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Abstract. In this study, we propose a new bootstrap strategy to obtain prediction
intervals for autoregressive integrated moving average processes. Its main advantage over
other bootstrap methods previously proposed for autoregressive integrated processes is
that variability due to parameter estimation can be incorporated into prediction intervals
without requiring the backward representation of the process. Consequently, the
procedure is very flexible and can be extended to processes even if their backward
representation is not available. Furthermore, its implementation is very simple. The
asymptotic properties of the bootstrap prediction densities are obtained. Extensive finite
sample Monte Carlo experiments are carried out to compare the performance of the
proposed strategy vs. alternative procedures. The behaviour of our proposal equals or
outperforms the alternatives in most of the cases. Furthermore, our bootstrap strategy is
also applied for the first time to obtain the prediction density of processes with moving
average components.

Keywords. Forecasting; non Gaussian distributions; prediction density; resampling
methods; simulation.

1. INTRODUCTION

Forecasting is one of the main goals in univariate time-series analysis. The
problem is providing information about the distribution of the variable YT+k

conditional on a realization of the past variables YT ¼ {Y1,…,YT}. In particular,
the objective is to construct prediction intervals I(YT) ¼ {L(YT),U(YT)} designed
to capture the future value of YT+k with a fixed probability, the nominal
coverage. We will focus on prediction of future values of time series generated by
autoregressive integrated moving-average (ARIMA) processes with possibly non-
Gaussian innovations.

The standard prediction approach for ARIMA processes (Box and Jenkins,
1976) assumes Gaussian innovations and known parameters. Consequently, the
resulting prediction intervals are centered around the conditional expectation
which is a linear function of past observations and do not incorporate the
uncertainty due to parameter estimation.

Alternatively, bootstrap-based methods provide prediction intervals without
any distributional assumption on the innovations. There are several bootstrap
alternatives in the literature to construct prediction intervals for autoregressive
models of order p (AR(p)). Findley (1986), Stine (1987), Masarotto (1990) and
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Grigoletto (1998) use bootstrap methods to estimate the density of the prediction
errors including uncertainty due to parameter estimation. As in the standard
method, they centre the forecast intervals at a linear combination of past
observations. Alternatively, Thombs and Schucany (1990) and Breidt et al. (1995)
directly estimate the distribution of YT+k conditional on YT. In an AR(p) process,
conditioning on YT is equivalent to conditioning on the last p observations.
Consequently, Thombs and Schucany (1990) and Breidt et al. (1995) use the
backward representation of AR(p) models to generate bootstrap series that mimic
the structure of the original data with fixed last p observations. McCullogh (1994)
applies the results in Thombs and Schucany (1990) and Breidt et al. (1995) to real
data implementing also the bias-correction bootstrap of Efron (1982). Garcı́a-
Jurado et al. (1995) extend the bootstrap approach of Thombs and Schucany
(1990) to autoregressive integrated (ARI) processes. They use the backward
representation of the autoregressive model to construct bootstrap replicates of the
differenced variable k periods ahead and then obtain bootstrap samples of the
original variable YT+k by solving a (k+d) · (k+d) linear system, where d is
the number of unit roots. When forecasting far ahead, the huge dimension makes
the system difficult to handle. The need of the backward representation to
generate bootstrap series makes all these methods computationally expensive and,
what is more important, restricts their applicability to models having a backward
representation, excluding, for example, generalized autoregressive conditionally
heteroscedastic (GARCH) processes. Furthermore, the prediction of moving-
average processes cannot be handled by these techniques because the infinite order
of their autoregressive representation requires that, at least theoretically, the
whole sample should be fixed to generate bootstrap replicates. An additional
difficulty with this backward representation approach is that, although in AR(p)
processes the distribution of YT+k conditional on YT coincides with the
distribution conditional on the last p observations under known parameters, if
the parameters are estimated, these distributions are different for finite sample
sizes. Kabaila (1993) questions whether predictive inference should be carried out
conditioning on the last p observed values. Finally, Cao et al. (1997) present an
alternative bootstrap method for constructing prediction intervals for stationary
AR(p) models which does not require the backward representation. However,
their intervals do not incorporate the variability due to parameter estimation.

In this study, we propose a simple resampling procedure for ARIMA processes
to estimate the conditional distribution of YT+k directly, incorporating the
variability due to parameter estimation. Our strategy makes the backward
representation unnecessary and, as a consequence, this bootstrap procedure can
be easily extended to forecasting with more general models.

The paper is organized as follows. Section 2 presents the resampling procedure
to estimate prediction distributions and establishes its asymptotic validity for
AR(p) processes. In Section 3, we extend this procedure to ARIMA processes and
we establish its asymptotic validity. Section 4 contains an extensive Monte Carlo
simulation study which compares the performance of several available bootstrap
prediction techniques for different ARIMA models and error distributions.
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Finally, the conclusions and some ideas for further research can be found in
Section 5.

