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1 Introduction 

When estimating the cointegrating vector of linear regression models with 1(1) variables, 

it is well known that the OLS estimator in a static regression is found to be super­

consistent (i. e., Op (r-1
)) under quite general assumptions, including endogeneity in the 

regressors and serial correlation in the innovations (see, e.g., Stock, 1987). However, the 

performance of the OLS estimator is adversely affected by the existence of serial 

correlation and endogeneity biases that do not affect its consistency but introduce non­

zero means and non-normalities in the limiting distribution of the standardized statistics, 

except in sorne special cases. Such biases can play an important role in finite samples, as 

shown in the simulations of Banerjee et al. (1986). To overcome these problems, Phillips 

and Hansen (1990) proposed a semi-parametric correction of the OLS estimator, 

denoted as Fully Modified estimator (henceforth FM-OLS), which is asymptotically 

equivalent to maximum likelihood and yields median-unbiased and asymptotically normal 

estimates, so that conventional techniques for inference are valido 

However, confining the analysis of efficient estimation in a single-equation framework 

to the case ofI(1) variables might be restrictive for at least two reasons. First, despite the 

fact that many economic time series are empirically characterized as 1( 1) processes, there 

are other variables, especially nominal ones such as the price level or the money stock (in 

logarithms), that seem better described as 1(2) processes. These 1(2) variables lead to 

new interesting problems such as the existence of multicointegrating or polynomially 

cointegrating relationships (see, e.g., Granger and Lee, 1989, 1990, Gregoir and 

Laroque, 1994 and Haldrup and Salmon, 1998). The FM-OLS estimation with 1(2) 

processes has been recently developed by Chang and Phillips (1995). 

Secondly, and most important, the analysis of higher (integer) order integrated 

processes is not the only way to generalize the results in the unit-root literature. 

Fractionally integrated processes have become popular with economic data, too, and the 

associated concept of fractional cointegration, correspondingly, has also become an 

important and relevant topic in applied time series analysis in recent years. See, for 

instance, Cheung and Lai (1993), Baillie and Bollerslev (1994), Booth and Tse (1995) 

and Dittmann (1998). AH ofthem find evidence offractional cointegration in their data. 

In light of the aboye comments, this paper attempts to examine, from a theoretical 

point of view, the issue of the efficient estimation of the cointegrating vector in linear 
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regresslOn models with variables that follow nonstationary fractionally integrated 

processes and with the equilibrium error evolving as a weakly stationary linear process. 

For this, the paper is organized as follows. In Section 2 we introduce the relevant 

asymptotic theory and notation and derive the asymptotic distribution of the OLS 

estimator of the corresponding cointegrating vector. In Section 3 we study the behavior 

of the FM-OLS estimation method under the proposed fractional set-up. Section 4 

extends the results obtained in the preceding sections to the multicointegrated case. 

Section 5 is concerned with a robustness analysis ofthe behavior ofthe original FM-OLS 

estimator for l(1) variables, as formulated by Phillips and Hansen (1990), when the true 

order of integration of the variables is different from unity. Sorne concluding comments 

are provided in Section 6. Finally, proofs are gathered in the Appendix. 

The notation follows Phillips and Hansen (1990). Therefore, the symbols "=:>", 

"~" and "=" denote weak convergence, convergence in probability and equality in 

distribution, respectively, [.] denotes "integer part" and the inequality ">0" denotes 

positive-definite when applied to matrices. Brownian motion B(r), with rE [O,lJ, is 

frequently written as B for notational simplicity. Similarly, we write integrals with respect 

lr f Tto Lebesgue measure such as JoB(r)dr more simply as B. The symbol ¿t~1 is 

denoted simply as ¿. Vector Brownian motion with covariance matrix n is written 

BM(n). We use 11 A 11 to represent the Euclidean norm tr( A' A) 1/2 of the matrix A. 

Finally, al! limits given in the paper are as the sample size T ~ 00 unless otherwise 

stated. 

2 The Model and Underlying Assumptions 

In this section we shall be working with an 11 -dimensional vector Yt partitioned as 

(1) YI = (Ylt> 
"-

y;J 
where YIt is a scalar and Y2¡ is an m-vector (m+ 1=11), and generated according to the 

triangular representation 

(2) Y lt =a + /J'Y21 + 81t , 

(3) I1d
Y21 = 8 21' t = 1,2, ... , T, 
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00 

with d ED ={x EiRl x> t ,X:;t: j + t,j =1,2, ...}. The set D excludes the points 

j + t ,j = 1,2, ... , in order to avoid problems of non invertibility. Further, deterministic 

components in (3), besides a constant term, are omitted for simplicity, without affecting 

the main results of the paper; c.f., see Marmol (1998) for the suitable modifications. With 

respect to the innovation sequence Gl =(Glt' G~I)" we shall assume that it satisfies the 

following general characterization. 

ASSUMPTION A. Let GI =(GIL' G~I)' be generated by the linear process 

(4)� GI =LCjv l - J
, VI =0for t:::; 0, 

j=O 

lt'here the sequence of random vectors VI =(v 11 , V~t)' is Ud (O, L) lvith L > O. 

¡.;(v; VI l... ,V 1-2' V t_l ) :::; C (a. s.) for some constant e> ° and the sequence of matrix 

coe.fficients {Cj }~=o is l-summable, i.e., L;=ojIICj 11 < oo. 

