SOFTWARE AND PERFORMANCE

MEASURES FOR EVALUATING

MULTI-AGENT FRAMEWORKS

DAVID CAMACHO and RICARDO ALER

Universidad Carlos ITI de Madrid, Computer Science Department, Avenida de la
Universidad n°® 30, 28911, Leganés (Madrid), Spain

email: dcamacho@ia.uc3m.es, aler@Qinf.uc3m.es

Abstract. Nowadays, multi-agent frameworks allow to implement very
complex systems by means of agent technology. However, this complez-
ity makes more difficult to evaluate software and runtime characteristics
of Multi-Agent Systems (MAS). Our aim is to define and study some
quantitative measures to measure MAS aspects like development time,
reusability, scalability, etc. These measures could be used by engineers to
guide the selection among several MAS frameworks. Our study has been
carried out in several MAS frameworks like JADE, JATLITE, SKELET-
ONAGENT, and ZEUS, which have been used to build a MAS application

for news retrieval.

1 Introduction

The evolution of the Web, the Semantic Web [Berners-Lee et al.2001], and new

computing environments like the Grid have made available a huge amount of

Cita bibliográfica
Published in: Applied Artificial Intelligence. The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies 2005, vol. 19, n. 6, p. 645-657

data and the possibility to use multiple interconnected computers to solve a
problem A popular approach to build distributed systems is the agent-based
oriented programming approach, taking advantage of characteristics of agents,
such as robustness, adaptability, scalability, and autonomy Currently, there are
many frameworks that help engineers to build multiagent systems However,
there is little guidance to choose among them because of the lack of empirical

evaluations

The main contribution of this paper is to empirically study several software
and performance measures for MAS (and MAS frameworks) These measures are
development time and reusability in the MAS framework, and performance and
scalability of the MAS itself Development time and reusability measure how easy
it is to build a MAS in a particular framework We have studied performance
with respect to the complexity of the task given to the agents In order to focus
our empirical study, we have used several MAS frameworks (JADE, JATLITE,
SKELETONAGENT, and ZEUS) to build a particular application (news retrieval),
which has been subsequently tested We believe that the results obtained in this
study will be useful to other researchers that use these frameworks to build other

applications

The paper is structured as follows Section 2 describes the software and per-
formance characteristics that will be considered to obtain an evaluation for a
particular Multi-Agent System Section 3 describes briefly the main characteris-
tics of MAS frameworks we have used Section 4 explains in detail the Multi-

Agent System that has been implemented with these previous frameworks and

that will be used to evaluate the characteristics described in Section 2 Section 5
provides the empirical evaluation of the implemented MAS Finally, Section 6

summarizes the conclusions of the paper

2 Analysed MAS Characteristics

The purpose of this section is to define several characteristics that will be used
to evaluate empirically the behaviour of a particular agent-based system, and
the related framework used to build it Two different characteristics have been
taken into account On the one hand, the software building characteristics -
development time and reusability- of the MAS framework, measure how easy it
is to build an application within the framework They also depend on program-
mer’s experience On the other hand, the runtime characteristics, performance
and scalability, measure how well a MAS reacts to increased task complexity
and increased number of agents, respectively Our purpose is to study system

performance degradation with respect to these parameters

2.1 Software building characteristics

They are related with the software engineering phases and with the tools, or
frameworks, used to implement the system Therefore, these parameters evaluate
the implementation effort required from the designers and programmers The

selected characteristics are:

