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1. INTRODUCTION 

The aim of this article is the joint estimation of the depreciation rate of the capital 

stock and the parameters of a production function. The study is based on sectorial 

data of the Spanish industry taken from the Encuesta Industrial l , for the period 

1978-1992. 

The article is based on the research line first started by Nadiri & Prucha (1993), 

who estimated jointIy the parameters of a cost function and the depreciation rate of 

capital using time series data. More recently Denia et al (1996), use Spanish data 

to estimate a production function jointIy with the depreciation rate of capital, and 

Nadiri & Prucha (1996) estimate factor demands and calculate the depreciation rate 

of capital in different periods. 

The study makes contributions to the existing literature in various respects. On 

the one hand it uses disaggregated data which allows the study of the behavior of 

the depreciation rate in various sectors. The data consists of time series for different 

productive sectors, where the size of the time series, T, and the number of sectors, N, 

are large. That is, the asymptotic properties of the estimators and inference tests are 

justified for T --+ 00 and N --+ oo. This type of panels is known as data fields (Quah, 

1990) in order to distinguish them from the typical panels used in microeconometrics 

where T is generally small. The parameters of the production function do not tend 

to be stable among the productive sectors or among different firms, as has been 

observed by other authors (i.e. Mairesse & Griliches, 1990). When the parameters 

among sectors are not constant, the estimation of the mean value, using the usual 

estimation techniques for microeconometric panels, tends to be invalido Therefore 

inferences on the mean value of the parameters using pooled data and estimations for 

each sector are provided. On the other hand, this article studies the problem posed 

by the introduction of technological change in the usual manner, via a deterministic 

1 An industrial questionnaire. 
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trend. It is shown that there is an identification problem between the coefficients of 

the deterministic trend and the parameter of the depreciation rate of capital. Thus 

we suggest alternative ways of incorporating technical progress. 

The rest of the article is organized as follows. Section 2 discusses the econometric 

model and estimation techniques. Section 3 presents the data and alternative spec­

ifications of the model, analyzing the introduction of technical progress. Section 4 

gathers the estimation results of a random coefficients model where the coefficients 

of each sector are estimated from the time series. Section 5 presents the results using 

pooled data, imposing the same coefficients for all sectors or group of sectors. Section 

6 compares the depreciation rates and capital stock series estimated in the present 

study with those obtained in another article using the same sample. Finally section 

7 gathers the main conclusions and final cornments. 

2. ECONOMETRIC MODEL AND ESTIMATION TECHNIQUES 

Suppose we have data {Yit, lit, Lit, Zit, i = 1, ... , N and t = 1, ... , T}, of different 

variables over N productive sectors in T periods of time: 

Yit = Production of sector i in period t. 

lit = Gross Investment of sector i in period t. 

Lit = Labor input of sector i in period t. 

Zit = Other variables that explain the technology of sector i in period t. (such as 

variables that explain technical progress, etc.). 

Each variable is an aggregate of the firms that make up the sector. Therefore, Yit, 

lit, Lit and Zit are, for each i, an economic time series. The characterization of the 

variables depends on the specification chosen, as will be discussed in the next section. 

There are N productive sectors and T periods of time. Both the number of sec­

tors and the number of time periods, is large (in the statistical sense). Therefore, 

inferences on the basis that T ----7 00 and N ----7 00 are justified. 
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The capital stock of manufacturing sector i in period t is assumed to be generated 

by 

Kit (bi) - lit + (1 - bi)Kit-l(bi) (1) 
t-l 

2:(1- bi)S Iit-s + (1 - Ói)t KiO 
s=o 
K(Iil, li2, ... , Iit,KiO,bi), 

where KiO is taken as given. Usuallyequation (1) is used to generate a capital stock 

series, giving an arbitrary value to Ói. Nevertheless, if we accept that the depreciation 

rate is unknown, the capital stock series, Kit(Ói), cannot be calculated. This article 

proposes the estimation of the depreciation rate, bi , jointly with the parameters of a 

production function. 

The econometric model that characterizes the technology for each sector is repre­

sented by the conditional mO:q1ents restriction: 

(2) 

where Ji(.) is the production function of sector i and ()(i) is a vector of parameters. 

Note that, although Ji is linear on Kit(Ói), Lit, Zit and ()(i), it will not be linear in Ói. 

The estimation of Ói and ()(i) can be carried out by non-linear least squares. How­

ever, a difficulty arises, since (1) has different arguments for each t. In order to 

express (1) in the usual way, where the same explanatory variables are used in each 

equation, we follow Prucha (1995), and redefine the investment and initial capital 

stock variables. Equation (1) can be expressed in the following alternative manner: 

t 

Kit(Ói) = 2:(1- ód- j 
Iij + (1 - ódt KiO· 

j=l 

lE we define fU) - J. ·D(j) . it - tJ t 
(j) {1 for t 2 j where Dt = , 

O for t < j 
we have T explanatory variables: 

If¡>, ... ,If[), i = 1, ... ,N, t = 1, ... ,T. 
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so that we can rewrite 

T 

Kit(Ói) = K(Ii~1), .... ,lic;),ói, KiQ) = 2)1- ódt-8Ii~8) + (1- ói)tKiQ, (5) 
8=1 

with this new specification each regression equation has the same list of arguments 

in each period of time and a standard econometric package can be used. 

