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We extend Newman and Keldysh theorems to the behavior of sequences of functions in H”(u) which explain
geometric properties of discs in these spaces. Through Keldysh’s theorem we obtain asymptotic results for
extremal polynomials in Sobolev spaces.
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1. INTRODUCTION AND MAIN RESULTS

In this article, we extend Newman and Keldysh theorems to H”(u) with 0 < p < oo.
These results are very useful for obtaining convergence in norm. It is known that
H?,0 < p <1, are not locally uniformly convex spaces and they are used for checking
that Hahn—Banach theorem fails in a nonlocally convex space with “reasonable” prop-
erties. That H? would seem destined to be of further interest in the future can be
guessed from the fact that the most common ‘‘singularities” in analysis, such as
those given by rational functions, or carried on analytic subvarieties, or representable
by Fourier integral (‘““Lagrangian’) distributions, are all of them locally in H?, for
some p < 1.

We will use these theorems for proving a result about asymptotics of extremal
Sobolev polynomials. Sobolev orthogonal polynomials have been received considerable
attention in the last two decades, as a natural consequence of the great importance of
Sobolev spaces. Sobolev orthogonal polynomials are also connected with spectral
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theory for ordinary differential equations, matrix orthogonal polynomials, and higher
order recurrence relations. Sobolev orthogonal polynomials also appear in a natural
way in some problems of approximation theory where the derivatives are considered.
Two updated surveys on Sobolev orthogonal polynomials are presented in [12,15]
(look at the references therein). Asymptotics for Sobolev orthogonal polynomials
have been described among others in [1,8,9,11,12].

We begin with the extensions of Newman and Keldysh theorems, that will be proved
in Section 3. But first we set some notations. Let m be the normalized Lebesgue measure
on [0, 2) and let u be a positive Borel measure on [0, 27) satisfying Szeg6’s condition,
ie. neS«elogu(d) e L', where /(9) is the Radon-Nikodym derivate of p with
respect to m. HP(u) is deﬁned as the L”(u) closure of the polynomials in ¢ and
1 e =(f |f(e’9)|”d,u(0)) " for f € H?(1). For a sake of simplicity we will denote
H? = H?(m). Let Dp(,z) be the Szegd function

1 M+ , i
Dp(H,Z) :eXp{; g‘_;log,u(e)dm(@)}’ §=€€ 0
and
DP(M) 0) . .
Kp(l,L,Z) = D]’(Mvz) 5 lf LS (Sa U {Z . |Z| < 1})’ (2)
0, if zeS,,

where S, and Sy are a disjoint decomposition of the unit circle such that w, and g live
on these sets respectively, hereafter u, and u; denote the absolutely continuous and
singular parts of u with respect to m. LE(u) ={f € L’(n): f =0, u, —a.e} and
LX) ={fel’(n): f=0, ug—ae.}. Similarly, we define H?(u) and HZ(u). Set
D={z|z| <1} and E = {z: |z| > 1}.

THEOREM 1 Assume that p € S. If f, and f are in HY (1), 0 < p < oo, such that

(l) hmn—>oo ”.fn”p /7 ”f ”p J75]
(i1) lim,— o0 fn(2) = f(2), holds uniformly on each compact subset of D,

then
1im [ fy =/l = 0. 3)

In the next section, we are going to prove that if /' € H”(u), then there exist unique
functions f fs such that f =K, f + f, f € HP, and f; € L2(). With these notations
we set

THEOREM 2 Let {z;};—; _a be a set of points in D where A can be finite or infinite,
weSs, and {f,} € HP(n), 0 < p < oo, such that

(l) hmnﬁocfjl(o) = l;
(i) limpsoofr(z) =0, i=1,2,...;
(i) Yo (1 — |zi) < +oo;
(iv) limyeo 1 full,. 0 = Dy, 0)/ TT2, 1zil7



Then

(a) limn_,oof;(z) = I—[f\:,((z —2))/(Ziz — D)(zi/|zi|), holds uniformly on each compact
subset of D.
(b) lim,,oo [1 5, = [T (2 = 20)/(Giz = D)/ 12 DK, e = 0.
The other results that will be proved in Section 4, give us strong asymptotics for

yeer

k
Tu e =106 D IOV, 0 Q) = 2"+ -1, )
Jj=0
where 0 < p < oo and puo, ..., u; are positive Borel measures on [0, 27), with uo £ 0.

In the case p = 2, the polynomials {P,},_o ;.. are usually said to be Sobolev orthogonal
polynomials. The special case k = 1 has been studied by many authors (see, for instance
[10,12,18]). For kK = 0 we have the classical orthogonality.

