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1 Introduction

High breakdown point of regression estimates have been widely considered in the last ten years.
We may mention the least median of squares (LMS) estimate, the S—estimate and the 7—estimate
among them. All these estimators are defined by the minimization of a nonconvex function of
the residuals which may have several local minima. This fact makes very difficult the search of
the absolute minimum. In practice, the procedures more frequently used are based in resampling
methods, which yield an approximation of the exact estimator. These approximate estimates
are based on the resampling scheme introduced by Rousseeuw (1984) to compute LMS—estimate.
Basically, the idea is to look for the minimum among a number of planes that fit subsamples of
size p chosen at random. In the case of S—estimates and T—estimates these resampled estimates
may be used as an initial estimator to start an iterative weighted least squares algorithm.

Since the resampling methods give just an approximation of the exact estimator, it is natural
to wonder if they retain the same good properties of the exact estimators. Some efforts have been
done in this direction. Rousseeuw and Basset (1991) studied the case of the resampled estimates
for least trimmed of squares (LTS) and LMS—estimates when all possible p subsets are considered.
They proved that the p-subset algorithm shares the equivariance and breakdown properties of
the exact estimator. Hawkins (1993) gave some arguments which suggest the consistency of the
resampled LMS- and LST-estimates, but he did not give a complete proof of this fact. On
the other hand, Stromberg (1993) showed that in the case of LMS-estimates it is possible to
compute the exact estimator by searching over the Chebyshev fits of all (p + 1)-subsets.

The aim of this paper is to study the properties of resampled T—estimates. We concern
about the breakdown point, the consistency and the order of convergence of these approximate
estimators.

We assume that the target model is the linear model:

(1) y=60x+¢

where x = (z,...,2,) is a random vector in R with distribution G,, (x',y)’ has distribution
Ho, 0, = (851,...,00,) is the vector of the true regression parameters and the error € is a random
variable with distribution F,(u/c), independent of x. Since we are considering only equivariant
estimators, without loss of generality, we can suppose that 6§, = 0 and o = 1.

The T-estimators were introduced by Yohai and Zamar (1988). They depend on two loss
functions p; and p,. Given a sample u = (uy,...,u,)" denote by F, the empirical distribution.
Huber (1981) defined the M-estimate of scale by:

(2) sp(u) = min {3 : Ep, p1 (%) < b} ,

where Ef denotes the mean under the distribution F and 0 < b < 1. A 7-scale of u satisfies:
. 200 — <2 u

3) () = ) Err (s ) -

In the regression setting, given a sample of random vectors z; = (x}, %), ¢ = 1,...,n,
for any @ € R? we define the residual vector based on 6 as r(6) = (r1(8),...,m.(0)) where
r:(0) = y; — x6. Then, the T—estimator is defined as the argument ,, which minimizes the
r-scale of the residuals, that is '

6, = a,rgmoin 72(r(0)).




Yohai and Zamar (1988) showed that these estimators combine high breakdown point and
high efficiency under normal errors if p; and p; are properly chosen.
We will consider the family of p functions that satisfy the following conditions:

Al: p(0)=0
A2: p(-t) = p(2).

A3: pis anon-decreasing, bounded and left—continuous function. Furthermore, it is continuous
at 0.

A4: There exists a real number ¢ such that p(t) = supp=1if|t| 2 ¢.’

In the following we will assume that the 7—estimates are defined using functions p, and p;
satisfying (A1)—(A4). It is interesting to note that under regular conditions on the loss functions
stated by Zamar and Yohai (1988), if p; = p, we get an S-estimator. By taking p functions as

the jump function defined by
_Jo if Jt<t
pat) = { 1 i i >1

we obtain the least median of squares estimator by minimizing (2) if ¥ = 1/2. From now on,
we will - take p; such that Ef,pi(r(0)) = b in order to assure the Fisher—consistency of the
estimators.

In this paper we consider approximate 7-estimmates of the following form. Given z; =
(x!},¥),i = 1,...,n, a sample of size n, the resampling version of the r—estimate is defined
as follows: _

Generate at randoin N subsamples of size p from the sample. For the k-th subsample (k =

., N) fit a hyperplane (y = a}x) containing the p points. Define DY = {ay:k=1,...,N}.
Then,

(4) T, = argemm 2(r(8)).

We establish here some notation which will be used along the paper. For the sake of sim-
plicity, we will denote 72(8) = 73(r(8)) and s,(8) = s,(r(8)) from now on. Given X € R, Nyt
will denote the set {x € R" : x’A = 0} and c; is defined as max{t : p2(¢) = 0}.

In Section 2 we find the breakdown point of the resampled T—estimates and in Section 3 we
state their consistency and their order of convergence under some different assumptions. Some
technical lemmas and auxilliary results are proved in the Appendix.

2 Breakdown Point

The finite sample breakdown point was defined by Donoho and Huber (1983). Let Z, =
{21,-..,2,} C RP¥! with 2; = (x},¥)" and Z,,, be any contaminated sample of size n ob-
tained by replacing m observations of the original sample Z,, by arbitrary outliers. Let Z be
the set of all these possible Z,, ,, and T,, = T,,(Z,,) be the estimate defined by the minimization
of the —scale over D). The regression estimate T, defined for samples of size n is said to
break down at Z,, for a given m if sup ||T,,(Zy, . )|| = o where the supremum is taken over all
Z,.,. C Z. Let m, be the minimum m that T, breaks down. Then, the finite breakdown pomt
of T, at Z,, is ¢* (T, Z,) = m,/n.