We choose a Cobb-Douglas functional form because of its simplicity, and because 

it is the least non-linear specification. Likewise, this functional form is a first order 

approximation to many technologies. Under this specification the production function 

may be written as: 

(6) 

where e(i) = (Aí , f3J(í, f3Lí, ,D' and gí (-) is a function that takes account of other effects 

which are important in the specification of the technology of the sector throughout 

time, such as technological progress, and structural changes. While the parameters 

(3Ki and f3 Li have a precise interpretation in terms of elasticities, the way in which gí (.) 

is modelled tends to be arbitrary, in general following the criteria of computational 

simplicity. It is useful to adopt the following expression: 

so that under regularity conditions of the process that genera te the data, we may 

write: 

where 

Therefore the production function may be expressedby means of the regression equa­

tion: 

(7) 
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which is linear in all parameters but 8i • 

If our aim is to estimate the mean values of the coefficients, it is useful to assume 

the following specification, 

a + 7]li 

{3Ki - {3K + 7]2i 

{3Li {3L + 7]3i 

'Yi 'Y + 7]4i 

8i 8 + 7]5i 

(8) 

where 7]i, is a vector of independent and identically distributed with respect to i, ran­

dom variables with E (7]ki I Kit (8i ) , Lit,Zit) = O and E (7]i7]~) = V,7]i = (7]ill "', 7]i5)' In 

a more compact form, we can express q;(i) = (ai, {3Ki, {3Li, 'Yi, 8D' , q; = (a, {3K, (3L, "1',8)' 

so that: 

q;(i) = q; + 7]i. 

Let's assume that 8i = 8 (that is, (Jg = O). Then we can write: 

In Yit = a + {3K In Kit (8) + (3L In Lit + 'Y' Zit + Vit, (9) 

where 

(10) 

and, therefore, the errors Vit have zero conditional mean and are conditionally het­

eroscedastic. Due to the temporary dependence in In Kit (8) and In Lit, the Vit will 

be autocorrelated even if the Cit are not . If In Kit (8) or In Lit are non-stationary, Vit 

will not be stationary either and equation (10) will not be a co-integration relation. 

The usual procedure of introducing Iagged values of the dependent and explanatory 

variables in order to reduce the correlation produces inconsistent estimators as demon­

strated by Robertson & Symons (1993) and Pesaran & Smith (1995). If In Kit (8i ) 

and In Lit are stationary and are not correlated with Eit and 7]i, the non-linear least 

squares (NLLS) estimator of the parameters q; in equation (9), using the NT obser­

vations, will be consistent, provided the assumption of mean independence between 
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1'1ik and the explanatory variables can be maintained. The estimator may be express 

as: 
N T 

~ = argmin L L [In Yit - a - ,6 In Kit (8) - ,6Lln Lit - ¡' Zitl
2 

. 
'" i=l t=l 

The estimator is consistent for cjJ. Nevertheless, if In Kit (8i ) or ln Lit have a unit 

root, the errors vit will also have a unit root and the NLLS estimator, using all the 

observations, will be inconsistent. The variance-covariance matrix of this estimator 

may be approximated by: 

(11) 

as suggested by Arellano & Bover (1990) in a linear regression context, where 

An approximation to the true asymptotic variance of the errors of the model could be 

obtained by nonparametric methods as suggested by Newey & West (1987), among 

others. The small size of the time series prevents the implementation of this pro­

cedure. For this reason, we have used the usual method in panels where the time 

series is short. We have estimated the variance-covariance matrix, in a context where 

heteroskedasticity and autocorrelation of unknown functional form may be presento 

The situation is more complicated when 8i varies among sectors (that is, (Jg -=1 O). 

From equation (9), we obtain, 

Vit = éit + 7/1i + 7/2i In Kit (8) + 7/3i In Lit + 7/~i Zit + ,6 K [In Kit (8i ) - In Kit (8)] . 

In this case, 

(12) 

If the conditional expectation is zero and In Kit (8i ) and In Lit are stationary, 8, ,6K, 

,6L and 'Y can be consistently estimated by NLLS. Nevertheless, it seems difficult to 
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justify that the conditional expectation is not going to depend on the explanatory 

variables, in which case the NLLS estimators are inconsistent even when In Kit (Ói) 

and In Lit are stationary. The non-linearity of the parameters, makes the specification 

of the model incorrect whenever bi is taken as fixed. However, the NLLS estimators 

calcuIated for each sector are consistent, -even super consistent in the non-stationary 

case-, which allows the estimation of cjJ from these estimators, as detailed below. 

An aIternative way of proceeding is to estimate the parameters cjJ(i) with the T 

time series observations for each sector i by NLLS. Let ~(i) = (ai' ~Ki, ~Li, 1'i, 8i)' the 

NLLS estimator of cjJ(i). That is: 

T 

~(i) = argmin L [In yit - ni - f3i In Kit (Ói) - f3Li In Lit - ,:Zit]2 , i = 1, ... , 8I. 
</> t=l 

These estimators are consistent when In Kit (ód and In Lit are stationary and when 

they are noto From this estimator, cjJ = (n,f3K,f3L,",Ó)' is estimated consistently by: 

It follows that: 

__ 1 t (cjJ(i) _ cjJ) + _1 t (~(i) _ cjJ(i») 
v0V i =l v0V i =l 

- _1 t (cjJ(i) - <p) + Op (JNT-~), 
v0V i=l 

where <p is defined as aboye; K = 1/2 when In Kit (Ói) and In Lit are stationary with 

weak memory, 1/2 < K < 1 when In Kit (Ói) or In Lit are stationary with long memory, 

and K = 1 when In Kit (ód and In Lit have a unit root. Therefore, applying the Central 

Limit Theorem: 

v0V 
JN (~- <p) ~ N (O, V) when N -7 00 and T~ -7 O, 

where 

V = E (1JI1JD . 