Flfrther, assume that max¡ sup I Elv¡t ¡g < 00, where 

(i) g = 2 ?f d > t, 

(ii) g = 4 if i :::; d < t and 

8(1- d) 
(iii) g = 2d _ 1 if t < d < i . 

Hence, throughout this paper, we shall allow 6'1 be generated by the linear process (4). 

This general class of stationary 1(0) processes includes all stationary and invertible 

ARMA processes and is therefore of wide applicability. Further, Assumption A implies 

that the process G 
t 

is strictly stationary and ergodic with continuous spectral density 

given by 

and long-run covariance matrix Q= 2;ifa(0). 
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Under Assumption A, the partial sum process constructed from {&t}:1 satisfies a 

multivariate invariance principie 

[Tr] 

(6) r-1
/ 
2¿&t =:>B(r):=BM(n), 

1=1 

(c..f Phillips and Durlauf, 1986), where B(r), rE [O,IJ, is an n-dimensional Brownian 

motion with covariance matrix n assumed to be positive definite implying that the 

regressors Y21 are not allowed to be cointegrated among themselves. Let us partition n 

and B(r) conformably with &t 

and decompose the long-run covanance matrix n as n =:2: + A + A', where 

:2: =E(t:o&~), A =¿~=I E(&ot:~ ), and define II = :2: + A. These matrices are again 

partitioned conformably with &1' 

Moreover, under Assumption A, the following results, recently proved by Dolado and 

Marmol (1998), also hold. 

THEOREM l. Under Assumption A, as r~ ro , 

l 'I/2-d Bd ( ) (7) Y2,[Tr] =:> 2 r , 

l'� 1 

(8)� r d ¿Y2t&¡¡ =:> fB: (r)dB1(r) when d> 1, 
1=1 o 

T� 1 

(9)� r-1 ¿Y2t&lt =:> fB2(r)dB1(r) + 1121 when d =1, 
t=1 o 

(lO)� when d < 1, 
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Let á and fJ be estimates based on OLS estimation of (2) with a sample of size T 

(11 ) 

so that the deviations of the OLS estimators in (11) from the population values a and fJ 

that describe the cointegrating relation (2) are given by the expression 

( 
a) ( Tá ­(12) ¡J - fJ = ¿Y21 

Now, from expression (6) and Theorem 1 it is straightforward to prove the following 

result. 

THEOREM 2. Under Assumption A, the OLS estimation ol the conditional model (2) 

yields 

(13) IVhen d> 1, 

(14)when d= 1, 

and 

(15) when d < 1, 

Note that the OLS estimator of the slope coefficient fJ in the cointegrating vector is 

2d01' (r") for d ¿ 1 and 01' (T l
- ) for d < l. Thus, for all d ED, the OLS estimator is 

consistent, even though not always at super-consistent rates. In particular, when 

21< d < +the rate of convergence is smaller than the standard T 1
/ . On the other hand, 

for all d ED, the presence of nuisance parameters in the limiting OLS distribution 

prevents achieving an asymptotic mixture of norma1s. 

In the particular unit root case (d =1), these nuisance parameters are given by ll21 and 

(()21 . On the one hand, (()2l '::F O implies that Bl and B2 are not long-ron independent 

giving rise to an endogeneity bias. On the other hand, ll21 '::F O causes the so-called serial 
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cor1'elation 01' second-01'de1' bias effect. Although none of these biases affect the 

consistency properties of the OLS estimator, they can be important in finite samples. 

Indeed, Park and Phillips (1988, Lemma 5.1) proved that asymptotic gaussianity applies 

when variables are CI(1,l) and CV 21 = Ll 21 =0, i.e., the case when the conditioning 

variables are strictly exogenous. This is a very convenient case, since, under asymptotic 

gaussianity, valid inference can be conducted using standard distributions. 

In turn, when d> 1 Theorem 2 shows that the second-order bias is no longer present in 

the limiting OLS distribution. However, the endogeneity bias remains, preventing from 

achieving a mixture of normals. When d <1, the bias present is now of second-order. 

Again, the limiting OLS distribution is, thus, nonstandard. 

As is well known, in the case when d = 1, Phillips and Hansen (1990) have proposed a 

semi-parametric correction to the unadjusted OLS estimators, which eliminates the 

previous biases and achieve asymptotic gaussianity. This method, known as FM-OLS, is 

asymptotically equivalent to performing maximum likelihood estimation. In what follows, 

we will make use of the results in Theorem 2 to extend their FM-OLS estimation 

procedure to the more general nonstationary fractional set-up herein analyzed. 

