





REMARK 4.1. The statistic Q4 is defined as @, but using a truncated version of the RA-
estimators. A precise definition of Q4 is given in (6.1.5) of the Appendix.

REMARK 4.2. We have only been able to prove Theorem 4.1 in the AR(p) case. However
we conjecture that the result is also valid for the ARMA(p, ¢) model. The only part of the
proof which is not valid for an arbitrary stationary ARMA(p,q) model is Proposition 6.2.3

and (6.2.46).

REMARK 4.3. Assumption B(ix) used in Theorem 4.1 is very restrictive. It is satisfied by the
Wilcoxon scores generating function, J;(u) = 2u~1, but not by the Normal scores generating
function. J;(u) = @ (u). The only part of the proof where this assumption is used 1s also
Proposition 6.2.3 and (6.2.46). However, according to our Monte Carlo results we conjecture

that Theorem 4.1 holds under weaker conditions which include Jy(u) = Jo(u) = $~'(u).

5. THE MONTE CARLO STUDY

5.1. Description of the Study. The behaviour of the @;, Q3 and Q; statistics has been
studied for the AR(1) and MA(1) models without outliers (purely Gaussian) and with add:-
tive outliers. The AR(1) and MA(1) additive outlier models used in this Monte Carlo study

assume that the observations (Z,,..., Zr) satisfy
(5.1) Zi=W,+V, 1<t<T
For the AR(1) model W; in (5.1) are given by
Wi=oW,.;+U;, 1<t<T,
and for the MA(1) model
Wy=-0Ui_,+U; 1<t<T

where the U; are ii.d. random variables with distribution N(0,1). The variables V;,
1 <t <T are i.id. with distribution

H = (1-¢)by+ ¢ N(O, %)

where §; is the distribution which assigns probability 1 to the origen. Then a fraction 1 —«¢
of the time Z; coincides with the Gaussian model W; and the rest of the time Z; is equal to
W, plus some Gaussian noise V;. The purely Gaussian case corresponds to ¢ = 0.

For each model three values of ¢ (0;0.05; 0.10) and three values of 7 (3;10; 20) have been
investigated. The Q5 statistic considered is based on RAR-estimators with J; = J;. This
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common function is called J. Two J-functions: (i)J(u) = ®~!(u), (ii) J(u) = 2u — 1, have
been considered. These Q3 statistics have been compared to @, with Mallows type n(u,v)
and Huber ¥ functions

vR,c(u) = sign(u) min(ju|, ¢),

for 2 values of the tuning constants c: 1.65, 1.34. These values of ¢ were chosen so that, under
the purely Gaussian ARMA model, the corresponding RA-estimators have approximately
the same efficiency as the selected RAR-estimators. The scale parameter was estimated by
the median of ([Up41l,. ... |[Ur|)/0.6745.

The proportion of Q;, @, and Q; values exceeding three nominal levels (0.01:0.05;0.1)
of the x2,_, distribution has been studied. Also the empirical mean and variance of each
statistic have been obtained. The AR(1) cases with ¢ = 0.5 and 0.8 and the MA(1) cases
with @ = —0.5 and —0.8 were investigated.

Moreover, the empirical power of @1, @2 and Q; was studied when the actual model
was AR(2) or M A(2) but was identified as AR(1) or M A(1) respectively. Two second-order
autoregressions were considered. The first one (¢; = 0.5 and ¢; = 0.28) was chosen so that
the empirical power of Q; was near 0.5. For the second one (¢; = 0.5 and ¢2 = 0.38) the
empirical power was near 0.8. Also two second-order moving averages were studied. The
first one (6, = 0.5 and 8, = 0.32) was chosen so that the empirical power of Q; was near
0.5. For the second one (; = 0.5 and 83 = 0.5) the empirical power was near 0.8. Two
nominal levels of significance (0.05;0.1) were examined.

There were performed 500 replications, with sample size 100 and m = 3. Several rou-

tines given in Press, Flannery, Teukolsky and Vetterling (1986) were used: RAN1 (random
number generator), GASDEV (Standard Normal generator), RANK (rearrengement of an
array) and ZBRAK (bracketing of a root). The computer programmes where written in
FORTRAN and performed in an IBM 3032 at the Centro de Estudios Superiores para el
Procesamiento de la Informacién (CESPI), Universidad de La Plata.
5.2. Discussion of the results. For the AR model and ¢ = 0.5 Table 1 shows that the
significance levels of @1, Q3 and Q; were not very much disturbed by additive outliers.
However, for 7 = 10 and 7 = 20, the empirical variances were significatively different from
its asymptotic value 14. For Q; this difference was larger. The results for the other additive
outlier models are not reported here because they are qualitatively similar to those given.

If $ = 0.8 Tables 2 and 3 show for the AR model that under the purely Gaussian
model the distributions of @, Q, and Q, were reasonably approximated by the asymptotic
theory. However, if there were outliers the y? is a poor approximation for the @, statistic’s
distribution. On the other hand for 7 = 3 and ¢ = 0.05 the significance levels of Q2 and @,
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were similar to the nominal levels in all cases. Furtherfor r =3, ¢ =0.10; 7 =10, ¢ =0.05
and 7 = 20, ¢ = 0.05 the significance levels of @, (¢ = 1.34) and @Q; (J(u) = 2u — 1) were
closer to the nominal levels than the significance levels of the other statistics considered.

For the MA model and 8 = —0.5 the conclusions related to the significance levels are
similar to those of the AR model and ¢ = 0.5. Some of these results are shown in Table
4. Further for the MA model and § = —0.8 Table 5 shows the unstable behaviour of the
statistics considered .