The V matrix can be estimated consistently by: 
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It is well known that the endogeneity of the productive factors, which are usually 

measured with error, and the simultaneity of these variables, are a cause of spec­

ification problems in industrial economics models. Under these circumstances, the 

estimators discussed aboye are inconsistent, and the coefficients should be estimated 

by instrumental variables, using as instruments the lagged values of the productive 

factors. However, given the small size of the time series (15 periods), we will not 

follow this approach here2
• 

3. DATA DESCRIPTION AND MODEL SPECIFICATION 

The data corresponds to the 81 manufacturing sectors of the Encuesta Industrial 

for the period 78-92, where: 

Yit=Gross Value Added in real terms. 

N it= Total Number of workers. 

Hit = Total Hours Worked. 

hit = 1t= Hours Worked per Worker. 

lit = Total Gross Investment in real terms. 

KiO = Initial Real Capital Stock3 • 

Figure 1 contains the aggregated series for the 81 sectors: 

2The results of the instrumental variable estimation are available from the authors upon request. 

3Regarding the construction of the investment and capital stock variables see Martín Marcos 

(1990) 
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FIGURE 1 
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This figure shows an structural change in the behavior of the series during the 
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period 85-86. This structural change can be justified in several ways. The dates 

coincide with the end of the recession in which Spain was immersed since the mid 

70's and which affected the industrial sector in a particularly virulent manner." The 

end of the recession is reflected, on the one hand, in the important change in the 

entry-exit dynamics of firms in the industry (Segura et al, 1989). And on the other 

hand, in the change in labor relationships. From 1976 to 1985 the workday was 

reduced at an annual rate of over 1.5%. In 1985, a workday similar to those of other 

European countries was reached, and this trend broke down (Jaumandreu, 1987). 

Finally the 70's and the beginning of the 80's were characterized by a remarkable 

increase in energy prices which stabilized in 1985. In addition, on January 1, 1986 

Spain joined the European Economic Community and VAT was introduced. 

The unit root tests cannot reject a unit root in the aggregate series of yt, at any 

reasonable significance level. The tests allow for a constant an a deterministic trend. 

Tests were also carried out allowing the structural change to take place in 85, and 

the null hypothesis of the existence of a unit root could not be rejected. Although 

the lack of stationarity in the aggregate is clear, the behavior of the series in many 

sector s is stationary. 

Figure 2 contains Box and Whiskler plots and histogram of the autocorrelation 

coefficients of yit for each sector. The sides of the box that appears inside figure 2 

correspond to the values of the first and third quartile, the centralline correspond to 

the median, and the + sign corresponds to the mean. The extremes on the horizontal 

line, correspond to the maximum and minimum value excluding the extreme values. 

The points marked as B3 are three times away the interquartile interval, and the points 

marked as O are 1.5 times away. 
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FIGURE 2 

Autocorrelation Coefficients of Yit, i = 1, ... ,81. 
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The autocorrelation coefficient of, Pi, is estimated by: 

A 2:[=2 (Yit - Yi) (Yit-1 - Yi) 
Pi = ( 2 ' 

2:.[=2 Yit - Yi) 
where Yi = T- 1 2:[=1 Yit· The mean value of /Ji is 0.75592 and the standard deviation 

is 0.0350; the 95% confidence interval for the mean value of Pi is [0.6697,0.8421] with 

a median of 0.834; 25 % of the correlation coefficients are greater than 0.95, which is 

probably why the aggregate series shows a unit root. 

We have grouped the sectors in 10 large groups. The correspondence of our clas­

sification with the classification used in the nationals accounts (NACE-CLIO R25) 

and the EJ. sectors is shown in table 1. 
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TABLE 1 

CLASSIFICATION USED IN THIS STUDY AND ITS RELATION WITH THE 

NACE-CLIO R25 CLASSIFICATION AND THE SECTORS OF THE EJ. 

GRUPO NACE-CLIO R25 E.I. 

1 2 Metalic Minerals and Steel 9-11 

3 Minerals and non Metalic Products 12-18 
2 

4 Chemical 19-30 

3 5 Metalic Products 31-35 

4 
6 Machinery 36,37 

7 Office Machinery and others 38,46 

8 Electrical Material 39,40 
5 

9 Transport Material 41-45 

6 10 Food 47-64 

7 11 Textil and Shoes 65-74 

8 12 Paper 80-82 

9 13 Rubber and Plastic 83,84 

10 14 Woods, Cork and others 75-79,85-89 

To complete our model specification, we include in Zit a dummy variable that 

refiects a structural change after 1986, and a variable to approximate technological 

progress. In such a long period of time, technological change must have played an 

important role. However the introduction of this variable in the production function 

poses difficulties. If we introduce this variable as a deterministic trend, there is an 

identification problem between the trend and the parameter of the depreciation rateo 

An heuristic argument can be developed as follows. The capital equation may be 

written as: 

Kit (Ói) = K it- 1 (Ói) [1 - Ói + ritl , 

13 
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where rit = lit/ K it- 1 (Ói) only depends on Ói in the long-runo If we approximate 

Kit (Ói) in (13) around rit - Ói = O, equation (13) can be rewritten as: 

Kit (6,) '" KiO exp { -Ó¡t + ~ r'T } > (14) 

If Zit = t in (7), we can write 

ln y;, '" <t, + ('Y, - PK,6,) t + P .. {ln K,o + ~ r'T } + PL' ln Lit + tit· 

For each value of (3ki, t;,i = Ti - (3KiÓi is satisfied for infinite values of Ói and Ti, for any 

given !;,i. Ti and Ói are not identified. This explains the extreme values obtained in 

the estimation of Ói when a deterministic trend is included in the model. Prucha and 

Nadiri (1993) and Denia et al (1996) recognize the need for accounting for technical 

progress but they do not incorporate it in an explicit way in their work, probably 

because of the identification problem shown aboye. 