THEOREM 3 The following statements are equivalent.

() uk €5S;
(i) There exists a function A € HE(ux) with A(0) =1 such that

_[IPPE) —— ‘
tim [P C) X w@rdne) =0, ==

n—00

Z

Moreover, if (1) holds then
lim P00 = D (1, 0),
n

A(z) = Kp(ux, z), and

. POz
lim k” ( Z =
n—oo pik z"

1k 1/2), )

holds uniformly on each compact subset of E.

When k = 0 the extremal problem (4) was studied by Geronimus (see [4]) who stated
more precisely that Theorem 3 holds for k£ = 0. Nevertheless, the case of k > 1 is inter-
esting because it describes for the extremal polynomials how the norms of their deriva-
tives balance. In the following theorem we observe that there exist polynomials
asymptotically extremal for all j, 0 <j < k.

THEOREM 4  If the measures 1) € S, for j <1 <k, then for all [, j <[ <k,
. P}(II)(Z) 71—
lim 25 = K G, 179, (©)

n—00 an”

holds uniformly on each compact subset of [E.

The framework of this article is in Section 2 we describe some known properties
of the H?”-extremal Szegé function and the necessary results for proving the three
main results. Finally in Sections 3 and 4 we prove all the theorems presented in
Section 1.
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2. AUXILIARY RESULTS

Given p € S the corresponding Szegd function satisfies the following properties:

1 Dp(u,z) is analytic on I, more precisely, D,(u,z) € H?;
2 Dp(u,z) #0in I, and D,(u,0) > 0;
3 1Dy(p, )P = p'(0) a.e. on [0,27).

The function D,(i, .) is not uniquely determined by the conditions 1-3. To this aim it
is also required that D,(u,.) must be an outer function (see page 277 in [19] or page 118
n [15]).
Notice that H”(n) denotes the space of analytic functions, f, on D, such that
fDy(u,.) € HP. If 1 < p < oo, then H?(u) is a Banach space with the norm:

] ) 1/p
1 Ny = l%?l( / |/ (Re”)D,y(1, Re™)P dm(9)> )

For 0 < p <1, Hf(u) is not a normed space, but it is a complete metric space with the
d1slanee d(f,g) = If —gl,. If / € Hi(w), then there exists its radial limit a.e. on the
unit circle and

|vmw=/veww@wwxz=w,

where f(e”) = limgy f(Re?) a.e. on [0,27). We shall need the following well-known
result (for clarity we include the proof).

LeEMMA 1 There is a unique solution for the extremal problem
inf {1l @ € H(u). ®(0) = 1} = Dy(11.0).

In fact such a function is K,(u, z).

Proof First, let us assume that p =2. Let ® € H>(11) be such that ®(0) = I, then
ldD(z)Dg(u,z)l is a subharmonic function on D, so Ds(u,0)* = |¢(0)D2(,u,0)|

||d>||2 - Otherwise, we have that K belongs to H2(y,) (Krein—Kolmogorov—-Szegd
theorem) its value at z = 01is 1, and ||K2|| 2= Da(u, 0) The uniqueness follows imm-
ediately from the parallelogram law. If p # 2 we reduce these cases to p = 2 because of
each function f € H”(u) has a decomposition f(z) = B(2)[h(z)]*?, where B is the
Blaschke product associated with the zeros of f and h e H>(u) with /15 = 14113
(see [7], p- 96). |

It is very well known that the density of the space of polynomials in L”(1t) can also be
characterized in terms of the Szeg6 condition for . H?(u) = L?(w) if and only if © ¢ S
(it is an immediate consequence of Geronimus and Weierstrass theorems and the fact
that continuous functions are dense in L”(ur)). For Sobolev spaces (p = 2) look at
[18]. On the other side is the characterization of H”(u) for u € S. The following
theorem is very well known but we only found a reference for 1 < p < oo (see [5] and
page 22 in [16]).
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THEOREM 5 If we assume p € S, then H' (n) = KyH” & L{(n). This means that there
exist unique functzonsf fs such that f = ,f +f. f e HP, and f; € LE(n).

