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ABSTRACT 

Whenever one deals with an interactive decision situation of long duration, one has to take into account 

that priorities of the participants may change during the conflicto In this paper we propose an extensive

form game model to handle such situations and suggest and study a solution concept, called credible 

equilibrium, which generalizes the concept of Nash equilibrium. We also discuss possible variants to this 

concept and applications of the model to other types of games. 



1. Introduction 

As far as we know, a game in which priorities change during the play was first discussed 

by Homer in the story of OdysseusjUlysses and the sirens [Odyssey, c 10th century B.C.]. 

According to the story, the singing of the sirens was renowned for its beauty, and so 

seductive that whoever heard it was lured to his death. 

Odysseus achieved his desire to hear the singing of the sirens in a way that game theorists, 

often unjustifiably, ignore. He followed the principle l that when people do not like the 

rules of the game, they change the rules. Thus Odysseus invented a new, pure strategy; 

namely, he put wax in the ears of each of his sailors, commanding them to tie him to the 

mast and not to releas e him until they were safely bound for home. 

Lacking the creativity and imagination of Homer, we shall not follow this avenue and 

regard our games as given and fixed. 

Classical economics and game theory assume that an individual's preferences are con

stant throughout the decision-making process, even if the latter has several stages. This 

seemingly implausible assumption is of great theoretical value; in particular, it allows a 

multi-stage decision problem to be "collapsed" to a single-stage one (see, e.g., Savage 

[1954]), and enables an extensive game to be represented in a "normal" form, etc. 

Yet, the fact that preferences may well change over time has been bothering economic 

theorists for over four decades. Allais [1947] was probably the first (in modern times) 

to deal with "exogenously" changing preferences, i.e., preferences which depend on time 

alone. "Endogenous" changes in preferences, namely those resulting from the actions of 

the decision-maker or other players, were studied in the early 1950's (see Schoeffier [1952] 

and Harsanyi [1953]). 

Situations in which priorities change are plentiful; people change, events influence our 

perception of the world. When one is young one loves junk food, both for its taste and 

for the opportunity its consumption gives to meet young friends, old and new, and have a 

great time with them. As one gets older, one's stomach becomes more sensitive, one also 

1 Expressed by Martin Shubik (oral communication). 



associates with different people, so junk food is no longer attractive. When one is young, 

one wants to spend a lot of time on leisure; when one gets older, providing for one's family 

takes priority. One might enjoy watching ceremonies of queer cults, but there is a positive 

probability that one may become brainwashed, desert one's family and follow the cult-a 

prospect that is not attractive before going to the ceremony. The reader can certainly 

provide many more examples of changing priorities. 

It is wise to take into account the possibility of changing priorities in any long-range 

plan. The question then becomes how to model these situations and what strategies to 

recommend, as well as what srategies are likely to be played. That is the subject of this 

papero 

Even a brief survey of the literature is beyond the scope of this paper. A very partial 

list of relevant works includes Strotz [1956]; Pollak [1968]; Phelps and Pollak [1968]; Pollak 

[1970]; Von Weissaecker [1971]; Blackorby, Nissen, Primont, and Russell [1973]; Peleg and 

Yaari [1973]; Hammond [1976]; Pollak [1976]. We will briefly discuss sorne of these in 

Section 3, as a background to the presentation of our solution concepto 

In Section 2 we present an extensive form model and discuss its relevan ce to our topic. 

In Section 3 we propose strategy combinations, which we call credible equilibria, to han dIe 

the aboye situations. In Section 4 we show that the set of credible equilibria is identical to 

the set of N ash equilibria if priorities do not change during the play. Thus, our solution is 

an extension of the Nash non-cooperative solution to situations in which priorities change 

during the play. We then prove, among several other results, that the set of credible 

equilibria contains the set of perfect equilibria of the agent-form game; hence it is never 

empty. Section 5 studies the set of credible equilibria. It shows, among other things, 

that a credible equilibrium path is also a path of a N ash equilibrium for the agent-form 

game. Section 6 provides sorne examples designed to illustrate characteristics of credible 

equilibria. Section 7 shows that an extension of the concept to a model in which time is a 

part of the data does not yield new equilibrium points. Section 8 discusses sorne possible 

variants of the concepto 

Basically, we are dealing in this paper with individuals having various utilities during the 
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play oí a game. This suggests that our rnodel could be applied to another, very irnportant 

ciass oí situations, where a player is a group 01 individual", a state, a party, etc. Such 

a player is to sorne extent a decision-making unit, but it does not have a utility oí its 

OWll. Rather, it represents various groups, eaeh endowed with its own utility function. For 

example, a state rnay represent íarmers, manufacturers, ordinary eitizens, etc., but there 

is no su eh thing as "a utility oí the state". In Section 9 we discuss the applieability oí our 

model to sueh situations and show that the scope oí such application is limited. Thus, an 

extension oí our mode! is highly desirable. 
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2. The Model 

We start with a game form 2 (T, P, U, e,p). Here, T is a tree, P = {Po, PI, ... , Pn} is the 

players' partition 3 ofthe nodes of T (Po is the set of Chance's nodes); U (Uo, Ul, ... , Un), 

where Ui {Uij } ;~1 is the partition of Pi into information sds4 (elements of Uo are 

singletons); e = {e(Uij)}i=1,2, ... ,n¡j=1,2, ... ,k¡ is a correspondence, where e(Uij) is the Jet 

of choiceJ which are avaílable to player i at information set Uij; p = {p( UOj)} j=l ,2, .... ko is 

a vector-valued function, where p( UOj) is a probability distribution on Chance's choices at 

UOj' For further information concerning this notation see, e.g.) Selten [1975]. 

We assume that the game form iJ a game of perfect recall in the sense of the following 

definition (taken from Selten [1975]): 

DEFINITION 2.1. A garne form (T, P, U, e, p) is said to be of perfect recall if, for every i) 

i = 1,2, ... ,n, and every two information sets Uij and Uík of the sarne player i, if one node 

y, y E Uik, comes after5 a choice e at Uij, then every no de x in Uík comes after the sarne 

choice c. 

By Kuhn's theorem (Kuhn [1953], Selten [1975]), we can and will restrict ourselves to 

behavioral strategies. 

We shall also talk about the derived agent-form garne, obtained by placing, for each í , 

different agentJ i.j at the different information sets Uij of player i. Each agent i.j will 

play dual roles: on the one hand we shall regard him as a decision-making unit that acts 

in accordance with his own utility function. On the other hand, in reality he is the sarne 

player i located at a certain stage of the play. To complete the description of our model, 

we endow each agent i.j with a von Neumann-Morgenstern utility functíon hi.j, defined 

on lotteries over endpoints of T (which represent pure outcomeJ). Formally, therefore, our 

2Le., a game in extensive form without payments at the endpoints. 
3The players are 1,2, ... , n. 'Chance' is denoted by O. 
4To complete the description, we add that for each information set lJij there are m( lJij ) edges going out 
from each node of lJij. They are grouped into m( lJíj) disjoint equivalent classes, where each equivalent 
class consists of one edge from each node of lJij. The equivalent c1asses are caBed the choices. We allow 
information sets with a single choice. 
liLe., the path from the root to ;¡: contains an arc of choice c. 
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game with utilities 6 changing during the play is a six-tuple 

(2.1) r = (T,P,U,C,p,h), 

where T,P,U,C,p are as above, and h = (h 1 ,h2 , ... ,hn ), where, íor an endpoint z, 

(2.2) 

For sorne j's, and in particular íor all j's such that i.j lies on the path írorn the root to 

endpoint z, h¡.j(z) is the utility payrnent oí agent i.j íor the endpoint z oí T. For other 

j's hi.j(Z) is allowed to be undefined. 