For the sake of simplicity, we will consider the case where b in equation (2) equals 1/2. Yohai
and Zamar (1988) proved that when the observations are in general position, the breakdown
point of the r-estimate is ¢* 2> (1 — 2¢,)/2(1 - ¢, ), where ¢, = (p — 1)/n. Observe that when
n — oo this yields ¢* = 1/2.

Since the resampled version of the 7—estimator described above contains a randomization, its
value for a fixed sample will be random and hence, we have to modify the breakdown definition
accordingly. Maronna and Yohai (1993) introduced a suitable notion of breakdown point for
this case. o

Call II(n,m,p, N) the probability that at least one subsample of size p is contained in Z,.

Then, T(n,n,p,N) = 1~ (1= B)V, where § = ( n;m ) / ( Z 2 (1~ m/n)” (Maronna

and Yohai (1993)). This probability can be taken as close to 1 as desired by choosing N large
enough.

The result of the next theoremn can be interpreted as stating that the resampled r—estimator
does not break down for m < [n/2] — (p — 1) with probability at least II(n,m,p, N) which may
be taken arbitrarily close to 1. This means that the proposed approximate estimators retain the
finite breakdown point of the original estimators with arbitrarily large probability.

Theorem 1 Assume that p; and p,; satisfy (Al)-(A4) and that c; = 0. Let Z,, be such that
every subset {x;; : j = 1,...,p} is linearly independent. Let DY be defined by the resampling
procedure and m < [n/2] = (p— 1). Then, there ezists a positive constant K (depending only on
Z,.) such that for all Zym € Z, || Tn(Znm)|| £ K with probability larger than I(n,m,p, N ).

Proof: Initially, we will show that there exists a compact set K C (0,00) such that
sup  $n(Tn(Znm))EK. Suppose that there exists a sequence of sets {Z] ,,} such that

n,m€

lim sup Sn(Tn(z}iz,m)) = 0.
J

At the same time, let us assume that

i T” z'171 m
liminf Eg, p2 (I_C_(___(—))I)
j

s"(T”(Z}T;,m ))

|ri(Tn(Z,)]

311(Tn(z'171,1n))
a positive sequence ¢; such that lim;j_. ¢; = 0 and such that

ITI'(TN(.Z{z,m))I ) =0
sn(Tn(z.Zl,m)) =€

This contradicts the fact s"(T,,(Z{;,m)) is a minimum for j > j, and we conclude that

T(Tﬂ(z{z,m)) ) S 0.

Then liminf Ey, p) ( ) = 0. By taking a subsequence if necessary, we can choose
J

liminf Ey, py (
J

liminf Ey, p2 ( g
J Sn(Tn(z'Zz,m))

Therefore, we obtain that _ . ,
lim sup T,f(T"(Z']mn)) = 00.
i




However, for every Z{;‘m there always exists a vector in DY, T4C | which fits exactly to p points in

Z,. Since at least [n/2]+ p points belong to Z,,, equation (2) implies that lim sup; 8, (T4Y) < o0.
Therefore, r2(T3%) < 72(Tw(Z4,,,)) for j > j, which contradicts the definition of r-estimators.
Now assume that lim sup || Ty(Z},,,)|| = 0o. Then, at least [n/2) + 1 residuals should tend

i

to infinity. To prove this, notice that without loss of generality we may suppose that

T, (23 .
N nm/ :
lim —————— 0r

7 (I Ta(Zh)ll
Let us take Ngy C 8. If (x/,4) € Zn, ri(T») # 0 and x; ¢ N, then

N Tw(Zam)ll
There exist at most p — 1 points such that in (x},y;) € Z, and x; € Nty. Thus we can find

at least [n/2] + 1 residuals which tend to infinity. Therefore, by (2) lim sup; s,(Tn(23,,)) = 00
which contradicts the first part of the proof. o

lim (y,- ()l
2

Remark 1 The case b # 1/2 follows similarly to the one treated above with the corresponding
breakdown point.

Remark 2 The case of resampled least median of squares estimator can be proved in a similar
way, oblaining high probabilistic breakdown point.

3 Asymptotic Theory

In order to obtain the asymptotic properties of resampled r—estimates some technical results are
needed. Given a closed set 4 in an Euclidean space, define L*°(A) as the set of all bounded and
measurable real functions on A metrized with the supremum norm. Let §; = {A € 9 : ||A|| = 1}
and z,,...,2, beii.d. random vectors in ®? with distribution P and call H,, the corresponding
empirical distribution. Define for v € S, the process U, (v) = n!/? (H, (v'z < 0) — P (7'z < 0)).
Proposition 1 of Section 4 of Beran and Millar (1986) states that U, converges weakly as a
random element of L(S,) to a Gaussian process. A generalization of Glivenko-Cantelli theorem
due to Wolfowitz establishes that V,,(7v) = Hy,(v'z £ 0) — P(~'z < 0) converges almost surely
uniformly in . :

The following lemma, which is proved in the Appendix, is a generalization of these results.

