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1 Introduction 

If we open a contest to select the most mentioned sentence in time series 
econometrics or even applied macroeconornics, during the last 10 years, al­
most certainly the winner would be something like "the lack of power of the 
unit root test". Many papers have shown numerical1y this lack of power and 
also the size distortions of the unit root tests. A partiallist inc1udes: Agiak­
loglou and Newbold (1992), Bierens (1993), DeJong, Nankervis, Savin and 
Whiteman (1992a, 1992b), Dickey and Fuller (1979, 1981), Elliot, Rothem­
berg and Stock (1992), Hall (1992), Ng and Perron (1993, 1995), Perron 
(1989), Said and Dickey (1985), Schmidt and Phillips (1992), Schwert (1989), 
and a survey by Stock (1995). To the best of our knowledge, no paper has 
considered whether this lack of power is typical only in the unit root tests or 
it can also be found in any standard test for stationary roots (for instance, in 
tests for zero first order correlation). This artic1e c1airns that the Student- t 
tests for stationary roots of an autoregressive (AR) model have as bad per­
formance as and sometimes even worse performance than the Dickey-Fuller 
(DF) t-type tests for unit roots. 

This paper does not c1aim that testing for a unit root is the same as 
testing for a stationary root. There are two main differences. First, the 
limit distribution in the unit root case is non-standard and it depends on 
the specification of the deterministic component of the analyzed variable. 
Second, in economics, to be able to tell between 1.0 and 0.9 is more important 
than to be able to distinguish between 0.0 and non-zero or between 0.5 and 
0.4. Nonrejeetion of the hypothesis of a unit root implies the existence of 
permanent shocks and also the possibility for having spurious regressions. 
Therefore it is understandable to see all the effort and interest that has been 
dedicated to the unit root case, but these two differences are not enough 
to explain the huge amount of papers that have been trying to convince the 
profession that the DF test has a big lack of power and awful size distortions. 
This paper only tries to show that the sentence "lack of power of the unit root 
tests", although accurate in absolute terms, is total1y inaccurate in relative 
terms. The power of a test should be judged in both dimensions. 

In order to show our c1aim, we re-do the experiments produced in the 
unit root literature, but this time not only to test for a root equals one but 
also lO test for a sta.tionary root of an AR model.We compare the power and 
size distortions of the t-tests in both scenarios, 1(1) and 1(0). The analysis 
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concentrates only on the t type tests because they are the most cornmonly 
used in practice, special1y the DF test for unit roots. 

This paper is neither a survey on unit roots nor proposes a new unit root 
test. The paper is organized as follows. Section 2 introduces the notation 
and the models used in the Monte Carlo experimento Section 3 investigates 
the power of the t tests for the nul1 hypotheses of 1(1) and 1(0), in a model 
with AR errors. Section 4 analyzes the size distortion of the t tests for the 
same null hypotheses as in section 3, first in a model with moving average 
(MA) errors, and second in a model with heteroskedastic (GARCH) errors. 
Section 5 concludes. 

2 Notation� and Models 

Let the time series {yd be the stochastic process generated by the linear 
model 

Yt = dt +Xt (1)� 

dt = f30 + f3It (2)� 

(l - o:L)Xt = Ut (3)� 
(1 - pL)Ut = (1- BL)et (4)� 

where Lis the lag operator. We assume that Xo = 0, et i.i.d. N(O, 0"2), P ~ 1 
and B< 1. 

Lernrna 1 : Let C(L)= ¿J=o cjLj. Then: 

•� (a) 

C(L) = C(l) - (1 - L)6(L) (5) 

where 6(L) = ¿b:o cjLj, with Cj = ¿k=i+I Ck • 

• (b) Provided 0:0 :1 0, 

C(L) .~-= C(1/o:o) - (1� - o:oL)C*(L) (6) 

where C*(L) = ¿J=ociL*j, with ci = (l/O:o)jcj and L* = O:oL. 
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A proof ofthe algebraic decomposition (a) can be found in Gelfand (1989, 
p.160). This decomposition was used by Beveridge and Nelson (1981) to 
decompose economic variables into permanent and transitory components. 

