
Working Paper 95-29 Departamento de Estadística y Econometría 
Statistics and Econometrics Series 08 Universidad Carlos lB de Madrid 
February 1995 Calle Madrid, 126 

28903 Getaíe (Spain) 
Fax (341) 624-9849 

BREAKDOWN AND ASYMPTOTIC PROPERTIES OF RESAMPLED
 

T-ESTIMATES
 

Jorge Adrover and Ana M. Bianco·
 

Abstract _
 

In this paper we study the breakdown and asymptotic properties oí resampled T-estimates. We find
 
that they retain the finite breakdown point oí the exact estimator. We also study their consistency
 
and their order of convergence under nonstandard assumptions on the loss functions.
 

Key Words
 
Robustness; resampling; regression; breakdown point; order oí convergence.
 

•Adrover , Departamento de Estadística y Econometría, Universidad Carlos III de Madrid; Bianco, 
Universidad de Buenos Aires, Argentina. AMS: 1991 subject classification 62F35. 



... 



1 Introduction 

High breakdown point of regression estimates have been widely considered in the last ten years. 
We may mention the least median of squares (LMS) estimate, the S-estimate and the r-estimate 
among them. All these estimators are defined by the minimization of a nonc.onvex function of 
the residuals whic.h may have severaJ local minima. This fact makes very difficult the search of 
the absolute minimum. In practice, the procedures more frequently used are based in resampling 
methods, which yield an approximation of the exact estimator. These approximate estimates 
are based on the resampling scheme introduced by Rousseeuw (1984) to compute LMS-estimate. 
Basically, the idea is to look for the minimum among a number of planes that fit subsamples of 
size p chosenat random. In the case of S-estimates and r-estimates these resampled estimates 
may be used as an initial estimator"to start an iterative weighted least squares algorithm. 

Since the resampling methods give just an approximation of the exact estimator, it is natural 
to wonder if they retain the same good properties of the exact estimators. Sorne efforts have been 
done in this direction. Rousseeuw and Basset (1991) studied the case ofthe resampled estimates 
for least trimmed of squares (LTS) and LMS-estimates when aH possible p subsets are considered. 
They proved that the p-subset algorithm shares the equivariance and breakdown properties of 
the exact estimator. Hawkins (1993) gave s011le arguments which suggest the consistency of the 
resampled LMS- and LST-estimates, but he did not give a complete proof of this fact. On 
the other hand, Stromberg (1993) showed that in the case of LMS-estimates it is possible to 
compute the exact estimator by searching over the Chebyshev fits of aH (p +1)-subsets. 

The aim of this paper' is to study the properties of resampled r-estimates. We concern 
about the breakdown point, the consistency and the order of convergence of these approximate 
estimators. 

\Ve assume that the target model is the linear model: 

(1) y =O~x + f, 

where x = (Xl,". ,Xp )' is a random vector in ~p with distribution Go , (x', y)' has distribution 
H0,00 =(Bol, ... , Bop )' is the vector of the true regression parameters and the error f is a random 
variahle with distribution Fo ( u/a), independent of x. Since we are considering only equivariant 
estimators, without loss of generality, we can suppose that 00 = Oand (J = 1. 

The r-estimators were introduced by Yohai and Zamar (1988). They depend on two loss 
functions PI and P2. Given a sample u = (u], ... ,un)' denote by Fn the empiric.al distribution. 
Huber (1981) defined the M-estimate of scale by: 

Cl(2) ,'In (u) =mi 11 r: EF" PI (;.) ~ b} , 
where EF denotes the mean under the distribution F and O ;5; b;5; 1. A r-scale of u satisfies: 

(3) 

111 the regression setting, given a sample of random vectors Z¡ = (xi, YiY, i = 1, ... , n, 
for any O E ~p we <lefine"the residual vector based on O as r(O) = (rl(O), ... ,rn(O))' where 
r¡( O) = y¡ - xiO. Tllen, the r-estimator is defined as the argument 8n which minimizes the 
r-scale of the residuals, that is 

• • 2
On = arguun rn(r(O)).

O 
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Yobai and Zamar (1988) sbowed tbat tbese estimators combine higb breakdown point and 
bigh effidency under normal errors if PI and P2 are properly cbosen. 

We will consider tbe family of P fundions tbat satisfy tbe fol1owing conditions: 

Al:	 p(D) =O. 

A2:	 p(-t) = p(t). 

A3:	 pis a non-decreasing, bounded and left-continuous function. Furtbennore, it is continuous 
at O. 

A4:	 Tbere exists a real number e sucb that p(t) =sup P = 1 if Itl ~ c.' 

In tbe fol1owing we will assume tbat tbe r-estimates are defined using functions PI and P2 
satisfying (AI)-(A4). It is interesting to note tbat under regular conditions on tbe loss functions 
stated by Zamar and Yobai (1988), if PI = P2 we get an S-estimator. By taking P functions as 
tbe jump fundion defined by 

if Itl:5 1 
if Itl > 1 

we obtain the least median of square.s estimator by minimizing (2) if b = 1/2. From now on, 
we will' take PI such tbat EFoPI (r(O)) = b in order to assure tbe Fisher-consistency of tbe 
estimators. 

In tbis paper we consider approximate r-estimates of tbe fol1owing formo Given Zi = 
(xi, Yi)', i = 1, ... , n, a sample of size n, tbe resampling version of tbe r-estimate is defined 
as fol1ows: 

Generate at randolll N subsamples of size p frolll tbe sample. For the k-tb subsample (k = 
1, ... , N) fit a hyperplane (y =QkX) containing the p points. Define D;; = {Qk : k = 1, ... , N}. 
Then, 
(4)	 T n =arg min r,~(r(8)). 

8ED~ 

We est.ablish bere some notation which will be used along the papero For tbe sake of sim­
plidty, we will denote r,~(8) = r,~(r(8)) and 8'1(8) =sn(r(8)) from now on. Given >. E ~r, N>.J. 
will denote the set {x E ~r : x'>' =O} and C2 is defined as max{t : P2(t) =O}. 