In this article we will construct the technical progress senes by computing the 

Solow residual, (Solow,19S7)4. Starting from an aggregate Cobb-Douglas production 

function with constant returns to scale, 

where Yt = 1 L:r:l Yit, Ht = 1 L:r:l Hit and Kt = 1 L:r:l Kit, the changes in pro­

duction are given by changes in labor weighted by the share of labor in production 

and/or changes in capital weighted by the share of capital in production and/ or 

changes in technical progress, 

Therefore, the changes in technical progress are those changes in production that 

cannot be expIained through changes in the productive factors, 

!1at = /1 In yt - 'Pt!11n Ht - (1 - 'Pt)!1In Kt. 

4This procedure has been used by Dolado J.J., J.L. Malo de Molina and A. Zabalza (1986), 

among others. 
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Where 'Pt = W- is the labor share in production, Wt are wages and salaries in real 

terrns, yt is real value added, Ht are total hours worked and Kt is the capital stock 

series in real terms obtained by Martín Marcos (1990). We can obtain the levelüf at, 

by, at = .6.at + at-l, normalizing ao = 1. 

The technical progress series obtained is shown in figure 3. 

FIGURE 3 
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Beyond technical progress, there are other factors which are potentially irnportant 

when rnodelling a production function. We have tried to take into account sorne of 

these factors in this study. 
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Two alternative models are proposed : 

• Model1: 

- Labor Factor: Total number of hours worked, Lit = Hit. 

- Other variables: Z" = ( :: ) ,D, = { 

• Model2: 

1 if t :::; 1985 

O if t > 1985 

Labor Factor: Total Number of workers, Lit = Nit . 

Dt 

- Other variables: Zit = at 

In hit 
{ 

1 if t, :S 1985 
)Dt = 

O if t > 1985 

In Model 1 the production function is given by: 

and taking logs, 

In Model 2 the production function is given by: 

and taking logs, 

where /2i is the coefficient of technical change, [Kit (8i )]f3Ki LftLi is output per hour 

worked and hfthi the workday. This model is more flexible than the previous one, 

sin ce it allows for the utilization of the labor factor to adjust to the fluctuations of 

production in two ways: the variation in the number of workers, and the variation 
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in the number of hours worked per worker. As Hamermesh (1993) points out, if the 

changes in the workday have been large, the introduction of the workday in the model 

should improve its capacity to capture the changes in the utilization rate of labor. 

The production function represents the flows of inputs and outputs, and therefore, 

the capital stock and hours of work data should be transformed in service flows data. 

The coefficient of the workday is a short-run elasticity which allows the adjustment 

of the labor factor in face of transitory demand fluctuations. The value of (3hi is 

an empirical matter and will depend on the effect of the changes of the workday on 

production, for a given technology5.To take into account that capital utilization is a 

decision variable for the firm, we would need an index of productive capacity. 

Finally, when estimating a production function we have to bear in mind that the 

quantities of capital and labor used, the level of production and the price level are 

generated by a set of simultaneous relations, and therefore neither capital nor labor 

can be treated as exogenous variables. However, in the short-run, the firm's produc­

tive capacity may be taken as given, and therefore its capital stock as well. But the 

endogeniety of the labor factor will have to be taken into account through appropriate 

econometric techniques. 

4. EMPIRICAL RESULTS IN RANDOM COEFFICIENTS l\10DELS 

In this section we discuss the estimation of models 1 and 2 by the random coeffi­

cients procedure using the 81 manufacturing sector of the EJ. 

Table 2 presents the estimated values of the components of cjJ, confidence intervals 

and inference tests using all the estimated parameters for the 81 sectors6 • 

The first thing to notice from the table, is that the values of the means and medians 

of the coefficients are reasonable. The elasticity of capital (10%) is slightly below the 

share of capital in production, and the elasticity of labor is slightly aboye labor's 

share in production (86%) and, when we test for constant returns to scale using the 

5See Jaumandreu (1987) 

6 An asterisk denotes that the coefficient is significant at the 5% level. 
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means of the estimated parameters, the hypothesis cannot be rejected (t = -0.29) at 

the 5% significance level, suggesting that the model is well specified. 

TABLE 2 

NLLS estimation by random coefficients of model1 

. 
{ji &i 13m fJLi i'li 12i 

Mean .0889 -.5175 .1049 .8643 .0045 .5611 

Median .0347 -.9262 .1270 .8195 .0137 .5891 

Standar Deviation .2818 9.604 .7150 .5405 .2063 2.33 

test. (mean) 2.840* -.4849 1.321 14.39* .1997 2.161* 

Rank signed test (median) 2.523* 1.134 2.179* 7.603* .7015 2.650* 

Minimum -.9451 -40.12 -2.652 -.6310 -.9334 -7.466 

Maximum .8994 41.23 2.139 2.100 .6433 7.408 

The mean value of the depreciation rate is 8.9%. This value is greater t~an that 

estimated by Denia et al (1996), (5.5 to 6%), using aggregated data for the Spanish 

economy, or that obtained by Nadiri and Prucha (1993), (5%), for the American 

manufacturing sector. A1though both, the data and the sample periods are different, 

these estimations could serve as a benchmark. It is important to emphasize, that 

the time period used in this study covers, and is almost restricted to, the Spanish 

economic recession that lasted from the mid 70's to the mid 80's and which was 

particularly strong in the industrial sector. Therefore, it is reasonable to obtain a 

higher depreciation rate in this periodo The mean is very sensitive to extreme values, 

so the median can be used as an additional source of information. The median of 8i 

is 3.47%, a very small value although more similar to that obtained by other authors. 