DISCUSSION. The above construction comes to rnodel a non-cooperative game in extensive 

íorrn, in which the players' priorities rnay change during the play. To understand the 

relation between "reality" and our rnodel, we provide sorne explanation and also discuss a 

possible objection to the rnodel. 

(1) As in classical game theory, an "out come" , represented by an endpoint z oí T, is the 

aggregate oí everything that happens along the path íorrn the root to the endpoint. 

(2) We shall be interested in this paper in certain equilibriurn points which, in one 

application, can be viewed as possible agreernents that can be reached by the players 

at the start oí the game. For this application, every deci.~ion must be based on what 

the players think at the start 01 the game. Accordingly, the íunction h i .j should 

be interpreted as that utility function player i believes at the start 01 the play he 

wili have when he reaches inlormation 3et Uij. We use here the words "believe" or 

"knows" in the sense oí "ascríbing probability one". (See the discussion in Aurnann 

and Brandenburger [1991] concerning the relevance oí this rneaning.) Thus, we 

allow íor the possibility that later on a player will find out that what he knew was 

wrong, in ways that he did not expect at all. When a person takes a decision, 

the only thing that rnatters is what he knows, or believes, at the rnornent that the 

decision takes place. 

6We use the word "preferences" when we discuss the "real" situation. Their representations in the math
ematícal model will usually be called "utilities". 



(3) We assume that player i knows his utility function h i .j . There is no 10ss of general

ity in this assumption. If he is not sure, being a Bayesian, he has sorne probability 

rustribution over various possible utility functions. This he can represent by in

troducing chance moves as done in Harsanyi's theory of games with incomplete 

information (Harsanyi [1968]). Similarly, there is no 10ss of generality in assuming 

that all components of r (in (2.1 )) are common knowledge. 

(4) The utility functions are merely numerical expressions for the agents' preferences. 

Thus, tautologically one expects each agent to act in accordance with maximization 

of his own utility function. This trivial remark is not always understood, and 

the misunderstanding leads to a lot of confusion. Consider the 1-person game of 

Figure 1. 

10 

1.1 Young-rne 

1.2 Old-me 

20 
10 

5 
100 

Figure 1. The young/old me game 

In this game Ll and L 2 mean "spend on holiday vacations" and Rl and R2 mean 

"save for home for the aged". We heard again and again that the right thing for 

agent 1.1 to do is to take Rl' Indeed, agent 1.2 will certainly choose R2 , so agent 

1.1 should cooperate in order to eventually enjoya good home for the aged (100 

is a pretty large number!). This reasoning is totally wrong: Had young-me cared 

for old-me, this should have been reflected in 1.1 's utility function. But the data 

shows clearly that young-me prefers to spend money on vacations rather than worry 
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about oId age. In fact, his preference is for traveI when he becomes oId (see the 20), 

but he believes that, as an oId person, his priorities will be different; therefore, he 

has no chance of getting the 20. Even without a theory, it shouId be clear that the 

"right" soIution for this game7 should be LIRz. 

(5) Another question that is frequently asked is thís: Why do we need a new modeI? 

Is not the change of utilities símply a matter oí gaining experience, or learning? To 

explain this, let us compare the game in Figure 1 with the one in Figure 2. 

1.1 

10 

Figure 2. Taking a course in modern music 

In this game, pIayer 1 is a person who cannot stand modern music. He believes, 

however, that ií he takes a course in modern music, he will get accustomed to this 

kind of music and learn to love it. L 1 , Lz mean "stay home". Rl means "take the 

course". Rz means "listen to modern music". 8 

In this case, contrary to the previous example, there is no change in the priorities 

of the agents. The utilities of the agents remain the same, in as much as they are 

7For those who are not convinced, let us replace the meaning of Ll, L2 to be "stay home", and Rl, R2 to 
be "consume heroin". Agent 1.2 is already addicted to heroin. Would one still claim that a rational agent 
1.1 should choose Rl? 
8We put a blank as a utility for agent 1.2 after Ll, because it makes no sense to talk about the utility of 
an "educated" person (agent 1.2) for the prospect of not being educated. However, we could define agent 
1.2 as an agent of player 1 at a date when the course is overo With thís interpretation, the blank could 
have been replaced by 10. 

7 



defined. Player I expects to learn how to enjoy modern music and his expectation 

from the course matches what he believes will be aSter he takes the course. This 

example is equivalent to the ordinary I-person game of Figure 3. 

I 

10 10 20 

Figure 3. A classical representation of 

the previous game 

(6) A possible objection to our model is this: Following logical positivism, sorne people 

feel that to talk about priorities is sheer "metaphysical nonsense" if they are not 

derived by observing actual decisions. According to this view, utilities must be 

derived form actual revealed preferences. If only revealed preferences count, it 

makes no sense to talk about revealed preferences of a future agent. How can one 

observe at the present time commitments to be taken 20 years from now? This is a 

serious criticism and it requires an honest answer: 9 

(i) This is a criticism of the whole fieId of game theory, not only of our model. 

In fact, there is hardly any application of game theory that is based on actual 

measurements of utilities. Game theory (including our model, we hope) is useful 

for the insight it sheds on real situations, for recommendations based on rough 

evaluation of priorities, for theoretical analysis and for clarification of issues. But 

we have to admit that actual measurements of utilities are usually impossible and, 

in those cases where they are possible, they are unreliable. In this connection see 

Aumann [1985]. 

9 This objection was raised also in Peleg and Yaari [1973]. 
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(ii) The belief that only revealed preferences count does not make much sense10 

It can be críticized both on practical and theoretícal grounds: With this belief one 

cannot measure, with any reasonable degree of precision, a cardinal utility such as 

the utility of von Neumann and Morgenstern. This is because one cannot present the 

players with simultaneous revealed-preference situations. What is done cannot be 

lU1done, and once a commitment is taken (if taken seriously), it cannot be cancelled. 

The conceptual difficulty that we have with the revealed-preference view is this: 

Suppose you decide, by observing sorne of his actions, that a player prefers A to B 

and B to c. What reason do you have to believe that he would have manifested 

the same priorities had the choices been presented to him in a different order? 

Experiments that cannot be repeated are of little value! Thus, restriction to revealed 

preferences is not only useless, it is also questionable. 

(iii) Whether we like it or not, people seldom measure utilities. They deduce 

their priorities (and the priorities of others) by introspectíon. To be sure, past 

experience takes part in this act of introspection and this includes observations 

of revealed preferences in similar situations in the past, but the bottom line is 

that important decisions are derived from priorities that resuIt from introspection. 

It is these priorities that count, even if they cannot be measured by an outside 

observer. l1 Now, if we are talking about introspection, it does not matter much if 

we discuss a present situation or a future one. If I want to estímate my priorities, say 

20 years from now, 1 shall observe conditions and behavior of old people, perhaps 

Iook at rudimentary avaiIable statistics about their illnesses and sufferings, and also 

look for things that make them happy. I shall combine these facts (consciously or 

subconsciously) with what 1 think I know about myself and-rightly or wrongly

deduce my future priorities by introspection. It is the outcome of my introspection 

that will dictate my decisions. 