In Section 2 we find the breakdown point of the resampled r-estimates and in Section 3 we 
state their consistency and their order of convergence under some different assumptions. Some 
technical lemmas and auxil1iary resuIts are proved in the Appendix. 

2	 Breakdown Point 

The finite sample breakdown point was defined by Donobo and Huber (1983). Let Zn = 
{ZI, ,,,,Zll} e ~p+I witb Zi = (xi, Vi)' and Zn,m be any contaminated sample of size n ob­
tained by replacing m observations of tbe original sample Zn by arbitrary outliers. Let Z be 
the set of al1 these possible Zll,m and T n =Tn(Zn) be tbe estimate defined by tbe minimization 
of the r-scale over D;; .Tbe regression estimate T n defined for samples of size n is said to 
break down at Zn for a given m if sup IITn(Zn,m)1I = 00 wbere tbe supremum is taken over al1 
Zn,m e Z. Let m o be tbe minimum m tbat T n breaks down. Tben, tbe finite breakdown point 
of T n at Zn is (*(Tu, Zu) =moln. 
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For the sake of Silllplicity, we will consider the case where b in equation (2) equaJs 1/2. Yohai 
and Zamar (1988) proved that when the observations are in general position, the breakdown 
point of tlle r-estilllate is €* 2: (1 - 2cn )/2(1- cn), where cn = (p - l)/n. Observe that when 
n -+ 00 this yields €* = 1/2. 

Since the resalllpled version of the r-estimator described above contains a randomization, its 
value for a fixed sample will be random and hence, we have to modify the breakdown definition 
accordingly. Maronna and Yohai (1993) ~ntroduced a suitable notion of breakdown point for 
this case. 

Call IT(n, 1n,P, N) the probability that at least one subsample of sizep is contained in Zn. 

(n-m) (n)Then, IT(n,ni,p,N) =1- (1- {J) N ,where {J = p / p ~ (1.- m/n)'P (Maronna 

ancl Yohai (1993)). This probability can be taken as close to 1 as desired by choosing N large 
enough. 

The result of the next theorem can be interpreted as stating that the resampled r-estimator 
does not break clown for m < [n/2] - (p - 1) with probability at least ll(n,m,p,N) which may 
be taken arbitrarily r.lose to 1. This means that the proposed approximate estimators retain the 
finite breakdown point of tlle original estilllators with arbitrarily large probability. 

Theorem 1 As,'/ume that PI and P2 satisfy (Al)-(A4) and that c2 = O. Let Zn be such that 
cl1ery ,'/ubsct {Xij : j = 1, ... ,p} is linearly indepcndent. Let D': be defined by the resampling 
proccdurc and m < [n/2] - (p - 1). Then, there exist,'/ a positit'e comltant]( (depending only on 
Zn) such that for all Zn,m E Z, IITn(Zn,m)1I :$ ]{ with probability larger than ll(n, m,p, N). 

Proof: lnitially, we will show tbat there exists a compact set K e (0,00) such that 
sup ''/n(Tn(Zn,m))EK. Suppose that there exists a sequence of sets {ZL,J such that 

Zn,mEZ 

At the same time, let lIS assume that 

, . ('Ti(Tn(Z!¡,m))l) B k' b 'f hThen hmlllf EH PI . =O. y ta mg a su sequence I necessary, we can c oose 
j " ,'l7l(Tn(Z;¡,m)) 

a positive se<¡uence €j surh that limj_oo €j =Oand s\lch that 

. fE (Ir¡(Tn(Z!¡,,,¡})\) Ol1111,1n
· 

Hn Pl j = . 
J ,'ln(Tn(Zn,m)) - €j 

This cOl1tradicts the fact ''/n(TlI(Z(m)) is a minimulll for j 2: jo an<1 we conc1u<1e that 

Therefore, we obtain that 
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However, for every Z!l,m there always exists a vector in D;;, T~G, which fits exactly to p points in 
Zn' Since at least [n/2]+p points belong to Zn, equation (2) implies that lim SUPj sn(T~G) < oo. 
Therefore, r,~(T!~G) < r,~(Tfl(Z!t"Il)) for j ~ jo which contradicts the definition of r-estimators. 

Now assume that limsup IITn(Z!lm)1I = oo. Then, at least [n/2] + l.residuals should tend 
j , 

to infinity. To prove this, notice that without 10ss of generality we may suppose that 

· Tn(Z!t",J - T 
. ;. 

_. l11n . - o' 
j IITfl(Z~I,m)1I 

Let us take NT.!. e ~p. Ir (X~,Yi) E Zn, ri(Tn):F oand Xi rt NT.!.' then 
o o 

l · l~n ( - liT (zjn,m jYi n )11' Tn(Z!t"n) ) xi =oo. 
J IITn(Zn.m)1I 

There exist at most p - 1 points SUdl that in (xi, Yi) E Zn and Xi E N T .!.. Thus we can find 
o . 

at least [n/2] + 1 residuals which tend to infinity. Therefore, by (2) lirnsuPj ,'ln(Tn(Z~,m)) =00 

which contradirts the first part of the proof. O 

Remark 1 Thc case b :F 1/2 folloUls similarly to the one trcated above with the corresponding 
breakdown point. 

Remark 2 The case of resamplcd lcast median of ,'lquares estimator can be prot1ed in a ,<;imilar 
way, obtaining high p7'Obabilistic br'eakdown point. 

Asymptotic Theory 

In order to obtain the asymptotic properties of resampled r-estimates some technical results are 
needed. Given a r10sed set A in a.n Eudidean space, define LOO(A) as the set of al] bounded and 
measurable real funrtions on A metrized with the supremum nonTI. Let Sq = {~ E ~q : II~II = 1} 
and Zl , ... ,ZIl be Li.d. random vectors in ~q with distriblltion P and can Hn the corresponding 
empiriral distribution. Define for -y E Sq the process Un(-Y) =nl / 2 (Hn (-y'z ~ O) - P (:Y'z ~ O)). 
Proposition 1 of Section 4 of Beran and Millar (1986) states that Un converges weakly as a 
random element of Loo(Sq) to a Gallssian process. A generalization of Glivenko-Cantelli theorem 
dne to WolfO\vitz establishes that Vn{-y) = Hn {-y'z ~ O) - P {-y'z ~ O) converges almost surely 
uniformly in -y. 