Proof Setg e H”(u). Then g € LP(n) and g = g1 + g2 with gy € L2(u) and g € L:(u).
We must prove that either g € K,H” or that g1/K, € H?. It is enough to prove that
there exists {j,}, j» € H” such that |j, — g1/K,ll,—0. Since ge H”(11) there exists a
sequence of polynomials {/,} such that, ||, —gll, ,—>0. Hence, with z=¢el,

R C] A NN ()

[ 25 o = e - a@r s ano)
o o 2O |feze
[ ser= e < 0,0,

and j, = h,/K, € H? for each n. The uniqueness of the representation follows immedi-
ately from the fact H?() N LA (1) = 0. Hence, we have proved one of the inclusions. We
are going to see that K,H” C H?(u). Consider / = K, f with f € H?. Then there exist
polynomials 7, such that

If - hall, > 0 = IK,f — Kphallp,p = 0,

and because of K,h, € H”(1), we get [ € HP(u).
Now set f € LP(). As s € S, there exist polynomials Q) such that

1/ = Qully,.p = 0. (7

Moreover, because of Q,/K, € H?, there exists a sequence of polynomials {/,} such
that

%_hn

P

= 0= 10, — Khull,,., = 0. (®)
P

Combining (7) and (8) with
I/ = On+ Kphullp = I1f = Qully,.p + 190 — Kphall,,. ps

the proof is concluded. |
The last auxiliary result that we need is

LemMA 2 (see [3], p. 21)  Let gy, 0€ 17,0 < p < 00. If pu(x) = ¢(x) a.e. and ||ga|l, — Il
then ||, —¢ll, — 0.



3. PROOF OF NEWMAN AND KELDYSH EXTENSIONS

Proof of Theorem 1
Proof First, we consider the case u = m, the Lebesgue measure.

(a) It is easy to see that the theorem holds for 1 < p < co. From (i) and (ii) we obtain
im0 I/ +/)/20l, = 1L/ lI,» so, because of the uniform convexity of L7,
1 < p < oo, (or Clarkson inequalities, see [2], p. 3) we get [|f, —f [, = O.
(b) Let us consider 0 < p < 1. We can suppose that f is not identically 0. Otherwise the
proof of our theorem is trivial, since | f,ll,— I/ Il, = 0.
(c) From Lemma 2, if (i) holds and for any I' C N, there exists I' C I such that
lim, f,(z) = f(2), a.e., n € I", then we have (3).
(d) If £,(2) # 0 holds for n > Ny and z € D, then according to Hurwitz’s theorem also
f(z) #0 holds in D. So we can fix a branch for w”/? such that h, =f?/ and
h=f?? with h,,he H?, b5 = 1l/15, 1415 =1/ 115, limh, =& uniformly on
each compact subset of D, and lim ||A,|l, = ||A]l,. This means (i) and (ii) hold for
h, and & in H?. Therefore, from (a) we have (3). Then according to the Riesz the-
orem, there exists I' C N such that lim,cr4,(z) = h(2), a.e., hence lim,crf,(2) =1(2),
a.e. and from (c) we have (3).
If f, can be 0 in D, then f, = B,h, where h, is a zero-free function in H”,
IAnll, = Il/ull,» and B, is a Blaschke product so B, € H*. Then {B,} and {A,}
are uniformly bounded in each compact subset of . Hence, from the Montel
theorem there exists a subsequence I'y C N such that limyer, #,(z) =h(z), he H?,
and limyer, B,(z) = B(z) hold uniformly on each compact subset of . Otherwise,
I, <limsup [, =limsup |}, = 1/ I, while [£1|, <Al IBl and |Bll<
limsup||B,llc=1. Thus, [hB||,=]hl,, and as a consequence |B(e?)| =1, a.e.
Then lim,, ||, = [|A]l, and lim, || B,ll;= | Bll,. Then from (d), there exists I C T
such that limyer, ,(z)=h(z),a.e. and from (a) lim,er, B,(z)=B(z),a.e., hence
limyer, fn(2) =f(2), a.e. and from (c) the theorem is proved.

(e

~

Now, in order to complete the proof it is enough to see that the functionsf:7 andf hold
the assumption of theorem with Lebesgue measure. ||

Remark 1 Theorem 1 was setting by Newman (see [14]) for the cases p = 1 and u = m,
the Lebesgue measure. This theorem gives an alternative look for the uniform convexity
of the H”(u) spaces.

Proof of Theorem 2

Proof The sketch of the proof is the following. First, we will prove the theorem for
Lebesgue measure and A = § in two steps: p = 2 and p # 2. Second, we consider a gen-
eral u € S and again A = #. Finally, we prove the general case.