To sum up: Attempts to determine von Neumann-Morgenstern utilities by observing 

people's behavior did not prove successful. In fact, experts on experimental economics 12 

10 We employ here the tactie ti,.:l.t an attack is the best defense ... 
11 Savage already reeognized their importanee when he discussed "eoneeívable acts" (Savage (1972]). 
120ra.1 eommuniea.tion with Reinhard Selten and Martín Shubik. 
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claim that real people do not seem to behave as utility maximizers. One can take a view, 

as expressed by John Harsanyi,13 that game theory is a theory about ideal people-people 

who do not exist in the real world, and enjoy the subject for its aesthetic value. In thiJ unJe 

our model iJ certainly aJ uJeful aJ the claJJical one. And we can be more flexible, recognize 

that decisions are made by the process of introspection, the results of which govern the 

players' actions. Utility theory and game theory can help the decision-maker by leading 

his thoughts to the required priority determinations, thereby "educating" him to be more 

systematic and logical, hoping that with this help his decisions will be reached faster and 

with fewer "oversights". At any rate, both conceptually and practically, introspections 

about future prospects are not more complicated than introspections about the presento 

All the aboye has very little to do with another main application of game theory; namely, 

to shed more light on conflict situations, to deepen our understanding of the conflict per 

se, even though in reality most conflicts cannot be quantified. In this respect, our model 

is certainly an interesting and useful extension of the classical one. 

13 Oral communication. 
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3. Credible Equilibria 

The purpose of this paper is to generalize the concept of Nash equilibrium to games with 

utilities changing during the play. 

Dne idea that comes to mind is to recommend an agent-form Na!3h equilibrium. It 

seems that such an equilibrium is satisfactory; no agent will deviate because, by deviation 

alone, he has nothing to gain. Indeed, this recommendation was studied in the important 

paper of Peleg and Yaari [1973]. Nevertheless we now feel that this recommendation i!3 not 

r"ff)od enough. The reason is that Nash equilibrium is robust with respect to a deviation 

of a single agent-not against deviation of several agents. But several agents of the same 

player can cooperate quite easily, to the benefit of all of thern, because they are all the !3ame 

individual. Thus, an agent-form N ash equilibrium is not necessarily stable. 1t seerns that 

what we need is sorne kind of coalition-proof equilibriurn,14 where coalitions are restricted 

to agents of the same playero Unfortunately, if we extend that definition directly, we may 

easily reach situations in which no such equilibriurn exists. Moreover, we may unjustifiably 

reject "good" points: Suppose a strategy cornbination is rejected because a certain coalition 

of agents of a player can deviate and do better-it may well be that this deviation will 

not be obeyed, because sorne agents of the same player (not necessarily a subset of the 

deviating players) ca .. do better after the deviation is "adopted" and cause loss to sorne 

rnembers of the deviating coalition. If this is the case, the original strategy cornbination 

seerns to us quite reasonable. 

To overcorne the aboye difficulties, we introduce here the concept "credible deviation" , 

defined recursively, and define "credible equilibrium" as one at which no credible deviations 

existo 

To rnake things precise, we need to establish sorne notation. Let r (T, P, U, e, p, h) be 

a game of perfect recall with utilities changing during the play. A behavioral strategy S¡.j of 

agent i.j is a probability distribution over the choices Cij at Uij. We note by S¡.j the set of 

these strategies. A behavioral strategy for player i is the k¡-tuple Si: (S¡.1' S¡.2, ... ,S¡.k¡), 

14 A concept that was introduced in Bernheim, Peleg and Whinston [1987] and in Peleg [1992]. 
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where Si.j belongs to Si.j. Thus, the set oí behavioral strategies íor player i is X;~ 1 Si.j 

Sí. An n-tuple oí behavioral strategies is s = (SI, ... , Sn) and the set oí these n-tuples, 

call d al " . t'" S X n S e so pOln s lS = i=1 i. 

Let Q be a set oí agents (to be thought oí as belonging to the same player). We denote 

by Q the set M \ Q, where M is the set oí all agents (not only oí the same player). For a 

point s, we denote by sQ the vector oí strategies15 (Si.j )ij EQ' Similarly, SQ := X i.jEQ Si.j. 

For simplicity we also write 

(s_i.j, s~.j) which expresses a deviation oí agent í.j to s~.j' instead oí the more precise 

notation (s _{ i.j}' s~.j)' 

Given an n-tuple oí behavioral strategies s, it induces a probability distribution on the 

endpoints. Thus, we can denote by hjj(s) the utility oí agent i.j íor this lottery. For s and 

s' in S, we write s' >-i.j s iff hi.j(S') > hi.j(s). 

Finally, íor a given s and a given agent i.j, we denote by ri,j the game obtained írom r 

by converting the strategy oí every agent, other than the strategies oí i.j and the agents oí 

player i that play after him,16 to chance mechanisms playing as in s (and converting the 

iníormation sets oí the chance mechanisms to singletons). fi. j is the game that the players 

think at the start oí the game that agent i.j is íacing, given that every agent other than he 

and his íollowers íollow s. Note that rrj is a l-person game--possibly with several agents. 

\Ve can now introduce our solution concepto Note that, because the game is oí perfect 

recall, the probability distributions on the nodes oí the iníormation sets oí agents oí player 

i, given that they are reached, depend only on the strategy (n - 1 )-tuple17 S-i and not 

on Si. Indeed, ií a non-singleton iníormation set oí an agent í.jo is reached, all previous 

choices taken by player i are known, the iníormation set results írom not knowing choices 

taken by chance and by other players. The probabilities on its nodes can be calculated 

from p and S_j. 

DEFINITION 3.1. Let r = (T, P, U, e, p, h) be a game oí perfect recall with utilities chang

ing during the play. Let s be an n-tuple oí behavioral strategies. Let Q be a set oí agents 

15Strictly speaking, we should fix an order on the agents to make it a vector. 
16 We say that i.j plays after i.jo if every path from Uij to the root passes through Uijo' 

17 S_. is a short notation for (SI, ... , S'-I, 8.+1, ... , Sn). 
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of player i, i =1= 0, containing an agent LjO and sorne of i's agents that play that play after 

i.jo. A strategy IQI-tuple sQ is said to be a credible deviation from s, 3truck by agent i.jo 

using Q, if: 

(i) s' >-i.)o s, where s': (Sq, s_Q)' i.e., agent i.jo strictly prefers that everyone play 

according to s' rather than everyone play according to s. 

(ii) s' >-i.) (S_i.j' s~.)) for all i.j E Q, i.j =1= i.jo. Thus, agent i.j strictly prefers to play 

s~.j rather than Si.j, given that the other agents playas dictated by s'. We shall 

refer to this condition by saying that i.j prefers to comply with s'. 

(iii) No agent of z, whether in Q or not, that plays after i.jo, can strike a credible 

deviation from s'. 

Note that the definition is not circular, because the relation "plays after" is acyclic. 

DISCUSSION. We view the deviation as a set of instructions Sq given by i .jo to the members 

of Q. Condition (i) states that i.jo prefers that these instructions are obeyed, given that 

agents of -Q continue18 to follow s. Indeed, otherwise, why did he give such instructions? 

Note that this implies that i.jo is reached with positive probability under s, because prior 

to i.jo there is no distinction between elements of s and s'. Condition (ii) implies that each 

member i.j of Q is reached with positive probability under s'. When i.j comes to play he 

has two suggested strategies: The original suggestion Si.) dictated by s and the deviation 

suggestion s~.j' \Vhich one will he obey? The condition states that each member of Q, 

except 19 perhaps i.jo, actually prefers to comply with s'. In other words, when i.j of Q 

comes to play (equivalently, when i.j considers playing in r{j), he prefers s~.j to Si.], given 

that other agents follow s'. Thus, such an agent has an incentive to follow the instructions. 