2. BOOTSTRAP PREDICTION INTERVALS FOR STATIONARY AR(p) PROCESSES

Let yT ¼ {y1,…,yT} be a sequence of T observations generated by a stationary
AR(p) process given by

Yt ¼ /0 þ /1Yt 1 þ � � � þ /pYt p þ at; t ¼ . . . ;�2;�1; 0; 1; 2; . . . ; ð1Þ

where {at} is a sequence of zero-mean independent random variables with
common distribution function Fa such that Eða2t Þ ¼ r2

a < 1, / ¼ (/0,/1,…,/p)
are unknown parameters and all the roots of the autoregressive polynomial
U(z) ¼ 1�/1z�� � ��/pz

p lie outside the unit circle.
Conditional on YT ¼ {Y1,…,YT}, the minimum mean square error (MSE)

predictor of YT+k is given by the conditional mean of YT+k,

~YTþk ¼ /0 þ /1
~YTþk 1 þ � � � þ /p

~YTþk p; ð2Þ

where ~YTþj ¼ YTþj for j £ 0. The prediction error is a combination of future
innovations aT+j, j ¼ 1,…,k, given by

~eTþk ¼ YTþk � ~YTþk ¼
Xk 1

i¼0

WiaTþk i; ð3Þ

where Wi are the coefficients of the moving-average representation of the AR(p)
model obtained from W(B) ¼ U(B) 1, where B is the backshift operator. The
prediction MSE is

MSEð~eTþkÞ ¼ r2
a

Xk 1

i¼0

W2
i : ð4Þ

Usually, since the parameters are unknown, predictions are made with estimated
parameters. The actual predictor is then given by

ŶTþk ¼ /̂0 þ/̂1ŶTþk 1 þ � � � þ/̂pŶTþk p; ð5Þ

where /̂ ¼ ð/̂0;/̂1; . . . ;/̂pÞ are parameter estimators and ŶTþj ¼ YTþj for j £ 0. The
corresponding prediction error can be separated into two parts by writing

êTþk ¼ YTþk � ŶTþk ¼ ðYTþk � ~YTþkÞ þ ð~YTþk � ŶTþkÞ: ð6Þ

The first term in (6) is the prediction error in (3). The second term appears because
parameter estimates are used instead of true values. So, in practice, the
uncertainty due to parameter estimation has to be included in the expression of
the prediction MSE.
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The prediction intervals for YT+k constructed using the Box and Jenkins (1976)
procedure are given by

ŶTþk � za=2 r̂2
a

Xk 1

j¼0

Ŵ2
j

 !1=2

; ŶTþk þ za=2 r̂2
a

Xk 1

j¼0

Ŵ2
j

 !1=2
8<
:

9=
;; ð7Þ

where za/2 is the 1�a/2 quantile of the standard normal distribution, r̂2
a is the

usual estimate of the innovations variance and Ŵj are the estimated coefficients of
the moving average representation. The prediction intervals in (7) just consider
the MSE in (4) and replace the unknown parameters by appropriate estimates.
However, they do not incorporate the variability due to parameter estimation.
Moreover, these intervals have two additional problems when the distribution of
at is not normal. First, the value of the standard normal quantile may not be
appropriate. To handle this question, Findley (1986), Stine (1987), Masarotto
(1990) and Grigoletto (1998) proposed different ways of bootstrapping from the
residuals of the estimated model,

ât ¼ yt �/̂0 �/̂1yt 1 � � � � �/̂pyt p; t ¼ p þ 1; . . . ; T ; ð8Þ

to estimate the distribution function of the prediction error. The second difficulty
is that these bootstrap prediction intervals are still centered in (5) and when the
innovation distribution is not symmetric, this could be inappropriate.

To solve this problem, Thombs and Schucany (1990) introduced a bootstrap
method based on directly estimating the distribution of YT+k conditional on the
available variables YT. To incorporate the uncertainty due to parameter
estimation in the prediction intervals, they generated bootstrap replicates
y�T ¼ fy�1 ; . . . ; y�Tg that mimic the structure of the original series. Since the
prediction is conditional on the last p values of the series, all the bootstrap
replicates are generated fixing the last p values; this requires the backward
representation of stationary AR(p) models, where Yt is expressed as a linear
combination of future values plus an error term. Using the backward
representation makes the procedure computationally demanding and it
constitutes an obstacle to extend the resampling procedure to models without
backward representation. To overcome this problem, Cao et al. (1997) proposed a
fast procedure, called conditional bootstrap, to generate prediction intervals
based on resampling residuals but their method does not incorporate variability
due to parameter estimation.

In this section, we introduce a new resampling strategy to build prediction
intervals in AR(p) models. Our method is based on fixing the last p observations
to obtain bootstrap replicates of future values YT+k but the estimated parameters
are bootstrapped without fixing any observation in the sample. As a consequence,
we do not need the backward representation of the model and, therefore, the
method can be easily extended to more general models.