(A) Set uw =m, p=2, and A = f. Notice that in this case D,(u,z) = 1.
From the monotonicity of the means and triangular inequality, we get
/ol®) + 11 < 1/ + Uls < [ fulls + 111l Hence lim, o [/, + 1]l = 2. Now, using
the parallelogram law, we obtain lim, . || f» — 1|l, = 0, this is (b).
The statement (a) follows immediately from Cauchy formula and Holder
inequality.
6



(B)

©

Now let us consider p # 2 and again u = m, and A = f. Using again the factoriza-
tion theorem for H”, we get that there exists B, € H>™, more precisely, Blaschke
products, and /4, € H?, such that

B,(2)

2/
Ju(2) = Bu(2)hu(2) r= =3 (0)

S (B0Y Py (2)) and | fullh = llhall3.
We are going to see that /,(z) = B,(0Y/?h,(z) € H? holds the conditions studied
in (A).

1 = lim |£,(0)”* = lim |B,(0)"*h,(0)| < lim ||B,(0¥/*hyll
= lim [B,(0)/"/?||h,]l, = lim |B,(0)]”* <1,
because |B,(z)] =1 if |z] =1 and from the Maximun Principle the inequality

follows.
Hence

Jlim |B,(0)" =1, ©)

and we obtain lim,_ o |/l = » = 1. Then, from the previous case, we have (a) and (b)
for h,. The same holds for {B,(z) = B,(z)/B.(0)}, B, € H* C H*. Hence {B,}
holds (a) and (b). Then, we have (a) for f,. B

It remains to see that (b) holds. Since (b) holds for A, and B,, there exists (i} CT
such that

liml;n,(z) =1,ae. and lim Bn/(z) =1, a.e.
j J

Using Lemma 2 the proof of this case is completed.
In this step we consider a general 1 € S and again A = . The main idea is to apply
the previous argument to f,. In fact,

Hm (A, = T 1K foll, + 1ol = Dp(1,0)7,
and this yields
limsup | K, /12, < Dy, 0)”.
n—0o0

Then

timsup [ 1K,(e") (") 1 6) dm(®)

n—00

= D,(11,0)" lim sup / | fu(e®)Pdm() < D,(1s,0)7,

n—00



hence lim sup,,_, o, || fn ”Z < 1. From the case analyzed above, we get lim,_, « ﬂ(z) =1
uniformly on compact subsets of D and lim, [|[fy — 1ll, = 0. Therefore

lim,,, o ”ﬁl”p =1 and lim,_, ”Kpﬁ1||p,uu = p(M, 0) Thus lim,,_. ”ﬁz,S”p,u\ =0
and as a consequence

tim [y = Kl = lim (If = Kyl + 1o = Kol )
= 1im (1K, = Kol ., + Wl )
= tim (D 071y = 11+ /sl ) = 0.
(D) Finally, we prove the general case.
Le} Jn= pﬁ1 +fus with f, € H? and ”fl’l”//.]) = ”Kpﬁzuﬂp Then limsup,_,
I full, < 1/ [Tzl from (iv). We are going to see that all convergent subsequence

of fu, converges to the same limit, uniformly on each compact subset of D.
Let f be a limit function. From (ii), f is zero on z,,f € H? and ||f l, < 1/]Tlzl".

f(Z) 1_[22 _ l] |Z |2 sz _ l] |W |2h(2)

where {z;}, {w;} are zeros off~ h is a zero-free function in H”, h(0)=1, and
£, = H(1/|z,|1’) [TC1/1wilP)l|Al,- So [|7]l, < 1 and, asaconsequence h = 1. Therefore,
the set {w;} is empty and f(2) =[[((z — z))/(zZi — D)(zi/|zil?). Moreover, we have
lim,— o0 fu(z) = f(2) uniformly on each compact subset of D and || f,,llp I f ll,-
Then from Theorem 1, we obtain lim, . | f, f||p =0 and this is the same that

imy oo 11 Kpfu— pfllpu(,—O In particular, imy, oo | Kpfullp, =1Kpf 11, =(1/TTIZi17) %

Dy(1,0), and then lim,,— oo ||ful,, ., =0. Therefore, we obtain (b). |

Remark 2 For the cases u = mand A = f, Theorem 2 was setting by Keldysh (see [6]).

Remark 3 Newman and Keldysh theorems do not hold in H* as the following
example shows. Set f,(z) =(nz+n—1)/(n+ (n—1)z). It is easy to check that
fn€ H®, | fullo = 1, and lim,_ f, = 1, uniformly on each compact subset of D,

but [/, — o 7 0.