The proof of part (b) follows from applying (a) to the polynomial C· (L·). 
Phillips and Solo (1992) show that a sufficient condition for (5) to make 

sense (L:~o c~ < 00) is that the polynomial C(L) is 1/2-surnmable, 

00 

¿jI/2Icjl < oo. (7)
j=I 

It can be shown that condition (7) is sufficient for L~0(C;)2 < oo. AH the 
cases treated in this paper satisfy condition (7). 

Substituting (4), (3), and (2) into (1), using Lernma 1, and rearranging 
gives the aboye data generating process (DGP) as a single equation model 

00 

(1 - o:oL )Yt = Po +PI t +>'Yt-I +¿ b¡(l - o:oL )Yt-¡ + et, (8)
¡=I 

where the parameter oí interest is 

(9) 

The null hypothesis that {yd has an autoregressive root equals 0:0, 

can be tested by the t-ratio 

t¡=~/sd(~), (i=1,2,3), (10) 

where ~ and sd(~), the standard error of ~, are obtained by applying ordinary 
least squares (OLS) to the íol1owing regressions R1, R2 and R3, respective1y, 

R1 : DYt = >'Yt-l + L~=l b¡DYt-i + et 

R2 : DYt = Po +>'Yt-l + L:~=I b¡DYt_¡ + et 

R3: DYt = Po + ¡l1 t +>'Yt-t +2:f=l b¡DYt_¡ + et 
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where D = (1 - aoL). 
The 5% critical values of the tI' t2 , and t3 tests, for T=100, are tabulated 

in Table 1 for different values of ao. To generate these critical values it is 
assumed dt = 0, p = () = °and p=O. Dnder the null hypothesis of a = 1.0, 
the tests tb t2 and t3 have non-standard asymptotic distributions, see Hamil­
ton (1994, p.486) for a complete summary. These distributions depend on 
the specification of the deterministic component included in the regressions. 
The distributions are skewed to the left and have too many negative values 
relative to the Student-t distribution. The asymptotic distribution of tI, t2 

and t 3 is Normal (O, 1), for testing for a hypothesis of a stationary root 
(Ial < 1.0). 

Table 1 about here 

The critical values of Table 1 will be used in the next two sections to 
evaluate the power and size of the t-tests. 

Power Comparisons 

In this section we compare numerically the power of the one sided t-tests (tI, 
t2 and t3) for non-stationary (NS) and stationary (S) roots. This comparison 
has been done for different values of the null hypothesis (ao=1.0, 0.9, ... , 
0.0), and different alternatives, (ao - a =0,3,0.2,0.1,0.05 and 0.01), 

(NS) Ho : ao = 1 versus Ha: a < 1 
(S) Ho : a = ao, ao < 1,versus Ha: a < ao. 

In Table 2 the DGP is 

(1 - aL)Yt = et (11) 

and the regressions R1, R2 and R3 do not contain lags (p=O) of (1 - aoL )Yt. 
\Ve only report results for ao = 1.0,0.9, .. ,,0.0 and (ao - a) = 0.1 and 0.05. 
Other results are available upon request. 

Table 2 about here 
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The main íeature oí Table 2 is the drastic decrease in power oí the DF 
test when the regression contains a trend andJor a constant termo This is a 
well known result (see Stock (1995)). The reason oí this decrease in power 
is the random collinearity that there exists in the unit root case between 
a constant and Yt-l and between a deterministic trend and Yt-l' For the 
stationary roots the power is very uniíorm across regressions, and although 
there is also a random collinearity between a deterministic trend and Yt-ll 

this collinearity does not show up in the limit distribution. 
Comparing both situations (NS and S) the only case where the DF test 

has clearly lower power than the t-test íor a stationary root o is when there 
is a trend in the regression (t3 ). Many will argue (see Campbell and Perron 
(1992)) that this is the relevant case in practice because it is never known 
whether Yt has a driít or not, and the t3 test is invariant to that. Thereíore 
in applied research we are íorced to run the regression R3. In Table 3, 
we investigate ií this finding oí lower power oí the DF-t3 test is robust to 
other standard misspecifications that occur in practice, like misspecifications 
in the number oí lags p. In the stationary case, the inclusion oí irrelevant 
lags oí (1 - ooL )Yt-l introduces collinearity in the regression models. This 
collinearity is not random but causes similar power problems (under local 
alternatives) to the ones created by a deterministic trend in the DF-t3 test. 