Our proposal to obtain bootstrap replicates of the series is as follows. Given a
set of estimates of the AR(p) model, obtain the residuals by (8) and centre and
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rescale them, as suggested by Stine (1987), by the factor ðT � p=T � 2pÞ
1
2. From a

set of p initial values, say y�0 ¼ fy� pþ1; . . . ; y
�
0g, construct a bootstrap series

fy�1 ; . . . ; y�T g from

Y �
t ¼ /̂0 þ/̂1Y

�
t 1 þ � � � þ/̂pY

�
t p þ â�t ; t ¼ 1; . . . ; T ; ð9Þ

where â�t are independent observations obtained by resampling from F̂a, the
empirical distribution function of the centered and rescaled residuals.
Once the parameters of this bootstrap series are estimated, say
/̂� ¼ ð/̂�

0;/̂
�
1; . . . ;/̂

�
pÞ, we forecast through the recursion of the autoregressive

model with the bootstrap parameters and fixing the last p observations of the
original series,

Y �
Tþk ¼ /̂�

0 þ
Xp
j¼1

/̂�
j Y

�
Tþk j þ â�Tþk; ð10Þ

with â�Tþk being a random draw from F̂a and Y �
Tþh ¼ yTþh, h £ 0. Once we obtain a

set of B bootstrap replicates fy�ð1ÞTþk; . . . ; y
�ðBÞ
Tþkg, we proceed as in Thombs and

Schucany (1990). The prediction limits are defined as the quantiles of the
bootstrap distribution function of Y �

Tþk. More specifically, if
G�ðhÞ ¼ PrðY �

Tþk � hÞ is the distribution function of Y �
Tþk and

G�
BðhÞ ¼ #ðy�ðbÞTþk � hÞ=B is its Monte Carlo estimate, a 100a% prediction

interval for Y �
Tþk is given by

fL�BðyÞ;U �
BðyÞg ¼ Q�

B
1
2 � 1

2a

 �

;Q�
B

1
2 þ 1

2a

 �� 

; ð11Þ

where Q�
B ¼ G� 1

B . The main difference between our bootstrap strategy and
Thombs and Schucany’s (1990) is that our bootstrap parameter estimates are not
conditional on the last p observations and this allows us to overcome the
computational burden associated with resampling through the backward repre-
sentation. Moreover, this procedure can be extended to forecasting with more
general and complex models.

Summarizing, the steps for obtaining bootstrap prediction intervals are:

Step 1. Compute the residuals ât as in (8). Let F̂a be the empirical distribution
function of the centered and rescaled residuals.
Step 2. Generate a bootstrap series using the recursion in (9) and calculate the
estimates /̂�.
Step 3. Obtain a bootstrap future value by expression (10). Note that the last p
values of the series are fixed in this step but not in the previous one.
Step 4. Repeat the last two steps B times and then go to step 5.
Step 5. The endpoints of the prediction interval are given by quantiles of G�

B,
the bootstrap distribution function of Y �

Tþk.

The asymptotic properties of the proposed bootstrap procedure are analysed in
the following section where we deal with the more general ARIMA(p,d,q)
model.
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3. PREDICTION FOR ARIMA MODELS

In this section, we generalize the resampling scheme introduced above to
ARIMA(p,d,q) process given by

rdYt ¼ /0 þ /1rdYt 1 þ � � � þ /prdYt p þ at

þ h1at 1 þ � � � þ hqat q; t ¼ . . . ;�2;�1; 0; 1; 2; . . . : ð12Þ

where � ¼ (1�B) is the first difference operator and the roots of the autoregres-
sive and moving-average polynomials satisfy the usual stationary and invertibility
conditions, respectively. The innovations at ¼

P1
j¼0 pjrdYt j can be approxima-

ted by

atð/; hÞ ¼
Xt 1

j¼0

pjrdYt j ¼
Xt 1

j¼0

bjðhÞ rdYt j �
Xp
i¼1

/irdYt j i

 !
;

where pj are the parameters of the infinite autoregressive representation of the
stationary process �dYt and

X1
j¼0

bjðhÞzj ¼ 1þ
Xq
i¼1

hizi
 ! 1

; jzj � 1;

where h ¼ (h1,…,hq). If yT n+1,…,yT are observations of the ARIMA(p,d,q)
process and /̂ and ĥ are estimates of / and h, obtained using the stationary
transformation �dYt define ât ¼ atð/̂; ĥÞ, t ¼ T�n+1,…,T. We have that, for t
large enough, ât � at tends to zero in probability as the sample size n goes to
infinity since jât � atj � jât � atð/; hÞj þ jatð/; hÞ � atj, the first term goes to zero
in probability as n fi 1 (Kreiss and Franke, 1992; Lemmas 2.1 and 2.2) and the
second one tends to zero in probability when the sample size tends to infinity, due
to the invertibility condition (Brockwell and Davis, 1991).

The bootstrap prediction strategy proceeds now by adapting the five steps
described in Section 2 to model (12). For simplicity of the exposition, we first
consider the stationary ARMA model and, then, describe how to deal with the
general ARIMA model. In particular, if d ¼ 0, in step 2, instead of equation (9),
the bootstrap series used to obtain bootstrap estimates of the parameters is
generated by the following recursion

Y �
t ¼ /̂0 þ/̂1Y

�
t 1 þ � � � þ/̂pY

�
t p þ â�t

þ ĥ1â�t 1 þ � � � þ ĥqâ�t q; t ¼ T � nþ 1; . . . ; T ; ð13Þ

and, in step 3, the bootstrap future value is obtained by

Y �
Tþk ¼ /̂�

0 þ
Xp
j¼1

/̂�
j Y

�
Tþk j þ â�Tþk þ

Xq
j¼1

ĥ�j â
�
Tþk j; ð14Þ

where Y �
Tþh ¼ yTþh and â�Tþh ¼ âTþh if h £ 0. Note that, once more, the last p

values of the series are fixed in (14) but not in (13).