The following JeTIl1na, which is proved in the Appendix, is a generalization of these results. 
We will denote by p*(t) = 1 - p(t) (we have pi(t) = 1 - PI (t) and pi(t) = 1 - P2(t) as 

particular cases). Obviously, this does not affect the definition of the M-scale estim'ator if one 
replares b by 1 - b in (2). 

Lemma 1 As,<;umc that p .satisfie,<; c071ditions (Al)-(A4) and that (x~, y¡), i = 1, ... , n are i.i.d. 
random vectors in ~p+l. 1f r(O) = y - x'o wherc O E ~p and Hn detiote,<; the corresponding 
empi7'Ícal fundion, then 
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Let Jo a density of the distribution fundion Fo. Some of the following assumptions will be 
required along the paper: 

Fl. Jo is a bounded, non-increasing and continuous function. 

F2. Jo and pi have a COllUllon point of decrease. 

F3. 1" Jo(t)tdpi(t) < O. 

F4. 1" J~(t)dpi(t) > O.
 

F5. 1" J~(t)dp2(t) > O.
 

F6. J~(t) is bounded and rontinllous in ~.
 

F7. PI(C:z) < b.
 

F8. Slip PCo (lx'81 < C2) < 1, where mI = inf{11811 ECopiS 
) (x'8) > b} if p~s)(t) =
 

8>1ll1 >0 
lG11 Pl (x). 

r-t+ 

Define R(8,.'l) = EHop· (Y -sx'8). Davies (1990, page 1655) states the fol1owing result 

which will be useful here. 

Lernrna 2 Assllmc that (Fl),(F2) and (Al)-(A4) ho/d. Then 

(i) R: ~p x ~+ -- [0,1] is continuow~. 

(íi) R(8, 1') ::; R(O, r) Jor 8 E ~P, r E ~+. 

(íii) sUPI1811>7' R(8, 1) < R(O, 1) Jor a1l1] > O. 

(iv) R(8,r) is strictly incrca.'ling in r Jor fixcd 8. 

Let	 ,'1(8) be defined through the equation
 

r(8))
(5)	 EHoPl ( ,'1(8) =b. 

Then, we get the fol1owing result whirh was proved by Yohai and Zamar (1988) under slightly 
stronger conditions. 

Corollary 1 Assume (Fl),(F2) and (Al)-(A4) !lo/d. Let ,'1(8) be dcfincd by equation (5). 
Then, ,'1(8) has a tmiqllc mínimum at 8 =O. 
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Proof: By Lemma 2 (ii) and (iv) 8(0) $ s(O) for .all O E ~p. Now assume that there exists 01 
sud that ,e;(O¡) = s(O). By Lemma 2 (iii), we get that 

b = R(OI,s(O)) < sup R(O,s(O)) < R(O,s(O)) = b 
11011>110111/2 

since this is a contradiction, the statement follows. o 
The proof of the following theorem is in the Appendix. 

Theorem 2 A,'1,'1ume that PI sati,'1fies (Al)- (A4) and (Fl)-(F3) hold. Then 

a) There exist posititle comltants le], ](2 and 6 such that 

i) EHoPj (T::)) > b+ /\'](s-1) ifs > 1 andllOl1 < 6. 

ii) 'sup EHopi (T(O)) < b - ](2(1 - s) if ,'1 < 1. 
OE~P s 

b) /f {On} denote,e; a sequcnce of mndom tJectors .'Iatisfying II0nll = op(1), then 
nI /:2(.e;n(On) - 1) =Op(1). 

To get consistency and weak rates of convergence we will require some further assumptions 
concerning to the funr.tions p: 

A5: pis absolutely continnons witb a bounded Lebesgue density 1/J. 

A6: 2p(t) - 'l/J(t)t ~ Oa.e. t. 

A 7: pis a continuous function. 

The following lemma, proved by Yohai and Zamar (1988) under slightly stronger conditions, 
states the Fisher-consistency of the r-estimates. 

Lemma 3 Assume t/wt PI satisfies (Al)-(A4), P:2 satisfies (AI)-(A6) and fo verifies (Fl) 
and (F2). Let llS supp08e that sup P(>..'x =O) < 1. Define r(O) by 

>"E~1'-{O} 

:2 :2 (T(O))r (O) =s (O)EHoP:2 ,'l(O) , 

wher'e s( O) is defined by (5) using as P the function PI' Then, T( O) has a unique minimum at 
0=0. 

The fol1owing lemma wm be useful in order to show that the resampled T-estimator is weakly 
consistent. The proof can be found in the Appendix. 

Lemma 4 llnder (Al)-(A4), (FI) and (F2), 

(i)	 lim inf lim inf inf EHnPI·(r(o)) > b a.c.
 
ml-oo,m2- OO n-oc 1101I>mls,1101I>m2 s
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(ii)	 Gitlen m > O, lilll inflilll inf inf EH Pl (r(8)) > b a.e. 
60-0 n-oo 11811$711,11<110 sn 

(iii) Git,cn m > O, lim sup lim sup sup EHnPl (r(8)) = O a.e.
 
'0-00 n-oo '>'0,11811<711 S
 

(iv)	 lim sup lim sup sup EHnPl (r(8)) = O a.e.
 
•o-O,m-oo n-oo 11811>m,1I811<uo S
 

The consistency of the resampled r-estimators will be obtained if one of ihe following three 
conditions isvalid: 

(I )	 Pl satisfies (Al)-(A4) and (A7), P2 satisfies (Al)-(A6) and (F7) holds, 

(11 ) Pl(t) =P2(t) =PJ(t) for aH tER 

(111) Pl = PJ, P2 satisfies (Al)-(A6), (F7) and (F8) hold. 

Then, we get the following result whose proof lllay be found in the Appendix. 