In Tables 6 and 7 it can be seen that for the AR model under the purely Gaussian
model the powers of Q, (¢ = 1.65, ¢ = 1.34) and Q5 (J(u) = ®~(u), J(u) = 2u — 1) were
similar to that of Q,. For additive outliers model with 7 = 10 and 7 = 20 the power of @,
is significantly lower than Q; (¢ = 1.65, ¢ =1.34) and @; (J(u) = & (u), J(u)=2u-1).
Further the powers of @3 and Q; were insensitive to departures from normality of the U}s.

Finally Table 3 shows that for the MA model the power is more sensitive to additive
outliers than for the AR model in all cases. However the powers of Q3 (¢ = 1.63, ¢ = 1.34)
and @; (J(u) = ®~!(u), J(u) = 2u — 1) are significatively higher than those of @, mainly
for r = 10. :

REMARK 5.1. The stability of the significance levels of @, for ¢ = 0.5 and # = —=0.5 is in
accordance with Anderson and Walker (1964) who have shown that the asymptotic normality

of the residual autocorrelations does not require normality of the Ujs.

REMARK 5.2. The nonstandard contamination appearing in Li (1988) leads to different

conclusions than ours.



TABLE 1
Empirical means, variances and significance levels
of Q,, @2 and @3 for AR(1) model and ¢ = 0.5

e = 0.05

e=0 T=10 T =20
Nominal level Nominal level Nominal level
Test statistics Mean Var 005 0.10 Mean Var 005 010 Mean Var 005 010
N 6.75 1267 0.03 0.07 5.62 22.73 0.06 0.09 4.65 3001 0.06 0.09
Q2 (c=1.85) 662 12.10 0.03 0.07 7.02 14.72 005 0.10 7.12 1558 0.06 0.11
Q3 (J(u)=®'(u)) 680 1220 003 0.09 7.24 16.05 006 0.11 7.34 1758 0.07 0.11
Q2 (c=1.34) 663 1205 003 007 6.99 1428 005 0.10 7.04 14.71 006 0.10
Q@3 (J(u)=2u—1) 680 1211 003 0.08 7.15 1466 003 0.10 7.19 1514 005 0.11




TABLE 2
Empirical means, variances and significance levels
of @, @2 and @3 for AR(1) model and ¢ =0.3

01

e=0

T=3

e = 0.05

e =0.10

Nominal level

Nominal ievel

Nominal level

Test statistics Mean Var 005 0.10 Mean Var 005 0.10 Mean Var 0.05 0.10
N 6.86 1365 0.04 0.08 8.30 2137 009 017 9.33 28.25 0.16 0.25

Q3 (c=1.65) 6.73 1325 0.04 007 7.24 1527 006 0.10 7.78 1802 007 0.14
Q3 (J(w)=® Y u)) 639 13.35 004 0.08 7.50 1717 007 0.13 8.11 1920 008 0.16
Q2 (¢c=1.34) 6.77 1362 004 007 7.11 14.50 0.05 0.09 7.51 17.28 0.06 6.13
Q3 (J(u)=2u—-1) 6.93 14.15 004 0.09 7.22 1495 006 0.10 7.49 1549 006 0.12
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TABLE 3
Empirical means, variances and significance levels
of Qi, Q2 and Q3 for AR(1) model and ¢ =038

7=10 T=20

e =005 e=20.10 € =005 €e=0.10

Nominal level Nominal level Nominal level Nominal level

Test statistics Mean Var 005 0.10 Mean Var 005 0.10 Mean Var 0.05 0.10 Mean Var 0.05 0.10

(o 866 4048 0.16 0.21 8.08 29.83 014 0.20 6.49 4167 0.10 0.15 6.05 21.75 0.08 0.10

Q2 (c=1.65) 776 18.14 009 0.4 919 2421 013 023 795 1923 009 015 976 2585 0.17 027
Qs (J(u)=%"'(u)) 826 21.71 010 016 963 26.04 0.16 026 848 2354 011 017 1011 2826 019 0.29

Q2 (c=1.34) 7.47 16.54 006 0.13 8.564 2028 009 0.19 760 1717 007 0.13 894 22387 013 021
Q3 (J(u)=2u—1) 756 17.32 007 0.13 842 1845 009 0.17 7.66 17.89 0.08 0.13 8.77 22.05 011 0.20
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TABLE 4
Empirical means, variances and significance levels

of @1, Q2 and @3 for MA(1) model and 6 = -05

e=0

e =0.05

r=3

T =10

Nominal level

Nominal level

Nominal level

Test statistics Mean Var 005 010 Mean Var 005 010 Mean Var 0.05 0.10
"N 7.02 1486 0.06 0.12 6.68 12.381 0.03 0.10 5.63 21.40 0.07 0.09

Q3 (c=1.65) 6.94 13.35 0.05 0.10 6.71 12.80 0.04 0.08 6.83 13.87 0.06 0.09
Q3 (J(u)=Q”‘(u)) 7.15 1446 0.04 0.11 6.83 12.85 0.04 0.09 6.90 13.91 0.05 0.09
Q32 (c=1.34) 6.84 14.28 004 0.10 6.78 13.51 0.04 0.09 6.94 14.85 0.06 0.11
Q3 (J(u)=2u-1) 7.14 16.08 0.07 0.12 7.09 14.20 0.05 0.10 718 15.07 0.05 0.12
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TABLE §