454 L. PASCUAL, J. ROMO AND E. RUIZ

� Blackwell Publishing Ltd 2004 6



If d „ 0, equation (9) is replaced by the appropriate recursion. For example, for
the ARI(1,1) model,

Y �
t ¼ /̂0 þ ð1þ/̂1ÞY �

t 1 �/̂1Y
�
t 2 þ â�t ; t ¼ 1; . . . ; T : ð15Þ

Then, equation (10) is replaced by the following recursions,

Y �
Tþ1 ¼ /̂�

0 þ ð1þ/̂�
1ÞyT �/̂�

1yT 1 þ â�Tþ1;

Y �
Tþ2 ¼ /̂�

0 þ ð1þ/̂�
1ÞY �

Tþ1 �/̂�
1yT þ â�Tþ2;

ð16Þ

and so on.
To analyse the asymptotic properties of the proposed bootstrap procedure, we

need the following definitions. Let YT+k be an observation of the law P
conditional on yT and let Y �

Tþk be a bootstrap observation with distribution P*
conditional on yT. We say that Y �

Tþk converges weakly (P*) in probability (P) to
YT+k if for any distance d metrizing weak convergence, dðY �

Tþk; YTþkÞ �!P 0. We
also say that Y �

Tþk converges in probability (P*) in probability (P) to YT+k if for
any distance dmetrizing convergence in probability, dðY �

Tþk; YTþkÞ �!P 0. Finally,
Y �
Tþk converges weakly (P*) almost surely (P) to YT+k if for any distance d

metrizing weak convergence, dðY �
Tþk; YTþkÞ �! 0 for almost all sample sequences.

The validity of the proposed method is established in the following theorem.

Theorem 1. Let yT ¼ {yT n+1,…,yT} be a realization of an ARIMA(p,d,q)
process {Yt} with E(at) ¼ 0 and E(a4t Þ < 1 and the roots of the autoregressive and
moving-average polynomials satisfying the usual stationary and invertibility
conditions respectively. Let ð/̂; ĥÞ be any M-estimate of (/,h) and let Y �

Tþk be
obtained following steps 1 to 5. Then, given yT, Y �

Tþk converges weakly in probability
to YT+k as n tends to infinity.

Proof of Theorem 1. Assuming, for simplicity, that the integration parameter d
is zero, weak convergence in probability of the bootstrap M-estimates, ð/̂�; ĥ�Þ, to
the true parameters (/, h), follows from Theorem 4.1 in Kreiss and Franke (1992).
We express Y �

Tþk as a sum involving the available and fixed values yT n+1,…,yT,
the independent random draws â�Tþj, estimated innovations âT j and continuous
functions of the bootstrap parameter estimates ð/̂�; ĥ�Þ. For a forecast horizon k,
we have that

Y �
Tþk ¼g0ð/̂�Þ þ g1ð/̂�ÞyT þ � � � þ gpð/̂�ÞyT pþ1 þ h1ð/̂�; ĥ�Þâ�Tþ1

þ � � � þ hk 1ð/̂�; ĥ�Þâ�Tþk 1 þ â�Tþk þ l1ð/̂�; ĥ�ÞâT þ � � � þ lqð/̂�; ĥ�ÞâT qþ1:

The functions gj, hj and lj are different for each prediction horizon, but for
simplicity we use the same notation.

Following the arguments in Thombs and Schucany (1990), we have that g0ð/̂�Þ
converges weakly in probability to g0(/) and the products of fixed values yT j and
functions of the bootstrap parameter estimates gjð/̂�ÞyT jþ1 converge also weakly
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in probability to gj (/)yT j+1. Now, by Theorem 3.1 in Kreiss and Franke (1992),
the terms â�Tþj tend weakly to aT+j in probability and the products hjð/̂�; ĥ�Þâ�Tþj
converge in distribution in probability to hj(/,h)aT+j, by the bootstrap version of
Slutsky’s Theorem. Since the â�Tþj’s are independent, the sum containing them and
the continuous functions hjs converge weakly in distribution in probability
to the corresponding limit sum. Finally, the remaining term
l1ð/̂�; ĥ�ÞâT þ � � � þ lqð/̂�; ĥ�ÞâT qþ1 can be rewritten as

l1ð/; hÞaT þ � � � þ lqð/; hÞaT qþ1 þ fl1ð/̂�; ĥ�Þ � l1ð/; hÞgâT

þ � � � þ flqð/̂�; ĥ�Þ � lqð/; hÞgâT qþ1 þ l1ð/; hÞ ðâT � aT Þ

þ � � � þ lqð/; hÞ ðâT qþ1 � aT qþ1Þ:

The first q terms do not depend on n. The next q terms converge weakly to zero in
probability since fljð/̂�; ĥ�Þ � ljð/; hÞg converges to zero in probability and the
elements âT jþ1 converge to aT j+1 in distribution. Finally, the last q terms go to
zero in probability since lj (/,h) is a fixed value and ðâT jþ1 � aT jþ1Þ tends to zero
in probability. It follows that for any fixed forecast horizon k, Y �

Tþk converges to
YT+k weakly in probability, as n tends to infinity.