To make the paper shorter and without loss oí generality, we only report 
(through the rest oí the paper) results íor the íollowing two cases 

(NS) Ho: 00 = 1 versus Ha: 0=.9 
(S) Ho : 00 = .5 versus Ha: 0=.4. 

The selection oí a metric, the distance between the null and the alternative 
hypotheses, to compare power in NS and S is not clear. There are several 
distance measures íor stochastic processes in the literature (see Zinde-Walsh 
(1992) íor a comparison oí sorne oí them). We have selected the one proposed 
by Piccolo (1990), that in our case is equivalent to the absolute distance (100­
01 = 0.1). We could also have chosen as a metric, the standard deviation 
oí the finite sample distribution oí & under the different null hypotheses. In 
this case the metric would have depended on T as well as on Oo. The main 
conclusions oí this paper are invariant to the chosen metric. 

In Table 3, the DGP is 

(12) 
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with p = (0.0, 0.1, ... , 1.0). By Lernma 1, (12) can be re-written as 

Table 3 considers situations where the number of lags pis correctly specified 
(p=l), underparametrized (p=O) and overparametrized (p=4). The case of 
p=4 is extremely important because as we mentioned before, the irrelevant 
variables (l-eroL)Yt-i (i=2, 3, 4) are correlated with Yt-b if Yt is stationary. 
This case is in sorne sense similar to the DF-t3 where the deterministic trend 
is correlated with Yt-l' 

Table 3 about here 

Several features of Table 3 stand out. For example, the power of the DF 
type tests is always higher than the power of the t-ratio for the nul1 hipothesis 
of a 0.5 root, when there are sorne lags in the regression model (p=l or p=4). 
This is true even for p=O. When there are no lags in the regressions, the 
only situation where the power of the DF is lower is for t 3 with p = O (the 
result previously mentioned in Table 2 and so much cited in the unit root 
literature). These results indicate the strong conclusion, that in general the 
DF-t type tests do not bave less power tban the t-ratio tests for a stationary 
root, even if we include a deterministic trend in the regression model. 

Size Comparisons 

The most infiuential Monte Carlo study in tbe unit root literature is Scbw­
ert's (1989), who found large size distortions in several unit root tests (DF 
is one of tbem) when the errors Ut have an MA component. In tbis section 
fol1owing Schwert's DGP we compare tbe size distortions of DF tests witb 
tbe t-tests for the null hipothesis tbat ero =0.5. 

The DGP in Table 4 is 

(14) 

with () = (0.1, 0.3, 0.5, 0.7 and 0.9). Gnly positive values of () have been 
considered, not because we tbink they are the most relevant values in practice 
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(maybe it is the opposite) but because these are the ones that produce higher 
size distortions in Schwert's (1989). For the same reason Agiakloglou and 
Newbold (1992) consider only positive values for (). 

Following Schwert (1989) and Agiakloglou and Newbold (1992) the tests 
are based on the üLS estimates of the approximating autoregressive regres­
sions R1, R2 and R3. We also report the results of the tests based on the 
regression models selected by the AlC. The most striking feature of Table 
4 is that the t-test for the stationary root (0'0 = 0.5) has even larger size 
distortions than the DF test. This is even true for () = 0.9, if we choose the 
autoregressive model selected by the AlC criteria. 

Table 4 about here 

Recent1y there has been sorne concern about the size distortions when 
there is conditional heteroskedasticity in the errors. Kim and Schmidt (1993) 
sho,," that the DF tests tend to overreject in the presence of GARCH errors. 
The DGP in Table 5 is 

(1 - O'oL )Yt = et (15)� 

etl1t-1 is N(O, ht) (16)� 

ht = <Po +<PleLI + <P2 ht-l' (17)� 

where I t - is the information available at time t-!. Let Zt =ed h~/2 be i.i.d.l 

N(O, 1) and ho=1. Nelson (1990) shows that the ht process has a strict1y 
stationary and ergodic distribution if and only if <Po > O and E[ln( <P2 + 
<PIZnJ < O. By Jensen's inequality and the strict concavity of ln(x), E[ln(<p2+ 
<PIZnJ < ln(<p2 +<PIE(Zn). If E(zn = 1, then <Po > O and <PI + <P2 ~ 1 are 
sufficient conditions for the process ht to be strictly stationary and ergodic. 
\Vhen 90 > Oand <PI +<P2 ~ 1, it is seen from Table 5 that the size distortions 
are slightly larger for the stationary root tests than for the unit root tests. 