Empirical means, variances and significance levels

of @,, Q2 and @3 for MA(1) model and ¢ = -038

e=0

e =0.05

7=3

T=10

Nominal level

Nominal level

Nominal level

Test statistics Mean Var 005 0.10 Mean Var 005 0.10 Mean Var 005 0.10
oM 7.64 1752 0.08 0.12 6.60 12.81 004 0.08 5.40 1849 005 0.07

Q, (c=1.65) .1 1776 0.09 0.15 6.89 1429 0.06 0.09 713 15.21 0.07 0.11
Q3 (J(W)=®"(u)) 8.06 19.37 0.10 0.16 7.05 14.31 0.05 0.11 7.02 1504 006 0.10
Q2 (c=1.34) 7.1 1750 0.09 0.13 6.91 14.14 0.06 0.10 7.10 16.57 0.06 0.09
Q3 (J(u)=2u—1) 8.12 19.56 0.10 0.18 7.13 14.02 0.05 0.11 7.23 1765 006 0.10
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TABLE 6

Empirical power of Q;, Q; and Q3 for ¢; = 0.5 and ¢, = 0.28

Test statistics

Nominal level=0.05

Nominal level=0.10

T=3 T=10 =20

€=0 =005 €=010 ¢=005 ¢=010 =005 €=0.10 ¢=0

7T=3

T =10

7T =20

€=005 =010 €=0.05

e=40.10

€e=005 ¢=0.10

@

Q: (C:l .65)
Qs (J(u)=2""(u))

QQ (C=134)
Qs (J(u)=2u - 1)

0.43 0.44 0.43 0.22 0.13 0.13 0.06 0.57
0.42 0.44 0.42 0.45 0.44 0.45 0.45 0.52
0.38 0.39 0.40 0.41 0.39 0.43 0.41 0.49
0.39 0.41 0.41 0.41 0.40 0.41 0.38 0.51
0.35 0.37 0.38 0.37 0.36 0.36 0.34 0.46

0.57

0.56
0.54

0.53
0.50

0.53

0.54
0.50

0.52
0.48

0.28

0.56
0.55

0.54
0.49

0.20

0.57
0.50

0.53
0.48

0.16

0.57
0.56

0.54
0.50

0.11

0.57
0.50

0.55
0.46
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TABLE 7

Empirical power of Q,, @, and Q; for ¢, = 0.5 and ¢, = 0.38

Nominal level=0.05

Nominal level=0.10

T=3 r=10 7=20 r=3 r= 10 r =20
Test statistics e=0 =005 €¢=0.10 e=0.05 =010 =005 €=0.10 e=0 =005 ¢€=0.10 ¢=005 e=010 =005 &= 0‘1.0
(a3 0.74 0.73 0.70 0.49 0.32 0.23 0.12 0.84 0.82 0.80 0.57 0.42 0.30 6.19
Q2 (¢=1.65) 0.72 0.71 0.69 0.69 0.68 0.68 0.68 0.81 0.83 0.79 0.80 0.78 0.79 0.78
Qs (J(u)=%~(u)) 0.69 0.68 0.66 0.66 0.63 0.67 0.61 0.79 0.79 0.76 0.77 0.73 0.77 0.73
Q2 (c=1.34) 0.71 0.71 0.68 0.68 0.64 0.67 0.67 0.79 0.82 0.77 0.79 0.77 0.78 0.76
Q3 (J(u)=2u -1) 0.67 0.65 0.63 0.64 0.59 0.64 0.58 0.76 0.78 0.73 0.76 0.72 0.75 0.70
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TABLE 8
Empirical power of @,, Q; and Q3

0, =05 6,=0.32 0, =05 6,=05
Nominal level=0.05 Nominal level=0.10 Nominal level=0.05 Nominal level=0.10
e=0.05 €=0.05 e=0.05 € = 0.05

Test statistics e€=0 7=3 7=10e¢=0 7=3 71=10 = 1r=3 7=10 ¢=0 7=3 7=10

@ 0.41 021 0.10 058 0.33 0.14 0.73 0.41 0.15 0.86 0.59 0.20

Q2 (¢=1.65) 036 024 017 054 0.38 0.27 0.71 0.53 0.40 0.83 0.69 0.55

Qs (J(u)=%"'(u)) 0.41 027 018 056 040 028 074 054 039 08T 068  0.56

Q. (c=1.34) 034 023 017 048 0.39 0.28 0.66 0.52 0.40 0.79 0.69 0.57

Qs (J(u)=2u—1) 0.38 027 018 052 038 029 067 054 037 080 071 057




6. APPENDIX
6.1. Notation and Definitions. Given B =(B;,...,31) € RA B(B) denotes the polynomial
operator (B) = 1—51B—~--=05h B*, where 1 is the identity operator and B the backward
shift operator.

Define

R** = {B € R* : B(B) has all the roots with absolute value > 1} .

Since Z, is stationary @, € R*? and since it is invertible 8y € R*9.

Given ¢ € R*?, 0 € R*? let g;($,0) be defined as in the beginning of Section 2, i.e., by
6~ (B)#B) =) a(¢.0)B" .
=0

It is easy to prove that the functions g; are continuously differentiable for ¢ € R*? and
8 € R*?. Moreover, given C; C R* and C; C R*?, compact sets, there exist, A* > 0,
0 < b < 1 such that

(6.1.1) sup {lgi($.0)|: € C1, 0 € Cy} < A°Y
Agi(¢, 0 oii

(6.1.2) sup{l-—%—l’:¢ec1,0€C2}5Ab‘, 1<IiLp
8gi(¢, 0 .i

(6.1.3) sup{|—g-<_§g—)|:¢ecl,oecg}5Ab‘, 1<i<q.