Following the spirit of Nash equilibrium, we took the position that even if i.j is indifferent 

between si. j and Si.], he wiil not switch20 to s~']' 

But there remains sorne doubt: What guarantees do the agents have that every agent of 

i will follow s'? Perhaps one can strike a deviation from Si! Condition (iii) is introduced 

18Subsequently we shall see that he can count on this. 
19This exception was put in order to allow for ¡.jo to continue using Si.jo' If other agents are asked to 
continue using 8i.j, we simply do not include them in Q. 
200ne could think of a different position (see Section 8). 
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to prohibit this possibility. The players that come to play after i.jo can rest assured that 

none of them can deviate from s' in a credible way. Condition (iii) gives our definition a 

recursive Havor, and it works because, for every agent i.j after i.jo, the "i-length"21 of r{j 

is smaller than the i-length of r(jo' 

REMARK. Although it is reasonable to assume that an agent of i not only remembers what 

choices other agents of i took in the past, but also knows by what probability distribution 

they were obtained, we do not make this assumption. So, if, s ay, an agent i.j¡, decides to 

"cheat" and move from a completely mixed strategy Si.it to another one, any agent i.j2 

after him will not recognize that cheating took place. As has been said aboye, knowing 

S-i and knowing that he was reached, is sufficient, in a game of perfect recall, for agent 

i.h to compute all the probabilities at rus information seto In fact, sometimes an agent i.j 

can predict that i.jo was cheating and this will not change his evruuation and behavior, as 

the next example shows. 

EXAMPLE 3.2. Consider the l-player 3-agent game of Figure 4. 

1 
() 

1.2 

2 
2 

U 
2 

1.1 

o 
2 

3 o 
4 4 

Figure 4. A credible deviation that will be 

violated 

21 By "i-length" we mean the longest path from an agent i.j, i l' O, to an endpoint. 
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Let Su (1/2,1/2), Su == (1,0,0), Su (1,0,0). A credible deviation by 1.1, using 

all the agents, may be: s~.l = (1/2, 1/2), s~.2 = (0,1, O), S~.3 = (0,1, O). It is credible, 

because after 1.1 plays, every agent is gaining and maximizing under s'. Nevertheless, 1.1 

is actually likely to deviate and play (0,1), to get 3 instead of 2.5. Now, if 1.2 knew that 

he was cheating he could punish him for his "betrayal", say, by playing (O, O, 1), but we do 

not need to go into such considerations. In fact, we shall later prove (Theorem 5.1) that 

if i.jo has a credible deviation from 8, then he has another credible deviation from 8 in 

which it does not pay him to move away. 

With the aboye discussion and remark we can now state our main deflnition. 

DEFINITION 3.3. Let r be a game with perfect recall and utilities changing during the 

play. An n-tuple s of behavioral strategies is called a credible equilibrium if there are no 

credible deviations from it; i.e., if there does not exist an agent i.jo and a coalition Q and 

a vector of behavioral strategies sQ which constitute a credible deviation from s. 
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4. Existence theorems 

We start by showing that in ordinary games, the set of Nash equilibria (Nash [1951]) and 

the set of credible equilibria coincide. This substantiates the claim that we are extending 

the N ash's solution to games with utilities changing during the play. 

THEOREM 4.1. Let r = (T, P, U, e, p, h) be a game of perfect recal1 in wbich, for eacb 

player, tbe utility functions of bis agents coincide. 22 Let r" be tbe ordinary representation 

of tbis game23 • Tbe set of credible equilibria (GrE) ofr is equal to tbe set of Nasb equilibria 

(NE) ofr". 

PROOF: If s E NE in r" then s E CrE in r, because no deviation by an agent of a player, 

using a set of agents of that player, can satisfy condition (i) of Definition 3.l. 

Conversely, if s ~ NE in r", then there exists a deviation sQ by player i, which is a 

best reply to S-í and player i, and therefore each of his agents, prefers s' := (sQ' s_Q) 

to s. Let i.j¡, i.h, ... , i.jk be the "first members" of Q; namely, the members of Q 

whose paths to the root do not contain other members of Q. Because the game is of 

perfect recall, each agent i.jll,!I 1,2, ... ,k, can compute his expected payoff in r:. j ., 

both under s and under24 s'. The difference between these expected payoffs depends only 

on actions taken by the members of Q 11 := {members of Q who are agents in fi.
J

• }. The 

strategy combination sQ¡,,, which is s' restricted to QII' is a maximizing strategy of player 

i in rrj.' Moreover, since s ~ NE, at least one agent, say i.h, is reached with positive 

probability under s and strictly prefers s' := (sQ¡ , S _Q¡) to s in rrj¡' We now modify sQ¡ 

by working backwards from the endpoints on members of Q1' If an agent i.j in Q1, in his 

turn, is indifferent between s~.j and Si.j, given that hi.9 information Jet is reached 25 and 

the strategies of players after him have been already determined, let him switch to Si.). 

22Strictly speaking, we should have added "whenever defined" (see Figure 2). However, credible equilibria 
do not depend on utilities of an agent off paths in which he plays, so we might as well assume that the 
utility functions are defined at all endpoints. 
23 Compare Figures 2 and 3. 
241.e., when his followers in r~. playas dictated either by s, or by s', respectively. 

'.J~ 

25We also assume that he can be reached with positive probability ifplayer i plays appropriately. Remember 
that in this case the probability distribution on the nodes of his informabon set is determined by the 
strategy combination s -i. If he cannot be reached, no matter what i does, he cannot compute the 
probabilities, but we can safely require that he plays Si.j. 
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After each switch, player i will still be playing a best reply in roo. After all these switches 

there will be agents of Q1 that are reached with zero-probability under the new strategies. 

Let them too switch to playas in s (if they have not already switched). Denote by Q2 the 

members of Q1 who still playas in Si, Q2 1= 0. SQ2 is still a maximizing strategy in ri,il' 

We claim that SQ2 is a credible deviation from s, struck by i.h. Indeed, we already know 

that i.j 1 prefers Si := (SQ2' S -Q2)' Q2 consists of exactly those agents who prefer to follow 

s' when they come to play. Finally, all agents of i have the same utility function and, after 

i.h, no agent can do better than the aboye maximizing strategy; so, no agent after i.j1 

can strike a credible deviation from Si •• 

It follows from Theorem 4.1 that erE is not empty for ordinary games of perfect recall. 

However, we need to establish existence in general as well. This will be done as a corollary 

to the following theorem which shows that erE contains the set of agent form perfect 

equilibria (APE) (see Selten [1975]). 

THEOREM 4.2. Let r (T, P, U, e, p, h) be a game of perfect recaJl with utilities changing 

during the play. Let r* be the agent farm game obtained fram r by cansidering different 

agents as different players. H s is a perfect equilibrium in r* then s is credible in r. 

PROOF: s is a limit of a "test sequen ce" (sk), k = 1,2, oo., where sk E NE in a "perturbed 

agent form game" r k. r k is a game having the same T, P, D, e, p, h as r, but the 

behavioral strategies at each choice e are restricted so that the probability to choose e is 

not smaller than sorne positive number 6~, with ECEC(tJ.ij)6~ < 1 for every information set 

Uij, and limk __ oo 6~ 0, all c. 