3 Fractional FM-OLS Estimation 

An important feature ofthe FM-OLS method is that it relies upon the use of a consistent 

estimator of the long-run covariance matrix n. While any consistent estimator of this 

matrix will produce the same asymptotic distributions, Phillips and Hansen (1990) were 

concerned with a specific class of kernel estimators. In particular, letting &t = (&It ,&~t)' , 

with [;'':11 being the least squares residual from (2), then the class of positive semidefinite 

kernel estimators of n they considered is given by 

where the kernel weights fO satisfy that for all x E 9\, If(x)l:s; 1 and f(x) =f( - x), 

f( O) = 1, f(x) is continuous at zero, for almost all x E 9t I If(x)ldx < 00 and for aH m

). E 9\, t: f(x) exp(- ixA.) ;::: O. Kernels that satisfy these requirements include 

Truncated, Barlett, Parzen, Tuckey-Hanning and Quadratic Spectral kernels (e.g. see 
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Hannan, 1970 and Priestley, 1981). Throughout this paper we shall confme our analysis 

to the same class of kernel estimates. Equally, the following kernel-based estimator of 

the one-sided long-run covariance matrix can be defined as 

(17) Li =L
M 

f(~)T-l L &1-/;' 
j=O 1 

Then, under sorne regularity conditions1 on the bandwidth parameter, M, and 

Assumption A it can be proved how the consistency of the kernel estimators of the long­

run covariance matrices to their theoretical counterparts also holds for the general 

nonstationary fractiona1ly integrated case. For instance, if we assume the following 

bandwidth condition, 

ASSUMPTION B. 

M~oo as T~oo sllchthat rl/2M~0, 

~ 

then we can prove the consistency of the term Q)21 to the corresponding theoretical 

counterpart for a1l d ED as follows. Given that 

M M 

= L f(¡{f)r I L&2.I_j&11 - Lc(Kf)r I L&2.t_/i - n}x¡ 
j=-M ;=-M 

=tJ 1T - f.J 2T (say), 

where n' =(a, 13') and x; =(1, y~J;then,fromAndrews(1991),itfo1lowsthat 

(18) M-1Tl/2 (Ú1 -Q) )~O 
~~ lT 21 . 

As regards the {,:J 2T term, we have that 

M

IIM-1T1
/
2f.J2TII ~ M-1 Llf(~)lllrl L &2.¡_jT1!2(i - n)x¡ 11 

f=-M 

1 We refer the reader to Andrews (1991), Chang and Phillips (1995) and Phillips (1995) [or a detailed 
account ofthese regu1arity conditions. 
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Thus, (18) and (19) imply that M-1Tl/2(W21 -(21 )=Op(l) and, under Assumption B 

~ p " 
we finally get ~ In the same manner It can be proved that, underW 21 W21 .� 

~ p A Pn. A P A�Assumption B, W I2 ~WI2' .lol22 ------=------+.lol22 and ti ~ ti. 

Let us now consider the case where d > l. From Theorem 2 we have that, in order to 

achieve asymptotic gaussianity, we should only correct for the bias stemming from 

W 21 7; O" For this, let us define the endogeneity bias-corrected e11 disturbance 

+ n.- I Ad n.- I(20) = - W I2 .lol22 ti Y21 = - W I2 .lol22 e21 ,e ll e ll ell 

which has zero coherence at the origin with In this case, we can writee2t . 

(el; 8~t )' = Q' (e¡l e~l )' , where 

being Q; of dimension (1 x n) and Q; of dimension (m x n). Now subtracting 

wuO;z! ~dY2t from both sides of (2), yields 

(21) YI~ =a + /J'Y21 + el~' 

+ n.- I Ad I h" h FM OLS" 1 h OLS 

estimator of the parameters in (21), yielding 

where .v lt = Y lt - W l2 .lol n ti Y2t. n t IS case, t e - estImator egua s t e 

(22) 

or 

(23) 

where the correoted disturbance term 8;t has been replaced by El: =ell - wI2 0;;e2t In 

order to derive feasible FM-OLS estimators. Then, we have the following resulto 

THEOREM 3. Under Assumptions A and E, when d > 1 the FM-OLS estimation 01 the 

conditional model (21) yields 
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(24)� 

The limiting distribution obtained in this theorem is now full ranked, median-unbiased 

and a mixture of normals. Both FM-OLS estimators á+ and /3+ are consistent and their 

limiting distributions are free of nuisance parameters. Hence, conventional asymptotic 

procedures for inference can be applied. For instance, consider the usual Wald form of 

the chi-squared test of q restrictions on the cointegrating slope coefficients of the form 

Ha: RfJ =r, where R is a (q x m) known matrix such that rank(R) =q and r is a 

(q xl) known vector. Define the Wald statistic constructed from /3+ by 

Therefore, we have that, under the null hypothesis, the Wald statistic can be rewritten as 

follows 

~=[RTd(/3+ -fJ)l(WI~r{(o R)(3~1( LY;c, 13~.IJ-'(O'~} '[R7'(P' -fJ)]T 
LYzI LYzIYzJ R 

so that from Theorem 3 it immediately follows that ~ => %(:l' a chi-squared distribution 

with q degrees of freedom. In the particular case where we wish to use a single 

coefficient test Ho: fJ¡ =p:, then we can construct the following modified t-statistic: 

t = /3/ - [3,0 = N(O 1) 
!J, (~+)I1Z -I/Z - " w1J Z¡¡ 

where Z¡¡ denotes the iith-component of the second-moment matrix of the regressors. 

Expression (24) was first obtained by Chang and Phillips (1995) for the case d =2 . 