Given A = (¢, 8), define the residuals of order k by

k
U =Y 08,02, 1<k<
=0
Note that
Q) =U"Y0), p+1<t<T.

Let us now define

T
1 (Tr(A) = Y JL(FUN)A(FUi—i(d), 0<i<T-p-1

t=p+4+14s
and
T=j)-p-1
Wi (Uz(A),$,0)=(T—=ji-p)™" Y, ssi(UrQ)sa(#), 1<7<p,
h=0
T=j=p=-1
W34 (UT(A),8.0) = (T=j=p)™" Y. vssi(UrQA)aa(d), 1<j<q.
A=0
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Also put
W;’(UT(A)r é, 0) = (W;.I(UT(A)V ¢, a)' Cee WT."p-{rq(UT (A)’ ¢' o))
Observe that
Wi (Ur(Ar),ér,07)=0
are the equations of the RA-estimators X;» = (3;,5;) with n(u,v) = J1(F(u))J2(F{v)).
Let

(6.1.4) oex(Ur(Ap) = 104 (Ur(Ap))/70(Uzr(Ap)), 1<k<m

Then define the portmanteau statistic based on the RA-estimators :\; by
~8 idd ~e
(6.1.5) Qu(Uz(Ar) = E'T(T +2) Y (T - k) ol s(Ur(Ar)).
k=1

Let us also define
T(Ur(A),6,0) = (m—j+1) Z Y44+ (Ur(A)sn(9), 1<j<p,

Wy (Ur(3),4,0) = (m—j +1)° *Zw.;.+,(vr Ata(@), 1<5<q

h=0

and

W3™(Ur(A), $,0) = (W T (Ur(X),8,0), ..., Wy, (Ur(X),4,0)).

Then :\;: = (3;:,5";) is defined as a sequence satisfying
W™ (Ur(Ar ) ér.0p)=0

and the corresponding portmanteau statistic is obtained replacing X; by X; in (6.1.4) and
(6.1.5).
Let,for1 <k <T-1,
e = (T+2)/(T - k),

p3k(Rr () = cevs e (Rr(A))/¥3,0(Rr(R)),

and
Pek(Ur(A) = ca 74, (U (A))/¥4.0(UT(A)).
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Now denote for s > 1

¥3(Rr () = (1131 (R2(A)/T,. .., ¢73,,(R2 (A))/T),

A3 (Rr () = (B3,1(R7(R)),. .-, B3,s (R ().

and
F:(Uz(A)) = (c17%,1(Ur(A)/T, ..., cs14,s(Uz(A))/T),

Pi(Ur(A)) = (Be,1(Ur(R)), ... s, (Ur(A))).

Finally, let us denote Ry = (Rp41,...,Rr) and Uy = (Up4q,...,Ur) where R;,, p+1 <
J<T,istherankof U, p+1<j<T, among Upy,,...,Ur.

6.2. Asymptotic Distribution of Q5 . In this section we derive the asymptotic distribution
of Q5 through the asymptotic distribution of Q4.

PROPOSITION 6.2.1. Assume that assumptions B(i), B(ii) B(iii) and B(iv) hold. Then
T3 (Rr) - 27 (Ur)) 0, asT —co.

PROOF: To prove the proposition it suffices to show thatfor1 < j<m

(6.2.1) TY?(p3j(Rr) = 5a;(Ur)) 50, asT o0

We will first prove that

(6.2.2) T~Y%(vs;(Rr) = v4,j(Ur)) 20, asT — 0.

We have

1/2(73;(R/1') _ 74,)(UT)) =T7-1/2 Z [Jl( Vo (

t=p+1+;
- W(FUNI(FUi-;) = Tr + Tp(Up)) + T-V3(T - p = )Ty = T (Uz)] .

+1

where T
-p .
Tr=((T-p)(T-p-1)" Ja(——)
z_; 4 )Z:l T-p+1
and
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T T
Tr(Un)=[(T-p)T-p-1)]" ) Y L(FUG))Ta(F(U,)).
ti=p+1 11 #12 ty=p+1

From the weak law of large numbers and the central limit theorem we obtain
T=Y(T = p=j)Jr - T2(Ur)] &0,

as T — oc.

Hence, it sufices to show that

lim E[a%,(Ur)] =0,

where T
- Ry R
Ar;(Up)=T"? Z [J1( )Ja( L—)
el T-p+1 T-p+1

—J(F(U))Ja(F(Uy-})) = T1 + T3(Ur)).
Let V, = F(U,),p+1<s<Tandlet Vi, = (V),...,Vir-p)) where V(;;,1 <1 <T —-p.
1s the sth order statistic.
Define

R R
T—p+1)J’(T—p+1

a(Rf)R‘-j) ‘/(Ri)) V(R‘—j)) = Jl( ) - Jl(‘/(Ri))‘IQ(‘/(Ri-;))‘

Hence we have

T
Ar;(Ur) =T’ S a(Ry, Rizj, Vir,) Via,. ) = (T = = j)(Tr = T7(Ur)).
t=p+14s

Then,

E[A}(Up)] = T7*E[E[(S3(Uz, V() = (T = p = ))(Tr = Tr(Ur )1 V(4 1]

where r
S}(UT,V(.))= Z a(Ry, Ri-j, V(r,), V(R._,))
t=p41+j
and

E(S(Ur, V() IV(y) = (T —p=5)(Tr - T7(Ur)).
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Then
E[(A} ;(Ug)] = T E[Var(S7(Ur, V()| V()]

where Var( S’{.(UT, V()| V(.y) denotes the conditional variance of S{.(UT, Vi)
From Lemma 6.2.1 of Ferretti, Kelmansky and Yohai (1991) it follows that

