 1 zeros in |z| > 1, which accumulate in
¢, while the remaining zeros belong to |z| < 1.

Proof. Taking into account that
L)

n (pnfpfl (Zv d.up+1)

uniformly in |z| > 1, the result follows immediately from Hurwitz’s Theorem.

= (Z - C)p+17

O
Theorem 5.4. For the polynomial coefficients PA(z; n) and Q*(z; n) in Proposition
49, ) N
lim P (z;) = [Izl ( —z)} . 1im Q' (zm) = 0
hold 1. u. in C.

Proof. Consider the expressions in Propositions 3.15 and 4.9. Then, we can
write

Kn

mP(Z;n) fPAzn) sz(l—cz 0,(c )([M(n—l)]_1
— AT M —1)] ) [, (c) BY]".
But, from

M(n—1)]" = [4 +M(n—1)]"

= [M(n—1)" (1 F A M- 1)}*‘) A M(n - 1))

it follows that

Kn Kn—p-1 (d:up+1 )
K peyy Bt @)
K"*P*I (dup-%-l) ’ (Z n) yn (Z n)

@wmwﬂmww—m‘f

(1 + A M- 1)) HHA 1HZ|Z| L =2z |8
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In Theorem 5.2, lim, (I—i—A’l[M(n—l)]_l)

p([M(n—1)]"") = 0 are stated. Besides, we have

= 1 and hmn ||‘Pn (C)H

m Kn—p—l(d:up+l) — lim K"—P—l(d'upﬂ) . lim

n Vn n Kn o Vn

Kn

=1

)

according to Propositions 5.1 and 3.6. Thus, Theorem 3.16 implies the state-
ment for P4(z;n).
The proof is similar for Q*(z;n). 0O
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