Suppose s is not credible in r, then there exists an agent i.jo who can strike a credible 

deviation sQ' Let i.e be a last agent 26 in Q. Agent i.e prefers to play s~.l rather than Su 

in r(l' given that the agents that foIlow him playas in S, because for these agents there 

is no distinction between !/ and s and because the deviation was credible. This preference 

wiIl not change if we modify s~.l and s slight1y. Modify s~.l to s~/.l which is positive in aIl 

components, so that it is a legitimate strategy in r k for sufficiently large k. Modify s to sk 

and one obtains sZl >-u s~.l in (rk)(; far sufficiently large k. This means that sk is not in 

26 Namely, a.n agent that after him all agents, if exist, play in s' as in s. 
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NE in rA:, because in rA: 'Uil is reached with positive probability under sA:, a contradiction . 

• 
COROLLARY 4.3. The set of credible equilibria is never empty. 

PROOF: Theorem 4.2 and the fact APE is not empty (Selten [1975]) .• 

1 
4 

1.1 

() 

2 
3 
3 

Figure 5. A credible equilibrium not in APE 

One may wonder if aH credible equilibrium points are in APE. That this is not the case 

even in ordinary games follows from Theorem 4.1, because there are ordinary games with 

NE =1 APE. For a simple example which is not an ordinary game consider Figure 5. It 

shows that the concept of erE permits a certain amount of punishment. 

REMARK. An agent form subgame perfectness is not sufficient for credibility. A simple 

example is given in Figure 6. (The ares denote the credible deviation.) 
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Figure 6. An agent fonn subgame perfect 

equilibrium which is not in erE 

lItility uf ugel.lt 1.1: () 
utility ,l agenl 2.1: () 
lItility of agellt 1.2: o 
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5. Sorne properties of the set of credible equilibria 

In this section we shall look more critically at the concept "credible equilibrium". \Ve 

shall try to find fiaws and investigate their seriousness. Take, first, the concept "credi

ble deviation". Suppose s is not credible. Can we always recommend a "best credible 

deviation"? The answer is negative as can be seen in Figure 7. 

lJ 
O 
O 

3 
1 
1 

1 
3 
1 

1.1 

Figure 7. A case in which there does not exist 

a best credible deviation 

Here, s = (RI, R 2 , L3 ) is not credible. The only credible deviations are those struck by 

agent 1.1, instructing all the agents to move to s':= (Ll,L2,[(~ -e)M3 ,(t +e)R3 ]), 0< 

e < ~. Note that Si is a credible equilibrium. Oí course, agent 1.1 would like to choose e 

as small as possible, but he cannot take e = 0, because then 1.2 will not cooperate. Note 

that this is a consequence oí the position we took in Definition 3.1, that cooperation can 

only be taken if there is real gain. 

A more serious criticism, at least resthetically, is the fact that CrE is not necessarily 

closed. Consider, íor example, the 2-person game in Figure 8, in which agents 1.1 and 1.2 

move Ll and L2 , and agent 2.1 mixes between L3 and R3 with probabilities (1- e,e). For 
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every e, O < e S 1, this is a credible equilibrium. It ceases to be, if e O. 

lltility oí agent 1.1 \ 1 
utility d aceut 1.2(0 
lltility oC agent 2.1: (J 

1.1 

2 
O 
() 

() O 
Ü O 
O O 

Figure 8. A case in which erE is not a dosed set 

U 
1 
O 

Note that this example hinges on our conservative stand that an agent will cooperate 

only in face of a gain. 

In Section 3 we presented an example of a credible deviation (Example 3.2) that was 

certain to be violated by the deviating agent himself. This was possible because of the need 

to keep Definition 3.1 recursive, and therefore meaningful. We argued that nevertheless 

ea eh agent of Q, after i.jo, would still prefer to obey sQ' Fortunately, we do not have to 

defend this argument any further, in view of the following theorem which shows that we 

may just as well restrict sQ to cases in which i.jo too cannot further violate. 

THEOREM 5.l. H sQ is a credible deviation from s by an agent i.jo, then there exists a 

deviation sa from s, by the same agent, such that he too cannot strike a credible deviatíon 

from s· := (Sal s -G)' 

PROOF: The proof involves several steps. 

STEP l. Denote by A' the set of pure choices used by i.jo with positive probability 

under s~.jo' We can and do assume that by playing s~.jo agent i.jo is maximizing under 

the condition that he must choose from A' and that all the agents that play after him 

(not necessarily only agents of i) obey s'. Indeed, if not, replace s~.jo by s~.jo in which 

i.jo is maximizing under the restrictions stated aboye. Let Q be a subset of Q, reached 
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with positive probability under ;: C;i.io,SQ\{i.io},S-Q) and not containing i.jo. The 

combination C;i.jo' S~) is a credible deviation from s, struck by 1.)0, which satisfies the 
Q 

maximizing requirement. 

STEP 2. Denote by B the set of all agents of i that play after i.jo and are reached with 

positive probability under s'. Denote by C the set of all agents of i that follow pathwise 

agents of B, but reached with probability O under s'. 

We shall show that if there exists a credible deviation sD from s', struck by i.jo, then 

D n (B U C) 0. Suppose D n B # 0 then there is a last agent i.jl in D n B, i.e., an 

agent such that those that follow him, and play differently under s' and Sil, are reached 

with probability O under s'. Let D* consist of i.jl and the agents in D that play after 

rum. We claim that sD. is a credible deviation from s', struck by i.jl-thus arriving at a 

contradiction because s' was credible. To verify the claim, observe that conditions (ii) and 

(iii) of Definition 3.1 are satisfied for sD"' because sD was a credible deviation struck by i.jo 

and because every player after i.jl is also a player after i.jo. More care is needed to verify 

condition (i). Consider the game r{i¡ and denote by ;/1 the restriction of Sil to this game. 

We know that in r(j¡' ;/1 >-i.j¡ (;" {i.j¡}' s~.j¡)' because ';D was a credible deviation from 

s', struck by i.jo and i.jl plays after him (and is reached with positive probability both 

under s' and under s/l). What we have to show is that in q:it' ';" >-i.j¡ (s~{i.i¡)' s~.j¡ ). 

This, in fact, is the case, because i.it was a last agent in D n B. Thus, in r(it, every 

agent i.j after i.j}, for whom S~~j # s~.i' is reached under s' with probability O, so there is 

no change in payoffs if we require such agents to play S~I.j instead of s~.i' 

Since sZi = s~.i for every agent in B, it follows that every agent in C is reached with 

probability O under Sil, therefore D n C = 0. 

STEP 3. We have shown that Sil = Si on paths after i.jo, reached with positive probability 

under s' and their continuations. Thus, the support Al! of S~I.jo must contain choices other 

than the choices in Al, then A" n A' = 0 and S'l directs the play to paths disjoint from 

those reached with positive probability under Si and their continuation. As in Step 1, we 

can and do assume that i.jo is maximizing given that he is restricted to A" and the other 

agents play according to Sil. 
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STEP 4. If there exists a credible deviation s~ from s", struck by i.jo, then, as in Step 2, 

E \ {i.jo} does not contain agents of i reached under s" with positive probability or agents 

of i that follow such agents. By arguments similar to those given in Step 2, it does not 

contain agents of i reached with positive probability under s', and pathwise followers of 

such agents. Thus, if <jo is maximizing on its support, it directs the play to paths different 

from the paths supported by s' or s". 

STEP 5. We continue in this fashion until we reach a credible deviation s~) from an S~-l), 

struck by i.jo and player i.jo cannot strike a credible deviation from s~), neither alone, 

restricted to the support of s~Jo' nor by directing the play to other paths, because such 

paths are not available. 

