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We extend Newman and Keldysh theorems to the behavior of sequences of functions in Hpð�Þ which explain
geometric properties of discs in these spaces. Through Keldysh’s theorem we obtain asymptotic results for
extremal polynomials in Sobolev spaces.
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1. INTRODUCTION AND MAIN RESULTS

In this article, we extend Newman and Keldysh theorems to Hpð�Þ with 0 < p < 1.
These results are very useful for obtaining convergence in norm. It is known that
Hp, 0 < p � 1, are not locally uniformly convex spaces and they are used for checking
that Hahn–Banach theorem fails in a nonlocally convex space with ‘‘reasonable’’ prop-
erties. That Hp would seem destined to be of further interest in the future can be
guessed from the fact that the most common ‘‘singularities’’ in analysis, such as
those given by rational functions, or carried on analytic subvarieties, or representable
by Fourier integral (‘‘Lagrangian’’) distributions, are all of them locally in Hp, for
some p < 1.

We will use these theorems for proving a result about asymptotics of extremal
Sobolev polynomials. Sobolev orthogonal polynomials have been received considerable
attention in the last two decades, as a natural consequence of the great importance of
Sobolev spaces. Sobolev orthogonal polynomials are also connected with spectral
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theory for ordinary differential equations, matrix orthogonal polynomials, and higher
order recurrence relations. Sobolev orthogonal polynomials also appear in a natural
way in some problems of approximation theory where the derivatives are considered.
Two updated surveys on Sobolev orthogonal polynomials are presented in [12,15]
(look at the references therein). Asymptotics for Sobolev orthogonal polynomials
have been described among others in [1,8,9,11,12].

We begin with the extensions of Newman and Keldysh theorems, that will be proved
in Section 3. But first we set some notations. Let m be the normalized Lebesgue measure
on ½0, 2�Þ and let � be a positive Borel measure on ½0, 2�Þ satisfying Szegö’s condition,
i.e. � 2 S , log�0ð�Þ 2 L1, where �0ð�Þ is the Radon–Nikodym derivate of � with
respect to m. Hpð�Þ is defined as the Lpð�Þ closure of the polynomials in ei� and
k f kp,� ¼

R
j f ðei�Þjpd�ð�Þ

� �1=p
for f 2 Hpð�Þ. For a sake of simplicity we will denote

Hp ¼ HpðmÞ. Let Dpð�, zÞ be the Szegö function

Dpð�, zÞ ¼ exp
1

p

Z �

�

� þ z

� � z
log�0ð�Þ dmð�Þ

� �
, � ¼ ei� ð1Þ

and

Kpð�, zÞ ¼

Dpð�, 0Þ

Dpð�, zÞ
, if z 2 ðSa [ fz : jzj < 1gÞ,

0, if z 2 Ss,

8<
: ð2Þ

where Sa and Ss are a disjoint decomposition of the unit circle such that �a and �s live
on these sets respectively, hereafter �a and �s denote the absolutely continuous and
singular parts of � with respect to m. Lps ð�Þ ¼ f f 2 Lpð�Þ: f ¼ 0, �a � a:e:g and
Lpað�Þ ¼ f f 2 Lpð�Þ: f ¼ 0, �s � a:e:g: Similarly, we define Hp

s ð�Þ and Hp
a ð�Þ. Set

D ¼ fz: jzj < 1g and E ¼ fz: jzj > 1g.

THEOREM 1 Assume that � 2 S. If fn and f are in H
p
a ð�Þ, 0 < p < 1, such that

(i) limn!1 k fnkp,� ¼ k f kp,�,
(ii) limn!1 fnðzÞ ¼ f ðzÞ, holds uniformly on each compact subset of D,

then

lim
n!1

k fn � f kp,� ¼ 0: ð3Þ

In the next section, we are going to prove that if f 2 Hpð�Þ, then there exist unique
functions ~ff , fs such that f ¼ Kp ~ff þ fs, ~ff 2 Hp, and fs 2 L

p
s ð�Þ. With these notations

we set

THEOREM 2 Let fzigi¼1,...,� be a set of points in D where � can be finite or infinite,
� 2 S, and f fng � Hpð�Þ, 0 < p < 1, such that

(i) limn!1
~ffnð0Þ ¼ 1;

(ii) limn!1
~ffnðziÞ ¼ 0, i ¼ 1, 2, . . . ;

(iii)
P�

i¼1ð1� jzijÞ < þ1;

(iv) limn!1 k fnkp,� ¼ Dpð�, 0Þ=
Q�

i¼1 jzij
p:
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2



Then

(a) limn!1
~ffnðzÞ ¼

Q�
i¼1ððz� ziÞ=ð �ziziz� 1ÞÞðzi=jzij

2Þ, holds uniformly on each compact
subset of D.