Var(S,(Ur, V(3| V() € T3 +TKr)E((a(Rps14. Ros1, ViR, s ViR, ) ) I VO
Hence
E[AT) UT)] (3+TKT)E[( P+1+j’ RP+1’V(Rp+1+;)’viﬁp+1)))2]'

Moreover, from assumptions B(i) and B(11i) and the Cauchy-Schwartz inequality we obtain
that

. , R
Jim {2 (F (U4 a(F(Upaa)) = (2 a2} =

Hence (6.2.2) holds.
Therefore from the weak law of large numbers and Theorem 7.7.5 of Anderson (1971) one
now concludes (6.2.1). §

PROPOSITION 6.2.2. Assume that assumptions A(i), B(i), B(ii), B(iii)and B(iv) hold. Let
A € ®*9 and put A = Ag + T~ /%A then

T2 (7 (Rr(A) = 7 (Ur(A)) 20, as T —

PROOF: The proof of this proposition is an immediate consequence of the Proposition 6.2.1,
the Proposition 6.2.2 of Ferretti Kelmansky and Yohai (1991), and the definition of conti-
guity. §

Let us denote the usual Euclidean norm by | - ||a.

PROPOSITION 6.2.3. Assume that (Z,,...,2Zr) is a stationary AR(p) process and that
assumptions A and B hold. Let A € ®* and A9 > 0 and put ¢ = ¢, + T-Y3A. Then

(6.2.3) sup [TV (Rr($)) — AT (Ur(@))lls =0, as T — 0.
All2 < 40

PROOF:

Due to Proposition 6.2.2 in order to prove (6.2.3) it suffices to show that for all 49 > 0,

(624) sup "TII2( (¢0 + T'I/Q(A + 8)) - (¢0 + T—I/QA))"2 L 0
HAllz< 40]|€l2 <eo
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and

(6.2.5) sup ITY2 (BT (o + T~H3(A + €)= BT (do + T2 A2 & 0
llAll2 < Aoll€ll2 <o
as T — oo and €9 — 0.

We will first show (6.2.4).

Let
j J
=1 ZJ‘ 117 P+l
T _
Ri_ T-1/3(A R T-1U2(A + e
ST A =T 3 |y ’(¢°; f )y '(4’0; (1 te)),
t=p+14) P+ —pt
Ri(¢y + T™Y2A
- i 1(? ))I
-p+1
and
T -1/2 , —1/2;
, — 7-1/3 Ri(¢y+ T A -}(¢O+T (A +¢€))
52;(T,A,6)=T > (== — L)1 o
1=p+1+4)
~1/2
_J(R‘-J(%"'T A))‘
T-p+1
For 1 < j < m we have
ITV2(53,;(do + T7/2(A + €))=3, (o + T~/2A))|
(6.2.6) < |L/77|(S1j(T, A &) + S (T A.e)).

Given X € R* and v € R define F3(X, v) as the empirical distribution determined by X.
Therefore
Fo(X,v) = E--x IE)X <v)
where I(B) denotes the indicator of the event B. Let A € R? then we have
(627) Ry + T7/28) = (T = p)Fr_p(Ur(o + T7'/4), Us(do + T~1/24)).

From assumption B(ix), (6.2.7) and the Cauchy-Schwartz’s inequality we obtain

ST, A €) ST™VA(T ~p+1)° [Zw ) C )
T
[ 3 (T -p) 1P, (Uz(do + T%(A + ), Uildo + T2 (A + €)))
t=p+1+4)

1/3
- Fr_p(Ur($o + T7/24),Uy(dy + T-/2A))%)
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From Theorem 2 of Section 1 in Koul (1990), we have

(6.2.8) Sgg (T—p)lanT-p(Ui(¢0+ T-Y2(A +¢)),u) ~ Fr_p(u)| = 0p(1)
A< Ao llell<eo

(6.2.9) sup (T - P)2|\Pr_p(Us(do + T™'2A), u) — Fr_p(u)] = 0,(1)
lHAll<40

From (6.2.8), 6.2.9) and the fact that Ur(@,) = Ur, it readily follows that

(T —p)?|Fr_py(Uz(do + T~ 2 (A +¢)),Ui(do + T~V A + ¢)))

— Fr_p(Ui($o + T~/ (A + ©)))|
(6.2.10)
+ (T = p)?|Fr_p(Ur(do + T™/?A), Uy(¢ + T~'/?A))
— Fr_p(U(¢o + T~/3A))| = 3,(1)

where 3,(1) is a sequence of stochastic processes converging to zero uniformly in probability
over the set {"A"2 < Ao, "‘"2 < 6’0}.

From equation (5) in Theorem 1 of Section 3.2 in Koul (1990) we immediately obtain

sup (T = p)'*|Fr_p(Us(do + T2 (A + €))) = Fr_,(U,)
p+1<ILT
A€ Ao|[€|< o

+(T = p) 2 (A + €)' T f(UL)| = 0p(1)
and

9P (T = p)'\Fr oy (Uil + T7V2A) = Frop (Un) + (T = )7 ?A'Zf (U] = op(1).
P
HAll<Hs

where Zy = (Z4-1,- .., Z4~p).