We will denote by p*() = 1 — p(t) (we have pi(1) = 1 — p1(t) and p3(1) = 1 — po(t) as
particular cases). Obviously, this does not affect the definition of the M-scale estimator if one
replaces b by 1 — b in (2).

Lemma 1 Assume thal p satisfies conditions (A1)-(A4) and that (x},y;),i =1,...,n are i.i.d.
random vectors in RPYY, If r(0) = y — x'0 where 8 € R? and H,, deriotes the corresponding
empirical function, then ‘
(0 (0
(a) nM?sup |Ey, p* (%) - Ep* (-—(:-)->’ = 0,(1).
0 < .

\5




(b) P | lim sup
n—oo 0‘3

e () - £ (12| <o) -

Let f, a density of the distribution function F,. Some of the following assumptions will be
required along the paper:

F1. f, is a bounded, non-increasing and continuous function.

F2. f, and p} have a common point of decrease.

F3. /0 F()tdp3(t) < 0.
F4. /0 " 1) dpt(t) > 0.

F5. / F1(0)dp3() > 0.

0
F6. f)(t) is bounded and continuous in R. .
F7. pi(c2) <.

F8. sup Pg (|x'0] < ¢2) < 1, where my = inf{||6]| : Ec;op(ls)(x’O) > b} if pgs)(t) =
021nl>0
Jim py ().
!

Define R(6,s) = Ey.p* (y —qx 0). Davies (1990, page 1655) states the following result

which will be usei"uI Liere.

Lemma 2 Assume that (F1),(F2) and (A1)-(A4) hold. Then
(i) R:R? x ®* — [0,1] is continuous.
(ii) R(8,r) < R(0,r) for @ € 7, r € R+,
(i) SUP|gii>y R(68,1) < R(0,1) for all > 0.
(iv) R(8,r) is strictly increasing in v for fired 6.
Let s(0) be defined through the equation

(5) Ey.p1 ({—E%%) =b.

Then, we get the following result which was proved by Yohai and Zamar (1988) under slightly
stronger conditions.

Corollary 1 Assumc (F1),(F2) and (A1)-(A4) hold. Let s(6) be defined by equation (5).
Then, s(8) has a unique minimum at @ = 0.

(& ]

T



Proof: By Lemma 2 (ii) and (iv) s(0) < s(8) for all @ € 7. Now assume that there exists 6,
such that s(6,) = s(0). By Lemma 2 (iii), we get that

b= R(6,,s(0))< sup R(6,s(0)) < R(0,s(0))=0b
1611>116:1/2

since this is a contradiction, the statement follows. ' O
The proof of the following theorem is in the Appendix.

Theorem 2 Assume that p, satisfies (Al) (A4) and (F1)- (F3) hold Then

a) There ezzst positive constants Ky, K; and § such that
i) En,p} ( o )) >b+ Ky(s=1)ifs>1and|0| < 6.

i) sup EHOPI( (6 )) <b-Ky(1-s)ifs<l.
Oenr
b) If {6.} denotes a sequence of random wvectors satisfying ||6.|| = op(1), then
n1/2(5,(6,) = 1) = 0p(1).

To get consistency and weak rates of convergence we will require some further assumptions
concerning to the functions p:

A5: pis absolutely continuous with a bounded Lebesgue density .
AB: 2p(1) — (1)t > 0 ae. t.
AT: pis a continuous function,

The following lemna, proved by Yohai and Zamar (1988) under slightly stronger conditions,
states the Fisher—consistency of the T-estimates.

Lemma 3 Assume that py satisfies (A1)-(A4), p, satisfies (A1)-(A6) and f, verifies (F1)

and (F2). Let us suppose that sup  P(A'x = 0) < 1. Define 7(0) by
Aexr—{0}

2 0 _QZ OEHOP (7‘( ))

®) = #(0)Bhor2 (L5
where s(0) is defined by (5) using as p the function py. Then, 7(6) has a unique minimum at
6=0.

The following lemma will be useful in order to show that the resampled r—estimator is weakly
consistent. The proof can be found in the Appendix.

Lemma 4 Under (A1)-(A4), (F1) and (F2),

(i) liminf liminf inf En,.m ( (6 )) > b a.e.

M) =00,M2 =00 N=00 16|50, 8,6 >ma




(i) Given m >0, liminfliminf inf  Ey p, (1(\;1)) > b a.e.

3,0  n—oo ||9||<m. <30

(i) Given m > 0, limsuplimsup sup Epy_p (T) =0 a.e.

8000 M= n40|[6)l<m

. . . 6
(fv) limsup limsup sup En.p (r( )) =0 a.e.
so=0m=00 N0 |6]|>m,]|6]|<ss0

The consistency of the resampled T—estimators will be obtained if one of the following three
conditions is valid:

(I) p1 satisfies (A1)-(A4) and (A7), p; satisfies (A1)-(A6) and (F7) holds,
(I1) pa(t) = palt) = pu(t) for all t € ®
(IIT) py = py, p; satisfies (A1)-(A6), (F7) and (F8) hold.
Then, we get the following result whose proof imnay be found in the Appendix.
Lemma 5 Assume (F1),(F2). Let us suppose that sup P(A'x = 0) < 1 —b. Let s(8) be
defined by equation (5). If any of the assumptions (I)A,e;;;)_{;r? (111) is valid, then

(a) Given a compact set C C R?,

(6) lnn ;up sn(0) — 3(8)| = 0 alinost surely
(7) Jim_ sup |m(8) — 7(8)| = 0 almost surely
=% gec
) jof Enop (’"Egi) > 0.
(c) 111}11111'01111' En,.p2 ({%) >0 ae.