In the ARIMA(p,d,q) model with d „ 0, the parameters (/,h) can be estimated
from the stationary transformation, �dYt. Taking into account that the
ARIMA(p,d,q) model can be seen as an ARMA (p+d,q) model where the
coefficients of the new autoregressive part (of order p+d) are continuous
functions of the p+1 autoregressive parameters / the proof concludes following
the same lines as before. QED

Notice that, if the model does not contain a moving-average component, it is
possible to obtain ordinary least squares (OLS) estimates of the autoregressive
parameters /. In this case, if the innovations satisfy the weaker condition
E(|at|

c)<1, for some c>2, Freedman (1985) proved the consistency of the OLS
bootstrap estimates in conditional probability for almost all sample sequences.
Then, following the same arguments as in the proof of Theorem 1, it can be shown
that, if Y �

Tþk is obtained following steps 1 to 5, Y �
Tþk converges weakly almost

surely to YT+k as n tends to infinity.
Finally, notice that the proposed bootstrap procedure is valid for any estimator

that satisfies weak convergence in probability of bootstrap estimates to the true
parameters.

4. SIMULATION RESULTS

The coverage of prediction intervals for finite samples is usually different from the
asymptotic nominal coverage and depends on the model, the distribution of the
innovations and the parameter estimation method. In this section, we present
several Monte Carlo experiments carried out to analyse the finite sample
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behaviour of the proposed bootstrap estimates of prediction densities for
ARIMA(p,d,q) processes. We compare our proposal Pascual, Romo and Ruiz
(PRR) with Box and Jenkins (BJ) intervals and with alternative bootstrap
intervals. For stationary AR(p) processes, we compare PRR intervals with
intervals introduced by Thombs and Schucany (1990) (TS), Breidt et al. (1995)
(BDD) and Kabaila (1993) (KAB). For integrated autoregressive models, we
compare PRR intervals with BJ intervals and with intervals constructed following
Garcı́a-Jurado et al. (1995) (GGP). Finally, the behaviour of our technique is
analysed in forecasting future values of MA(q) models. As far as we know, the
prediction density of MA(q) models has not been previously estimated by
bootstrap methods; therefore, we only present PRR and BJ prediction intervals.

To study the different prediction intervals, we consider their coverage and
length, and the proportion of observations lying out to the left and to the right.
We compare these measures with those corresponding to the empirical prediction
distribution obtained for a particular series generated by a specified process,
sample size and error distribution Fa, generating R ¼ 1000 future values yT+k

from that series. Then, for that particular series and for each of the methods
considered, we obtain a 100a% prediction interval denoted by (L*,U*) (based on
B ¼ 1000 replicates in the case of bootstrap intervals) and estimate the
conditional coverage for each procedure by

â� ¼ #ðL� � yrTþk � U�Þ
R

;

where yrTþk (r ¼ 1,…,R) are the values generated previously. We have carried out
1000 Monte Carlo experiments and report average coverage, average length and
average proportion of observations on the left and on the right for each method
and for the empirical distribution.

We consider the following models:

(i) yt ¼ 1.75yt 1�0.76yt 2+at
(ii) �2yt ¼ 0.5�2yt 1+at
(iii) yt ¼ at�0.3at 1+0.7at 2

(iv) yt ¼ 0.7yt 1+at�0.3at 1,

where the innovations distribution Fa is normal, exponential or a contaminated
distribution 0.9F1+0.1F2, with F1 � N(�1,1) and F2 � N(9,1). Each distribution
has been centered to have zero mean. The sample sizes considered are 25, 50 and
100, the prediction horizons are k ¼ 1 and 3, and we construct intervals with
nominal coverage a equal to 0.80 and 0.95. Results of some selected experiments
appear in Tables I to VI. Results for other cases are available from the authors
upon request. In Tables I and II, corresponding to model (i), it can be observed
that the behaviour of all bootstrap prediction intervals, except for Kabaila (1993),
is rather similar for all horizons, when nominal coverages and distributions are
considered. The intervals constructed by Kabaila’s method, although
asymptotically correct, are, in general, too wide for moderate sample sizes.
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When looking at the results for Gaussian innovations, we may see that although
the BJ intervals are built assuming the correct error distribution, bootstrap
intervals have better properties for a 80% nominal coverage. This may be due to
the fact that BJ intervals do not incorporate the variability due to parameter
estimation and to the well-known good bootstrap behaviour for small samples.
Moreover, we may observe that the BJ intervals have worse coverage properties
than PRR intervals when forecasting three periods ahead. Notice that when
model parameters are estimated, the distribution of the forecasting errors is not

TABLE I

Monte Carlo Results for Three Step ahead Predictions of Model Yt 1.75Yt 1

0.76Yt 2 + at with Gaussian Innovations

Sample size Method Average coverage (SE) Coverage (below/above) Average length (SE)

n Empirical 80% 10%/10% 7.83
25 BJ 70.01 (0.13) 15.8/14.2 7.31 (1.54)

TS 70.14 (0.13) 15.8/14.1 7.28 (1.67)
BDD 72.73 (0.11) 14.4/12.9 7.44 (1.52)
KAB 63.68 (0.19) 18.8/17.5 10.3 (9.70)
PRR 73.31 (0.14) 13.9/12.8 8.07 (2.43)