Then,
sup (T = p)/?|Fr_,(Ui(do + T~ /?(A +€))) = Fr_,(Us(éo + T~/?A))
p+1<iT
A< A5 [/l S eo
(6.2.11) +(T = p)~ €2 f(U3)] = 0p(1)
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From (6.2.10) and (6.2.11) it easily follows that

sup (T —p)?|Fr_p(Ur(do + T~Y2(A +¢)).Ui(do + T~V A +¢)))
p+1<1<T
[lAll< 40,8l <o

(6.2.12)
— Pr_p(Us(do + T™Y2A)) + (T = p) "2/ By f(Uy)| = 5p(1) + 0p(1)

From (6.2.12) and using some algebra one obtains

(6.2.13) sup 51;(T, A, ¢) LA 0, as T —co, ¢g =0 .
HAll< do.|l€lI<eo

Similar arguments can be used to show that

(6.2.14) sup 53, (T,A€) 20, as T —co, 60 —0.
lAllS 40 lieli<es

Then, from the fact that
1
Fr — / Ji(u)Jo(u) du as T — oo,
0

(6.2.6), (6.2.13) and (6.2.14) we obtain

sup TV (5sj(do + T~ (A + €)= 53 (o + T~ /2A)) S 0,
HAll<40,]l€ |<e0

as T — 00, g9 — 0. Therefore (6.2.4) follows.
Further, from the Mean Value Theorem, assumptions B(v) and B(vi), and the fact that

T 1
T S W(FU)LE(FU)) S / Ji(w)Ja(u)du, asT — o
t=p+1 0

we obtain (6.2.5). This completes the proof of the proposition. |

PROPOSITION 6.2.4. Assume that assumptions A(i), B(ii) and B(v) hold. Then
(6.2.15) TV3™(Ur) 2 N, €I,), T-o

where I, is the m x m identity matrix and £ is defined by (2.6).

PROOF: We will first prove that

(6.2.16) TV33™(U7) B N(O,wln), T -,

24



where
w = E((J(FUO))E(B(FUs))).

Let

T
5,;(Ur) =T~ 3" J(FUNL(FUi;), 1<j<m,
i=p+l+m

b2,(Ur) =

j=m,

§1(Uz) = (6,1(Uz), ..., 8,m(Ur) and 65(Uz) = (621(Uz), ..., 62,m(Ur).

From Theorem 7.7.6 of Anderson (1971) it follows that 8§;(Ur) is asymptotically normally
distributed with mean 0 and covariance matrix wl,,. Moreover, we have

8;(Ur) 50, as T — oo.
On the other hand, from Theorem 7.7.5 of Anderson (1971), we have, for 1 < j < m,
¢ 772y, j(Ur) = (61;(Ur) + 62,;(Ur)) 50,  asT — o0,

Therefore
TYV57(Ur) - (6:(Ur) +65(Uz)) 50, asT - <.

Hence (6.2.16) holds.

Further, from the weak law of large numbers we obtain
1
(6.2.17) veo(Ur) L/ J(u)Jy(u)du, a8 T — oo.
0

Then from (6.2.16) and (6.2.17) one now concludes (6.2.15). §
Let

(6218) v = E(J}(U)E(J(U))U;)

where J}'(v) is defined in B(viii) and X™ is a m x (p + ¢) matrix given by

3i-j (%) ifj<i<mand1<j<p
(6.2.19) X7 = ~tij4p(0)  ifj-p< i<mandp+1<ji<ptg
0 otherwise.
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PROPOSITION 6.2.5. Assume that assumptions A(i), B(v), B(vi) and B(vii) hold. If, in

Am . . .
addition, Ay is a sequence of estimators satisfying

TAWE™(Ur(Ay ), ép,07) 20,  asT — o
and such that TI/Q(X;‘ — Ao ) is bounded in probability, then
(6.2.20) TV (Ur (A7) = TV37 (Uz) = vX™ TRy = Xo) + 0p(1).

PROOF: We have

T35} (Ur (37 ) =TY*(37 (Ur (7)) - 47 (UF*(Ap )
(6.2.21) + TP (UF ()

We will first prove that
(6.2.22) TV3F7(Ur(3r ) - 37(UFY (A7) 20, asT - .

Given C C R*? x R*?, compact set, by (6.1.1), there exist, A>0, 0<b< 1 suchthat

(6.2.23) sup{UP(A) = UL N)|: A€ C, 1<k <o} BT as.
and

(6.2.24) sup{lUP )| A€C, 1<k <0} <UT as.

where

oo
Up = A (G + VP |Us-l.

1=0

Using the fact that Tl/z(i;: — Ao) is bounded in probability, the Mean Value Theorem, B(v),
B(vi), (6.2.23) and (6.2.24) we have

|(FUA7 )2 (F(Ui—; O )= I (U g )T FULS A )
< KU (6'U; + 87U ).

Therefore,
~m ~m T - - .
T2 |7,i(Ur(Ap)) = 1 (U AN < T~V kU; S (BUy + 8707 )).
t=p+14j
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Since E(U?) < oo, we have Zf—p+1+)(b'U1 +b-uUy _;) < oo as.. Then (6.2.22) follows.