Consistency is shown in the following theorem.

Theorem 3 Assume that (x},n),...,(X,,yn) are (p+1)-dimensional random vectors i.i.d.
which satisfy model (1), Ty, is the approzimate estimate defined by (4) and DY = {ay,...,an}
! is an arbitrary set in P satisfying that min_||a|| = 0,(1). Suppose also that sup Pg,(A'x =
aeDy Aewr—{0} '
0) < 1 —0b, that (F1)-(F3) are satisfied. If any of the assumptions (I), (1I) or (111) is valid,
then

(a) ||Tall = 0x(1)
(b) Yim ||Ty,]] = 0 in probability.

Proof:




(a) Let us take the set A} = {ll"lﬂ’lolgf 8u(Ty) > 0}. Lemma 4 (i) and (ii) entail that Py, (A;) =

1. Let us take a,, = argmingepy [|ex||. By hipothesis e, = 0,(1) and |8, (@) — 1| = 0,(1)
by Theorem 2 (b). By Lemma 1 (a) and Lemma 2 (i) 1 — Ey,p; ( r((a,,))) = 0,(1). By
SplQy

the definition of T, 73(T,) < 7%(a,,). Thus, using Lemma 5 (c) we obtain

® AT < (Bapa (252 ))] anEmpm (22L) = 0,1), |

sn(Tn) sn(an)
Therefore, s2(Ty) = Op(1). Given K > 0

{ITull > K} C {ITx]l > K N ||Tull/sx(T0) > VE} U {a(Ts) > VE}

By taking K large enough and using Lemma 4 (i) and (8) we get that || T,| = 0,(1).

sn(an) - 1| = op(l)' By (a')a

given € > 0 there exists K >.0 such that P(||T,|| £ K) > 1~ ¢€if n > ny(¢, K). Let us

note that lim 7%(8) = oo. Then, by Lemma 3 and continuity of 7, given ¢, > 0 there
19| —o0

exists 6 > 0 such that

(b) Since allelgly ||| = 0,(1) by Theorem 2 (b) we have that

inf  7%(6) > 72(0) + 6.
<|I6lIsK

Given €;/2 > 0 and §/2 it holds that P(E,) = P({ sup [r%(6) - 13(8)| < 6/2}) >
«<|l6lI<K
1 - € /2 and P(t3(e,) = 7%(0) > §/2) < €1/2 for n large enough . Therefore

1-6/2<P(E,)=P ({ inf  7%(8) — 73(0) + 73(8) > T%(0) + 6} n E,l) <
g1k

Pl inf 6/2+720)-730)>6| <P( inf 12(8)-10)> §/2)
<0)1<K «<|10I<K

Consequently,
P(| Tl 2 €) < P(12(Ty) > 75(0) + §/2) + e1/2 < P(r(an) > T(0) + §/2) + €1/2 <
for n large enough. Since the result holds for every ¢, the conclusion of (b) follows. O

Corollary 2 Under the same assumptions as in Theorem 8, we have that
2 (s, (Th) = 1) = 0(1).

Theorem 3 requires the existence of a consistent sequence of vectors in the resampling set.
The next lemma, which is proved in the Appendix, shows that this is guaranteed by the resam-
pling scheme.

Lemma 6 Assume that Dy™ s obtained by the resamplinQ scheme and that

lim N(n) = oo, then aénDi,},‘}(") le|| = 0,(1).




In order to get the rate of convergence we follow the techniques introduced by Kim and
Pollard (1990) which allows them to get cube root asymptotics. They derived limit theorems for
several statistics defined by maximization or constrained minimization of processes derived from
the empirical measure, such as the LMS estimator with rate n~1/3, We require a similar result
to Lemma 4.1 of Kim and Pollard (1990) which was generalized by Davies (1990) in Theorem 7.

Lemma 7 Assume that E(||x||) < o0 and p*(t) = 1 = p(t). Then, for each 7 > 0, there erist
random variables {M,, }{° of order O,(1) such that

(a) if p= py, then
. (70 . (70 . [7(0 . (T(0 |
B0, (o (22) =t (")) - £, (5 (%2) - 5 ("2)) | < 01017 +15- 119
+n=2/3 M2
for all (8, s) satisfying ||6]| < 1, |s—1]| < 1.
(b) if p verifies conditions (A1)-(AB), then
(0 (0 " 7,'0 « (T 0
(o (52) - (%)) - 2 (o (5) - (52))
<n(lle* + s = 1) +n7 M7
Jor all (8, s) satisfying ||6]| < 1, |s — 1] < 1.
(c) if p verifics conditions (A1)-(A5), then

Eu, (o (%2) - @) - B, (o (2) - pr(r(O)| < s = 112+ w7 a2
ifls—1<8<1.