On the other hand, when d =1, it can be easily proved that 
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where L1~1 would be the corresponding submatrix of the corrected one-sided long-ron 

covariance matrix 

00 

L1+ =¿E(E;E;) , 
k=O 

with E.:: t+ = (El~' E~t)'. Therefore, in this case, efficient estimators of the cointegrating 

relationships should not only take account of the endogeneity bias, as when d > 1, but 

should also correct for the second-order bias term L1~1' As in the previous analysis, 

derivation of a feasible FM-OLS estimator is based on the following (kernel-based) 

estimator of the L1~J term 

M 

~~l =¿f(~)rl¿E.::2,t_Jl~ , 
]=0 

so that the feasible FM-OLS estimator will be now 

(25) 

This is the standard FM-OLS formula derived in the seminal paper by Phillips and 

Hansen (1990), which has the same mixed normal and parameter invariant limit 

distribution than we obtained in expression (24) when d = 1. The reader is referred to 

this paper for further details. 

Lastly, consider the case d < -t. From expression (15) we have that the limiting OLS 

distribution appears only affected by second-order biases, and note that a kernel 

correction of the L1~1 term would lead in this case to a degenerate limiting distribution. 

Thus, when d < -t and we allow the perturbations to be both contemporary and serially 

correlated, there is no endogeneity effects in the limiting distribution because the signal 

from the fractionally integrated regressors is weak relative to the effects of the induced 

" serial correlation. 

Remark. Consider without loss of generality the m = 1 case, so that expression (15) 

becomes 

(26) 

......._---­
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where Y2 =r- I LY2t and lJ: =B: -fB: denotes a demeaned Brownian motion. This 

suggest the following modification ofthe standard OLS estimator: 

(27) íJ = ~~ (Y2t - Y2 ~lt 2 '� 

Ll 2I L(Y2t - Y2)� 

~ d (il) -1""M ~where Ll 21 =LJi=/ 1M r LJ LlY2,t-i Blt . Under Assumptions A and B, it IS 

straightforward to prove that 

which is free of nuisance parameters, so that the critical values can be obtained for each d 

by Monte Carlo simulations. Note the similarity of this limiting distribution apart from 

the fractional nature of the Brownian motion in (28) with the demeaned J~, variance 

ratio test proposed by Phillips and Ouliaris (1990) and with the demeaned R;,' modified 

Sargan-Bhargava statistic reported by Stock (1994) in the unit root case. 

Finally, it is worth noting a restrictive but important case. When the Y2f senes are 

strictly exogenous for f3, then it follows from Dolado and Marmol (1998) that the OLS 

limiting distribution in the conditional model (2) becomes 

(29) 

for all d > 1, where now Bl and B2 are independent Brownian motions so that (29) is a 

mixture of normals. 

4 FM-OLS Estimation in Multicointegrated Systems 

Consider now the following DGP: 

(30) YOt = a + f31'Ylt + f3~Y2t + BOt ' 

where YOt is a scalar and YIt and Y2t are m¡- and m2-dimensional (mi +m2 +l=n), 

respectively, and generated according to Lld 
¡ Ylt = Bit and Lld2 Y2t = B2t where d 2 > dI' 

In this section, we will consider the situation in which YO! and Y2t are CI(d2.d2 - d¡) 
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with cointegrating vector (1, - /3~)' and where the resulting error YOI - fJ2Y21 cointegrates 

with Y\t' having a fully cointegrated system such that GOl be stationary. 

As in Section 2, we shall require the partial sum of the error sequence 

GI =(801 , G;I , G~I)' to satisfy Assumption A and the multivariate invariance principie 

[TrI 

(31) T-¡/2 LGI ~B(r)=BM(n), 
1=1 

with long-run covariance matrix n partitioned conformably with GI as 

(32) 

where we shall assume that n ll and n 22 are positive definite so that we do not allow for 

cointegrating relationships between the respective groups of variables. Equally, partition 

E, L1 and L conformably with the disturbance terms and denote by a , /3
~ 

1 and /3
~ 

2 the 

OLS estimates ofthe parameters ofinterest in (30). 

THEOREM 4. Under Assumption 1, 

(i) when d¡ ¿ 1, 

f(Bldl )' 
d(33)� fB
l 
¡(B¡d¡ )' 

fB:' (Bt')' 

where 

d¡--1

dI> 1 

(ii) when t<d¡ 
"-

<1, 
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Consider first the case where dI ¿ l. Note that, as in Theorem 2, the OLS estimate of 

the cointegrating vector is consistent irrespectively of the possible serial correlation of 

the error term, GI' and that the presence of a drift term, L1¡O' induces a bias in the limiting 

distribution of r d¡ (PI - /31) when dI = 1, due to the fact that the random variable el 

appearing in its limiting distribution would have a non-zero mean. Equally, the presence 

of the nuisance parameters L11Q' áJ IO and áJ20 implies that the OLS estimate have an 

asymptotic distribution that is not mixed normal and parameter invariant. These results 

have been proved in the d 2 = 2, di = 1 case by Park and Phillips (1989) and Haldrup 

(1994). 

Given that the OLS estimator of the cointegrating vector in (14), in spite of being 

consistent, has an asymptotic distribution that is generally nonstandard and is plagued 

with nuisance parameters causing second-order bias effects in finite samples, one can 

argue as in Section 3 and propose a FM-OLS estimation procedure. This FM-OLS 

estimator will make use offirst-stage (kerne1-based) estimates ofthe long-run covariance 

matrix n 
M 

(35) ñ= ¿ R(~)r¡¿il_JI" 
j=-M 

where now i l = (iol , GIl' ¡;2t )', being i ot is the least squares residual from the OLS 

estimation of (30), where we define a kernel-based consistent estimate of the one-sided 

long-run covariance matrix L1 by 

JI! 