Table 5 about here 

Summarizing, the results in this section show that in general the size 
distortions of the DF type tests are similar or even smaller than the size 
distortions of the standard t-ratio tests for a stationary rooL 
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5 Conclusions 

In this paper we compare numerically the lack of power and size distortions 
of the DF-t type tests, with the lack of power and size distortions of the 
standard t-ratio tests for stationary AR roots. 

Two clear conclusions emerge from our analysis. First, the DF-t type 
tests do not have less power than the t-ratio tests for a stationary root, when 
the number of lags is unknown (in praetice always). This is true even if 
we include a deterministic trend in the regression. In other words, the well 
known result of lack of power of the DF test when there is a deterministic 
trend in the regression model is not robust (in relative terms) to correlated 
errors. Second, the size distortions of the t-tests for stationary roots are as 
big as the ones of the DF tests for unit roots. This is the case with MA 
errors as well as GARCH errors. 
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Table 1. Critical Values (5% level, T = 100) 

t 1 t 2 t 3 

ex = 1.0 -1. 933 -2.889 -3.451 
ex = 0.9 -1. 795 -2.209 -2.609 
ex = 0.8 -1. 764 -2.050 -2.339 
ex = 0.7 -1.739 -1.965 -2.197 
ex = 0.6 -1.724 -1. 915 -2.113 
ex = 0.5 -1.716 -1. 878 -2.048 
ex = 0.4 -1. 704 -1. 847 -1. 993 
ex = 0.3 -1.689 -1. 819 -1. 948 
ex = 0.2 -1.674 -1.792 -1. 912 
ex = 0.1 -1.664 -1.770 -1. 880 
ex 0.0 -1. 657 -1. 756 -1. 846 

Notes: {Yt} is generated by Yt = exYt-l + e t , e t is L Ld. N(O, 1), t = 1, ... 

. T = 100, and Yl = O. Three t-ratios for the OLS estimate of A are computed: 

t 1 from the regression (1 - exL)Yt = AYt-l + e t , t 2 from the regression (1 ­

5% critica1 values are computed from 50000 replications . 

....-.--.-----------------r------,--------------------'-----­



Table 2. Power of testing various autoregressive roots 

o: - 0:0 = -0.1 o: - 0:0 = -0.05 

t 1 t 2 t 3 t 1 t 2 t 3 

0:0=1. O, 0:=0.9 .7766 .3083 .1826 0:0=1.0, 0:=0.95 .3356 .1150 .0836 
0:0=0.9, 0:=0.8 .4659 .3789 .3032 0:0=0.9, 0:=0.85 .1966 .1601 .1334 
0:0=0.8, 0:=0.7 .3605 .3277 .2846 0:0=0.8, 0:=0.75 .1569 .1430 .1314 
0:0=0.7, 0:=0.6 .3140 .2964 .2691 0:0=0.7, 0:=0.65 .1416 .1351 .1273 
0:0=0.6, 0:=0.5 .2878 .2737 .2564 0:0=0.6, 0:=0.55 .1316 .1305 .1237 
0:0=0.5, 0:=0.4 .2693 .2610 .2470 0:0=0.5, 0:=0.45 .1269 .1255 .1208 
0:0=0.4, 0:=0.3 .2608 .2531 .2425 0:0=0.4, 0:=0.35 .1263 .1235 .1200 
0:0=0.3, 0:=0.2 .2534 .2466 .2435 0:0=0.3, 0:=0.25 .1248 .1226 .1217 
0:0=0.2, 0:=0.1 .2513 .2490 .2445 0:0=0.2, 0:=0.15 .1241 .1236 .1205 
0:0=0.1, 0:=0.0 .2534 .2508 .2470 0:0=0.1, 0:=0.05 .1262 .1231 .1197 
0:0=0.0, 0:=-0.1 .2564 .2495 .2515 0:0=0.0, 0:=-0.05 .1254 .1231 .1224 

Notes: 5% level. T = 100. 10000 replications. d t = O (/30 = /31 = O). p = e 

= O. o: is the true autoregressive root in the DGP (i.e., under the 

al ternative hypothesis), and 0:0 is the value of o: claimed under the null 

hypothesis, Ha: o: = 0:0 , The difference (o: - 0:0) measures the departure from 

the null hypothesis. The critical values in Table 1 are used. 