Lemma 5 A.o;st17ne (Fl),(F2). Lct u,o; suppose that sup P(>..'x = O) < 1 - b. Let .'1(8) be 
>"elRI'-{o} 

dcfi71Cd by cqulltion (5). If any of the assu711ption,o; (1), (l/) or (l/I) i,o; tIalid, then 

(a)	 C'ivcn a eotnpaet .'Id e e RP, 

(6) 

(7)	 lim SlIp Irll(8) - r(8)1 = O almo,o;t surely
 
'1-00 8ec
 

, (r(8))
(b)	 mf EHo P'2 (8) > O,

8e3.'1' ,o; 

(e) lilll iuf iuf EH P'2 ( r(88))) > O a.e.. 
11-00 8e3.'I' n 

Sll 

Consisteney is shown ill the following theorem. 

Theorem 3 A.o;.o;ume that (x;, yIY, ... , (x:ll Yll)' are (p+l)-dimensional mndom veetors U.d. 
whieh satisfy modcl (J), T ll is thc approxi711ate estimate defined by (.1) and D;; = {Oh ... ,ON} 
i.o; an arbitmry .'Id in RP satisfying that min 11011 = op(1). Suppose also that sup PGo(>"'x = 

oeD~ >"elRI'-{O} . 

O) < 1 - b, t/wt (Fl)-(F3) m'c satisficd. If any of the assumptions (1), (l/) or (l/I) i,o; valid, 
thcn 

(b) lim IITlll! = O in p7'Obability. 
11 

Proof: 
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(a) Let us take the set Al = {lim inf ,'In (Tn) > O}. Lemma 4 (i) and (ii) entail that PH (A¡) = 
n~oo	 o 

1. Let us take On =argminOEDf. 11011. By hipothesis On =op(1) and ISn(on) -11 =op(1) 

by Theorem 2 (b). By Lemma 1 (a) and Lemma 2 (i) 1 - EH P2 ( r(on) ) = op(1). By
n sn(on)
 

the definition of T n, r 2(Tn) ::; r 2(on). ThllS, using Lemma 5 (c) we obtain
 

Therefore, ,'l~I(Tn) = Op(1). Given J( > O 

By taking J( large enough and using Lemma 4 (i) and (8) we get that IITnll = Op(1). 

(b)	 Since min 11011 = op(1) by Theorem 2 (b) we have that ISn(on) - 11 = op(1). By (a),
oEDf. 

given f > Othere exists J( >.0 such that P(IITnll ::; J() > 1- f. if n > no( f., J(). Let us 
note that lim r 2( 8) = oo. Then, by Lemma 3 and continuity of r, given f.o > O there 

11811_00
 
exists 6 > Osllch that
 

inf r 2(8) > r 2 (O) + 6.
 
(o$1I811$K
 

Given f¡J2 > O and 6/2 it holc1s that P(En) = P({ sup Ir2
( 8) - r~( 8)1 ::; 6/2}) > 

(o$11811$K 
1 - ft/2 and P(r,~(on) - r 2(O) > 6/2)::; ft/2 for n large enough . Therefore 

1 - ft/2 < P(Ell ) = P ({ inf r 2(8) - r,~(8) + r,~(8) > r 2 (O) +6} n En) < 
(o$11811$K 

P ( inf 6/2 + r,~(8) - r 2 (O) > 6) ::; P( inf r,~(8) - r 2 (O) > 6/2)
(o$1I811$K	 (o$11811$K 

Conseqllently, 

fol' n lal'ge enollgh. Since the result holds for every f.o the conc1usion of (b) follows. O 

Corollary 2 Under the ,'lame as,'lumptions a,'! in Theorem 3, we have that 
n l / 2(8n (Tll ) - 1) = Op(1). 

Theorem 3 requires the existence of a consistent sequence of vectors in the resampling seto 
The next lemma, whirh is proved in the Appenc1ix, shows that this is guaranteed by the resam­
pling scheme. 

Lemma 6 AS8tl7nc that D~(ll) i8 obtained by the rcsampling scheme and that 
lim N(n) = 00, then min 11011 =op(1). 

n-oo	 OED;;<n) 
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In order to get the rate of convergence we follow the techniques introduced by Kim and 
Pollard (1990) whidl allows them to get cube root asymptotics. They derived limit theorems for 
several statistics defined by maxilllization or constrained minimization of processes derived from 
the empirical measure, such as the LMS estimator with rate n-1/ 3 • We require a similar result 
to Lemma 4.1 of Kim and Pollard (1990) which was generalized by Davies (1990) in Theorem 7. 

Lemma 7 A.'1sume that E(lIxll) < 00 and p*(t) = 1 - p(t). Then, for eaeh '1 > 0, there exist 
random .'ariables {MnHlC) of order 01'(1) sueh that 

(a) if p =Pl' then 

~ '1(11 9 11 2 + 1.'1 - 11 2
) 

+n-2/3M~ 

for all (9,.'1) .'1atisfyiug 11911 < 1, Is -11 < 1. 

(b) if p llef'ijies eonditions (Al)-(A5), then 

IEHn (p* (r::)) _ p* (r~o))) _EHo (p* (r::)) _ p* (r~o))) I 
~ 71(11 9 11 2 + 1.'1 - 11 2

) +n- I M,~ . 

f07' ail (9, .'1) .o¡ati."fying 11911 < 1, I.o¡ - 11 < 1. 

(e) if p vcf'ijics eonditions (Al)-(A5), then 

IEHn (p. (r~~)) - P*(T(O))) - EHo (p. (r~:)) - p*(r(o))) I~ 711s - 11 2 +n-1M~ 

if I.o¡ - 11 < b < 1. 

Proof: The proof of (a) is given in Lelllma 4 of Davies (1990). The proofs of (b) and (e) follow 
analogollsly with SOIlle slight modifications. O 

The following theorelll states the rate of convergenc.e of the resampIed T-estimates under 
differellt assumptions on tIle p's fllnctions. 

Theorem 4 Suppo.o¡c that (x~, YI)"'" (x:l' Yn) are (p + 1)-dimcu.o¡ional random vectors i.i.d. 
such that .o¡ati,o¡jy modcl (1) and T n =T 71 (Zn). A.o¡sume that PI and P2 satisfy (Al)-(A4), (Fl)­
(F7) ho/d, E( Ilx11 2 ) < 00 and that the eonclusions of Theorem 3 remain .'alid. Furthermore, we 
supposc that n I 

/ 2 min 11011 =01'(1). 
OED~(n) 

(a)	 Jf PI satisjic.o¡ (A5) and P2 (A5) and (A6), then
 
n1

/ 
211T lI ll =01'(1).
 