STEP 6. s~) is also a credible deviation from s, struck by i.jo. Indeed by transitivity, 

s(k) ~. s(k-l) ~.. . ., ~.. s' ~.. s', for every agent i.]· of G, s( •. ,k)-l) is identical 
1.)0 .')0 1.)0 .')0 

to Si.j and he prefers to comply with s(k); and neither i.jo, nor his followers can strike a 

credible deviation .• 

A credible equilibrium need not be ANE, because agents off the paths of the play may 

sometimes act "irrationally". Figure 9 provides such an example. However, if one thinks 

this is undesirable, one can find comfort in the following theorem. 

1 
1 

l.1 

2 
O 

o 
2 

Figure 9. A credible equilibrium which is not 

in ANE 
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THEOREM 5.2. The paths that are supported by a credible equilibrium are also supported 

by a credible equilibrium which is also a Nash equilibrium for the agent form game. 

For the proof we need the following 

LEMMA 5.3. Let s be a credible equilibrium and Jet i be a playero There exists an n-tupJe 

of strategies S, such that 

(1) s induces the same probability distribution as s on the set of nodes. In fact, it 

coincides with s at alJ information sets reached under s with positive probability. 

(2) Every agent i.k of i is maximizing in s, namely he is maximizing his expected payoff 

given that all other agents obey s. 
(3) s is a credible equilibrium. 

(4) Every agent j.k, j =f. i, if he was maximizing under s, he is still maximizing under 

s. 

PROOF: As usual, we consider S-i fixed and known to pI ayer i. We construct s succes

sively, backwards eliminating agents i.k who are not maximizing. 

Let i.k be a Iast agent who is not maximizing. Temporarily replace su. by apure strategy 

hk which is a best reply for him. This necessarily directs the play to paths not supported 

by s, because s was a credible equilibrium. Along these new paths we modify s by backward 

induction on the agents of i, after i.k, instructing each of them to empIoy best reply, given 

that he is reached,27 and keeping with s whenever there is indifference and whenever he 

cannot be reached. Agent i.k cannot gain by these modifications, compared to s, because 

if he could, he could also strike a credible deviation from s, giving himself and his followers 

the same instructions. So we let him revert to su. The resulting modification satisfies (1) 

with s being the modified strategy n-tupIe. It is also credible, because all modifications 

were done on unreachable paths that only i.k could direct to them, which he would not 

because it were not profitable. 

Agent i.k may perhaps, still gain by picking up another pure strategy instead of S¡.k. We 

27We remind the reader that if an agent is reached, then, because the game is of perfect recall, he can 
compute the probabilities of reaching each node of his information set and these probabilities depend only 
on s _j. 
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eliminate such avenues successively in a similar fashion until eventually i.k is maximizing 

with respect to the modified strategy n-tuple. 

This process is repeated until all agents of 

satisfied. 

are maxlmlzmg and so (1)-(3) are 

For agents of other players, if they are off the support of s (which is also the support of 

:;), they are maximizing automatically. lf they are in the support and maximizing under 

s, they are also maximizing under :;, because s = :; in the support and they cannot lead 

the game to paths w here s=/:-:;. This is condi tion (4). • 

PROOF OF THEOREM 5.2: Apply the lemma consecutively for all the players. The final 

modification will be in ANE, because every agent will be maximizing. Moreover, this 

modification coincides with s on the paths supported by s .• 



6. Examples 

The purpose of the examples in this section is to illustrate sorne features of the credible 

deviations and get a better understanding of them. 

EXAMPLE 6.1. Strategy (L 1 ,L2 ) in Figure 10 is not credible in spite of the fact that 

agent 1.2 receives less than the original payment under the credible deviation (R 1 , R2 ). 

Here we see the importance of the timing of decisions. When 1.2 plays, he has no alternative 

but to comply with the deviation. Thus, within the agents of a given player, the concept 

of credible equilibrium has sorne flavor of perfection, although in general, as we have seen, 

Cr E may even contain points not in ANE. 

1 
7 

1.1 

(J 

4 
2 
5 

Figure 10. A credible deviation that harms 

an agent 

EXAMPLE 6.2. Strategy (Lb L 2 ) is credible in the game of Figure 11. An instruction 

(R1 , R2 ) byagent 1.1, although promising to increase agent 1.2's payoff, is not saie for agent 

1.1. When agent 1. 2 comes to play he has no moti vation to move to R2 • In Section 8 we 

shall propose other variants under which (R 1 , R2 ) will be considered a credible deviation. 

EXAMPLE 6.3. Consider the game in Figure 12. Here, Wife (player 1) and Husband 

(player 2) can either "save" (s) or "consume" (c) at various stages. If both players save at 
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Figure 11. A credible equilibrium which is not 

Pareto optimal 

1.1 

7 
3 
8 

3 1 
O A 
5 2 

Figure 12. The savingjconsuming game 

3 
4 
5 

all stages, they can buy a high-quality caro Partial saving ((el, 82,83) in the figure) allows 

them to buy only a low-quality caro Wife is indifferent between high- and low-quality caro 

Husband strongly prefers the high-quality car (for instance, he needs it to show off). In 



fact, he would "consume" rather than buy the low-quality caro Wife can consume a small 

portion without Husband noticing. Alas, when consuming she enjoys her purchase all the 

more, and her desire to further consume becomes stronger (say, she bought an expensive 

ring and now she needs a necklace to match). This is evident when one compares the 

utility differences between 1.1 and 1.2. The rest of the story can be read from the figure. 

Clearly, (31,32,33) is not credible: Wife 1.1 switches to C1. Similarly, (C1,32,33) is not 

credible: Husband will spend his money on leisure. Thus, there is no chance of getting 

any car using pure strategies. The point (C1,C2,C3) is credible. It yields (3,4,5) to the 

agents. What asad prospecto But there exists a credible behavioral strategy that allows 

for complete saving with positive probability. It is ([2/3(3d, 1/3(cd], [1/2(82), 1/2(c2)], C3). 

Under this strategy they will buy a high-quality car with pro bability 1/3 and a low-quality 

car with probability 1/6. The payoff to 1.1 will be 3 and it will be 4 to 2.1. Agent 1.2 will 

be "created" with probability 1/3 and will receive 5. It is interesting to note that if 1.2 had 

the same utility functíon as 1.1, the only equilibrium poínt would have been (Cl, C2, C3). 
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7. Timewise Credible Equilibria 

One may question the definition of a credible deviation in two ways: 

(1) Is it not an artificial requirement to allow each agent control over only one infor

mation set? What if the same agent controls several? 

(2) \Vhy do we allow a deviating agent to instruct only agents that follow him pathwise? 

After all he may derive payments also at paths in which he does not play. 

To cope with the aboye criticism we have to extend the model of Section 2 by introducing 

dates at each information seto This we shall do in this section and then prove that we do not 

get other equilibrium points. For the sake of brevity we shall omit the formal definitions, 

which are straightforward extensions of the previous sections. First, we shall provide two 

examples to give the reader so me insight into the problem. In this section we use the 

convention that nodes in a figure on the same leve! are played, if reached, at the same time 

and that lower no des are played, if reached, at later dates. 

o 
O 

Chanee 

Figure 13. A "counterexample" 

1 
O 

EXAMPLE 7.1. The tree in Figure 13 refers to a one-player one-agent game, but the agent 

occupies two information singletons A and B. It seems that this example supports the 
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aboye criticism: The player cannot benefit by deviating from (L 1 , L 2 ) at any one node, 

but he can benefit by playing (R1 , R2 ). 