The difference between the mean and the median shows that there exists a large 

number of outliers. As the equation has been estimated in levels, the coefficient i'2i 

cannot be directly interpreted as the rate of change of technical progress. This will 
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be the result of multiplying 'Y2i by the rate of change of ato This coefficient has the 

correct sign and magnitude and is significant. The structural change dummy variable 

takes on a very small value and it cannot be rejected at the 5% confidence level that 

its true value is zero. The constant term has a much higher variability than the other 

coefficients but it cannot be rejected at any reasonable level of significance, that its 

true value is zero. These last results are not surprising if we take into account that 

we are estimating 6 parameters with 15 observations in a highly non-linear contexto 

Table 3 contains the depreciation rates for each of the ten groups which are obtained 

in this random coefficients model. 

TABLE 3 

NLLS Estimation by random coefficients of Ó fol' each of the 10 gl'oups in model 1 

GROUP 8 

1. Metalic Minerals and Steel (3) 0.007 

2. Minerals and non Met. Prod. + Chemical (19) 0.090 

3. Metalic Products (5) 0.128 

4. Machinery + Off. Machin. and others (4) 0.018 

5. Electrical Mat. + Transport Mat. (7) 0.167 

6. Food (18) 0.133 

7. Textil and Shoes (10) 0.036 

8. Paper (3) 0.160 

9. Rubber and Plastics (2) 0.015 

10. Woods, Cork and others (10) 0.029 

Although the number of sectors in each group is small, many of these depreciation 

rates are reasonable. The more extreme values correspond to the groups that have 

the smallest number of sectors. These depreciation rates are in general higher than 
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those obtained with conventional methods, since this methodology takes account not 

only physical decay, but also of obsolescence7
• 

The estimation results of model 2 appear in the following tableo With this new 

specification the mean value of the depreciation rate is 9.8% while the median is 

only 2.7%. The capital and labor elasticities are slightly higher than those estimated 

aboye. When we test for the constant returns to scale hypothesis, the value of the t 

statistic is 0.15, so that the null hypothesis cannot be rejected. The coefficient of the 

workday is 59.8% and significant which implies that there are costs associated with 

increasing the workday beyond its standard level. Technical progress has a mean 

value of 39% and a median of 26%, and we cannot reject that the coefficient is equal 

to zero at the 5% significance level. The structural change dummy variable appears 

to be zero. 

TABLE 4 

NLLS Estimation by random coefficients of model 2 

8i ai f3Ki f3Li f3hi 'Yli 'Y2i 

Mean .0981 -.559 .1457 .8741 .5987 -.008 .3950 

Median .0279 -.393 .1542 .8008 .5681 -.004 .2619 

Estandar Deviation .3161 11.67 .7460 .7020 1.370 .1911 2.112 

t Estatistic (mean) 2.79* -.431 1.757 11.20* 3.931* -.396 1.683 

Rank signed test(median) 2.36* .776 3.192* 7.25* 3.818* .056 1.953 

Minimum -.878 -51.12 -3.41 -1.44 -3.32 -.797 -7.50 

Maximum 1.01 55.93 2.22 3.055 4.02 .393 7.41 

In general, model 2 behaves slightly worse than model 1; it has a larger variance, 

the number of sectors with coefficients that take on extreme values is larger, and 

sorne of the depreciation rates obtained, depart from the levels that we would have 

7See Risueño (1997). 
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expected ex ante. These results are probably due to the fact that this model has an 

additional parameter and the time series is very short. 

Table 5 contains the depreciation rates estimated with model 2 for the ten groups. 

The estimated parameters using this model have a larger variance than those of model 

1. We obtain a negative depreciation rate for group 1, and a depreciation rate aboye 

34% for group 8. 

TABLE 5 

NLLS Estimation by random coefficients of {) for the 10 groups using model 2 

GROUP 8 

l.Metalic Min. and Steel. (3) -0.048 

2.Minerals and non Met. prod. + Chemical (19). 0.155 

3. Metalic Products (5) 0.081 

4. Machinery + Office Mach. and others.(4) 0.191 

5. Electrical Mat. .+ Transport Mat. (7) 0.126 

6. Food (18) 0.061 

7. Textil and Shoes (10) 0.062 

8. Paper (3) 0.341 

9. Rubber and Plastics (2) 0.030 

10 Woods, Cork and others (10) 0.027 

When we compare these estimation results with those of model1, we observe large 

discrepancies in almost aH groups. The most important are those for group 4, whose 

depreciation rate was 1.8%, in model1 and is 19%, in model 2 and for group 8, whose 

depreciation rate changes from 16 to 34%. The groups that obtain similar depreciation 

rates in both models are group 10, whose depreciation rate changes from 2.9 to 2.7%, 

and group 9, whose depreciation rate changes from 1.5 to 3%. 

After examining the results obtained with the two models using the random coef­

ficients pro ce dure , we can reach the foHowing conclusions: 
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i) With this procedure we get capital and labor elasticities which are approximately 

equal to the factors' shares in production, ('Pt), and constant returns to scale as 

predicted by economic theory. 

ii)The workday coefficient has a value of 55 to 60%, which implies that there are 

costs associated with increasing the workday beyond its standard length. 

iii) The aggregate depreciation rate is about 8.9 to 9.8%. These values are reason­

able although higher than those obtained by other authors with other samples. 

iv) The coefficients of technical change have the appropriate sign and magnitude. 

The coefficient is larger and more significant when estimated by model 1. This sug­

gests a negative correlation between technical change and the workday. 

v) The structural change dummy variable, and the constant term, are not signifi­

cant, and the latter has a very large variance. 

vi) Model 1 seems more stable than model 2. Given the short time series, this is 

probably due to the additional parameter in model 2. 

These results suggest that both the model specifications and the estimation pro ce­

dure are sound. However, when evaluating the results, we must consider the following: 

i)The time series is very short relative to the number of parameters to be estimated. 