(b) limn!1 k fn �
Q�

i¼1 ððz� ziÞ=ð �ziziz� 1ÞÞðzi=jzij
2ÞÞKpðzÞkp,� ¼ 0:

The other results that will be proved in Section 4, give us strong asymptotics for
extremal polynomials, fPngn¼0, 1,..., solving the following extremal problem:

	n,�0,...,�k, p ¼ inf
Xk
j¼0

kQð j Þkp,�j : QðzÞ ¼ zn þ � � �

( )
, ð4Þ

where 0 < p < 1 and �0, . . . ,�k are positive Borel measures on ½0, 2�Þ, with �0 6� 0.
In the case p ¼ 2, the polynomials fPngn¼0, 1,... are usually said to be Sobolev orthogonal
polynomials. The special case k ¼ 1 has been studied by many authors (see, for instance
[10,12,18]). For k ¼ 0 we have the classical orthogonality.

THEOREM 3 The following statements are equivalent.

(i) �k 2 S;
(ii) lim supn!1 ð	n,�0,...,�k, p=n

kÞ > 0;
(iii) There exists a function � 2 Hp

a ð�kÞ with �ð0Þ ¼ 1 such that

lim
n!1

Z
PðkÞ
n ðzÞ

nk zn k
��ð1=zÞ

����
����
p

�0
kð�Þ dmð�Þ ¼ 0, z ¼ ei�:

Moreover, if (i) holds then

lim
n!1

	n,�0,...,�k, p

nk
¼ Dpð�k, 0Þ,

�ðzÞ ¼ Kpð�k, zÞ, and

lim
n!1

PðkÞ
n ðzÞ

nk zn k
¼ Kpð�k, 1=zÞ, ð5Þ

holds uniformly on each compact subset of E.

When k ¼ 0 the extremal problem (4) was studied by Geronimus (see [4]) who stated
more precisely that Theorem 3 holds for k ¼ 0. Nevertheless, the case of k � 1 is inter-
esting because it describes for the extremal polynomials how the norms of their deriva-
tives balance. In the following theorem we observe that there exist polynomials
asymptotically extremal for all j, 0 � j � k.

THEOREM 4 If the measures �l 2 S, for j � l � k, then for all l, j � l � k,

lim
n!1

PðlÞ
n ðzÞ

nlzn l
¼ Kpð�k, 1=zÞ, ð6Þ

holds uniformly on each compact subset of E.

The framework of this article is in Section 2 we describe some known properties
of the Hp-extremal Szegö function and the necessary results for proving the three
main results. Finally in Sections 3 and 4 we prove all the theorems presented in
Section 1.
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2. AUXILIARY RESULTS

Given � 2 S the corresponding Szegö function satisfies the following properties:

1 Dpð�, zÞ is analytic on D, more precisely, Dpð�, zÞ 2 H
p;

2 Dpð�, zÞ 6¼ 0 in D, and Dpð�, 0Þ > 0;
3 jDpð�, e

i�Þjp ¼ �0ð�Þ a.e. on ½0, 2�Þ.

The function Dpð�, :Þ is not uniquely determined by the conditions 1–3. To this aim it
is also required that Dpð�, :Þ must be an outer function (see page 277 in [19] or page 118
in [15]).

Notice that Hp
a ð�Þ denotes the space of analytic functions, f , on D, such that

fDpð�, :Þ 2 H
p. If 1 � p � 1, then Hp

a ð�Þ is a Banach space with the norm:

k f k�a, p ¼ lim
R"1

Z
j f ðRei�ÞDpð�,Re

i�Þjp dmð�Þ

� �1=p

:

For 0 < p < 1, Hp
a ð�Þ is not a normed space, but it is a complete metric space with the

distance dð f , gÞ ¼ k f � gkp�a . If f 2 H
p
a ð�Þ, then there exists its radial limit a.e. on the

unit circle and

k f kp�a, p ¼

Z
j f ðzÞjp �0ð�Þ dmð�Þ, z ¼ ei�,

where f ðei�Þ ¼ limR"1 f ðRe
i�Þ a.e. on ½0, 2�Þ. We shall need the following well-known

result (for clarity we include the proof).