(36) ~ = ¿ R(~)rl ¿ il-JI' . 
j=O 

The consistency of these kerne1-based estimates in the multicointegrated model (30) 

can be proved in the same manner as in Section 3, under the assumptions made on the 

disturbances and if Assumption B holds. 

In this sense, when di > 1, we can see from (33) that the second-order bias term L1 lo 

disappears, so that we only need to correct the OLS estimation of (30) for the 

simultaneity bias. In order to perform this correction, let us define the bias-corrected 

disturbances/residuals 

14 

._ _----------¡----¡--------------------_._---­



(39) 

and (2' is the kernel-based consistent counterpart of Q'. Notice that Q' ~Q' . Here, 

we use the subscript "*" to signify e1ements corresponding to "1" and "2" are taken 

together. 

These corrected perturbation terms now have a long-run covariance matrix given by 

W+� O ) 
(40)� n + =Q' nQ = ( 00 , 

O n.. 

so that a feasible FM-OLS estimate of the cointegrated re1ation (30) can be formulated 

as follows 

¿Y;t 
(41)� ¿YItY;t 

¿Y2tY~t 

THEOREM 5. In the multicointegrated model (30), zmder Assumptions A and E, then, 

1 
T /

2 (a+� - a)] [1 
(42)� Td

¡ (,81+ - /31) =:> SBid,� 

[
T d2(,82+ - /32) SB:2� 

== SN(o,~)dP(~), 
,>0� " 

ll'here 

alld where B; (r) == BM(w;o) . 
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When dI =1, it can be easily proved that 

where ~~o is the conformably part ofthe one-sided long-run corrected matrix 

00 

~+ =LE(e;e;),
k=O 

where < =(e~, (e.~)')' =Q'e¡ =(e~, e~J sothat ~~o =L~=oE(elOe;k)' 

To take account of this nuisance parameter and hence, to be able to derive a feasible 

FM-OLS estimator in the dI =1 case, define the following (kernel-based) estimator: 

M 

(44) ~~o =LR(U1)T-IL>-'I'¡-fio~ . 
]=0 

A similar reasoning to that made in Section 3 can be applied in this case to show the 

consistency of the ~~o estimator to its theoretical counterpart. The feasible FM-OLS will 

be now given by 

LY;/ 
(45)� LYllY;¡ 

LY2¡Y;c 
Therefore, reasoning as m the proof of Theorem 5 and taking account of the 

consistency of the ~~o estimator, it is straightforward to prove that, under Assumptions 

A and B, when dI =1, then 

Remark. Notice from the definition of the corrected one-sided long-run covariance ~~o 

that 

00 00 

~~o =LE(elO e;k) =LE(elO [eOk - woS2:~e.k]) = 
k=O k=o 

16 



where J =(1 - aJo' D.:: ) and the subscript "." signifies "O" and "*" taken together. 

This in turn allows us to rewrite equation (45) in the following manner: 

¿Y;t[áHJ [ T� LY;, nLY;, [O JJ
(47)� ~l:: = ¿YIt ¿YltY;t ¿YltY~t ¿Ylt~~ - T 11 1.,1' 

fJ2 ¿Y2t ¿Y2tY;t ¿Y2tY2t ¿Y2tYOt O 

~ 

where� J and ó¡. are constructed from the corresponding parts of (35) and (36), 

respectively. This is the standard FM-OLS format as presented in the seminal paper by 

Phillips and Hansen (1990), and derived for the particular case where d 2 = 2,d l = 1 by 

Chang and Phillips (1995). 

Remark. Given that the constructed FM-OLS estimator is a mixture of normals, we can 

construct conventional Wald statistics and tests restrictions on the cointegrating vector 

as in Section 3. Neverthe1ess, when multicointegration is present, we must take account 
~ ~ 

of the fact that A++ and fJ2++ converge at differing rates implying the possibility of rank 

defficiencies. Thus, it is convenient to restrict inference to tests of separable restrictions. 

In particular, this implies that in order to test a null hypothesis ofthe form H o: RfJ = r , 

where� fJ' = (fJl" fJ~), the matrix of restrictions R must be block-diagonal across the 

components of fJ which are of different orders. See Park and Phillips (1988, 1989), 

Phillips and Hansen (1990), Hansen (1992) and Haldrup (1994) for more details and 

comments. Therefore, we must consider a hypothesis test involving q restrictions on fJ, 

of the form Ho: RflA + Rp}2 = r, where R = diag{ Rpl , and where Rfll and Rfl2Rfl2 } 

are (q x mI) and (q x m2) known matrices, respective1y, describing the restrictions. 

After taking account of the peculiar form of the restrictions matrix, the construction of 

the Wald test shduld follow the same lines as in Section 3. 

Finally, let us be concerned with the case where +< d] < 1. From (34) two comments 

arise. First, the OLS estimators remain consistent. Second, as in (15), the serial 

corre1ation of the YIt series with the innovation errors of (30) is so strong that it 

annihilates any endogeneity bias in the (34) OLS system, and prevents the use of any 

fully-modified correction in order to get mixture of normals. 