This example is not valid because an agent cannot have two different utilities at any 

particular node. This is simply meaningless. We must regard A and B as occupied by 

different agents, even if they are assigned the same date. 

o 
O 

o 
1 

Chance 

1/2 

Figure 14. A correct representation 

EXAMPLE 7.2. Figure 14 is a correct version. It seems, however, that we get a similar 

counter example by allowing agent 1.1 instruct himself and 1.2 to move right. 

Ves, but why would agent 1.2 obey? If he has to play he knows that 1.1 is not playing, 

so he knows he cannot gain by deviation. 

We now extend the model of Section 2 by adding a date at each information set and by 

allowing the same agent control several information sets that are assigned the same date. 

We remind the reader that an agent has exactly one utility function at all endpoints at 

which it is defined. We call the various information sets of an agent "subagents" of that 

agent. We assume that all subagents of an agent are associated with the same date. Thus, 

an agent is a unit that makes a decision on a certain date, based on one utility function. vVe 

modify the definition of a credible deviation of Section 3 by allowing members of Q other 
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than i.jo to be agents of i who play not earlier in time than i.jo. Condition (i) remains 

that agent i.jo prefers SI to s. Condition (ii) says that every agent i.j in Q, other than 

i.jo, prefers, when he comeJ to play, s' to (s'_t.j,Si.j)' Note that when he comes to play he 

knows at which information set he is located, so, as far as he is concerned, only strategies by 

subagents that are pathwise after this information set count for this preference. Condition 

(iii) says that every agent after i.j o, timewise, cannot strike a credible deviation. Since 

the number of time periods is finite, we have he re a well defined recursive definition. We 

call it a "timewiJe credible deviation from 5, by i.jo, uJing Q". The following two lemmas 

and theorem prove that with this extension we do not get different credible equilibrium 

points. 28 

In this section we are using the adverbs "pathwise" and "timewiJe". "Pathwise" refers 

to notions related to the tree. "Timewise" refers to notions related to the dates. Thus, 

saying "playing timwise after an agent" is not the same as saying "playing pathwise after 

an agent". It is reasonable to require, and we do require, that the latter implies the first. 29 

LEMMA 7.3. H sQ is a timewise credible deviation from s by a.n agent i.jo, then there 

exists a timewise credible deviation from s by a subagent of i.jo, in the game [*, obtained 

from the original game [ by regarding each subagent as a different agent. 

PROOF: Denote by i.jOl, i.j02, ... , i.jok, k ~ 1, the subagents of i.jo. They are all supposed 

to choose a move on the same date, if the play reaches them. They all have the same 

utility function. 

\Ve regard S-í as fixed and known to player i. Because the game is of perfect recall, 

each subagent knows the probability disribution at the no des of his information set, if 

the play reaches him. Given either Sí or s~, he can compute his expected payoff at the 

endpoints. 30 In particular, he can compute the sum of the expected payoffs at endpoints 

that follow him. We shall call this sum the pathwise expected payoff of the subagent. The 

28To símplify the exposition, we assume that agents do not employ correlated strategies among their 
subagents. This is legitimate, because the game is of perfect recall, so only induced probability distributions 
at the various informatíon sets matter. 
29See the Remark at the end of this sectíon. 
30 Note that prior in time to i.jo 1 s and Si coincide. 
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expected payoff of agent i.jo is a weighted average of the pathwise expected payoffs of the 

subagents i.joll' v = 1,2, ... , k. Since s' ~i.jo s, at least one subagent, say i.jOl, has a 

higher pathwise expected payoff under s' than under s. We shall now construct a timewiu 

credible deviation from s in r*, struck by agent i .jo l. It is simply sQ' In other words, 

instead of saying that i.jo struck sQ' we now say that i.jOl strikes a deviation by giving the 

same instructions. Indeed, condition (i) is fulfilled because of the way i.jOl was selected. 

When an agent i.jp in Q comes to play he knows that he is, say, at u(i.jpd. He prefers to 

comply with s' in r*, because he had the same preferences in r and his pathwise expected 

payoff is the same in both games. This is condition (ii). If in r* there is a subagent i.jq 

who plays timewise after i.jOl, who can strike a timewise credible deviation from s', then, 

in r, i.j could strike the same credible deviation from s', which is impossible. This proves 

condi tion (iii). • 

LEMMA 7.4. Let r be a game in which every agent occupies a single information seto H 

an agent i.jo can strike a timewise credible deviation sQ from s, then there is an agent 

who can strike a pathwise credible deviation from S. 

PROOF: If there exists an agent i.jl in Q, JI =1 jo, not pathwise after i.jo, then there exists 

an agent i.j2 in Q, not pathwise after i.jo, who is timewiu la~t to be reached with positive 

probability also under S. This agent, when he comes to play, prefers s' to (l"'¡.h' S¡.J2)' 

which means that he also prefers s' to s, because, by choosing s~.h he diverts the play 

to paths in which there is no distinction between s and s', or to paths in which, under 

s, it does not matter whether Si.j or s~.j is played. This is condition (i) for a deviation 

sQ. := sQ., struck by i.j2 from s, where Q* consists of i.i2 and members of Q that play 

pathwi~e after i.j2' Any such member other than i.j2 prefers to comply with Sil, because 

he preferred to comply with s' and his preferences do not depend on moves taken not 

pathwise after him. This is condition (ii) of Definition 3.1. Similarly, no agent pathwise 

after i.j2 can strike a credible deviation from Sil, because if he could, he could also strike 

the same deviation from s' .• 

THEOREM 7.5. Let r be agame with dates and with agents controllingseveral information 

sets. Let r* be the game obtained from r by regarding subagents as different agents and 
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by removing the date labels. The set oi timewise credible equilibria in r is identical to the 

set oi (pathwise) credible equílibria in r*. 

PROOF: From Lemmas 7.3 and 7.4, it follows that if s is a pathwise credible equilibrium 

in r* then it is also timewise credible equilibrium in r. Suppose s is a timewise credible 

equilibrium in r then, in particular there does not exist a timewise credible deviation sQ 

by a subagent i.JOl that uses only members of Q who follow him pathwise. Therefore, for 

any such attempted deviation, either i.JOl does not prefer s' to s or there exists a member 

of Q (pathwise) after i.jOl who would rather comply alone with s, or an agent i.jl in r 
who plays timewise after i.jOl, can strike a timewise credible deviation s'b from s'. In the 

first two cases, sQ is not a credible deviation in r·. In the third case sQ would still not 

be a credible deviation in r· if i.jl 's deviation from s' uses only subagents that follow 

i.jOl pathwise. If this is not the case then there exists in D a last subagent, reachable 

with positive probability also under s who can strike a timewise credible deviation31 to s. 

This, however, is impossíble, because 8 was timewise credible. We have proved that s is 

(pathwise) credible in r* . • 

REMARK. It should be noted that not every assignment of dates to information sets will 

be valid even if the game is of perfect recall. For example, one cannot play the game of 

Figure 15 unless one is equipped with "time machine" . 

Without the dates this game makes perfect sense: Both players 2.1 and 3.1 have to act 

without knowing if the other one has already made his choice. 