50 BJ 75.67 (0.08) 12.3/12.0 7.60 (1.04)
TS 75.22 (0.07) 12.6/12.2 7.49 (1.12)
BDD 76.26 (0.07) 12.0/11.7 7.68 (1.15)
KAB 66.38 (0.12) 17.5/16.1 7.70 (3.16)
PRR 76.92 (0.08) 11.7/11.3 7.83 (1.27)

100 BJ 78.03 (0.05) 10.7/11.3 7.74 (0.73)
TS 77.64 (0.05) 10.8/11.6 7.70 (0.78)
BDD 77.98 (0.05) 10.7/11.3 7.74 (0.79)
KAB 67.67 (0.07) 15.9/16.4 6.86 (1.10)
PRR 78.29 (0.05) 10.6/11.1 7.80 (0.79)

TABLE II

Monte Carlo Results for Three Step ahead Predictions of Model Yt 1.75Yt 1

0.76Yt 2 + at with Contaminated Innovations

Sample size Method Average coverage (SE) Coverage (below/above) Average length (SE)

n Empirical 95% 2.5%/2.5% 34.05
25 BJ 87.46 (0.11) 2.3/10.2 34.27 (10.8)

TS 86.02 (0.14) 7.1/6.8 33.99 (10.6)
BDD 88.53 (0.13) 5.7/5.8 35.33 (10.5)
KAB 78.65 (0.20) 12.9/8.4 48.20 (49.2)
PRR 87.75 (0.13) 6.25/6.0 37.75 (15.3)

50 BJ 91.03 (0.08) 0.83/8.14 36.34 (7.52)
TS 89.46 (0.11) 6.3/4.2 34.73 (7.07)
BDD 90.67 (0.10) 5.5/3.8 35.45 (6.92)
KAB 82.73 (0.14) 10.5/6.7 37.60 (16.9)
PRR 91.13 (0.09) 4.9/4.0 36.57 (8.30)

100 BJ 92.74 (0.04) 0.1/7.16 37.14 (5.35)
TS 92.57 (0.07) 4.2/3.2 34.93 (4.85)
BDD 92.86 (0.07) 4.0/3.1 35.06 (4.71)
KAB 85.49 (0.10) 8.5/6.0 32.69 (7.24)
PRR 93.03 (0.06) 3.8/3.2 35.54 (5.16)
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normal even if the innovations are Gaussian. This is due to the fact that the
predictors are linear combinations of products of asymptotically normal random
variables which, in general, are non-normal. This is the reason why, even for

TABLE III

Monte Carlo Results for Predictions of Model (1 B)
2
(1 0.5B)Yt at with Gaussian

Innovations

Lead item Sample size Method Average coverage (SE) Coverage (below/above) Average length (SE)

1 n Empirical 95% 2.5%/2.5% 3.92
25 BJ 93.25 (0.04) 3.44/3.31 3.89 (0.59)

GGP 91.39 (0.06) 4.43/4.2 3.81 (0.68)
PRR 91.63 (0.05) 4.3/4.06 3.82 (0.68)

50 BJ 94.22 (0.03) 2.9/2.9 3.92 (0.41)
GGP 93.06 (0.04) 3.5/3.5 3.87 (0.54)
PRR 93.08 (0.04) 3.5/3.4 3.87 (0.54)

100 BJ 94.64 (0.02) 2.6/2.7 3.92 (0.29)
GGP 94.01 (0.03) 2.9/3.05 3.90 (0.39)
PRR 94.04 (0.03) 2.9/3.04 3.90 (0.39)

3 n Empirical 95% 2.5%/2.5% 19.72
25 BJ 97.91 (0.04) 1.05/1.03 27.10 (5.52)

GGP 90.93 (0.07) 4.5/4.5 18.76 (3.69)
PRR 91.29 (0.06) 4.09/4.2 18.77 (3.61)

50 BJ 98.79 (0.02) 0.62/0.58 27.47 (3.84)
GGP 93.16 (0.04) 3.4/3.4 19.31 (2.64)
PRR 93.21 (0.04) 3.4/3.4 19.32 (2.62)

100 BJ 99.16 (0.01) 0.41/0.43 27.66 (2.71)
GGP 94.04 (0.03) 2.9/3.04 19.50 (1.90)
PRR 94.05 (0.03) 2.9/3.04 19.50 (1.89)

TABLE IV

Monte Carlo Results for Predictions of Model (1 B)
2
(1 0.5B)Yt at with Exponential

Innovations

Lead item Sample size Method Average coverage (SE) Coverage (below/above) Average length (SE)

1 n Empirical 80% 10%/10% 2.19
25 BJ 84.60 (0.10) 3.7/11.7 2.46 (0.68)

GGP 75.23 (0.15) 13.68/11.09 2.23 (0.62)
PRR 76.06 (0.14) 12.72/11.21 2.23 (0.61)

50 BJ 87.44 (0.07) 1.6/10.98 2.51 (0.47)
GGP 77.53 (0.12) 11.76/10.70 2.20 (0.42)
PRR 77.96 (0.11) 11.25/10.97 2.20 (0.42)

100 BJ 88.86 (0.03) 0.52/10.62 2.53 (0.35)
GGP 78.27 (0.10) 11.40/10.33 2.20 (0.31)
PRR 78.62 (0.09) 10.99/10.4 2.19 (0.31)