17 



On the other hand, as in Section 3, if we assume, in turn, that a strictly exogeneity 

assumption of the under!ying series with respect to the parameters of interest holds (i.e., 

L1 10 = 0)10 = 0)20 =O), then the OLS estimator ofthe cointegrating vector in (30) will be a 

mixture of normals and, hence, standard inferential results wilI apply. This result was 

proved by Haldrup (1994) for the d 2 =2,dl =1 particular case. 

5 Sorne Misspecification Analysis 

In this last section, we shalI briefiy investigate the consequences of applying the original 

FM-OLS estimator, efficient when the relevant processes are 1(1) and the equilibrium 

error is 1(0), when in fact the data generating process is composed by nonstationary 

fractionally integrated processes with dE D - {1} . For convenience, let us rewrite the 

necessary steps to construct such an estimator where, in order to avoid excessive 

notation, we shalI assume that a =O in (2). 

(48)� p* =(¿Y2/Y~/ r(¿Y2/Y;1 - T~*"l)
 

<=> (p* -,8) = (¿Y2/Y~1 t (¿Y2/ CI: - T~*"l)'
 
'" " 1 ..... '" " ..... A 

with ell = Gil - WI"n~"L1Y2t' L1"1 = L1,,¡ - L1Mn~~W"I' and where the (kerneI-based) 

estimators of the long-run covariances are constructed as wab =¿~-M e(Uf)iab (J) and 

b" the symbol !J. as sub- index meaning L1y2t . 

THEOREM 6. Under Assumptions A and B, then 

(i) when� d ~ 2 , 

(49)� Td(p* - ,8)=>[fB;(B;rru B;dB¡ -(S B;(B;-I)') x� 

{VI IB;-l (B;-l)' r{VI IB;-ldB¡ +(21}1� 
(ii) when ~ < d < 2 , 

(iii) when 1 < d < ~ , 

18 

-.-_._-~--	 ----¡---¡---------------------­



(iv) when t < d < 1, 

r2d(52) -
1(p' - p) => [J B; (B;)' r(L1~1 - L1~2n;~(21) . 

Chang (1993), Phillips and Chang (1994) and Harris (1996) first considered the issue 

of possible misspecification in using the original FM-OLS estimator when in fact the 

series were 1(2), showing that the limit theory for such misspecified estimator were 

nonstandard and depending on nuisance parameters. Theorem 6 shows how the same 

comments extend for the rest of values of dE D - {1}. Not surprisingly, when the 

conditions under which it was derived do no hold, the original FM-OLS estimator of P 

remains consistent (at different rates) but it looses its efficiency properties. 

6 Conclusions 

In this paper we have generalized the available results on the efficient estimation of 

cointegrating vectors in a single-equation framework with 1(1) variables, to more general 

case where the regressors are assumed to be composed by nonstationary fractionally 

integrated processes, cointegrated in such a way that the innovation errors are 1(0). 

Several conc1usions can be drawn from our study. First, when d> 1, a FM-OLS 

estimator exists which does not need to correct for any serial correlation bias, but only 

for possible endogeneity bias. This estimator has a nuisance parameter-free mixed normal 

limiting distribution. Second, when t <d < 1, this optimality can not be achieved by that 

family of semi-parametric corrections. The OLS estimator is consistent, free of nuisance 

parameter (after sorne modifications), but with a nonstandard limiting distribution. 

Third, the sam~ comments apply in the multicointegrated case herein analyzed. Fourth, 

from our misspecification analysis we deduce that even very small deviations fram the 

d =1 case prevents the original FM-OLS estimator from achieving its optimal properties. 

In view of this lack of robustness, explicit account of the fractional hypothesis seems to 

conform the most suitable solution. 

The next step in our analysis is the study, by means of the fully-modified methodology, 

of the case where the fractional order of the processes as well as the cointegrating 

dimension are unknown. Moreover, the case where the assumption where the equilibrium 
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error is 1(0) is relaxed, and become fractionally integrated, Fl(8), with d > 8 , is also of 

great interest2 . AH these extensions are currently under investigation. 

Appendix 

PROOF OF IHEOREM 2. Define the weight matrix 

(Al) 3 r =diag{T1I2 ,Td l m }, 

which, in turn, implies that the OLS system (12) can be rewritten as 

Using (6) and (7) jointly with the continuous mapping theorem (CMI), it is direct to 

show that 

-1 
== I1d, say, 

for all d ED, and where I1 d is positive definite (a.s.).� 

On the other hand, when d> 1, it follows from (6) and (8) that� 

(AA) 3~1 ( ¿ &11 I => l( E~(I) J,
¿Y21&1t) IE 2 dEl 

and (A2)-(A4) jointly with the CMI yield expression (13).� 

When d = 1, from (6), (9) and CMI we obtain� 

which jointly with (A2)-(A3) yields expression (14). Finally, when d < 1 we have that 

and expression (16) now follows from (A.2), (A3), (A6) and the CMI in a direct way. 

• 
PROOF OF IHEOREM 3. First rewrite (22) as 

2 A preliminary version of this paper (see Dolado and Marmol, 1996) contains results on this case. 
Robinson and Marinucci (1998), in independent work (but acknowledging our previous research) 
present sorne more general resu1ts using frequency domain least squares (FDLS) estimators. 
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Now define 

AQ'= [1 
O 

and note that, under Assumption B, Q' ~Q' , so that 

having a long-run covariance matrix given by 

o' J 
0.