LEMMA 1 There is a unique solution for the extremal problem

inf k�k�a, p: � 2 Hp
a ð�Þ, �ð0Þ ¼ 1

� �
¼ Dpð�, 0Þ:

In fact such a function is Kpð�, zÞ.

Proof First, let us assume that p ¼ 2. Let � 2 H2
a ð�Þ be such that �ð0Þ ¼ 1, then

�ðzÞD2ð�, zÞ
�� ��2 is a subharmonic function on D, so D2ð�, 0Þ

2
¼ �ð0ÞD2ð�, 0Þ
�� ��2�

k�k2�a, 2: Otherwise, we have that K2 belongs to H2
a ð�Þ (Krein–Kolmogorov–Szegö

theorem), its value at z ¼ 0 is 1, and K2k k2�a, 2¼ D2ð�, 0Þ
2: The uniqueness follows imm-

ediately from the parallelogram law. If p 6¼ 2 we reduce these cases to p ¼ 2 because of
each function f 2 Hp

a ð�Þ has a decomposition f ðzÞ ¼ BðzÞ½hðzÞ�2=p, where B is the
Blaschke product associated with the zeros of f and h 2 H2

a ð�Þ with k f kpp ¼ khk22
(see [7], p. 96). g

It is very well known that the density of the space of polynomials in Lpð�Þ can also be
characterized in terms of the Szegö condition for �. Hpð�Þ ¼ Lpð�Þ if and only if � 62 S

(it is an immediate consequence of Geronimus and Weierstrass theorems and the fact
that continuous functions are dense in Lpð�Þ). For Sobolev spaces (p ¼ 2) look at
[18]. On the other side is the characterization of Hpð�Þ for � 2 S. The following
theorem is very well known but we only found a reference for 1 � p � 1 (see [5] and
page 22 in [16]).
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THEOREM 5 If we assume � 2 S, then Hp ð�Þ ¼ KpH
p � Lps ð�Þ. This means that there

exist unique functions ~ff , fs such that f ¼ Kp ~ff þ fs, ~ff 2 Hp, and fs 2 L
p
s ð�Þ.

Proof Set g 2 Hpð�Þ. Then g 2 Lpð�Þ and g ¼ g1 þ g2 with g1 2 L
p
að�Þ and g2 2 L

p
s ð�Þ.

We must prove that either g1 2 KpH
p or that g1=Kp 2 H

p. It is enough to prove that
there exists fjng, jn 2 H

p such that kjn � g1=Kpkp�!0. Since g2Hpð�Þ there exists a
sequence of polynomials fhng such that, khn�gkp,��!0. Hence, with z¼ ei�,

Z
hnðzÞ

KpðzÞ
�
g1ðzÞ

KpðzÞ

����
����pdmð�Þ ¼

Z
jhnðzÞ � g1ðzÞj

p �0ð�Þ

jDpð�, 0Þj
p dmð�Þ

¼

Z
jhnðzÞ � gðzÞjp

�0ð�Þ

jDpð�, 0Þj
p dmð�Þ �

hn � g

Dpð�, 0Þ

����
����p
p,�

�! 0,

and jn ¼ hn=Kp 2 H
p for each n. The uniqueness of the representation follows immedi-

ately from the factHp
a ð�Þ \ L

p
s ð�Þ ¼ 0. Hence, we have proved one of the inclusions. We

are going to see that KpH
p � Hpð�Þ. Consider f ¼ Kp ~ff with ~ff 2 Hp. Then there exist

polynomials hn such that

k ~ff � hnkp ! 0 ¼) kKp ~ff � Kphnkp,� ! 0,

and because of Kphn 2 H
pð�Þ, we get f 2 Hpð�Þ.