Proof: The proof of (a) is given in Lemma 4 of Davies (1990). The proofs of (b) and (c) follow
analogously with some slight modifications. o

The following theorem states the rate of convergence of the resampled T—estimates under
different assumptions on the p’s functions.

Theorem 4 Suppose that (x{,y1),...,(x},y.) are (p + 1)-dimensional random vectors i.i.d.
such that satisfy model (1) and T,, = Ty(Z,). Assume that py and p, satisfy (A1)-(A4), (F1)-
(F7) hold, E(||x||?) < oo and that the conclusions of Theorem 8 remain valid. Furthermore, we

suppose that n'/? mm ||a|| = 0p(1).
aeD)!

(a) If ;y satisfics (A5) and p, (A5) and (A6), then
2| Tl = Op(1).

(b) If pr = p2 = py, then
“]/BHTn“ = Op(1).

(c) If py = pg and p; satisfiecs (AB) and (A6), then
w13 T, = 0,(1).




Proof: (a) Let a,, = arg  min _||||. It holds that
aeDN™)

©) 05 = 7T = e Bnen (115 ) - AT B (15

For any 6 € RP we have that

Ex.p2 ( r(6) )
({2
(10) [(EH P2 (
(e

En.p2 ( (9
From (9) and (10) for p*(t) = 1 — p(t) we get that

- [(Bnar2 (2 - 2. (25 -
%) E””(T(O)))

) ) - Ey, pz(r(O))) - (EH pz( (0)) Ey, pz(r(O)))] +
)) En.p2 ( ’(0)) ] +(En,p2 (r(0)) = En 2 ((0)))] +

—

0 < r¥(ay) = T4(T,)

< s(an)En, pz(’(";))) AT Enypr (L2L) =

82 (ay) {— [(EHJ'; (;((‘Z;))) EH))z](s:((oi)))

(b <_g->-)) crsition) - (ns (29) - Ensitoo)] -
(Bnrs (2225 - By (Z55)) - (Buapi (v(0)) - Enco3 (r0) ) +
ot () eh o (e (222) - (225 -
(nos (1) - 203 ()] -

(B (((;))> E. ”“““”)‘(E"’ 7 (tmsy) - Bwers ) -
(Buars (235 ) - Bnori (535)) - (Buab (10) - Enosi ()} -
s2(Tn)En, Pz( T((; j

Define the set A4, = { J(an) € $u(Ty)}. By (A5) and (A6) we have that . 2EH p2(r(0)/s) is
non—decreasing in s, so in A,

sn(an)En,p2 (;TBJ) - si(Tn)E‘Hopz (sn((Ti)) <0.

10




On the other hand,

n(a")(Eanz (r(0)) = En,p; (r(0))) + “n(Tn)(Eanz (r(0)) = En.p3(r(0))) =
(qn(Tﬂ) n(aﬂ))(EanZ (1‘(0)) EHop2 (T(O))) =n" P(l)
Hence, by Lemma 7 (b) and (c) in A,, we obtain the following bound
0 < 73(ay) = 7H(Ty)
< su(@n)*[m(llan]l? + [$n(an) = 1[2) + 27 My, + molsn(an) = 112) 4+ 271 May,)

(a") - T 0)
(11) _qﬂ(an) [E op2 (”I(a ')) E (s,.ﬂan))] .
+¢11(Tn) [7’3‘ "Tn” + |511(Tn) - ll ) + n M3n + 774"‘11('1‘11) - 1| ) + n_] M4u]

b s () < (28] o

On the other hand, if s,(a,) > $,(T,), i.e. in AS, we have that

(12) 05 B, ( (&))) Erapn (r(gr)))

hence in A{, we get that

o<~ [nst (1555 - £t (i )] - ot (o) - ot ()] -

_ « [ () _ . (_r(0) . T(an) 7'( :

el e el

nP1 ,?&(’g") Hn P :(’b H, 11‘(’;‘ﬂ T,) oP1 r(‘(’;) n) 1

- [t (Za5) - Bst (i )| + [Bmst () - Bt ,I(Tn))]
Therefore, in A§,, from Lemma 7 we get that

r(a n)) ( r( n))
0< Ey, ( Ey, <
HuPU\ G (T PY\5a(T0) 1
ns(llaenl? + [$0(Tn) = 112) + 07 Msy, 4 76(J| T [|? + |8n(Tn) = 1]2) + 07! Men

- (Bt (Z525) - st (g )| + [ Bt (22 ~ B ()|

Let & = max(m,n2,75) and & = max(ns, 14,76). From (11) and (13), we obtain that

°~

\-/:

(13)

0< {S"(an)z[fl ”an”2 + 26 |sa(ay) = ]|2 + "-I(Mln + Maa)) +
311(T11)2[£2”T11”2 + 2£2|3n(T'n) - ll2 + n-l(MSn + M411)]"

sulan)? [EHO z(f%l)) - En, ( EZ)))] ¥

r(Ty) . -
w0 ot [ouss () s (0] o)
{& “an” + &1l$a(Tn) — llz + fZHTn” + &2]8a(Th) = ll2 + "_1(M5n + Men)]-

[EHOP; (tr(a") ) - En,pi ( () )] +
| Enr (((1;)) = Enori (((;)))] e

11
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Using a Taylor expansion we get that