(b) Jf PI =P2 =PJ, then 
nI /311T nll =01'( 1). 

(c) Jf PI =PJ and P2 .o¡ati.o¡jics (A5)	 and (A6), then 
l n / 

31l T nll =Op(1). 
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Proof: (a) Let an =arg min lIa/l. It holds that 
aED~(n) 

(9) 0$ T 
2
(a n) - T

2
(Tn ) =s~(an)EHnP2 C:'l(~~)) - s~(Tn)EHnP2 (::~~)) . 

For any 9 E ~p we have that 

EH.P, (~\6~¿) = [(EH.P, (:.~t~)) - EH.P, (;n\O~))) ~. 
(EHoP2 (:,~(j)) - EHoP2 C:,~t~)))] + 

(10)	 [ ( EHnP2 (:,~t~)) -EH"P2 (r(o))) - ( EHoP2 C:,~tJ)) -EHoP2 (r(o)))] + 

[(EHoP2 (:,~tj)) - EHoP2 (:,~tJ)))] + [(EHnP2 (r(O)) - EHoP2 (r(O)))] + 

EHo P2 C:,:tJ)) . 
From (9) and (10) for p*(t) = 1 - p(t) we get that 
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On the otber hand, 

-·'l~I(OIl)(EHnPi(r(O)) - EHopi (r(O))) + .'l~I(Tn)(EHnPi (r(O)) - EHoP'2 (r(O))) = 
(·'l?I(Tn) - .'l~(oll))(EHnPi (r(O)) - EHopi (r(O))) = n-10 p(1) 

Rence, by Le1l111la 7 (b) and (e) in An we obtain the following bound 

O::; T 2(On) - T 2(Tn ) 
1 1::; .'In(On?[711 (lIo nll2+ \Sn(on) - 11 2

) + n- M 1n + 7]2Isn(on) - 112) + n- M2n] 

)2 [E * ( r(on)) E * ( r(O) )] . 
(11) -·'In (0 11 HoP2· ( ) - HoP2 () . ~ .!In On Sil)On ~ 

+.'ln(Tn?[713(IITn112+ ISn(Tn) - 112) + 71- M3n + 7]41.!ln(Tn) - 112) + n-1 M4n ] 

(" ) 2 [ * ( r(T n) ) * ( r(O) ) ] 1 ()+.'ln T n EHoP2 .!In(T ) - EHoP2 sn(T ) + 71- Op 1 n n

On the other hand, if Sn(On) > sn(Tn ), Le. in A~ll we have that 

(12)
 

hence in A~l we get tbat
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4 

Using a Taylor expansion we get that 

where Q = E(xx'). For the last three terlllS in (14), a similar approximation holds. Therefore, 
we get the following bound 

0$ lI o nll26 (,tl~(On)/An + /A<) + 6Isn(on) - 1122,'l?l(on)/A~+ - . 
IITnIl26(,'l~(Tn)/An + /A<) +nlsn(Tn) - 112(2s~(Tn)6/An + (6 + 6)/A<)+

-1 2 n 2	 n 
n - {[,c;n(On)(Mln + M2n ) + ,'ln(Tn)(M3n + M4n )]/An + (M5n + M6n )/Ad 

(15) + ['C;~(On) lC 

f~(t)dp2(t)/An + lC 

f~(t)dPi(t)/Af.l O:lQOn 
C	 C 

- [,C;~(Tn) l f~(t)dPi(t)/An + l f~(t)dpi(t)/Af. T~lQTn 
2 1+Op(IIOn 11 2) + op(IITn ll ) + n- Op(I). 

Define mI = lllin( - J~ f~(t)dPi(t), - J~ f~(t)dpi(t)), MI = max( - J~ f~(t)dp2(t), 
- J~ f~(t)dpi(t)). Using the fact that IlxllQ = x'Qx is equivalent to the Eucliclean norm and 
(15) we lllay choose positive constants 1ancl L such that 

Sinee -MI is positive, by taking {2 sll)all enough, part (a) of the theorem follows. 
(b) 1t follows from inequality (12) llsing Lemma 7 a). 
(e)	 Parts (a) an<l (b) can be proved similarly llsing Lemma 7 a) and b). o 

Remark 3 Wc conjccttl7'c that whcn PI = PJ and P2 ,c;ati,'ljic8 (A5) and (A6) the order 01 the 
convctr/encc olllTnl1 may Ix: highcl' to the one e,c;tabli8hcd by Theorcm 4. 

l 2Remark 4 Thc prc17iotl8 thcol'cm a88wnc,C; that n / min 11011 = Op(I). Thi8 may be guar­
OED:(n) 

antc('d by a slight modijicat,ion in th(' rc,c;ampling 8chemc, that i.c; by including in the 8ct D;j an 
c8timatol' 01 ol'dcl' 71- 1/ 2 • 

Appendix 

Proof of Lemma 1: 

(a)	 The resnlt will follow by an approximating argumento First, assume that p*(t) is a step 
fllnetion in [-b,b],that is 

1 1-1 

(16) p*(ltl) = pi(!tl) = ¿aJE¡(ltl) = ¿(a¡ - ai+d/[O,b¡J(ltl) +al, 
i=1 i=l 
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where o= bo < b1 < '" < bl = b and E¡ = (b¡-b b¡] para i = 2, ... ,1 and El = [bo, b1]. 