Now we will prove that
(6225)  TVTUEIAL)) = TVT (U (A)) - vX™T2(A7 = Xo) + 0p(1).
By the Mean Value Theorem we have
(6226) T37(USY (A7) = T3] (U (X)) + TV2DAT (UF (A DAz = do)

where DﬁT(U(“)(/\)) is the differential matrix of 47 with respect to A and A satisfies
Az = Jolla < A7 = Aol
We have, for1 <1 < m,

. (CO) (x
(20T r S e s o) e )
0); , oA,
=p+1+s
T )]
(9 3
(6.2.27) +eT70 Y J’1(1“(U:(°°’('\)))Ja"(U(f‘f)(f\))—U'a'—\'.(ﬁ
i=p+1l+4s N
where J*'(v), 1 = 1,2, are defined in assumption B(vi).
We will show that
=N
T3 RGO o) SR
> =o% b,
L—Vsl—j(%)’ 1 S.] Sp)
(6.2.28)
T ()
_ orer(00), o U™ (A
oI Y U GNP G [T
t=pt 14 T
Z vti—j(8), p+1<i<p+yq
as T — 20.

It is easy to show that

(c0)
() _ -~ 1B, 1<igp
AAj
and (c0)
aUtm ('\) 3G .
;- (B, ,+,(A), p+1<j<p+yg
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From the Mean Value Theorem, (6.2.23), (6.2.24), A(i), B(v), B(vi) and B(vii) we have,
for1<j<r+yg

avf“)(,\)] '
8/\] A:AT

=M, ;r(Ur) + (1)

ST Y U Ge)a(FU ()]

t—1
t=p+14s

where

— T g T UL F(Uie)d5 (BWi-; if1<j<p

Mc,',T(UT)= { - . .
’ ¢! Zt-p+l+c Iy (U)o (F(Us-))8, 1(B)Ut—jﬂ ifp+1<)<p+g

If j <7, by the ergodic theorem and the fact that J;(1 — u) = —J,(u) we have

M, ;7(Ur) 3 —vsi_j(do), 1<j<p

and

M;;7(Ur) B uvtisj(8e), p+1<j<p+g

as T — co. Hence (6.2.28) holds.
By steps similar to those in the proof of (6.2.28) and the fact that J,(1 —u) = =Jy(u) we

obtain
) w3y [ EUime (A
(T Y HEC GO e[ )]

t=p4l4s A o
50, 1<j<p+y,

as T — oo.

Therefore, from (6.2.27) we have
(6.2.29) DA*(USAr) & —vXx™ asT — o

Hence (6.2.25) follows from (6.2.26), (6.2.29) and the fact that T/2(Ap — o) is bounded
in probability.

Moreover from Lemma 3.2 of Bustos, Fraiman and Yohai (1984) we have U,(°°) (Xo) =
a.s. and hence (6.2.20) follows from (6.2.21), (6.2.22) and (6.2.25). §
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REMARK 6.1. Proposition 6.2.5 is based on generalized RA estimators. Li (1933) in Lemma
2 shows a similar result for RA estimators, but the details of the proof and the assumptions
under which the lemma holds are omitted.

PROPOSITION 6.2.6. Assume that assumptions A(i),B(ii), B(v), B(vi) and B(vii) hold. If,

in addition, i;-n is a sequence of estimators satisfying
1/2yx7e,m I3 AT P
(6.2.30) TVAWZ™(Ur(Ar ) ér,07) =0, asT —
and such that Tllz(i;? — Xg) is bounded in probability, then
(6.2.31) TY3pm (Ur(Ap)) 3 N(0,G), asT — oo

where G = £(In, = X™[(X™)X™]"1(X™)"), € is defined by (2.6) and X™ is defined by
(6.2.7).

PROOF: By the Mean Value Theorem, we have

/W™ (U (A7 ), 7,07 ) =
(6.2.32) '

-m

TYAWE™(UF)(Xo), b0, 60) + DW3™ (UL (Ar), ér, 00 )T (Ag = Xo),

where Ar satisfies [[Ar — Aollz < [IAr = Aolla-
As in Lemma 3.5 of Bustos, Fraiman and Yohai (1984), and since T'/2(Ar — o) is bounded

in probability we can prove that
(6.2.33) DW3™(US (Ar), é7,07) 5 v(X™YX™ asT — oo

Therefore from (6.2.32), (6.2.33) and the fact that S;-‘ is a sequence of estimators satisfying
(6.2.30) we have

TY?(Ap = Ag) = =0~ ((X™Y X™)'THIWL™ (US) (Ae), o, 00) + 05 (1).
It is easy to show that
TAW3™(UF) (Ao), b0, 80) = (X™) T4 (UF (X)) + 05 (1)
Hence
T2(Rp = do) = —v ™} (X™)X™)H(X™) TP (UF (o)) + 0p(1).
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Moreover from Lemma 3.2 of Bustos, Fraiman and Yohai (1984) we have U,(“)(Ao) =U;

a.s. and therefore
(6.2.34) TRy = Ag) = =~ ((X™) X™)'TY?37 (Ur) + 0p(1).
Then from Proposition 6.2.5 and (6.2.34) we obtain
(6:235)  TY3%7(Ur(A7)) = (Im = X™[(X™)X™]"H(X™)\TY/?37 (Ur) + 0p(1).
Therefore from (6.2.17) we have
TY37 (Ur(g ) = (I = X™[(X™) X™)7H(X™) T3] (Ug) + 05(1).

Hence, using Proposition 6.2.4 it follows (6.2.31). §

In Proposition 6.2.7 we will use the Frobenius matrix norm given by
r 1 l/2
1Bl = [ 3 117
i=1)=1
where B = (b;;) is a r X s matrix.

PROPOSITION 6.2.7. Assume that assumptions A(i),B(ii), B(v), B(vi) and B(vii) hold. If,
~m
in addition, Ay is a sequence of estimators satisfying

TVAWL™(Ur(Ar ) 8p.07) 50, asT = oo

and such that T/ 7(3; — Xo) is bounded in probability, then
(1) Q4«(Ur (:\\;»l )) is asymptotically distributed as chi-squared with degrees of freedom m—p—gq.