[Bnrs (£225) - Baers (755 )] = - [ fx0dpittiaQean + apllenn?)

where Q = E(xx'). For the last three terms in (14), a similar approximation holds. Therefore,
we get the following bound

0 < ”aﬂ”251 (‘qn(aﬂ)]/‘n + ]A‘ ) + Ellqn(an) = [|22q (an)]A,, -
T lPE2(s2(Tw) . + Iag) + I%(Tn) - 1|2(2sn(Tn)521A.. + (& + &) ag )+
n ]{[qn(an)(Mln + M2n) + s (Tn)(MSn + M4n)]]An + (MS'n. + MGn)]A‘}

(18 +|dew) [ £0d3OIA + [ L] @l

$2(T%) / 1sOdp3OIan + [ £(0dpi(0)1a5| THQT,
+oy(leal)) + 05(IITulI?) + n~10,(1).

Define my = min(~ [§ f(Odp3(t), - [ ADdRIM), Mr = max(= [{ f(t)d3(d),
— [5 fi(t)dpi(1)). Using the fact that ||x||@ = x'@x is equivalent to the Euclidean norm and
(15) we may choose positive constants ! and L such that

Tl (5Tl g, + Lag)(=62 = MiL) <
lleenll?€1(s2(@n)la, + Ta) + 261)s0(0n) — 1262 (a4,
+lsa(Ta) = 1%(2€; SZ(an)ly, + (& + £2)14¢)
]{[qn(aﬂ)(Mln + Mln) + qn(Tn)(M&z + Al41z)]]An + (MSn 4+ MGn)]Ag}
Ll ) ar 4 TagMeall + aplleal®) + op ITall) 4 -3 0,(1)

Since — M, is positive, by taking &, small enough, part (a) of the theorem follows.
(b) 1t follows from inequality (12) using Lemma 7 a).
(c¢) Parts (a) and (b) can be proved similarly using Lemma 7 a) and b). u

Remark 3 We conjccture that when py = py and pp satisfies (A5) and (A6) the order of the
convergence of ||Ty|| may be higher to the one established by Theorem /.

Remark 4 The previous theorem assumes that n'/? mln ||a|| = 0,(1). This may be guar-
aed)\t

anteed by a slight modification in the resampling scheme, that is by including in the set DY an
estimator of order n='/2,

4 Appendix

Proof of Lemma 1:

(a) The result will follow by an approximating argument. First, assume that p*(t) is a step
function in [—b,b],that is

| -1 _
(16) p™(It) = pi(1t]) = D_adg(1t]) = Y (i — ais1)op(It) + ai,
i=1 i=1

12




where 0 = b, < by < ... < by = b and E; = (bj_1,b;] parai =2,...,l and E; = [b,,h].
From Beran and Millar (1986) it follows that sup U,(v) = O,(1). Then, we have that
[I7ll=1

EnoJisy ( (0)) En,Ji-by (’“”)I -

En, I, b]( (0)) EHJ[-b ]( (0))’
;up IPH,. (1, x)(1/3,6/5)| < b) = P (|(3,x)'(1/s,8/s)| < b}| =

;up | P, ((9,%)'(1/5,68/3) < b,~(y,%)'(1/5,6/s) < b) -

P((y,x)(1/s,6/s) < b, ((13;”(4)951/8 IS/ )< b)|= (<1/er—8/s,~b)
n1/2 sup d i 1 AT )8 708, -
o,s‘,,,’P i (00 70 T < O 00V ST <)

' (1/370/3’_1’) ' ( l/s 0/q )
P (0 e S 0% V7m0 < 9)| = 00

n'/? sup

nl/? sup

Then,

<

n'/? sup
0,s

-1
En, (Z(a, - a"“)][()b] (Ir(0)|)) En, (Z(“i - 0«'+1)][0,b.'] (lr f)l)>
=1 &

=1 -

o sgpzua. = vl (1 (532)) = B (10 (M50)) <

o1 (o (292)) - 2. s (221

sup Z (@i = aig1)] { 12 sup

)§ 1=1 0,s,b€[0,c]

Z [(a; = @i41)|0p(1) = Op(1),
i=1

where 0,(1) is independent of /.

Let p be a function satisfying (A1)-(A4). Consider a sequence of step functions {p;} such
that uniformly converges to p*. Let I be such that [p*(|t]) — p;(|t])] < n=1/2¢, then

Ey,.p" (qu)) - En.p* (Lf))‘ =

n'/? sup

6.s,
g (¢ (22) 1 (2) o (22) 5 ()

En,p (r—(f—)) ~ Enpi ('r'@l)| <
n1/? {su])zn V2 4 ‘EH..PI (r(6)> = Enopi (r(O)) ’} = 0,(1)

0.
and the statement follows.

(b) 1t follows equally than (a) by using an approximation argument. o
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Proof of Theorem 2 First, we will show that

(17) [P stten) = o))y > Ka(s = 1) for s > 1

(18) [ sw)sfulsn) = fow)dy < Kals = 1) for s < 1

For s > 1, inequality (17) is equivalent to /p"(y) sfo(qg) fo(y)) dy > K.