Frolll Beran and Millar (1986) it follows that sup llll(-y) =01'(1). Then, we have that 
11"Y 11=1 

1/2 I (r(8)) (r(8)) I
12	 ~~B~ EHn1[-b,b) -s- - EHJ[-b,b) --;- = 

1/2 I (r(8)) . (r(8)) I12 sup EHn l[-b,b) -s- - EHol[-6,6) -s- =
 
8,B,6 ,
 

12
1
/2 SUp IPHn (l(y,X)'(1/s,8/s)\::; b) - P (l(y,x)'(1/.'l,8/s)\"::; b)l:;:


8,B,b
 
1 212 /	 SUp IPHn ((y,x)'(1/s,.8/s)::; b,-(y,x)'(1/s,8/fo)::; b) - " 

8,B,b 
P ((y,x)'(1/s,8/s)::; b,-(y,x)'(1/s,8/s)::; b)1 = 

1/2 I ( )' (1/.'1,8/.'1, -b) )' (-l/s, -8/s, -b) ) _ 
12 ~:~l,: PHn (y, X, 1 11(1/s, 8/.'1, -b)1I ::; O, (y, x, 1 11(-1/s, -8/s, -b)1I ::; O 

)' (1/s,8/s,-b) ( )' (-1/s,-8/s,-b) )1 )
P ( (y,x,l 1I(1/fo,8/s,-b)lI::; O, y,x,l 1I(-1/s,-8/s,-b)lI::; O = 01'(1 

Then, 

1/ 2 (/-1 (Ir(8)1)) (/-1	 (Ir(8)1))1
11	 sup EH" ~(a¡ - ai+l )1[O,bi) -.'1- - EHo ~(a¡ - ai+1 )1[O,bi) -.'1- ::; 

8,5 I 1=1 1=1 

1/2 SUp ~I (ai - ai+l)'11 EH" (l[o,b,) (Ir(8)1))-s- - EHo ( I[O.b,) (Ir(8)1))1-s- :5n ~ 
8,5 1=1	 . 

1-1 { n/ IEHn 
((lr(8)1))l[o,b) -.'1- EHo ((lr(8)1))I}l[o,b) =SUp ~ I(ai - ai+1)1 12 sup	 - -s­

8.5 1=1	 8.B,bE[0.e) 
1-1 

¿ I(ai - ai+dI01'(l) =01'(1), 
i=l 

wI)()re 0 1,(1) is independent of l. 

Let p be a function satisfying (Al)-(A4). Consider a sequence of step functions {pi} such 
that uuifol'111Iy converges to p*. Let 1 be such that Ip*(ltl) - pj(ltl)1 < n-1/ 2f., then 

1 
11 /

2 ~~~~: IEH"P* (r::)) _ EHoP* (r~:)) =1 

1/2 I ( * (r(8)) * (r(8))) ( • (r(8)) • (r(8)))n	 ~:~l,: EH" p -.'1- - PI ---;- - EHo P -s- - PI --;- + 

EH"pi (r(:)) _ EHopj (r(:)) 1:5 

,,1/2 h~; 2"-1/2, +IEH"pj (r~)) - EH"pj ("~:)) I} =0,(1) 

and	 tIte statelllent follows. 

(b) Jt follows equally tItan (a) by using an approxilllation argumento	 o 

13 



Proof of Theorem 2	 First, we will show that 

(17)	 j pj(y)(,~fo(sy) - fo(y))dy > !{1(S - 1) for s> 1 

(18)	 j pj(y)(sfo(sy) - fo(y))dy < J{2(S - 1) for s < 1 

For ,~ > 1, inequality (17) is equivalent to jpj(y) (Sfo(SY) - fo~y)) dy > K 1. 
s -1 ., 

Let pi be as in (16). If we take a¡ =pi(b¡), we have that pi(t) :s pi(t). Thus, there exists 
6 > Osuch that for any 1> lo we get that 

amI (17) fo]]ows choosing a suitabIe positive constallt J{1. Inequality (18) entails analogousIy. 

(a)	 (i) Sínce
 

EHopi C:~)) = j pj (~) fo(y)dy =
 
j pj(y),~f(J(,~y)dy - j pi(y)fo(y)dy + j pj(y)fo(y)dy =
 

b + j pj(y)(,<;fo('~y) - fo(y))dy,
 

the statement holds by (17) and Lelllllla 2 (i). 

(ii)	 By Lemllla 2 (ii) we know tllat sup EHopj (T(8)) = EHoPj (T(O)). Then, it is 
8E~P'~ s 

ellough to prove that EHopj C':~)) < b - K1(I - ,~). Then, we proceed as in (a) (i). 

(b)	 By Lelllllla 1 we have that 

* (T(8)) * (T(8)) I -1/2)h 71 = sup EH"P1 - - EHoP1 - =Op(n 
8E~P .sE~+ I S	 ,~ 
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Then, 

E	 P- (T(8f1 )) =E - (r(8,J) _ E - (T(8f1 )) + E _ (r(8f1 )) <
~l ~~ ~~ ~~ ­

.'1	 .'1 S S

_(r(8)) E _(r(8))1 E _(r(8f1 )) h E _(r(8n))sup lEHnPI - - HoPI - + HoPI -- = n + HoPl - ­
8E~P,8E~+ s .'1 S	 ,'1 

- (r(8f1 )) - (r(8f1 )) bEHnPl -*- $ hfl +EHoPl -*- < 
SfI	 Sn 

by (a) (ii). Hence, sfI(8f1 ) > 1 - hfl / ]{2. On the other hand, let us take sn = 1 +hn / ](1. 

Given l > O and 6 > O, the set D'I = {1I8f111 > 6} verifies that P(DfI) < l for n large 
enough. Then \Ising item (a) (i) it hol<1s in DfI that 

and then, 8 71 (871 ) < 1+hn / ](1' Finally, it entails that, in DfI 

hfl < (8) < hfl1 - -},. _ SfI 71 _ 1+ -},.
\2	 \1 

amI b) follows.	 o 

Proof of Lemma 4 

(i)	 There exists 11. 0 > O such that for all ..x E Sp it holds that PGo(N..xJ.) $ 1/2 - ho where 
N..xJ. was define<1 aboye. Therefol'e, PGo((N..xJ.)") ~ b + ho. Let l > O be s\lch that 
(1 - l)(b + t~0/2) > b + 11.0/4. We take AM = {y E [O, M]} satisfying PHo(AM) > 1 - €o 

Given l2 > O there exists a compact set ](..x e (N..xJ.)" e ~p s\lch that Ix'..xl ~ 312 and 

Pc;o( f(..x) ~ b + 11. 0 /2. Hence we can choose 62= Ó2(..x,l2) such that 118/11811 - ..xII < 62 
and x E H..x imply that Ix'8/118111 ~ 2l2. Let m2 > O be such that lyl/m2 < €2 if Y E AM. 
D€'not€' by \1 (..x,6) ={11811 > ml''l, 118/11811- ..xII $ 6,11811 > m2}' If y E AM, x E J(..x and 
8 E V((..x,6)), then 

Sinre PI is an even function we obtain 
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Consequently, it holds almost everywhere that 

and
 

lim inf lim inf inf EHnfl (r(8)) ~ b+ho/4.
 
ml .....00.m2 .....oo 71.....00 V('x 6 ) S .• 2	 . 