— Development Time This parameter includes both, the design and imple-

mentation effort, for the development of the first agent, and for the whole

MAS For the First Agent, the next phases will be considered (and mea-

sured):

o Analysis and Design Several characteristics are measured in this phase,
like the number of hours used by the engineers to analyze and design the
desired MAS for each technology This phase includes the time necessary
to analyse, and understand correctly the documentation provided by the
frameworks The time necessary to analyze other framework facilities

like programming API, or CAD tools are included too

o Code generation for the first agent It measures the time needed by en-
gineers to implement the new agents characteristics, or roles, that have

been defined in the previous phase

o Integration with external code It evaluates the effort to integrate the
previous code (that implements a specific ability) in the agent There-
fore, the time required to modify the (generic) agents provided by the
frameworks to build the specialized agents is measured

o Tests and debugging Time necessary to test and debug the problems
that could appear until the system works correctly (using the minimum

set of agents necessary to work)
e For the rest of the agents, the time to achieve the next phases will be

considered:

x To generate the code (specific skills or abilities) for the new agents

* To integrate, test, and debug the new code

— Software Reusability Three software parameters will be measured The
LOC (lines of code), the new Java classes and the number of reused classes
that are necessary to build the new agents in the system These characteris-

tics measure the programming effort for the technologies evaluated

2.2 Runtime characteristics

Once a Multi-Agent system is fully deployed, several experimental tests can
be defined to measure important characteristics like robustness or scalability in
the system This subsection analyzes the selected characteristics to measure the

behavior of any MAS

— Performance evaluation This performance evaluation is used to test a
simple MAS with the minimum set of agents that allow the system to work
correctly The following parameters will be measured for each framework:

e Response (request) time This is the time the user has to wait until the
MAS has finished its task This depends on the complexity of the task
given to the agents

o Number of Messages The number of exchanged messages between the
agents during the run This is an important characteristic in MAS, be-
cause the behavior the whole system could be affected if the number of
messages grows quickly, or if these messages are not correctly managed

— Scalability evaluation The number of agents involved in the implemented
MAS will be increased to test how scalable is the system when a particular

MAS framework is used From the same experimental sets used in previous

performance evaluation, the number of agents will be increased Only the
response time will be measured to obtain a quantitative measure about the

scalability of the system

3 Multi-Agent Frameworks Description

Nowadays, there are many MAS frameworks that help in all the different design
and implementation phases of this type of systems Several design decisions, like
the agent architecture, the communication technology used, or how to define the
behavior of those agents, will finally affect the behavior of the whole system
This section describes briefly the main characteristics of several MAS frame-
works All of them provide the programmer with Java classes to be reused and

also have some graphical capabilities

3.1 Jade

JADE (Java Agent DEvelopment framework) [Bellifemine et al.2001], [Bellifemine et al.1999],
developed by Multimedia Technologies and services of Cselt (http://sharon cselt it/

projects/ jade), is a software framework that simplifies the implementation

of MAS through a middle-ware that complies with the FIPA specifications
(http://www fipa org/ specifications/ index html) The JADE agent platform

tries to keep high the performance of a distributed agent system implemented

with the Java language Any application implemented using Jade uses the plat-

form concept, all the agents are run inside a set of containers that provides

the communication between them The “Jade Agent Platform” includes next

mandatories agents (to be FIPA compliant) that manage the platform, that is:

— The Agent Management System (AMS), is the agent that exerts supervi-
sory control over access to and used of the platform (it is responsible for
authentication of resident agents and control of registrations)

— The Agent Communication Channel (ACC) is the agent that provides the
path for basic contact between agents inside and outside the platform (it is
the default communication method)

— The Directory Facilitator (DF) is the agent that provides a yellow page

service to the agent platform

The architecture of a Jade Agent platform is built using a set of “agent
containers”, each agent container is an RMI server object that locally manages a
set of agents It controls the life cycle of agents by creating, suspending, resuming
and killing them When this tool is selected to build the MAS, it has both

advantages and disadvantages that could be summarized as:

— Jade does not have a powerful programming environment This framework
only provides to the user a set of interfaces for debugging
— One of the best characteristics in Jade is that it has an excellent documen-

tation, and a good API to reuse the libraries

3.2 JATLite

JATLite [Jeon et al.2000,Petrie1996] (Java Agent Template Lite: java stanford edu/

java_agent/html), developed by Stanford Center for Design Research (http://

java stanford edu/), is a tool for creating agent-based systems JATLite is de-
signed to allow users to quickly create new software agents that can communi-
cate robustly over the Internet This framework includes a message router that
supports name and password mechanism that lets agents move freely between
hosts JATLite also provides a basic infrastructure in which agents register with
an Agent Message Router (AMR) using a name and a password JATLite pro-
vides a “template” for building agents that utilize a common high-level language
(KQML [Finin et al.1994]) and protocol This template provides the user with
a set of predefined Java classes that facilitate agent construction Those classes
are provided in layers (Protocol Layer, Router Layer, KQML Layer, Base Layer,
Abstract Layer) These layers build the JATLite API, so the developer can de-
cide what classes are needed for the agent General operations assumptions for a
JATLite agent are: TCP/IP based connections; Agent communication through
message passing, using the standard KQML language; One live connection for
each connected agent; and finally, a single address should be assigned to each

agent

3.3 SkeletonAgent

SkeletonAgent [Camacho et al.2005], developed by the Systems Complex and
Adaptive Laboratory (http:// scalab uc3m es/agente), is a software framework
toolkit that tries to wrap the ”agent concept” into a set of reusable libraries
The architecture of SkeletonAgent has been designed to allow the integration,

and cooperation, of classical Al techniques like planning, or machine learning,

into distributed and heterogeneous agent-based systems SkeletonAgent requires

a set of predefined agents:

— Control agents: the SkeletonAgent architecture is based in the ”team” con-
cept All the agents in the system belong to one team, which is managed by a
particular CoachAgent All of the CoachAgents are managed by a Manager-
Agent These agents manage different problems, like the insertion or deletion
of them in the system

— Execution agents: these agents are involved in solving the task It is possible
to define different kinds of agents, like User Agents (that deals with the users),
WebAgents (specialized in retrieving information from the Web), Learning

agents, or Planner Agents

The main disadvantages of this framework coud be summarized as:

— The framework does not have a graphical programming interfaces, and the

debugging of the agents is a hard task

— There is a poor documentation about the reusable libraries

However, the concept of agent is well encapsulated and it is possible to reuse
a lot of code The inter-agent communication in Skeleton implements a reduced
version of KQMIL This language provides to the system agents flexible proto-
cols that allows them to coordinate and to share information and tasks in a

cooperative way

3.4 The ZEUS Agent Building Toolkit

The main goal of ZEUS Toolkit [Azarami and Thompson2000,Collis et al.1998],
developed by BT Laboratories in the Advanced Applications & Technology De-
partment (http://www labs bt com/ projects/ agents/ zeus/ index htm), is to
facilitate the rapid development of new multi-agent applications by abstracting
into a toolkit the common principles and components underlying some existing
multi-agent systems Different assumptions are made when any software agent is
build using ZEUS, this assumptions trying to facilitate, and also to describe the
typical application domains of these agents ZEUS makes several assumptions
about the agents to be built The main assumptions made regarding the agent
behavior are that the agents are: deliberative, goal-directed and rational; always
truthful when dealing with other agents; versatile, i e they can have may goals
and can engage in a variety of tasks; and finally, temporally continuous The

MAS architecture defined by ZEUS uses the following type of agents:

— Agent Name Server (ANS) Any agent in the system can request to the ANS
for the address of other agents

— Facilitator Agent These kind of agents receive and reply to queries from
agents about the abilities of other agents They work by periodically querying
all the agents in the society about their abilities and storing the returned
information in their Acquaintance Database

— Generic Agents These agents perform different tasks and allow the system

to achieve the designed goals

10

The inter-agent communication in ZEUS language is used to communicate
with the Agent Name Server, the Facilitator and other agents The communica-
tion requires a shared representation and understanding of common domain con-
cepts, i e , a common ontology (ZEUS provides tools to create new ontologies)
The communication protocol used by the agents is TCP/IP and the language

supported is FIPA-ACL

4 SIMPLENEWS: A News Meta-Search Engine

This section describes the architecture of SIMPLENEWS [Camacho et al.2002]
SIMPLENEWS is a MAS implemented using several specialized agents that are
able to retrieve information from several Web sites This system has been im-
plemented using everyone of the frameworks described in the previous section,
and it will be used as a case study for the proposed software and performance
parameters of Section 2