Let p} be as in (16). If we take a; = p}(b;), we have that p}(t) < pl(t) Thus, there exists
6 > 0 such that for any ! > [, we get that

/“ P1(¥) (SIo(sy)-fo(y)) dy = /°(p;(y)_pl.(y)) (SIo(sy)—fo(y))d +
") (L) 4y - S a0+ o100 = o=
2 / (Pi(0) - ) (fi’!l——fli))d >

'Da, - @) fulbbi = 2¢ [ (L@-—-f—(ﬂ) dy =

i=1 s—1
-1 1
S (s = ) o0 = ¢ [
1=1 N
-1

(i = i) folbi)bi = ¢ L L. ((%Fo(-cs) - Fo(—c))) - (%Fo(sc) _ Fo(c)))] >

1=1

—d(=2¢fu(c) + Fole) = Fu(=)) = [ Lo(t)tdi() - 8 > i

1 ((Fo(c) = Fo(=¢)) - %(F’o(sc) - Fo(—cs)))] =

and (17) follows choosing a suitable positive constant K';. Inequality (18) entails analogously.

(a) (i) Since
En.p: (T(O)) / ( )fo(y)dy—

[rwstsdy- [rwnwav+ [ iy =
b+ [ AU Solon) - Fol))ds,

the statement holds by (17) and Lemma 2 (i).

6

(ii) By Lemma 2 (ii) we know that sup Ep,p; (%2) Ey, (T(0)> Then, it is
Ocwr y

enough to prove that Ep_py (7(0)) < b— K1(1 - s). Then, we proceed as in (a) (i).

(b) By Lemma 1 we have that

En,pi (Lf)) — Eypi (Lf))' = 0y(n~1/?)

14

hy,= sup
Oenr sexnt




Then,

o (421) < s (52) s (52) (2
o (2 )< i (2 )|+ Bt (FCL) = 4 s (1220)

Let sn =3 l - h«n/]\ 2 Then
L 61 L 61]. T

n ﬂ

by (a) (ii). Hence, $,,(60n) > 1 = hy,/K3. On the other hand, let us t'ake $n=14 hy/K:.
Given ¢ > 0 and 6 > 0, the set D, = {||6,|| > 6} verifies that P(D,) < ¢ for n large
enough. Then using item (a) (i) it holds in D,, that

Eanl ( (011)> 2b+h,20b

and then, s,(6,) < 1+ h,/K,. Finally, it entails that, in D,,

hn

K

hy,
1-71—2 n(en)<l+

and b) follows. O
Proof of Lemma 4

(i) There exists h, > 0 such that for all XA € S, it holds that Pg,(Ny1) < 1/2 - h, where
Ny+ was defined above. Therefore, Pg,((Ny1)?) 2 b+ ho. Let ¢ > 0 be such that
(1= €)(b+ ho/2) > b+ ho/4. We take Apr = {y € [0, M]} satisfying Py,(Apm) > 1 — €.
Given ¢; > 0 there exists a compact set Ky C (Ny1)® C ®” such that [x'A| > 3¢ and
Pe,(Ky) 2 b+ h,/2. Hence we can choose 63 = 63(A,€2) such that [|6/]|6]] — A|| < &
and x € Ky imply that |x'8/||0||| > 2¢,. Let my > 0 be such that |y|/my < €2 if y € Ap.
Denote by V (X,6) = {||6]| > m1s,]|0/]|0]] — Al < 6,]|0]| > m2}. If y € Ay, x € Ky and

6 €V ((X\, 6)), then
6

el ~ Tielfl’

‘ lyl
|0|| 11ell

Since p; is an even function we obtain

D<e< |x

<

V(ng&)EH,,P (T(g)) = V(lgf )EH,, (@D 2
Ein By (% *Tail) 2
B, 2t o (g =) Iy 092

f4 (771152) EH,,]AM(y)IKA(x)'




Consequently, it holds almost everywhere that

liminf lim inf py (m1€2) By, Jay (9) K\ (%) =

My—00 n—

llmmfp1 (mlez) EHOIAM(!/)]I\A(X) 2(b+ho/2)(1—€)>b+ho/4

mi—

and .
liminf liminf mf )EH,,pl (r( )) 2 b+ ho/4.

mip—00,M2—00 N—00 V(

For all A € S, there exists §5(, €2) verifying the last inequality. Smce S is a compact set
we consider a finite number of vectors in Sp, 61,...,0, and radius 62(01,62), .,02(0q,€2)

such that
oo ((2) = i o ("2)

inf
181> m1 5,]10]|>m2 15589 V(0,-,62(0,-,c2)) s

and the statement follows.

(ii) Let XA € By, = {z € 7 : ||z|]| £ m}. Given ¢ > 0 we can choose § = §(\,¢) and ¢ > 0
verifying that Py, (As) = Py, (ly—x'A| £ 6) < eand Pg (A.) = Pg, (||x[| €£¢)>1-¢ If
(x',y) € A, x € A and [|6 — A|| < §/2¢ we get that

Ny = x'0] > |y = x'A| = X' (A - 6)] > 6 - é/2.
Then, since p, is an even function it holds that
inf Eq.m (T(o)) > Ey, inf py (T(o)) >
||6-A||<6/2¢,8<30 S |[6-A||<é/2¢ So

(0))
inf ( Tac(y, x) 4 (%) >
||0 A”(ﬁ/)cpl P A (y ) Ac ( )

é
:ES_O) EHn ]AZ(y’ x)]Ac(x)'

P1

Consequently, it holds almost everywhere that

lim mflnnmfp] (-;:) Ey, Tas(y,x)1a.(x) =

30—’
30—’

lunmfpl (%) Ey Tag(y,x)a (x) 21— 2¢

and

liminfliminf inf Euy.m (_1'_(0_)) =1
So—0 n—oo ”0—A||56/26'3>30 S

A compactness argument similar to that of (i) for the set B,, allows us to conclude that
the claim of (ii) holds.