4. ASYMPTOTICS FOR EXTREMAL SOBOLEV POLYNOMIALS

Proof of Theorem 3

Proof (1) = (ii)
We are going to prove that lim,_ o Ty, 4...., M,p/nk = Dy(ux,0) > 0. Obviously
Tty Uoseres ks P = ”P(k)” we = n®r, k, pg. p» With n®) = nm—1)---(m—k+1). As

satisfies the Szegos condition, from the Geronimus theorem we obtain
limy— o T &, e, p = Dp(tk, 0). Thus



k)
e~ T MOy e s Mk . Ty ks s
llm lnfM 2 llm ]nf M

n—00 nk n—o0 I/lk

= liminf v, i, pur, p = Dp(pix, 0).

n—oo
Now we prove

lim sup 202l < D (11, 0). (10)
n(

n—00

First, we consider p > 1. Let Q, be the monic polynomial of degree » minimizing

the norm || - ||, ,,; since we are on T and using Minkowski’s inequality, we get
k . k(7 A -
Tuem it < D_NE"0) M =D (D1 )@@ 7
j=0 j=0 =0 \'i

Po1y

< (M) l1Qnllyp, + f()o(m").

Dividing these inequalities through by »/* and taking limits (first, m — oo, and
then n — oo) we obtain (10).

Second, if 0 < p < 1, then relation (10) follows easily. Indeed, we can assume
ur([0,2m)) = 1, because

T, g i p = N0 T, o /Mgailvos i /121 -

Moreover, notice that if u is a probability measure then from Jensen’s inequality
we have T, ;0. o p =< Tn o, e, 1- Then we get (10) for 0 < p < 1 from the corre-
sponding relation for p = 1.

(i) = (1)
Set k = 1 and assume that u; does not satisfy the Szeg6’s condition. Then from the

Geronimus theorem lim, o Ty, ., p = 0. For a fixed € > 0, there exists ny(¢) such
that for n > ng(€) the set

{Q: 0@ ="+, 1Qll, 1, <€}

is non empty. For each n > ny we consider the extremal problem:

() = 1Oy + 1€ 7 Q) = 24,10, = €

Itisobvious 7, 4, 11, p < %, uo, 1, p(€) and through the same argument as before, forn
large enough we have i, 4o, 1, p(€) < Uy, o, i, p(€) +ne. Hence, we have
lim sup,,_, oo (Ta, o, 101, p/M) < limsup,,_, oo (&, o, w1, p(€)/1) < €, and this is a contra-
diction.

Now by induction we obtain the general case.



(i) = (i)

If Q is a polynomial of degree n, then Q*(z) =z"Q(1/z) and if |z| =1, then

10(2) = 19*(2)I- So

Hence

lim

n—00

= p(/’Lk> 0)

P> Mk

‘ (PP

nk

Therefore, the sequence of functions {(P¥(z))*/n*} holds the hypothesis of
Theorem 2, and hence (iii) is proved.

(iii)) = (ii)

From (iii) we have

p

(k)
PG 1, (0)dm(6) > 0.

lim [|—*——
00 nkon k

4
wi@ram®) = [

On the other hand

k
PP(2)
N k

4 1/p
M}C(G)dm(e)> .

Hence

k
P(z)
nan k

P 1/p
ML(@)dm(@)) > 0.

. fn, ,,,,, N
lim o - Hics P > (/
n—00 n

Proof of Theorem 4

Proof Let us consider /=k—1 and assume pu; ,ux €S. By definition
Theorem 3 we getlim,,_, o ||p§qk l)/n"'z” k+1 Iy = 0.Hence, using ;. | € S, the Cauchy
integral formula, and Hélder inequality, we obtain lim,_, o P* D(z)/n*z" *+1 =0, uni-
formly on each compact subset of E. Thus lim,,, oo(P* V(z)/n*z" *+1) = 0. Taking into
account (n—k + 1)P& V(z)/mkzn k42 = pR(z)/mkzn k41— (P& D(z)/mkzn 41 for
! =k —1 (6) follows if it holds for [ =k,

10



PEDG) =k DPE D)

”ll)l’glo nk lon k417 05 nkon k+1
- ’
n—oopkzn k nkzn k+1 W

Repeating this reasoning, we obtain the corresponding results for all /, with
j<Il<k ]

Other extremal problems can be considered. For example, let 0 < po, pi,...,pr < 00
and wug, U1,..., M, be positive Borel measures in [0, 27), set

k
inf Z ||Q('l)||p/,;4/: Q(Z) =z +-oq, O
j=0
k 1/p
inf 3> 10, | 0@ =2"+-
=0

Of course, similar asymptotic results for the corresponding extremal polynomials can
be proved.
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