SIMPLENEWS is a meta-search engine that allows, by means of a UserAgent,
to search for news in a set of electronic newspapers In this paper a simple topol-
ogy has been used (see Figure 1), where all of the Web agents solve the queries
sent by the UserAgent These agents can retrieve from the selected electronic
sources the requested news, filter the different answers from the Web sites, and
show them to the user As Figure 1 shows, SIMPLENEWS architecture can be

structured in several layers:

— UserAgent Interface This agent only provides a simple Graphical User Inter-

faces to allow users to request for news from the selected electronic papers

11

User
Agent
_Interface _ S ____

. ! 5 Y Control
: E | {\\53 : Control Agent| (Control Agent | | Agents
‘ i? [’&{@} - *>‘ 1 P : Layer

| @ | P

N

,,,4,,7) 77—1 77777777 ‘,,7,

i 1 \| Web

requests’ 1. — i [WebAgent 1] [WebAgent 2] [\NebAgent N]l Access
answers I | Layer
_.

I Retrieving | Retrieving 1
: Process : Process H

L
WORLD WIDE WEB |

= 5 B

Electronic Electronic Electronic
Source Source Source

Fig. 1. SIMPLENEWS Architecture.

The interface used by this agent allows to the user to know: The current
state of the agents (active, suspended, searching, finished) and the messages
them

— Control Access Layer Jade, JATLite, SkeletonAgent, or ZEUS, need to use
specific agents to manage, running or controlling the whole system (ie AMS,
ACC ,DF in Jade; AMR in JATLite; ANServer, Facilitator, Agent Viewer,
Society Viewer,. .. agentsin ZEUS; or Manager and CoachAgent in Skeleton-
Agent), this level represents the set of necessary agents (for each architecture
analyzed) that will be used by SIMPLENEWS to work correctly

— Web Access Layer This layer represents the specialized WebAgents which
retrieve information from the specific electronic sources in the Web The main
differences in this layer will be performed by the particular agent (internal)

structure provided by each MAS framework

The meta-search engine includes a UserAgent and six specialized WebAgents

The Web agents can be classified in the next categories:

12

1 Financial Information: specialized agents for the financial newspapers Ezpan-
sion (http:// www expansion es) and CincoDias (http://www cincodias es)

2 Sports information: Marca (http://www marca es) and Futvol.com (http://www futvol com)
sport newspapers

3 General information: El Pais (http://www elpais es) and El Mundo (http://www elmundo es)

newspapers

5 Experimental Evaluation

This section evaluates the four MAS frameworks (JADE version 2 5, JATLite
version 0 4, and ZEUS version 1 0 3 will be used) using the measures described
in Section 2 On the one hand, we show the development time and reusability for
implementing SIMPLENEWS with each of the frameworks On the other hand,

we evaluate the performance and scalability of the resulting MAS’s

5.1 Experimental Results: Software Characteristics

Table 1 provides the evaluation for the software characteristics Parameters:
Analysis&Design to CodelIntegration(M AS) are expressed in hours, whereas
parameters LinesofCode to N°ReusedClasses are expressed in lines of code,
and number of implemented /reused classes respectively Some initial conclusions
can be drawn from Table 1, SkeletonAgent obtains the maximum values for most
of the evaluated characteristics On the other hand, JADE and ZEUS get the

best values (in bold)

13

Table 1. Experimental results for qualitative parameters.