rabIe 3. Power with AR(l) errors 

a = 0.9, ao = 1.0 a = 0.4, ao = 0.5 

Using p = O 
p = 0.0 .7766 .3083 .1826 .2693 .2610 .2470 

0.1 .6251 .1711 .0856 .0648 .0627 .0606 
0.3 .2767 .0273 .0120 .0005 .0005 .0004 
0.5 .0526 .0018 .0013 .0000 .0000 .0000 
0.7 .0026 .0000 .0011 .0000 .0000 .0000 
0.9 .0000 .0012 .0092 .0000 .0000 .0000 
1.0 .0000 .1345 .0481 .0000 .0000 .0000 

Using p = 1 
p = 0.0 .7409 .2997 .1804 .1347 .1333 .1297 

0.1 .7320 .2961 .1778 .1219 .1199 .1155 
0.3 .7071 .2824 .1716 .0862 .0861 .0851 
0.5 .6666 .2589 .1624 .0513 .0549 .0540 
0.7 .5855 .2230 .1364 .0263 .0290 .0302 
0.9 .3428 .1308 .0961 .0088 .0098 .0112 
1.0 .0551 .0673 .0614 .0033 .0043 .0070 

Using p 4 
p = 0.0 .6277 .2361 .1405 .0535 .0561 .0549 

0.1 .6270 .2342 .1394 .0531 .0542 .0563 
0.3 .6044 .2246 .1363 .0491 .0528 .0530 
0.5 .5743 .2105 .1310 .0473 .0501 .0513 
0.7 .5123 .1880 .1185 .0445 .0473 .0494 
0.9 .3185 .1221 .0899 .0421 .0452 .0469 
1.0 .0552 .0703 .0704 .0354 .0359 .0428 

Notes: 5% level. T = 100. 10000 replications. d t = O (~o = ~l = O). e = 

O. a is the true autoregressive root in the DGP (i.e., under the alternative 

hypothesis), and ao is the value of a claimed under the null hypothesis, Ho: a 

The difference (a - ao ) measures the departure from the null 

hypothesis.� Three t-ratios for A are computed: t 1 from the regression DYt = 

+ + from the regression DYt = ¡.Lo + + 

D = 1 - aoL. p is the number of lagged DYt-l in the regressions. If p = O is 

used when p > O, the number of lags is under-parameterized. If P = 1, the 

number of lags is correctly parameterized. If p > 1, it is over­

parameterized. The critical values in Table 1 are used. 



Table 4. 5ize with MA( 1) errors 

(lo = 1. O (lo = 0.5 

ti t 2 t 3 ti t 2 t 3 

Using P = Pale 
e = 0.1 .0723 .0775 .1007 .2498 .2538 .2730 

(0.98) (1. 00) (1. 03) (0.77) (0.82) (0.90) 
[1.72] [1. 80] [1. 91l [1.67] [1. 72] [1. 86] 

0.3 .0810 .0963 .1486 .7105 .7062 .7264 
(1. 81) (l.78) (l. 66) (0.80) (0.84) (0.89) 
[1. 68] [1. 74] [1. 85] [1.67] D.72] [1. 83] 

0.5 .1060 .1301 .2077 .8840 .8816 .8964 
(2.57) (2.48 ) (2.16) (0.77) (0.81) (0.92) 
[1. 69] [1. 74] [1. 79] [1. 66] [1. 71l [1. 85] 

0.7 .1735 .2519 .4343 .9532 .9523 .9531 
(3.62) (3.22) (2.37) (1. 62) (l. 66) (1. 89) 
[1. 89] [1. 95] [1. 96] [2.01] [2.04] [2.19] 

0.9 .4364 .7596 .9136 .9766 .9729 .9673 
(3.79) (2.00) (1. 02) (4.13) (4.14) (4.29) 
[2.92] [2.48] [1. 88] [2.47] [2.47] [2.51 ] 

Using P = O 
e = 0.1 .0813 .0832 .0954 .2248 .2239 .2177 

0.3 .2137 .2376 .3551 .8863 .8794 .8722 
0.5 .4465 .5847 .7987 .9996 .9996 .9994 
0.7 .7916 .9371 .9952 1.0000 1.0000 1.0000 
0.9 .9946 1.0000 1.0000 1.0000 1.0000 1.0000 