31 Because preferring to comply with s", when reached, means, preferring s/l to s. See also the proof of 
Lemma 7.2. 
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Figure 15. A game that is impossible to play 

1.1 
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8. Other variants 

In Section 3 we took the position that when an agent in the deviating coalition is 

indifferent to complying with Si or with s, he will not switch. This position gave rise to 

requirement (ii) in Definition 3.1. We could take the other position, that he will comply 

with Si in case of indifference. After all, what one promises to oneself is perhaps more 

important than what one promises to others ... With this position in mind, an interesting 

variant may be to omit requirement (ii) altogether. Accordingly, we shall call a deviation 

sQ satisfying (i) and (iii) of Definition 3.1 an optimistic credible deviation and we define 

an optimisiic credible equilibrium as an n-tuple of strategies from which there do not exist 

optimistic credible deviations. 

o 
1 
O 

1.1 

1 
1 
O 

Figure 16. An OCrE which is not dosed 

1 
O 
O 

The set of optimistic credible equilibria (OCrE) coincides with NE in ordinary games, 

and the proof is essentially the same as in Theorem 4.1. Thus, OCrE is also an extension 

of the Nash solution concepto It, too, is not necessarily a dosed set as the example in 

Figure 16 shows. 
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In this example UJ1 , L2 , [(1 é)L 3 , éR3 ]) is in OCrE whenever O < é :s; 1 but if e = O, 

agent 1.1 can instruct agent 1.2 to rnove right, and this is an optirnistic credible deviation. 

We believe that OCrE is worth studying, because of its sirnpler definition as cornpared 

to CrE and because it yields interesting strategies. The set OCrE need not contain APE 

and the game in Figure 17 is an appropriate example. 
1.1 

1.2 

1 2 
1 1 
1 1 

Figure 17. An example in which OCrE n 

o 
O 
O 

APE = 0 

Here, (1\11 , L 2 , L3 ) 1S the unique perfect equilibriurnmt for the agent forrn game. 

It is not optirnistically credi ble because 1.1 can instruct 1.2 to rnove right. The point 

(M1 ,R2 ,L3 ) is both in CrE and in OCrE. 

Unfortunately, OCrE rnay be ernpty, as can be seen in the game of Figure 18. 

In this example 1.2 and 2.1 play rnatching pennies. Thus, if s E OCrE then S1.2 

(1/2,1/2) and S2.1 = (1/2,1/2). But then, 1.1 can strike an optirnistic credible deviation 

by instructing 1.2 to rnove "left". One rnay feel that this counter example is sufficient to 

discard OCrE. We do not think so. OCrE conceptually is sirnpler than erE and if it does 

contain sorne points, these rnay have sorne ad vantage. 

In another variant of the OCrE concept, one requires that in case of indifference between 

cornplying with .'), and cornplying with s in r(j' i.j E Q, agent i.j will cornply with s' only 
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I 
O 
t 

1 
1 
O 

1.1 

1.2 

Figure 18. A game with an ernpty OCrE 

if, when the in3truction wa3 given, agent i.j was prornised sorne gain in s' as cornpared to 

s. It is as if i.jo "tells" i.j in Q: "If 1 would not have struck the deviation and we all played 

according to the original point s, you would have received a certain amount, a. Now that 1 

strike the deviation, you will get b, and b is greater than a. True, when it will be your turn 

to play you will get b even if you play Si.j, but where will your gratitude to rne-your own 

flesh and blood-be for the profits 1 threw upon you?" We feel that this concept should 

also be studied, but we rnust say that it has one drawback: It requires utilities of agent i.j 

to be defined even if s is played, perhaps under outcornes in which i.j is not even created. 

37 



9. Other applications 

Up to now we restricted ourselves to one scenario: The players are individuals who play 

a game in extensive form and their utilities may change during the play. But the model 

that we constructed may be useful in other applications. In this section we shall discuss 

two of them. 

A. VIOLATION OF VON NEUMANN-MORGENSTERN INDEPENDENCE AXIOM. The last 

decade, which has witnessed a proliferation of studies of generalizations of von Neumann

Morgenstern [1947] expected utility theory, saw a revival of interest in the changing

preference problem. Indeed, in many models, the violation of von Neumann-Morgenstern 

independence axiom is equivalent to dynamic inconsistency in decision makers' prefer

ences in a multi-stage decision problem under risk (see Hammond [1988], Karni and Safra 

[1989a, b], Machina [1989]). Differently put, the violation of the axiom is (at least techni

cally) equivalent to a change in the decision-maker's utility function (over lotteries). Thus, 

our concept of Cr E may be applied to such models as well. 

B. WHEN A PLAYER REPRESENTS A GROUP OF INDIVIDUALS. In many game models, a 

player is not an individual. It can be a state, a political party, an organization, etc. In 

such cases it almost always makes no sense to attribute to such a player a von ~eumann

Morgenstern utility function. We do not refer here only to situations that fall under Con

dorcet paradox (Condorcet [1785]), but to a more fundamental fact that a non-individual 

player may not have a utility junction. What is the utility function of a state? The utility 

of the farmers? The utility of the manufacturers? The white collar people? The plain 

citizen? The prime minister? It is more natural to regard a player in such cases as an 

instruction-giving unit that repre3ent3 groups32--each endowed with its own utility func

tion. Each such group is capable of deviating from the instructions given by the players 

and will deviate if it finds the deviation profitable and safe. 

Applications of game theory in which players in the game model are not individuals are 

32 Strictly speaking-individuals who sometimes are aggregated into groups to render further analysis 
feasible. 
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numerous, and among the most important. If the model developed in this paper could be 

used to handle them, that would be a significant contribution to applied game theory. For 

example, a game theorist could tell the instruction-giving unit: "You can, of course, decide 

on any strategy combination, but only credible combinations will be abided by. Here is 

the set of those combinations that are likely to be followed." Unfortunately, the present 

model can handle only cases where perfect recall prevails. 

For applications discussed here, perfect recall is not a reasonable requirement. Why 

should the farmers know what the manufacturers did in the past, for example?33 Of 

course, if perfect recall do es not prevail, one cannot limit oneself to behavioral strategies, 

but this is not the main source of difficulty. Take, for example, the one-person game of 

Figure 19. 

1 
1 

3 
O 

1.1 

o 
O 

2 
2 

Figure 19. A credible deviation that does not 

make sense 

Here, (L 1 , Lz) is not credible because agent 1.1 can instruct himself and agent 1.2 to 

move right. If agent 1.2 knew that agent 1.1 was moving right, he would have certainly 

chosen to comply. But he does not know, and if he complies, then it behooves agent 1.1 

to remain at L 1 so as to get 3. So, the deviation (R1 , Rz) is perhaps not safe, in spite of 

the fact that it complies with Definition 3.1. 

330f course, if the instructíons can only by delivered publicly, as it should be in most cases of democratíc 
countries, we can claim that perfect recall prevails. 
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If the game lacks perfect recall, difficulties start with the construction of the model itself. 

The model should allow an agent to occupy several information sets, belonging to different 

dates, if dates are specified. It should be clear who plays after whom, so as to know to 

whorn instructions of the deviating player can be given. The strategy space should also be 

clearly specified: Do we allow agents to use correlated strategies) for example? Suppose 

the agents have agreed on a strategy cornbination and that sorne agents deviated in such a 

way that others do not know it, due to the imperfect recalL And suppose that, contrary to 

the agreement, an agent finds hirnself at an information set that should have been reached 

with zero probability. He knows that a violation occurred but often does not know which 

one. How will he interpret the observation? We see that wi th lack of perfect recall all the 

problernatic issues of "refinernents" pop up in spite of the fact that our goal was to only 

generalize the Nash solution. Thus, applications of CE to games where a player represents 

several groups is at present quite lirnited. The extension of this rnodel to games without 

perfect recall remains a challenging topic for further research. 
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