22 
' 

where 0);1 has been defined in the text ofthe theorem. 

&~/)' a finite linear combination of the original 

innovation vector, the CMT holds for the corrected innovations so that 

Now, partitioning B+ and 0.+ conformably with 8;, the ftrst part of the theorem fol1ows 

by the same arguments as in Theorem 2. With respect to the gaussian properties, they are 

implied by the fact that Bt and B; == B2 are independent Brownian motions so that 

Lemma 5.1 in Park and Phillips (1988) applies when conditioning on the a-field 

generated by these stochastic processes.• 

PROOF OF THEOREM 4. The proof follows in a straightforward manner by defming 

the weight matrix :\ = diag{ T 
1
/
2 

, Tdl ] mi ' TdZ] mz } , rewriting the deviations of the OLS 

estimators from their corresponding population values as 

LY;/
LYltY;/
LY2/Y;/ 

and by proceeding as in the proof of Theorem 2.• 

PROOF OF THEOREM 5. The proof ofthis result follows the same lines as the proof of 

Theorem 3. Given that Q' ~Q', then 8/+ ~ 8/+ =Q' 8/. This in turn implies, 

using the CMT theorem and the assumptions made on the perturbation terms, that 
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B+O=(B;, (B:rr =Q'BO=(B;, B~r, and the result follows usmg the same 

arguments as in Theorem 3, • 

PROOF OF THEOREM 6, Consider first the behavior of the standard Phillips and 

Hansen's FM-OLS estimator for 1(1) processes when in fact the underlying series have 

memory parameter d:?: 2 , Then, by applying the results in Theorem 1 and the CMT, we 

obtain 

T 3-2d~ (') fB d- I (B d-1)'YM ) => 2 2 , 

with 

if d =2� 

ifd>2� 

so that, following Phillips (1991),� 

M -1T2-d ~ [f Bd-1d'B] ¡­
úJ61 => UI 2 1 + ':>21' 

ifd=2 {L\21 if d =2 fl JI 
°f d 2' uI = J!(x)dx and ua = J!(x)dx,if d > 2' 7"21 = O 1 > -\ u 

Consequently, 

T-d" ~. = r-d" _ r l - 2d " L\' (M-1r3-2dQ )-I M -IT2-d ~ LJY2t CII LJY2t Clt LJY21 Jl21 M úJ 61 

and 
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Final1y, we have that 

Td(p' - p) => [J B; (B;)' r[J B;dB1- (J B; (B;-l)') X� 

{VI fB;-I (B;-I)' r{VI fB;-ldBI +~21}1� 
Assume now that -t < d < 2 . Then, we get� 

T3-2d~ (.) fBd-1(Bd-I )'�YM ) => 2 2 

and 

-1l+ 2d A [JBd-I(Bd-1)'] d M--1 A P ~E(A ) AdM D. M => Va 2 2 an D.t,1 -----'-------¿. ~ .'., D.Y2.a Gl.k+} == D. 21 , 

proceeding as in Phil1ips (1991), so that now 

1'-2 ¿Y2t&¡: = r 2¿Y2tGlt - 1'1
-

2d ¿Y2tf1Y~t (M- 1r 3-
2d ~\"t, r M-1(;)t,1 

and thus, 

=> [J B; (B;)' r[(-f B; (B;-l Y){VI [J B; (B;-l)']) -1 w;¡]. 
" 

Third, assume now that the true DGP is composed by NFI processes with 1< d < t . 

Then we have rM(j)~E(f1Y2.t_}f1Y~t) and ft,¡(j)~E(f1Y2.t_}Glt),so that 
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~. ) (-2d" ' )-J( 1-2d" ~. '-2d.)T(f3 - f3 = T L.,Y2tY2t T L.,Y2t Clt - 1 ~Ól 

Finally, consider the case where d < 1. Thus, iM(j)~E(~Y2,t-j~Y;t) and 

iÓI(j)~E(~Y2,t-]C1t), and then, QM ~n22' aJÓ1 ~úJ21' ~Ó1 ~~21 and� 

~M~~22'
 

Therefore, 

-1 " ~. T-1 " T-1" A 'A-l ~ P _Ad Ad,,-lT L.,Y2t Clt = L.,Y2t Clt - L.,Y2t L.lY2t1>l.M úJÓl ~L.l21 - L.l 22 1>1.22 úJ 21 

and proving the theorem.• 

References 

ANDREWS, D. W.K. (1991), "Heteroskedasticity and Autocorrelation Consistent� 

Covariance Matrix Estimation", Econometrica 59, 817-858.� 

BAILLIE, R.T. and T. BOLLERSLEV (1994), "Cointegration, Fractional Cointegration� 

and Exchange Rate Dynamics", Journal 01Finance 49, 737-745.� 

BANERJEE, A., DOLADO, J.1., HENDRY, D.F. and SMITH, G.W. (1986),� 

"Exploring Equilibrium Relationships in Econometrics through Static Mode1s: Sorne� 