Using P = 1 
e = 0.1 .0531 .0506 .0578 .0658 .0650 .0636 

0.3 .0829 .0788 .1039 .2092 .2046 .2007 
0.5 .1889 .2100 .3082 .7226 .7080 .6868 
0.7 .4686 .6203 .8170 .9902 .9872 .9833 
0.9 .8771 .9986 1.0000 .9998 .9997 .9994 

Using P = 4 
e = 0.1 .0531 .0542 .0536 .0467 .0505 .0507 

0.3 .0553 .0543 .0534 .0499 .0527 .0525 
0.5 .0648 .0618 .0645 .0791 .0773 .0778 
0.7 .1311 .1334 .1711 .2696 .2549 .2423 
0.9 .4429 .7259 .7891 .7430 .6882 .6302 

Us i nf; j) "" 9 
(J = 0.1 .0585 .0619 .0621 .0581 .0615 .0621 

0.3 .0598 .0614 .0605 .0586 .0585 .0613 
0.5 .0591 .0617 .0578 .0598 .0612 .0614 
0.7 .0652 .0689 .0682 .0743 .0770 .0779 
0.9 .1691 .2486 .2506 .2697 .2387 .2077 

-····------------lf� 



Notes (for Table 4): 5% leve!. T = 100. 10000 replications. d = O (130 = t 

(31 = O). p = O. o: = 0:0 to examine the size. The number of lags Pal. is c 

chosen using the Are among P =0 to 9. When P = Pal. c is used, the mean of 

Pal. and the standard deviation of Pal. in 10000 replications are reported inc c 

( ) and [ J, respectively. The 95% confidence interval of the empirical size 

is (0.0456, 0.0544), since if the true nominal size is 5 (5 = 0.05), the 

observed size follows the asymptotic normal distribution with mean 5 and 

variance 5(1 5)/10000 for 10000 replications. The critical values in Table 

1 are used. 



Table 5. 5ize with GARCH (l • 1) errors 

0:0 = 1.0 0:0 = 0.5 

(</>0 </>1 </>2) t 1 t 2 t 3 t 1 t 2 t 3 

When </>1 + </>2 < 1 and </>0 = 1 - </>1 - </>2 

(1 O O ) .0493 .0500 .0503 .0481 .0490 .0483 
(0.1 0.3 0.6 ) .0518 .0761 .0777 .1011 .1007 .0998 
(0.05 0.3 0.65) .0499 .0825 .0824 .1063 .1055 .1041 
(0.05 0.1 0.85) .0506 .0620 .0586 .0610 .0617 .0626 

When </>1 + </>2 = 1 and </>1 = 0.3 

(0.0001 0.3 0.7 .0412 .0956 .0939 .1131 .1112 .1074 
(0.01 0.3 0.7 .0505 .0956 .0939 .1131 .1112 .1074 
(l 0.3 0.7 .0535 .0956 .0939 .1131 .1112 .1074 
(lOO 0.3 0.7 .0535 .0956 .0939 .1131 .1112 .1074 

When </>1 + </>2 = 1 and </>1 = 0.1 

(0.0001 0.1 0.9 .0469 .0710 .0657 .0647 .0642 .0647 
(0.01 0.1 0.9 .0503 .0627 .0597 .0635 .0642 .0646 
(l 0.1 0.9 .0493 .0623 .0599 .0637 .0642 .0642 
(lOO 0.1 0.9 .0497 .0623 .0599 .0637 .0642 .0642 

Notes: 5% level. T = 100. 10000 replications. d t = O (~o = ~1 = O). p = 8 

= O. o: = 0:0 to examine the size. The 

critical values in Table 1 are used. </>0 is simply a scale parameter when </>0 > 

O. Thi s i s true only if a fai r ly large number of ini tial observa tions are 

discarded. When </>0 is very small, ho = 1 is initialized too far in the right 

tail of the stationary distribution of the process h t • and so h t tends to 

decline as t gets large. Thus, in order for the resul ts not to depend on </>0 

for fixed ho• the first 500 observations were discarded . 

.._ _----------_._---..,.....-,--------------------' 



------~_·--------¡-I-¡--I----:-----¡I--­

I 

, '1 

I 

i 

I 

I 
I 
I 