As Pesaran & Smith (1995), recognize, when T is small the estimated values of the 

coefficients are very imprecise, in particular if the explanatory variables cannot be 

considered strictly exogenous. This lack of degrees of freedom problem exacerbates 

in the presence of specification problems, or if the model is nonlinear. 

ii) In this framework, instrumental variables estimation is difficult to implement 

to solve the endogeneity problem. The errors are autocorrelated and lagged values 

of the explanatory variables are not, in general, good instruments. Even if we had 

a different set of variables that could be used as instruments, it would be almost 

impossible to find a unique set of instruments that could be used for all sectors. 

These considerations may help explain sorne of the results obtained and, in partic­

ular, the large disparities observed in the depreciation rates of the ten groups. 

Therefore, the use of the mean value of the estimated parameters of each equa-
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tion has its weakness. We have a very short time series relative to the number of 

parameters to be estimated. This gives rise to objective functions that behave non­

cooperatively and the estimators tend to be unstable. We observe that the distribu­

tion functions of the estimated parameters have very thick tails and many outliers. 

These considerations suggest that an analysis with pooled data, assuming fixed co­

efficients, should be carried out. This procedure gives rise to consistent estimators 

when the series are stationary and the non-linear parameter is fixed. In aH the esti­

mations we have carried out, the variances of bi are smaller than those of the rest of 

the parameters. There are obvious advantages in using all the data simultaneously. 

The estimators are more stable and the estimations are less affected by outliers. This 

is why we present in the next section the estimation results using pooled data. 

5. EMPIRICAL RESULTS WITH POOLED DATA 

In this section we will first present the results of estimating an agg~egate b for 

models 1 and 2 using pooled data for the 81 manufacturing sectors of the E. 1. In the 

tables heteroskedasticity robust t-statics are shown in brackets and heteroskedasticity 

and autocorrelation robust t-statistics are shown in squared brackets.8 . 

As can be seen from table 6, the results are different from those obtained with 

the random coefficients procedure: The capital elasticity is greater and the labor 

elasticity is smaHer than those obtained in the previous section (actually, they are 

almost equal). These coefficients, however, are similar to those reported by Denia et 

al (1996) using aggregated series for the Spanish economy. 

8 As has been disscused aboye, the errors of the model are heteroscedastic and autocorrelated. 

Therefore the variance covariance matrices are estimated robustly to the presence of heteroskedas­

ticity and/ or autocorrelation. 
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TABLE 6 

Pooled data estimation of models 1 and 2 for an aggregate {j9 

COEF MOD 1 MOD2 

.1107 .0958 

8 (4.944) (4.401) 

[2.401] [2.146] 

.4733 .0460 

a (2.015) (.1905) 

[1.120] [.0994] 

.4741 .4741 

{3I{ (39.10) (39.52) 

[14.59] [14.83] 

.4508 .4613 

{3L (30.19) (31.12) 

[10.21 ] [10.64] 

.8043 

{3h (13.87) 

[4.739] 

.0418 .0381 

1'1 (.8774) (.8291) 

[.7905] [.7653] 

-.0120 -.0335 

1'2 ( -.0682) ( -.1909) 

[-.0404] [-.1122] 

SSR 113.868 108.910 

SER .3068 .3002 

iP .9340 .9368 

9t -estatistics robust to heteroskedasticity (e) and to heteroskedasticiy and autocorrelation [e] 
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The workday elasticity is greater than that obtained in the random coefficients 

procedure, but it still implies costs associated to the adjustment of the workhours. 

The coefficient of technical progress does not have the right sign, or size in any of the 

two models. The strudural change dummy variable is positive, but is not significant. 

When the constant returns to scale hypothesis is tested, it is rejected for model 

1, the t-statistic being t = -3.072. However the hypothesis cannot be rejected for 

model 2, the t-statistic being t = 1.668. These results suggest that model 2 is better 

specified than model 1. 

These regressions were also run with only those sectors whose residual autocorrela­

tion coefficients were less than .8 and, therefore, the series involved were not expeded 

to be 1(1). The results were not substantially different from those obtained for the 

whole sample. For both specification the first order autocorrelation coefficient of the 

errors was estimated. In all cases it was approximately 90%. Such high autocorrela­

tion may be signalling that the models are badly specified due to the heterogeneity 

of the productive sectors being considered. Therefore, these regression were also es­

timated including dummy variables in the constant term to allow for heterogeneity 

among the sectors. 

Whenever dummy variables were included in the constant term, we obtained a 

negative depreciation rate; however, the capital elasticity diminished and the labor 

elasticity increased taking values similar to those obtained in the random coefficients 

models, while the correlation coefficients diminished sharply, although they did not 

disappear. We also tried to correct for autocorrelation adding to the model the 

lagged values of the dependent and explanatory variables without success. This is not 

surprising giving the results in Pesaran & Smith (1995) and because the production 

fundion represent a theoretical relation in which dynamics are difficult to justify. 

The models were al so estimated using the within estimator. With this specification 

we obtained negative depreciations rates, a labor coefficient next to 1 and a capital 

coefficient next to zero and not significant, which suggest that the within estimator 

25 



is not appropriate to capture the long-run relation of the variables, and that the 

endogeneity of the explanatory variables, which are necessarily measured with error, 

exacerbates by taking first differences, since the measurement error variance in creases. 

To test the robustness of the results obtained using pooled data estimation, we es­

timated models 1 and 2 using a capital stock series constructed from the E.I. 10. These 

estimations support those obtained in the non-linear case. The estimated coefficients 

using this series are almost identical to the ones obtained when the depreciation rate 

is estimated jointIy with the parameters of the production function. The linear model 

was also used to test the Cobb-Douglas specification against the CES and Translog, 

the results being favorable to the Cobb-Dougals. 