Monte Carla Evidence", Oxlord Bulletin 01Economics and Statistics 48,253-277.� 

BOOTH, G. and Y. TSE (1995), "Long Memory in Interest Rate Future Markets: A� 

Fractional Cointegration Analysis", The Journal 01Future Markets 5, 573-584.� 

CHANG, y. (1993), "Fully Modified Estimation of Cointegrated Systems with 1(2)� 

Processes", mimeo, Vale University.� 

CHANG, y. and P.c.B. PHILLIPS (1995), "Time Series Regression with Mixtures of� 

Integrated Processes", Econometric Theory 11, 1033-1094.� 

24 

-----¡-----------------------------­



CHEUNG, y. and K. LAI (1993), "A Fractional Cointegration Analysis of Purchasing� 

Power Parity", Journal 01Business & Economic Statistics 11, 103 -112.� 

DITTMANN, 1. (1998), "Fractional Cointegration of Preferred and Common Stocks",� 

Discussion Papers in Economics 98-03, Dortmund University.� 

DOLADO, II and F. MARMOL (1996), "Efficient Estimation of Cointegrating� 

Relationships Among Higher Order and Fractionally Integrated Processes", Working� 

Paper 96-17, Banco de España.� 

DOLADO, JJ. and F. MARMOL (1998), "Asymptotic Inference with Nonstationary� 

Fractionally Integrated Processes", mimeo, Universidad Carlos III de Madrid.� 

GRANGER, C. and T. LEE (1989), "Investigation of Production, Sales and Inventory� 

Relationships Using Multicointegration and Non-Symmetric Error Correction Models",� 

JOllma/ 01Applied Econometrics 4, 145-159.� 

GRANGER, C.WJ. and T.H. LEE (1990), "Multicointegration", in Rhodes, G.F. and� 

T.H. Fomby (eds.), Advances in Eco17ometrics: Cointegratio17, Spurious Regressions� 

and [Jnit Roots 8, 71-84, New York: JAI Press.� 

GREGOIR, S. and G. LAROQUE (1994), "Polynomial Cointegration: Estimation and� 

Tests", Journal 01Econometrics 63, 183-214.� 

HALDRUP, N. (1994), "The Asymptotics of Single-Equation Cointegration Regressions� 

with 1(1) and 1(2) Variables", Journal 01Eco17ometrics 63, 153-181.� 

HALDRUP, N. and M. SALMON (1998), "Representations of 1(2) Cointegrated� 

Systems Using the Smith-McMillan Form", Journal 01Eco17ometrics 84, 303-325.� 

HANNAN, EJ. (1970), Multiple Time Series, New York: John Wiley & Sonso� 

HANSEN, B. (1992), "Efficient Estimation and Testing of Cointegrating Vectors in the� 

Presence of Deterministic Trends", Journal 01Econometrics 53, 87-121.� 

HARRIS, D. (1996), "Fully Modified Least Squares in 1(2) Regression", Econometric� 

TheOlY 12, 201-Z04.� 

MARMOL, F. (1998), "Spurious Regression with Nonstationary Fractionally Integrated� 

Processes", Journal 01Econometrics 84, 232-250.� 

PARK, lY. and P.C.B. PHILLIPS (1988), "Statistical Inference in Regressions with� 

Integrated Processes: Part 1", Econometric Theory 4,468-497.� 

PARK, l Y. and P.c.E. PHILLIPS (1989), "Statistical Inference in Regressions with� 

Integrated Processes: Part 2", Econometric Theory 5,95-131.� 

25 



PHILLIPS, P.C.R (1991), "Spectral Regression for Cointegrated Time Series", in� 

Nonparametric and Semiparametric Methods in Economics and Statistics, ed. by W.� 

Barnett, 1. Powell and G. Tauchen, 413-435, New York: Cambridge University Press.� 

PHILLIPS, P.C.R (1995), "Fully Modified Least Squares and Vector Autoregression",� 

Econometrica 63, 1023-1078.� 

PHILLIPS, P.C.B. and Y. CHANG (1994), "Fully Modified Least Squares in 1(2)� 

Regression", Econometric Theory 10, 967.� 

PHILLIPS, P.C.R and S. N. DURLAUF (1986), "Multiple Time Series with Integrated� 

Variables", Review 01Economic Studies 53, 473-496.� 

PHILLIPS, P.C.R and RE. HANSEN (1990), "Statistical Inference in Instrumental� 

Variable Regression with 1(1) Variables", Review 01Economic Studies 57, 99-125.� 

PHILLIPS, P.C.R and S. OULIARIS (1990), "Asymptotic Properties ofResidual Based� 

Tests for Cointegration", Econometrica 58, 165-194.� 

PRIESTLEY, M.B. (1981), Spectral Analysis and Time Series, volumes 1 and Il, New� 

ROBINSON, P. and D. MARINUCCI (1998), "Semiparametric Frequency Domain� 

Analysis ofFractional Cointegration", LSE/SnCERD Discussion Papel' EM/98/348.� 

STOCK, 1. (1987), "Asymptotic Properties ofLeast Squares Estimators ofCointegrating� 

Vectors", Econometrica 55, 1035-1056.� 

STOCK, 1. (1994), "Unit Roots, Structural Breaks and Trends", in Handbook qf� 

L:collometrics, Vol. IV, ed. by R.F. Engle and D.L. McFadden, 2739-2841, New York:� 

Elsevier.� 

26 