Now set f 2 Lps ð�Þ. As �s 62 S, there exist polynomials Qn such that

k f �Qnk�s, p ! 0: ð7Þ

Moreover, because of Qn=Kp 2 H
p, there exists a sequence of polynomials fhng such

that

Qn

Kp
� hn

����
����
p

! 0 () kQn � Kphnk�a, p ! 0: ð8Þ

Combining (7) and (8) with

k f �Qn þ Kphnk�, p ¼ k f �Qnk�s, p þ kQn � Kphnk�a, p,

the proof is concluded. g

The last auxiliary result that we need is

LEMMA 2 (see [3], p. 21) Let ’n,’2L
p, 0<p<1. If ’nðxÞ!’ðxÞ a.e. and k’nkp!k’kp,

then k’n�’kp!0:
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3. PROOF OF NEWMAN AND KELDYSH EXTENSIONS

Proof of Theorem 1

Proof First, we consider the case � ¼ m, the Lebesgue measure.

(a) It is easy to see that the theorem holds for 1 < p < 1. From (i) and (ii) we obtain
limn!1 kð fn þ f Þ=2kp ¼ k f kp, so, because of the uniform convexity of Lp,
1 < p < 1, (or Clarkson inequalities, see [2], p. 3) we get k fn � f kp ! 0.

(b) Let us consider 0 < p � 1. We can suppose that f is not identically 0. Otherwise the
proof of our theorem is trivial, since k fnkp�!k f kp ¼ 0.

(c) From Lemma 2, if (i) holds and for any 	 � N, there exists 	0 � 	 such that
limn fnðzÞ ¼ f ðzÞ, a:e:, n 2 	0, then we have (3).

(d) If fnðzÞ 6¼ 0 holds for n � N0 and z 2 D, then according to Hurwitz’s theorem also
f ðzÞ 6¼ 0 holds in D. So we can fix a branch for wp=2 such that hn ¼ f p=2n and
h ¼ f p=2 with hn, h 2 H

2, khnk
2
2 ¼ k fnk

p
p, khk22 ¼ k f kpp, lim hn ¼ h uniformly on

each compact subset of D, and lim khnk2 ¼ khk2. This means (i) and (ii) hold for
hn and h in H2. Therefore, from (a) we have (3). Then according to the Riesz the-
orem, there exists 	�N such that limn2	hnðzÞ¼hðzÞ, a:e:, hence limn2	 fnðzÞ¼ f ðzÞ,
a.e. and from (c) we have (3).

(e) If fn can be 0 in D, then fn ¼ Bnhn where hn is a zero-free function in Hp,
khnkp ¼ k fnkp, and Bn is a Blaschke product so Bn 2 H

1. Then fBng and fhng
are uniformly bounded in each compact subset of D. Hence, from the Montel
theorem there exists a subsequence 	1 � N such that limn2	1

hnðzÞ¼hðzÞ, h2H
p,

and limn2	1
BnðzÞ¼BðzÞ hold uniformly on each compact subset of D. Otherwise,

khkp� limsupkhnkp¼ limsupkfnkp¼kf kp, while kf kp�khkpkBk1 and kBk1�

limsupkBnk1¼1. Thus, khBkp¼khkp, and as a consequence jBðei�Þj¼1, a.e.
Then limnkhnkp¼khkp and limnkBnk2¼kBk2. Then from (d), there exists 	2�	1

such that limn2	2
hnðzÞ¼hðzÞ, a:e: and from (a) limn2	2

BnðzÞ¼BðzÞ, a:e:, hence
limn2	2

fnðzÞ¼ f ðzÞ, a:e: and from (c) the theorem is proved.

Now, in order to complete the proof it is enough to see that the functions ~ffn and ~ff hold
the assumption of theorem with Lebesgue measure. g

Remark 1 Theorem 1 was setting by Newman (see [14]) for the cases p ¼ 1 and � ¼ m,
the Lebesgue measure. This theorem gives an alternative look for the uniform convexity
of the Hpð�Þ spaces.

Proof of Theorem 2

Proof The sketch of the proof is the following. First, we will prove the theorem for
Lebesgue measure and � ¼ 6 0 in two steps: p ¼ 2 and p 6¼ 2. Second, we consider a gen-
eral � 2 S and again � ¼ 6 0. Finally, we prove the general case.

(A) Set � ¼ m, p ¼ 2, and � ¼ 6 0. Notice that in this case Dpð�, zÞ � 1.
From the monotonicity of the means and triangular inequality, we get

j fnð0Þ þ 1j � k fn þ 1k2 � k fnk2 þ k1k2. Hence limn!1 k fn þ 1k2 ¼ 2. Now, using
the parallelogram law, we obtain limn!1 k fn � 1k2 ¼ 0, this is (b).
The statement (a) follows immediately from Cauchy formula and Hölder
inequality.