(n) If S; is a sequence of estimators satisfying
TV Wy (Uz(Ap), #r.07) 50,  asT >

and such that 7Y/ 2(i-;» — Ao) is bounded in probability. Then for every ¢ > 0 and § > 0
there exist mo > 0 and Tp > 0 such that for m > mg and T > T

P(1Q4(Ur(A7)) - Qu(Ur(Ap)l 2 &) < 6.

PROOF: Since (f'lT)’/’fy(UT(x;)) has an asymptotic covariance matrix that is idempo-
tent of rank m — p — g we obtain (i) from Proposition 6.2.6.
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Now we will prove (ii). From the Cauchy-Schwartz inequality we have

1Q4(Uz (A2 )=Qu(Ur(Ap ) < € T (Ur (A7 ) — B (Ur(Ap)II3
(6.2.36) + 2§-IT|IbT(UT(’\; )) = ﬁ?(UT('\T))":"ﬁT(UT(X;))"2-

We will show that for every ¢ > 0 and § > O there exist m; > 0 and T} > 0 such that for
m>myand T 2T

(6.2.37) P(E™'TIp7 (Ur(Ar)) = 37 (Ur (Al 2 €) < 6
From (6.2.17) and (6.2.35) we obtain

T35 (Ur(Ar)) =[Im — X™((X™) X™)7(X™)]
(6.2.38) x TY2p7 (Uz) + 0p(1).
Let C be the (p+ ¢) x (p + ¢) symmetric matrix given by

’

C.j= E 5t (P0)sk4j-i(00), 1< <p
k=0

o0
Cipts == D ta(B0)ses;-i(do), i<p, j<q i<
k=0

0
Cipti == si(bo)tasji(8), i<p j<gq j<i
k=0

o0
Copipsi = 3 te(@)tesjoi(do), i<j<q
. k=0

By steps similar to those in the proof of (6.2.35) and from (6.2.17) we have

T27 (Ur () =T} (Ur)
(6.2.39) — XmCY(XT YTV P~ (U ) + 0,(1).

where X7—?-1 is obtained replacing m by T — p — 1 in (6.2.19). Then, from (6.2.33) and
(6.2.39) it follows

T87(Ur(Ap ) - A7 (Ur (O )13
< TIX™CH(XT=P=1Y L P~} (Uz) = X™[(X™Y X" (X™Y B (U )3 + 0p(1).
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Therefore
TIp7 (Ur(Ar)) - A7 (Ur Ar I3
< TI|X™|7lC™ ==Ly T ==l (Up) — (X™) BT (Uz)|2
(6.2.40) +TIX™FIC! —((X'")X'"] MNEnxmy e (UT)||2+0, ().

From the Chebyschev inequality and the fact that 3272 0 |s;(do)] < o0 and 72, t;(80)] <
o it follows that for every ¢ > 0 and & > O there exist m; > 0 and T, > 0 such that for
my<m<T-p-2andT 2T,

(6.2.41) P(TI(XT=2=1Y 5, *~ (Ur) = (X™) B (U3 2 €) < &
Moreover,
C™! = [(X™)Y X" 7

(6.2.42) < NExX™Y X HENE™YX™ = ClEICT IE

AY

Then from the fact that 372 [s; (o) < 00, T7zqlsj(do)l* < 00, 720 It (80)] < 20 and
T 720 1ti(80)* < oo we obtain, for every T

N : myym _ 3 _
(6.2.43) lim (XY X™ - CJ} = 0.

Hence from (6.2.41), (6.2.42) and (6.2.43) it follows (6.2.37). Then (ii) is an immediate
consequence of (6.2.36), (6.2.37) and (i). §

PROOF OF THEOREM 4.1: From Proposition 6.2.3 (i) of Ferretti, Kelmansky and Yohai
(1991) we obtain

(6.2.44) TV W3 (Ur (A1), ér,07) 20, as T — .

Then, from Proposition 6.2.7 (ii), it immediately follows that for every ¢ > 0 and é > 0
there exist mg > 0 and Tp > O such that form > me and T > T

(6.2.45) P(1Q«(Ur(A7)) - Qu(Ur(Ar))| 2 ) < 6

Also, from the Cauchy-Schwartz inequality we have

1Qs(Rr(Ar)=Qu(Uz(Az))| < €Tl 3(RT(’\T)) PT(Ur (A I3
(6.2.46) + 2671 T)|p7 (R (A7) — BT (Ur(Ar )27 (Uz Ar)|la-
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From Proposition 6.2.3 it follows that

(6.2.47) T" (R/r AT )) — UT /\T))"z =0 asT — .

Then from (6.2.44) and (6.2.47 ) we have for every ¢ > 0 and § > O there exist m; > 0
and Ty > O such that form > m; and T > T}

(6.2.48) P&~ T|p7 (R (A7) — B (Ur(Ar)[2lIBT (Ur (Ar)l2 > €) < 6.

Hence from (6.2.46), (6.2.47) and (6.2.48) we obtain that for every ¢ > 0 and § > 0 there
exist my > 0and T2 > O such that form > maand T > T3

(6.2.49) P(1Qs(Rr(Ar)) — Qu(Ur(Ar))| > ) < 6.

Therefore, from Proposition 6.2.7 (i), (6.2.45) and (6.2.4)Theorem 4.1 follows. §
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