Parameter JADE JATLite Skeleton ZEUS
Analysis&Design 28 25 10 63
CodeGeneration(1*tagent) 12.5 25 30 12.5
CodelIntegration(1¥tagent) 12.5 15 30 14.5
Test&Debug 6 10 15 7
CodeGeneration(MAS) 2.5 3 3.5 2
Codelntegration(MAS) 2 2 2.5 2
LinesOfCode 1897 3199 14475 1354
NewdJavaClasses 9 11 20 13
N°ReusedClasses 11 13 14 11

5.2 Experimental Results: Runtime Characteristics

Two different experiments will be carried out to evaluate the runtime characte-
ristics in SIMPLENEWS On the one hand, to evaluate the performance for each
version of the system (RequestTime and N°Messages paremeters), a set of 50
queries to each architecture will be made (modifying the number of requested
news, from only one document to fifty documents), and the following variables

will be measured:

— Number of Web agents used: from only one Web agent, to six specialized
Web agents
— Response time that the UserAgent spent to answer the query (RequestT'ime

quantitative parameter)

14

— Number of messages exchanged among the agents (N*Messages quantita-

tive parameter)

The same queries will be made for every configuration The following tests

have been made, using the following configurations in SIMPLENEWS:

— Only one Web agent (the best news retriever)

— Two Web agents specialized in different electronic newspapers It has been
used an agent specialized in general information (FElPais-WebAgent), and
other agent specialized in financial information (Expansion- WebAgent)

— Three Web agents: ElPais- WebAgent, Expansion- WebAgent, Marca- WebAgent
(the best specialized agent in the different information sources)

— All the Web agents

Table 2 shows the results for both parameters As in the previous section,
this table shows two values: [current value/normalized value] for each evaluated
parameter The normalization of these parameters have been made as dependent
parameters Bold results appear in bold

Some conclusions can be drawn from Table 2 Minimum values correspond to
the Jade and Skeleton A gent frameworks whose implementations of SIMPLENEWS
obtain the better request time for the same experimental sets Both parameters,
RequestTime and N°Messages, are highly related, because when any frame-
work obtains the best evaluation in one of them, usually has the best evaluation
in the other ones Only for the last configuration (6 Web agents) this is not true,

although the values between Jade and SkeletonAgent frameworks are very closer

15

Table 2. Performance results for the runtime characteristics

(RequestTime/N°Messages).

N° agents Jade JATLite SkeletonAgent ZEUS

1 (113.8/35.2) (225.1/38.9) (136.3/35.7) (146.7/39.3)
2 (378.7/77.3) (468/75.4) (312.8/65.2) (383.6/74.8)
3 (659.6/108.4) (946.3/113) (412.6/98) (716.7/144.2)

6 (1323.9/185.1) (1093.1/253.3) (989.7/190) (1272.2/203.8)

On the other hand, the second experiment has been carried out to evaluate the
scalability of the four versions of SIMPLENEWS In this experiment the same 50
queries have been used Also, only the best Web agent will be present, although
it will be cloned up to 100 times for the scalability study The set of agents will
be distributed in several computers (up to 8 Pentium 700MHz) Ten agents is the
maximum number of (Web) agents that will be executed on a single computer
In the last (and more complex) experiment, an average of fifteen (Web) agents

per computer will be used, until one hundred of Web agents are working

In this experiment the same query is sent to all the agents, no selection of
news is made by the user agent (because all the agents obtain the same results),

therefore only the request time is measured It is shown in Table 3

In this experiment we can see how the best results are obtained by JADE,
JATLite and SkeletonAgent However, the most important question is the pro-
blem about the scalability of those systems Only two frameworks, JADE, and

SkeletonAgent, are able to execute the maximum number of agents JATLite

16

Table 3. Experimental results for the runtime characteristic: RequestTime.