In the following table we present the estimation results of models 1 and 2 when we 

allow for 10 depreciation rates, one for each of the large groups. 

lOThis series is CAPIR81. See Martín Marcos (1990). 
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TABLE 7 

Po oled data estimation of models 1 and 2 for 10 different {l811 

MOD 1 MOD 2 

COEF Est t (H) Est t (H Y A) COEF Est t (H) Est t (H Y A) 

a .3834 1.693 .9475 .0729 .3064 .1593 

81 .0663 2.226 1.086 .0551 1.926 .9378 

82 .0664 2.363 1.034 .0682 2.465 1.088 

83 .1776 6.139 2.519 .1531 5.598 2.302 

84 .0564 1.787 .6321 .0561 1.811 .6447 

85 .1099 3.149 1.434 .0853 2.648 1.235 

86 .0743 2.976 1.312 .0662 2.747 1.235 

87 .1705 6.955 2.988 .1419 6.061 2.660 

88 .0706 2.803 1.461 .0560 2.303 1.200 

89 .0927 4.185 2.137 .0712 3.382 1.741 

810 .1790 5.958 2.372 .1438 5.207 2.063 

f3K .4203 28.94 11.52 .4325 30.31 12.21 

f3L .5038 29.71 10.47 .4996 30.02 10.67 

f3h .7803 13.68 4.517 

11 .0361 .7775 .7342 .0320 .7065 .6808 

12 .0878 .5285 .3153 .0375 .2248 .1353 

SSR 108536 105.548 

SER .3007 .2966 

iP .9366 .9383 

When we allow for 10 different depreciation rates, the estimation results improve. 

In all cases considered, the capital elasticity diminishes and the labor elasticity in-

11 Est t (H): heterosked.asticity robust t statistics 

Est t (H y A): heteroskedasticity and autocorrelation robust t statistics 
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creases to about 42% and 50% respectively. The hours of work elasticity is slightly 

smaller than that obtained when we considered an aggregated depreciation rate, al­

though it is stilllarger than that obtained using the random coefficients procedure. 

Technical progress has the correct sign, although it is very small and not significant 

and the structural change dummy variable is not significant. AH the estimated de­

preciations rates are plausible. They are all positive and below 20% and, unlike those 

obtained with the random coefficients procedure, they are robust to model specifica­

tion. When the constant returns to scale hypothesis is tested it is rejected for model 

1 (t= -3.024). However, the hypothesis cannot be rejected for model 2 (t= 1.226). 

As in the case in which we considered an aggregate depreciation rate, the correlation 

coefficients are very high, and when dummy variables are included in the constant 

term to allow for heterogeneity, the depreciation rates become negative. If we impose 

the restriction of positive depreciation rates, the coefficients are almost zero, not 

significant and the NLLS algorithm does not converge. 

6. COMPARISON BETWEEN THE DEPRECIATION RATES AND 

CAPITAL STOCKS OBTAINED IN THIS STUDY WITH THOSE 

AVAILABLE FOR THE SAMPLE. 

The depreciation rates obtained in this study are larger than those obtained using 

conventional methods for their calculation and, therefore, give rise to smaller capital 

stocks. In the following table we present the capital-output ratios for the aggregate 

capital stocks obtained from the estimation of models 1 and 2 using the random coef­

ficients pro ce dure (c.v.), the pooled data procedure (d.a.) and those of the CAPIR81 

senes. 

If we observe the capital-output ratios obtained in this study, we can see that all the 

capitalstocks are similar. They reflect a destruction of installed capital equipment 

until 88, then the stocks stabilize, and increase systematically from then on. When 

analyzing the capital stocks calculated using the depreciations rates estimated in the 

previous sections, it must be taken into account that the initial capital stock has not 
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been estimated consistently, as another parameter of the production function, since it 

cannot be identified12 . Therefore, we cannot make flat assertions about the moment 

in which the decline of the capital stock stabilizes or its initial magnitude.'- The 

capital-output ratios of these series are cleady smaller than those of the CAPIR81 

series. The latter fluctuate around 1.48% until the year 88, and then they increase 

continuously as welL 

TABLE 8 

Capital-output ratios obtained in this study by random coefficients estimation (c.v.) 

and pooled data estimation (d.a.) and those obtained from the series CAPIR81 

ANO RCPM1(c.v.) RCPM2(c.v.) RCPM1 ( d.a.) RCPM2( d.a.) RCPCAPIR81 

78 1.480 1.480 1.480 1.480 1.480 

79 1.439 1.425 1.407 1.429 1.482 

80 1.390 1.364 1.330 1.370 1.473 

81 1.346 1.310 1.263 1.319 1.467 

82 1.330 1.285 1.226 1.296 1.484 

83 1.282 1.230 1.161 1.243 1.467 

84 1.241 1.182 1.105 1.196 1.453 

85 1.212 1.147 1.064 1.163 1.449 

86 1.198 1.128 1.040 1.145 1.457 

87 1.185 1.111 1.019 1.129 1.466 

88 1.183 1.106 1.009 1.125 1.483 

89 1.195 1.114 1.014 1.133 1.513 

90 1.210 1.126 1.023 1.146 1.546 

91 1.245 1.159 1.053 1.180 1.599 

92 1.266 1.176 1.068 1.198 1.637 

12For an explanation of why the initial capital stock is not identify see Mauleón(1997). 
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In the following table we compare the depreciation rates obtained for the 10 groups 

using models 1 and 2 estimated by random coefficients and po oled data and the 

depreciation rates implicit in the CAPIR81 series. 

TABLE 9 

Comparison of the depreciation rates obtained with models 1 and 2 using the two 

d es Ima Ion proce ures an d th ose o bt' d ame t' 1 th d usmg a conven lOna me o . 