- .... /. 

For aH ,X E 5" there exists Ó2('x,f2) verifying the last inequaJity. Since 8" is a compact set 
we consider a finite number of vectors in 8", 81" •• ,89 and radius 152(81, (2), ... ,Ó2(89 , (2) 

such that 

inf EH Pl (r(8)) = min inf EHnPl (r(8))n11811>mI8,1I811>m2 .~ l$j$9 V(8 j .62(8j .(2») s 

and	 the statement follows. 

(ii) Let	 ,X E Bm = {z E ~p : Ilzll 5 m}. Given f > O we can choose 15 = Ó('x,f) and e > O 
verifying that PHo(A6) = PHo(ly - x',X1 5 15) 5 f and PGo(Ac) = PGo(lIxll 5 e) > 1 - f. H 
(x', y)' E A6, x E Ac and 118 - ,XII < ó/2c we get that 

. Iy - x'81 ~ Iy - x',XI- Ix'('x - 8)1 ~ 15 - 15/2. 

Then, sillce PI is an even function it holels that 

Consequently, it holels almost everywhere that 

15 
lim inflim inf PI (-2 ) EH,./A«y,X)/A«X) = 
80-0 n .....oo 8 0 6 

lim inf PI (215 
) EHoIA~(y, X)/A«X) ~ 1 - 2f 

80-0 8 0 

and 

A compactness argument similar to that of (i) for the set Bm allows us to conduele that 
the daim of (ii) hol<ls. 

(iii) Since 

(T(8)) . (r(8))
Slip EH., PI - 5 EH., sup PI - , 

8>80,11 811<m S 11 8 11<'11 So 
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we have almost everywhere that 

lim sup sup EH
n 

P1 (r(8)) ~ EH
o 

sup PI (r(8)) . 
n-oo &>&0.1I811<m 11811<m SoS 

Given f. > O, we take AM and Ac as above. Therefore, 

r(8)) (r(8))EHo sup PI ( - ~ EHo sup PI - /AM(Y)/Ac(X) + l.
11811<m 11811<mSo So .. 

Given f.1 > O we can choose 811 •X .&o,C1 E Bm slIch that 

Thus, by using the Dominated Convergence Theorem we obtain that
 

lim EH Slip PI (T(8)) = O, which entails (iii).
 
0

8 -00 
o 11 811<m '~o 

(iv) Given f. > Oand taking AM and Ac as above, we get that 

By taking limit for n -+ 00 in both sides of the previous inequality, (iv) follows. 

Proof of Lemma 5 

(a) The proof follows completely analogous to that of Lemma 4.5 of Yohai and Zamar (1986). 

(b) Let us call R1(8,,~) = EH P1 (T(,:)) and R2(8,,~) = EH P2 (T::)). For each 8,o o 

R2(8,s(8)) > Oby equation (5) and condition (F7). Next, let us suppose that lim 1187111 = 
n-oo 

00 and lim RA8n , ,~(8n)) = O. Without 10ss of generality we can say that lim 8,J118nll 
n-oo n-oo 

= 81 • If ' 
(19) lim sup 118nll/,~(8n) = 00, 

n_oo 

then, by taking a subsequence if it were necessary, we obtain that PGo(Net )= O, but this 

contradirts that PGo(N8t) < 1 - b. In case that 

(20) lim sup 118nll/s(8n) < 00 
n~oo 

we may assume that lim 118nll/.,,(8n) = a. Then EGo P2(a8;x) = O, 01' equivalently, 
n~oo 

(21 ) 

Let us suppose that PI is cOlltillUOUS . By the Dominated Convergence Theorem we have 
that b = EGo P1(a8;x), but this contradicts (F7) and (21). If PI = P2 = PJ equation (5) 
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and	 (21) togetber yie]d a contradiction. Hence, inf R2(O,,'1(O)) > O. Under (III), PI = PJ. 
O 

Hence, Jet us consider the function 

O if Itl ~ 1 
pI(t) = It-llfrif1<ltl<1+r 

{ 1 if Itl 2: 1 +r 

Let us call ,'1r(On) tbe scale obtained using pí(t) in equation (5). Ithqlds that Isr(On)­
,'l(On)1 ~ s(On)rf(l + r), or equivalent]y ., 

Consequen t]y 

r (	 r(On) ) E r (( )r(On))b	 E= HoPl''1r (On) ~ HoPl r + 1 ,'1(On) .
 

After taking lilllit we get tbat
 

Therefore Pcd(r + l)laO~xl > 1) 2: b for every r > Owhicb, let us infer tbat 

(22) 

Frolll (F7) we get that PJ(C2) == O. Then either C2 < 1, wbich contradicts (21), or C2 = 1, 
hut (F8), (21) and (22) yield a contradirtion. Tberefore tbe daim of the item bo]ds. 