N° agents Jade JATLite SkeletonAgent ZEUS

1 113.8 225.1

6 1323.9 1093.1

10 879.67 1126

20 1607 1544.7

30 2603.7 1762.3

40 2379.23 2292.3

50 1934.5 1374.7

100 110.3 -

136.3

989.7

881.34

1558.2

1689.6

2197.4

1462.2

1201.4

146.7

1272.2

898.7

1585.7

1763.3

obtains generally better results and only in the last experiment the AMR agents

is not able to manage all the messages, this problem could be solved using more

than one AMR agent because this is allowed in the architecture (to avoid the

communication overload in one AMR agent) However, in this test only a simple

configuration were used for all the frameworks Finally, the ZEUS framework is

not able to execute more than thirty agents Also, the agent architecture pro-

vided by this framework, and specially some of the provided libraries (used to

parse the contents of the messages), presents some problems when special char-

acters are detected Usually, when the number of messages is increased, or special

characters are retrieved from Web pages, the system goes down and this affects

directly to the robustness of the ZEUS-based system

17

6 Conclusions

In this paper, we have tested several MAS frameworks (JADE, JATLITE, SKELE-
TONAGENT, and ZEUS) by measuring software and performance characteristics
in a news Web retrieval domain The software characteristics refer to the build-
ing of the MAS itself, and are related with the development time and reuse
facilities provided by the MAS framework The performance (and scalability)
characteristics measure how well the MAS reacts to increased task complexity
and increased number of agents Our study highlights the differences between
the frameworks used

Some frameworks like JATLite or SkeletonAgent have been designed and
implemented to work in a particular type of domains (i e Internet), this char-
acteristic could affect the results if the domain is changed Also, it would be
interesting to test more domains, using the same measures, so that engineers
can choose the right framework for their applications In the future we would

like to extend this study to more frameworks and domains

References

[Azarami and Thompson2000] N. Azarami and S. Thompson. Zeus: A toolkit for build-
ing multi-agent systems. In Proceedings of Fifth annual Embracing Complexity Con-
ference, April 2000.

[Bellifemine et al.1999] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa.
Jade - a fipa-compliant agent framework. In Proceedings of the Conference on Prac-

tical Applications of Agents and Multi-Agents (PAAM’99), pages 97-108, April 1999.

18

[Bellifemine et l.2001] Fabio Bellifemine, Agostino Poggi, and Giovanni Rimassa. De-
veloping multi-agent systems with a fipa-compliant agent framework. Software -
Practice And Ezperience, (31):103-128, 2001.

[Berners-Lee et al.2001] Tim Berners-Lee, James Hendler, and Ora Lassila. The se-
mantic web. Scientific American, May 2001.

[Camacho et al.2002] David Camacho, Ricardo Aler, César Castro, and José M.
Molina. Performance evaluation of Zeus, Jade and SkeletonAgent frameworks. In
Proceedings of the IEEE Systems, Man, and Cybernectics Conference (SMC-2002),
Hammamet, Tunisia, October 2002. IEEE.

[Camacho et al.2005] David Camacho, Ricardo Aler, Daniel Borrajo, and José M.
Molina. A multi-agent architecture for intelligent gathering systems. AI Communica-
tions. The European Journal on Artificial Intelligence. Ed. by IOS Press., To appear
in 18(1), 2005.

[Collis et al.1998] J. Collis, D. Ndumu, Hyacinth S. Nwana, and L. Lee. The zeus agent
building tool-kit. BT Technology Journal, 16(3):60-68, 1998.

[Finin et al.1994] Tim Finin, R. Fritzson, D. Mackay, and R. McEntire. Kqml as an
agent communication language. In Proceedings of the Third International Conference
on Information and Knowledge Management (CIKMY4), pages 456-463, Gaithers-
burg, Maryland, 1994. New York: Association of Computing Machinery, ACM Press.

[Jeon et al.2000] Heecheol Jeon, Charles Petrie, and Mark R. Cutkosky. Jatlite: a java
agent infrastructure with message routing. IEEE Internet Computing, 4(2):87-96,
April 2000.

[Petrie1996] Charles Petrie. Agent-based engineering, the web, and intelligence. IEEE

Ezpert, 11(6):24-29, December 1996.

19