MOD 1 (c.v.) MOD 2 (c.v.) MOD 1 (d. a.) MOD 2 (d.a.) CAPIR81 

81 .007 -.048 .0663 .0551 .0522 

82 .090 (.110) .155 (.126) .0664 .0682 .0622 

83 .128 .081 .1776 .1531 .0665 

84 .018 (-.020) .191 .0564 .0561 .0604 

85 .167 (.169) .126 (.047) .1099 .0853 .0597 

86 .133 (.141) .061 (-.085) .0743 .0662 .. 0475 

87 .036 (.145) .062 (.077) .1705 .1419 .0626 

88 .160 .341 (.154) .0706 .0560 .0532 

89 .015 .030 .0927 .0712 .0665 

810 .029 .027 .1790 .1438 .0465 

As can be seen from the table, with the pooled data procedure (d.a.) we get very 

similar depreciation rates for both models and, if we compare them with the deprecia­

tion rates implicit in the capital stock series calculated by Martín Marcos (1990)13, we 

can see many similaritiesm although there are also important differences. In general, 

the depreciation rates obtained in this article are larger than those calculated using 

a traditional method. The major agreements occur when we compare the latter with 

those obtained with model 2, in particular for groups 1, 2, 4, 8 and may be 9, and 

13These series were constructed using the Perpetual Inventory Method aproximating the depreci­

ation rate by b = +-. where T is the useful life of the asset. 
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perhaps 6, while there are clear differences for groups 3, 7, 10 and to a lesser extent 

for group 5. 

If it is true that the groups for which we find the greatest differences are those 

which are built with the smallest number of sectors, or those that, as sector 10, are 

composed of very different sectors, and therefore their estimations are less reliable, it 

is also true that conventional methods do not take into account the depreciation due 

to obsolescence. We should find high depreciation rates in those groups that have 

experienced major firm exit rates in any of its sectors, or important technological 

changes. Group 7, Textile, suffered a major crisis during the whole sample period, 

so its reasonable to find a high depreciation rate for this group. The same could 

be said of group 3, which suffered an important faH in production during the period 

80-85, and of the Transport Material component of group 5, which had an important 

decline during the period 82 - 87, and of groups 9 and 10, whose production decreased 

markedly during the years80-85 and 81-86, respectively. Group 1 did al so experience 

production declines similar to sorne of the ones mentioned before, but in the latter 

case, the decline did not happen in a systematic way. For the whole sample, this 

group experienced recession spells that alternated with production recoveries. 

Given the small amount of data that we have, the random coefficients procedure 

(c.v.) does not seem appropriate to calculate disaggregated depreciation rates. There 

are large discrepancies between the depreciation rates obtained with the two models. 

In general, the least credible depreciation rates correspond to the groups with the 

smaHest number of sectors to carry out their estimation, but we observe instability in 

aH cases. Model 1 seems slightly more stable than model 2, and sorne of the groups 

that obtained the highest depreciation rates in the pooled data models also get them 

with this model and procedure, in particular groups 3, 5 and, may be, 7. Beyond 

this, it is difficult to find any other similarities. 
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7. CONCLUSIONS 

In this article we have estimated the depreciation rate of the manufacturing sectors 

jointly with the parameters of a production function, using alternative methods of 

estimation and different specifications of the model within the Cobb-Douglas tech­

nology. 

To carry out the estimation we have a very short time series relative to the number 

of parameters to be estimated. The time series of the different sectors behave in a 

very heterogeneous manner. We observe stationary and non-stationary series. There 

are large differences among the estimated coefficients of the different sectors. The 

explanatory variables cannot be taken as strictly exogenous, the errors are autocor­

related and the model is non-linear. 

Given the characteristics of the data, there is not a completely satisfactory econo­

metric procedure to carry out inferences about the parameters. If we use pooled 

data, the variability of the parameters may result in inconsistent estimations. This 

problem exacerbates if the series are integrated. If we use the random coefficients 

pro ce dure we can obtain very imprecise estimates, given the short time series and the 

non-linearity of the model. 

In this study we use both estimation procedures and compare them. The results 

obtained with both methods are reasonable. The estimated aggregate depreciation 

rate and the capital and labor elasticities are within the bounds of the values we would 

have expected a priori. With the random coefficients procedure we get an aggregate 

depreciation rate of 8.9 to 9.8%, capital and labor elasticities that approximately 

correspond to the shares of the factors in production, and we cannot reject constant 

returns to scale in the aggregatej The coefficient of the workday indicates that there 

are costs associated with increasing the workday beyond its standard length. How­

ever, the estimated depreciation rates tend to be unstable and very sensitive to out­

liers, as can be seen from the comparison of the mean s and medians of the estimated 

parameters. When we tried to obtain disaggregated depreciation rates for groups 
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of sectors, they were very unstable. With the pooled data procedure we obtained 

aggregate depreciation rates from 9.6 to 11%, a capital elasticity which is higher, and 

a labor elasticity which is lower, than the shares of these factors in production; and 

we reject the constant returns to scale hypothesis for model 1. The coefficients of 

the workday, technical progress and the structural change dummy variable are stable 

and, in general, have the correct sign and size. Thedepreciation rates obtained with 

this procedure are very robust to changes in model specification and changes in sam­

pIe size. With this estimation procedure it is possible to obtain group-disaggregated 

depreciation rates which are stable. The results of the pooled data procedure show 

that estimations improve when we take into account the fluctuations in the workday 

as approximation to changes in the utilization rates of productive factors. With this 

specification we cannot reject constant returns to scale, the coefficient of the workday 

is always significant, and the iP of the regressions of model 2 are always higher than 

those of model lo 

The capital stocks obtained by both estimation procedures are very similar and 

show a huge destruction of capital that took place during most of the sample period, 

as a consequence of the industrial crisis. The capital-output ratios implied by these 

series are next to unity, and are clearly smaller than those obtained with a capital 

stock calculated by conventional methods. 
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