434 M. BELLO HERNÁNDEZ et al.
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(B) Now let us consider p 6¼ 2 and again � ¼ m, and � ¼ 6 0. Using again the factoriza-
tion theorem for Hp, we get that there exists Bn 2 H

1, more precisely, Blaschke
products, and hn 2 H

2, such that

fnðzÞ ¼ BnðzÞhnðzÞ
2=p

¼
BnðzÞ

Bnð0Þ
ðBnð0Þ

p=2hnðzÞÞ
2=p and k fnk

p
p ¼ khnk

2
2:

We are going to see that �hhnðzÞ ¼ Bnð0Þ
p=2hnðzÞ 2 H

2 holds the conditions studied
in (A).

1 ¼ lim
n!1

j fnð0Þj
p=2 ¼ lim

n!1
jBnð0Þ

p=2hnð0Þj � lim
n!1

kBnð0Þ
p=2hnk2

¼ lim
n!1

jBnð0Þj
p=2khnk2 ¼ lim

n!1
jBnð0Þj

p=2 � 1,

because jBnðzÞj ¼ 1 if jzj ¼ 1 and from the Maximun Principle the inequality
follows.

Hence

lim
n!1

jBnð0Þj
p=2 ¼ 1, ð9Þ

and we obtain limn!1 k �hhnk2 ¼ 1. Then, from the previous case, we have (a) and (b)
for �hhn. The same holds for �BBnðzÞ ¼ BnðzÞ=Bnð0Þ

� �
, �BBn 2 H

1 � H2. Hence f �BBng
holds (a) and (b). Then, we have (a) for fn.
It remains to see that (b) holds. Since (b) holds for �hhn and �BBn, there exists fnjg � 	
such that

lim
j

�hhnj ðzÞ ¼ 1, a:e: and lim
j

�BBnj ðzÞ ¼ 1, a:e:

Using Lemma 2 the proof of this case is completed.
(C) In this step we consider a general � 2 S and again � ¼ 6 0. The main idea is to apply

the previous argument to ~ffn. In fact,

lim
n!1

k fnk
p
p,� ¼ lim

n!1
kKp ~ffnk

p
p,�a

þ k fn, sk
p
p,�s

¼ Dpð�, 0Þ
p,

and this yields

lim sup
n!1

kKp ~ffnk
p
p,�a

� Dpð�, 0Þ
p:

Then

lim sup
n!1

Z
jKpðe

i�Þ ~ffnðe
i�Þjp�0ð�Þ dmð�Þ

¼ Dpð�, 0Þ
p lim sup

n!1

Z
j ~ffnðe

i�Þjpdmð�Þ � Dpð�, 0Þ
p,
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hence lim supn!1 k ~ffnk
p
p � 1. From the case analyzed above, we get limn!1

~ffnðzÞ ¼ 1
uniformly on compact subsets of D and limn!1 k ~ffn � 1kp ¼ 0. Therefore
limn!1 k ~ffnkp ¼ 1 and limn!1 kKp ~ffnkp,�a ¼ Dpð�, 0Þ. Thus limn!1 k fn, skp,�s ¼ 0
and as a consequence

lim
n!1

k fn � Kpk
p
p,� ¼ lim

n!1
k fn � Kpk

p
p,�a

þ k fn � Kpk
p
p,�s

� �
¼ lim

n!1
kKp ~ffn � Kpk

p
p,�a

þ k fn, sk
p
p,�s

� �
¼ lim

n!1
Dpð�, 0Þ

p
k ~ffn � 1kpp þ k fn, sk

p
p,�s

� �
¼ 0:

(D) Finally, we prove the general case.
Let fn ¼ Kp ~ffn þ fn, s with ~ffn 2 H

p and k fnk�, p � kKp ~ffnk�, p. Then lim supn!1

k ~ffnkp � 1=
Q

jzij
p from (iv). We are going to see that all convergent subsequence

of ~ffn, converges to the same limit, uniformly on each compact subset of D.
Let ~ff be a limit function. From (ii), ~ff is zero on zi, ~ff 2 Hp and k ~ff kp � 1=

Q
jzij

p.