(c) Let	 liS first aSSlIllle that PI is continllous. Suppose tbat tbere exists a sequence {O,J 
SllCh that lilll 11071 11 = 00, lim O,JllOnl1 = 01 , Using ,'ln(On) instead of $(On) in (19) we 

'1.-+00 71.-+00 

yielcl a contradiction. By assllllling (20) witb ,'ln(On) we proceed as follows. Let us cal] 

} ? lE .. (r(O)) E .. (r(o)) I n = sup HnPl - - HoPl -) 
OE~P ,sE~+ $ ,'l 

ancl 

( r(O)) (r(O)) IZn = sup EHn P2 - - EHo P2 -) . 
OE~P ,sE3t'+ I S S 

}~l and Zn converge almost surely to O by Lelllma 1 (b). By definition of Sn it bo]ds tbat 

(2:J) 

(24) 
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where {(,J is a positive sequence converging to O. Therefore, after taking limit in (23) and 
(24) it follows that EGoP](a8~x) = b. Since 

EHn P2 C;,~~¿:~)) -EHoP2 (:,~~;~)) +EHoP2 (:n(~¿:~)) ~ 
(25) 

r(8n) ) 
-Zn +EHoP2 ( sll(8

11 
) 1 

l.!ln EHo P2 (r\~\) = O implies (21) again, but this contráíÍicts (F7). Hence, there 
n 00 Sil II 

exists a- compact set C in RP Eiuch that inf EHnP2 ( r«88))) > O. On the other hand 
8ecc Sil 

Using Lemma 1 (b) and items (a) and the uniform continuity of R2(8,<'l) on compact sets, 

( r(8) ) (r(8)) I .-Zll - ~~~ EHoP2 <'l1l(8) - EHoP2 <'1(8) converges to Oalmost surely. Usmg (b), theI 
statement follows. Under assumptions (11) or (111) the proof follows c10sely to that of item 
(b) UlHlel' such conditions. 

Proof of Lemma 6 Let 

ell = {f : {1, ... , p} -+ {1, ... , n} such that f( i) :J fU) if i :J j} and 

T(n) = {ti = {fi(I), ... ,fi(p)} where fi E C,J. 

#T(ll) = ( ~ ) = Cll . Ir T ll = (t], .. . , tN) denotes a vector of N randomly chosen elements of 

T(n) then 

P(Tll = (t~, ... ,tN) = 1/(c,¡cll-] ... (cll - (N -1))) 

for a given ur, ... ,tN). Let Y t¡ E ~P, Xt¡ E RPxp and A t¡ E ~pxp be given by Y t¡ = 
(Yf ¡(1), ... ,Yf ,(p))', Xt¡ = (Xf¡(]), ... ,Xf¡(p))T and and A l ¡ = (XI¡XU- l • (Y'AY)rn > (2 

will denote the set {Y~] Al] Y 1] > (2, ... , Y~N A tN Y IN > (2}. Define the set 

h ={{ti],' .. , tih } such that tii E T(ll) and tik n tii =0 if 1 ::; k :J j ::; h} 

and N'(Tll ) =max #h. Therefore, given ( > Oalld M > Owe get that 
h 

P( min 11011> () = P( min Ilall ll > (n N'(Tll ) > M)+
aeD.. aeD.. 

P( min 11011 > (n N'(Tll ) ::; M) = Al +E],
aeDn . 
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where Al ancl B I denotes the first and seconcl term respectively. We have that 

where the last equality follows since (x~, y¡)' and Tn are independent-. Thus, . 

where Y I and Al are based on the first p vectors (x~, YI)',';" (x~, Yp)'. 
On tlle other hand, ., 

We will pl'ove that
 
(2i) lim "P(Tll =T,¡)/¡o ,\1](N'(Tll )) = O.
 n ...... oo L..J ,

Tn 

Take a subset of indexes JNo such that #JNo = No. We suppose that No = No(n) and ~ = 
lim SUpll ..... OO No(n) < oo. Now, we define tbe set 

and we denote 

b, = ~ ( No ) ( n-No) = ( n ) _ ( n-No ) .
l,No L..J k p - k p P 

k=1 

Hence, 

bll,No = 1 _ ÍI n-No - p : j , 
Cll j=1 n - p +J 

P(T E A ) = TI bll,No -. j + 1 = (bn,NO.) N lY 1 - (j -: 1) j bll ,No and 
ll JNo 

j=1 Cll - J + 1 en j=1 1 - (J - l)jcll 

P(Tn E AJN fol' some JNo) $ ( ;0 )P(Tn E AJNo)'o 
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n
We want to prove that lim (N ) P(TIl E AJN ) = O. 1'0 get this result we should note 

11-00 o o 

that 

N-l 1 '/b
(i) rr ; J .tNo :s 1, since each factor is less than 1. 

;=1 - J Cn 

Jl 

(l')') ( n ) (bll NO) N M( rr 1 -(No +p - j)/n) N-No fi ­
No ---::: :S' o 1 - j=l 1 _ (p _ i)/n or sorne c;onstant Mo > O. 

(;0) (b:.:o)N = . 

~ TI (1 - (No - j)) (1 _No - j) (1 _ÍI 1- (No +p -:- j)/n) No nNo 
1\0. ;=) n n ;=1 1 - (p - J )/n 

N-No ( ) N-No 
X 1- ÍI 1- (No +p - j)/n < M o 1_ÍI 1- (No +p - j)/n 

( ;=1 1 - (p - j)/n ) - j=1 1 - (p - j)/n 

for some positive constant Mo. This follows from the fact that 

n (1 _ÍI 1- (No +p - j)/n) = n (1 +0p/n) - 1+O(l/n)) = 0(1). 
;=1 1 - (p - j)/n TIj =1 1 - (p - j)/u 

Conseql1ently, 

lim ( n ) (bll'NO) N lY 1 - (j ~ 1)/bll,No =O, 
11-00 No cll ;=1 1 - (; - 1)/cll 

lim t ('~ )(bll'i)N lY 1 - (j,- l)/bll ,i =O. 
ll-oo i =1 t CIl ;=1 1-(;-1)/cll 

Let 1N:, (T,,) be defined as above and Sll E 1Nh(Tn)' Put E~n =Ut¡es)i where A Il =#E~n :5 
])111 V n, lt follows that I[O,M)(N:¡(Tll )) = 1 implies that T ll E AEAn ' Hence, 

and (27) is valido 
Thus, 

2lim P( min Ilall > t:):S P(Y~A1Yl > t: )M 
11-00 aeDn 

Since M can be taken arbitrarily large, we can conduele that min lIall =op(l). o 
aeDn 
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