3 n Empirical 80% 10%/10% 11.82
25 BJ 90.14 (0.08) 1.97/7.9 17.03 (5.10)

GGP 74.07 (0.13) 14.02/11.91 11.46 (3.46)
PRR 75.12 (0.13) 12.92/11.94 11.47 (3.16)

50 BJ 92.51 (0.04) 0.69/6.8 17.60 (3.51)
GGP 76.89 (0.10) 12.11/11.00 11.61 (2.15)
PRR 77.37 (0.90) 11.55/11.07 11.63 (2.15)

100 BJ 93.54 (0.02) 0.17/6.3 17.86 (2.63)
GGP 78.15 (0.07) 11.42/10.42 11.74 (1.58)
PRR 78.48 (0.07) 10.99/10.5 11.73 (1.58)
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Gaussian innovations, constructing bootstrap forecasting intervals could improve
the forecast properties. Looking at Table II, which reports results for the
contaminated distribution, we observe that the BJ intervals are too wide and still
are not able to cope with the shape of the error distribution. This can be seen
more clearly in Figure 1 that plots prediction densities of one-step ahead
predictions for a particular series of size 100, estimated by our bootstrap
procedure and by the BJ methodology together with the empirical density. The
bootstrap density is obtained by applying a kernel density estimator of S-Plus
with a rectangular box and a smoothing parameter of 1, to the bootstrap
replicates of yT+1, i.e. fy�ð1ÞTþ1; . . . ; y

�ð999Þ
Tþ1 g. The empirical density is calculated using

the same kernel estimator with the replicates of yT+1 generated for this particular

TABLE V

Monte Carlo Results for Predictions of Model Yt at 0.3at 1 + 0.7at 2 with Exponential

Innovations

Lead item Sample size Method Average coverage (SE) Coverage (below/above) Average length (SE)

1 n Empirical 80% 10%/10% 2.19
25 BJ 82.75 (0.13) 5.75/11.51 2.55 (0.66)

PRR 76.24 (0.17) 12.7/11.1 2.36 (0.63)
50 BJ 86.15 (0.09) 3.1/10.7 2.57 (0.51)

PRR 76.60 (0.14) 12.8/10.6 2.26 (0.44)
100 BJ 88.56 (0.05) 0.94/10.5 2.55 (0.36)

PRR 78.11 (0.11) 11.5/10.4 2.22 (0.31)
3 n Empirical 80% 10%/10% 2.93

25 BJ 83.44 (0.09) 5.81/10.75 3.30 (0.90)
PRR 78.55 (0.11) 10.37/11.08 2.98 (0.74)

50 BJ 84.48 (0.07) 4.97/10.54 3.28 (0.69)
PRR 79.35 (0.09) 10.08/10.56 2.98 (0.58)

100 BJ 85.15 (0.05) 4.31/10.53 3.23 (0.47)
PRR 79.63 (0.07) 10.02/10.34 2.95 (0.40)

TABLE VI

Monte Carlo Results for Predictions of Model Yt at 0.3at 1 + 0.7at 2 with

Contaminated Innovations

Lead item Sample size Method Average coverage (SE) Coverage (below/above) Average length (SE)

1 n Empirical 95% 2.5%/2.5% 12.56
25 BJ 89.84 (0.07) 0.97/9.19 12.23 (3.23)

PRR 89.60 (0.11) 5.45/4.95 12.83 (3.10)
50 BJ 90.31 (0.03) 0.18/9.50 12.35 (2.28)

PRR 91.72 (0.08) 3.9/4.4 12.65 (1.93)
100 BJ 90.20 (0.02) 0.01/9.8 12.37 (1.59)

PRR 93.61 (0.05) 3.02/3.4 12.75 (0.85)
3 n Empirical 95% 2.5%/2.5% 14.80

25 BJ 91.34 (0.07) 0.98/7.68 15.75 (4.49)
PRR 91.99 (0.09) 3.67/4.35 15.19 (3.92)

50 BJ 92.30 (0.05) 0.37/7.33 15.75 (3.06)
PRR 94.08 (0.05) 2.78/3.14 15.30 (2.41)

100 BJ 92.53 (0.03) 0.15/7.32 15.64 (2.09)
PRR 94.70 (0.03) 2.60/2.70 15.16 (1.56)
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series. Finally, comparing the PRR, TS and BDD intervals, we may observe that
for all distributions, sample sizes and coverages considered, the behaviour of the
three methods is very similar. Our procedure does not work worse and, in some
cases, seems to be slightly better than the others. The potential gains of PRR over
TS and BDD could be due to the fact that the variance of the parameter estimates
is reduced when the last p observations are not fixed to obtain bootstrap estimates
of the parameters. Since our method is much simpler to implement and less
computationally demanding than the other bootstrap methods, it seems to be an
interesting alternative even for AR(p) models.