~ff ðzÞ ¼
Y z� zi

z �zizi � 1

zi

jzij
2

Y z� wi

z �wiwi � 1

wi

jwij
2
hðzÞ,

where fzig, fwig are zeros of ~ff , h is a zero-free function in Hp, hð0Þ ¼ 1, and
k ~ff kp ¼

Q
ð1=jzij

pÞ
Q
ð1=jwij

pÞkhkp. So khkp � 1 and, as a consequence, h � 1. Therefore,
the set fwig is empty and ~ff ðzÞ ¼

Q
ððz� ziÞ=ðz �zizi � 1ÞÞðzi=jzij

2Þ. Moreover, we have
limn!1

~ffnðzÞ ¼ ~ff ðzÞ uniformly on each compact subset of D and k ~ffnkp � k ~ff kp.
Then from Theorem 1, we obtain limn!1 k ~ffn � ~ff kp ¼ 0 and this is the same that
limn!1 kKp ~ffn�Kp ~ff kp,�a¼0. In particular, limn!1kKp ~fnfnkp,�a¼kKp ~ff kp,�a¼ð1=

Q
jzij

pÞ�

Dpð�,0Þ, and then limn!1kfnkp,�s¼0. Therefore, we obtain (b). g

Remark 2 For the cases � ¼ m and� ¼ 6 0, Theorem 2 was setting by Keldysh (see [6]).

Remark 3 Newman and Keldysh theorems do not hold in H1 as the following
example shows. Set fnðzÞ ¼ ðnzþ n� 1Þ=ðnþ ðn� 1ÞzÞ. It is easy to check that
fn 2 H

1, k fnk1 ¼ 1, and limn!1 fn ¼ 1, uniformly on each compact subset of D,
but k fn � 1k1 6! 0.

4. ASYMPTOTICS FOR EXTREMAL SOBOLEV POLYNOMIALS

Proof of Theorem 3

Proof (i) ) (ii)
We are going to prove that limn!1 	n, �0,...,�k, p=n

k ¼ Dpð�k, 0Þ > 0: Obviously
	n, �0,...,�k, p � kPðkÞ

n kp, �k � nðkÞ	n k, �k, p, with nðkÞ ¼ nðn� 1Þ � � � ðn� kþ 1Þ. As �k
satisfies the Szegö’s condition, from the Geronimus theorem we obtain
limn!1 	n k, �k, p ¼ Dpð�k, 0Þ. Thus
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lim inf
n!1

	n,�0, . . . ,�k,p

nk
� lim inf

n!1

nðkÞ	n k,�k, p

nk

¼ lim inf
n!1

	n k,�k, p ¼ Dpð�k, 0Þ:

Now we prove

lim sup
n!1

	n, �0,...,�k, p

nk
� Dpð�k, 0Þ: ð10Þ

First, we consider p � 1. Let Qn be the monic polynomial of degree n minimizing
the norm k � kp;�k ; since we are on T and using Minkowski’s inequality, we get

	nþm;f�jg;p �
Xk
j¼0

kðzmQnÞ
ð jÞ
kp;�j ¼

Xk
j¼0

Xj
i¼0

j

i

 !
ðzmÞðiÞðQnÞ

ð j iÞ

�����
�����
p;�j

� ðmÞkkQnkp;�k þ f ðnÞoðmkÞ:

Dividing these inequalities through by mk and taking limits (first, m! 1, and
then n! 1) we obtain (10).

Second, if 0 < p < 1, then relation (10) follows easily. Indeed, we can assume
�kð½0, 2�ÞÞ ¼ 1, because

	n,�0,...,�k, p ¼ k�kk	n,�0=k�kk,...,�k=k�kk, p:

Moreover, notice that if � is a probability measure then from Jensen’s inequality
we have 	n,�0,...,�k, p � 	n,�0,...,�k, 1: Then we get (10) for 0 < p < 1 from the corre-
sponding relation for p ¼ 1.