Tables III and IV report results for model (ii) with Gaussian and exponential
innovations respectively, comparing PRR forecast intervals with standard
intervals and intervals built by the method proposed by Garcı́a-Jurado et al.
(1995). It is possible to observe that, even for Gaussian errors, standard intervals
deteriorate very seriously when predicting three-steps ahead. As expected from
results in the stationary case, the behaviour of standard intervals is even worse
when the error distribution is not Gaussian. However, PRR and GGP intervals
are very similar. Moreover, constructing GGP intervals requires solving a system
which could be difficult to handle when forecasting far into the future,
complicating the implementation of the method. Furthermore, in the cases
considered in this study, PRR intervals slightly outperform the GGP intervals.
The simulation results for ARI(p,d) models are illustrated in Figure 2 where we
represent one-step-ahead prediction densities estimated using the standard and
PRR procedures together with the empirical density for a sample size of 100 and
exponential innovations. Finally, as in the stationary case, we may observe that

Figure 1. Densities of one step ahead predictions of one time series of size 100 generated by model
yt 1.75yt 1 0.76yt 2 + at with Contaminated innovations.
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when the sample size increases, the average coverage and average length converge
to the empirical values according to the results in Section 3.

Finally, Tables V and VI report the results of the Monte Carlo experiments
to check the behaviour of our technique when forecasting processes with
moving-average components by considering the MA(2) model in (iii) with
exponential and contaminated innovations respectively. In this case, there are
no alternative bootstrap methods proposed in the literature and we only
compare our strategy with BJ intervals. To predict the future values of a
moving-average process, we need estimates of the within-sample innovations.
This is an additional source of uncertainty in forecasting MA processes which
makes the construction of forecast intervals a more difficult task. However, our
bootstrap method is easy to implement even in the presence of moving-average
components and, as we will see, it works reasonably well. There are several
alternatives to estimate the innovations of moving-average processes and, in
this study, we consider the simplest one which consists in conditioning on the
value of all innovations previous to the sample period being equal to their
expected value zero. The estimation of the parameters is carried out by
conditional quasi-maximum likelihood. The results of the Monte Carlo
simulations are similar to those corresponding to the previous models. BJ
intervals are not able to deal with asymmetric distributions. Figure 3 shows the
standard and bootstrap densities together with the empirical density for one-
step-ahead predictions built with a sample size of 100 and exponential
innovations. It is clear that the BJ density does not mimic the empirical
prediction distribution.

Figure 2. Densities of one step ahead predictions of one time series of size 100 generated by model
D2yt 0.5D2yt 1 + at with exponential innovations.
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It is important to note that the results presented in this section have been
obtained using OLS or conditional quasi-maximum likelihood estimates of the
parameters. It seems clear that these results could be improved by using estimates
more appropriate for non-normal innovations. The effects of the estimation
method on bootstrap prediction densities is analysed by Pascual et al. (2001).
Moreover, in moving-average models, the innovations are estimated conditioning
on pre-sample values being zero. These estimates can be improved using the
unconditional residuals, which can be obtained, for example, via the Kalman
filter. Then, the resampling procedure can be applied to the unconditional
residuals.

5. CONCLUSIONS

A new bootstrap approach to estimate the prediction density of ARIMA
processes has been presented in this paper. The proposed bootstrap density is
estimated directly from the bootstrap predictions and incorporates the
uncertainty due to parameter estimation. The main advantage of this prediction
resampling strategy with respect to previous bootstrap prediction methods with
similar properties is that the backward representation of the process is not
required to obtain bootstrap replicates of the series. Consequently, our method is
flexible and easy to implement, allowing the generalization to models with
moving-average components and also to processes without a backward

Figure 3. Densities of one step ahead predictions of one time series of size 100 generated by model
yt at 0.3at 1 + 0.7at 2 with exponential innovations.
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representation. We have established the asymptotic properties of the bootstrap
prediction intervals and carried out Monte Carlo experiments to analyse their
behaviour for finite samples. We have compared them with standard intervals as
proposed by Box and Jenkins (1976) and with bootstrap intervals based on
Thombs and Schucany (1990). The results of these experiments show that for non-
normal innovations, Box and Jenkins prediction intervals can be heavily
distorted. We have seen that all bootstrap intervals have rather similar
properties for ARI(p,d) processes and our intervals are slightly better in some
cases. Moreover, our proposal is more flexible allowing for the construction of
prediction densities for processes with moving-average components which cannot
be handled by previous methods. Monte Carlo simulations show that the
proposed bootstrap prediction intervals work well in forecasting future values of
processes with moving-average components.

Finally, the flexibility of this method allows to extend the construction of
prediction intervals even for models without a backward representation, such as
GARCH models. Miguel and Olave (1998) study a bootstrap procedure for
GARCH processes based on Cao et al. (1995), where the resampling is
conditional on the parameter estimates. Currently, we are investigating the
application of our bootstrap strategy to prediction densities of GARCH processes
with very promising results.

ACKNOWLEDGEMENTS

We are grateful to an Associate Editor and an anonymous referee for helpful
comments. Financial support from project BEC2002-03720 from the Spanish
Government is gratefully acknowledged.

REFERENCES

Box, G. E. P. and Jenkins, G. M. (1976) Time Series Analysis: Forecasting and Control. San Francisco:
Holden Day.

Breidt, F. J., Davis, R. A. and Dunsmuir, W. T. (1995) Improved bootstrap prediction intervals for
autoregressions. J. Time Ser. Anal. 16, 177 200.

Brockwell, P. J. and Davis, R. A. (1991) Time Series: Theory and Methods. New York: Springer
Verlag.
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