(ii) ) (i)

Set k ¼ 1 and assume that �1 does not satisfy the Szegö’s condition. Then from the
Geronimus theorem limn!1 	n, �1, p ¼ 0. For a fixed � > 0, there exists n0ð�Þ such
that for n � n0ð�Þ the set

fQ: QðzÞ ¼ zn þ � � � , kQkp, �1
� �g

is non empty. For each n � n0 we consider the extremal problem:

n,�0,�1, pð�Þ ¼ inf
n
kQkp,�0

þ kQ0kp,�1
: QðzÞ ¼ zn þ � � � , kQkp,�1

� �
o
:

It is obvious 	n, �0, �1, p � n, �0, �1, pð�Þand through the sameargumentasbefore, forn
large enough we have nþn0, �0, �1, pð�Þ � n0, �0, �1, pð�Þ þ n�. Hence, we have
lim supn!1ð	n, �0, �1, p=nÞ � lim supn!1ðn, �0, �1, pð�Þ=nÞ � �, and this is a contra-
diction.
Now by induction we obtain the general case.
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(i) ) (iii)

If Q is a polynomial of degree n, then Q ðzÞ ¼ znQð1= �zzÞ and if jzj ¼ 1, then
jQðzÞj ¼ jQ ðzÞj. So

	n, �0,...,�k, p � kðPðkÞ
n Þ

 
kp, �k � nðkÞDpð�k, 0Þ:

Hence

lim
n!1

ðPðkÞ
n Þ

 

nk

����
����
p, �k

¼ Dpð�k, 0Þ:

Therefore, the sequence of functions fðPðkÞ
n ðzÞÞ =nkg holds the hypothesis of

Theorem 2, and hence (iii) is proved.

(iii) ) (ii)

From (iii) we have

lim
n!1

Z
PðkÞ
n ðzÞ

nkzn k

����
����
p

�0
kð�Þdmð�Þ ¼

Z
�

1

�zz

� ������
�����
p

�0
kð�Þdmð�Þ > 0:

On the other hand

	n, �0,...,�k, p � kðPðkÞ
n Þ

 
kp, �k �

Z
PðkÞ
n ðzÞ

zn k

����
����
p

�0
kð�Þdmð�Þ

� �1=p

:

Hence

lim
n!1

	n, �0,...,�k, p

nk
�

Z
PðkÞ
n ðzÞ

nkzn k

����
����
p

�0
kð�Þdmð�Þ

� �1=p

> 0:

g

Proof of Theorem 4

Proof Let us consider l ¼ k� 1 and assume �k 1,�k 2 S. By definition
	n, �0,...,�k, p=n

k � kðPðk 1Þ
n Þ

 
kp, �k 1

=nk þ kðPðkÞ
n Þ

 
kp, �k=n

k: Because of �k 2 S, from (ii) in
Theorem3weget limn!1 kPðk 1Þ

n =nkzn kþ1kp, �k 1
¼ 0:Hence, using�k 1 2 S, theCauchy

integral formula, and Hölder inequality, we obtain limn!1 Pðk 1Þ
n ðzÞ=nkzn kþ1 ¼ 0, uni-

formly on each compact subset of E. Thus limn!1ðPðk 1Þ
n ðzÞ=nkzn kþ1Þ

0
¼ 0: Taking into

account ðn� kþ 1ÞPðk 1Þ
n ðzÞ=nkzn kþ2 ¼ PðkÞ

n ðzÞ=nkzn kþ1 � ðPðk 1Þ
n ðzÞ=nkzn kþ1Þ

0, for
l ¼ k� 1 (6) follows if it holds for l ¼ k,
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lim
n!1

Pðk 1Þ
n ðzÞ

nk 1zn kþ1
¼ lim

n!1

ðn� kþ 1ÞPðk 1Þ
n ðzÞ

nkzn kþ1

¼ lim
n!1

PðkÞ
n ðzÞ

nkzn k
� z

Pðk 1Þ
n ðzÞ

nkzn kþ1

� �0

¼
Dpð�k, 0Þ

Dpð�k, 1= �zzÞ
:

Repeating this reasoning, we obtain the corresponding results for all l, with
j � l � k. g

Other extremal problems can be considered. For example, let 0 < p0, p1, . . . , pk < 1

and �0, �1, . . . ,�k be positive Borel measures in ½0, 2�Þ, set

inf
Xk
j¼0

kQð j Þkpj ,�j : QðzÞ ¼ zn þ � � �

( )
, or

inf
Xk
j¼0

kQð j Þkp,�j

 !1=p

: QðzÞ ¼ zn þ � � �

8<
:

9=
;:

Of course, similar asymptotic results for the corresponding extremal polynomials can
be proved.
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