(iii) Since

6 ' 6
sup  Eg.p (Z(Tl) < Ey, sup p (ri )),
s>so,||0“<m N ||0||<1n o
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we have almost everywhere that

limsup  sup En.m (r(a)) < Ey, sup p (r(a)) .
n=oo a>a°.”0“<m 8 ”0“<m So

Given € > 0, we take Ap; and A, as above. Therefore,

e e (22) <, up (28

)
Tan (DI4.(%) + €.
[Ofj<m  \ %o so /TN

Given €¢; > 0 we can choose 0, x ,,.; € By, such that

(0 6 )
Ey, ”;ﬁp P ( ( )) < Ey,m (r—(—l—:—f——‘—)) Tay (9)a(x) + e +e
<m o

So

Thus, by using the Dominated Convergence Theorem we obtain that
= 0, which entails (jii).

So

lim Ey, sup p (T

So—00
| ||<m

(iv) Given € > 0 and taking Aps and A, as above, we get that

En.m 7(0)) < En, ( (0)) IAM(y)fAc(x)+ En.p1 (@) Tapxac)e(y,%) <

g )+‘2€

By taking limit for n — oo in both sides of the previous inequality, (iv) follows.

En,p

Proof of Lemma 5

(a) The proof follows completely analogous to that of Lemma 4.5 of Yohai and Zamar (1986).

(b) Let us call R1(0,8) = Ep,p (Lf)) and Ry(0,s) = Ey.p2 (T( )) For each 6,
R2(6,5(8)) > 0 by equation (5) and condition (F7). Next, let us suppose that llm ||6.]| =
oo and lim Ry(6n,s(6,)) = 0. Without loss of generallty we can say that llm 0,1/||0,,||
= 6. If
(19) limsup ||6,||/s(6x) = oo,
N=—=+00
then, by taking a subsequence if it were necessary, we obtain that PG°(N5'1L) = 0, but this

contradicts that P(,'O(No.L) < 1-=1>. In case that
1

(20) limsup |6,
N=O

/3(6,) <
we may assume that lim ||0.|/$(6.) = a. Then E¢_p2(aix) = 0, or equivalently,
y N=—00 1 .

(21) P, (ladix| < e2) = 1.

Let us suppose that p; is continuous . By the Dominated Convergence Theorem we have
that b = Eq_p1(ab)x), but this contradicts (F7) and (21). If p; = p; = ps equation (5)

17




(c)

and (21) together yield a contradiction. Hence, ixéf R2(6,3(68)) > 0. Under (III), p; = py.
Hence, let us consider the function
0iflt| <1

pi)y=< [t=1|/rifl<|t|]<1+7r
11f|t|>l+r

Let us call s7(6,,) the scale obtained using pj(t) in equation (5). It halds that [s"(0,,) —
c(911)| < 8(6,)r/(1 + 1), or equivalently

s"(6,)
";(é:)— - ll < 7‘/(1 +T).
Consequently
— .1‘( ") 1‘(0.,1)
b= Bnrt (Fgsy) < Bnst (0 + 10555

After taking limit we get that

b < En,p} (7 +1)a8ix) < Eppy ((r + 1)ab)x).
Therefore Pg, ((r + 1)|a@x| > 1) > b for every r > 0 which, let us infer that
(22) Pg,(|ad)x| > 1) > b.

From (F7) we get that py(c;) = 0. Then either ¢z < 1, which contradicts (21), or ¢3 = 1,
but (F8), (21) and (22) yield a contradiction. Therefore the claim of the item holds.

Let us first assume that p; is continuous. Suppose that there exists a sequence {6,}

such that nlingo 16| = oo, }illgo 6../116.]| = 61. Using s,,(6,) instead of s(6,) in (19) we
-— 17—

yield a contradiction. By assuming (20) with s,(6,) we proceed as follows. Let us call

6 6
Yo= sup |En.p) (M) = En.m (M)‘

Oexr sen+ § s)

and 0 0
Z‘Il = Sup Eanz ( ( )> E op ( ( ))|

Ocyr sep+ s)

Y, and Z, converge almost surely to 0 by Lemma 1 (b). By definition of s, it holds that

-8 B (200 g (2881 4 i (20 <
Y, + En.p} (%

1-b> Ey,p! (%) = Enopi ((1—:(#;3(0)) +

(24) . r(6,) " 7(6x)
EHOP] ((] - (n)su(an) 2 Yt EHOP] ((1 - (n)sn(an))

(23)
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where {¢, } is a positive sequence converging to 0. Therefore, after taking limit in (23) and
(24) it follows that Eg_p;(a@)x) = b. Since

Ey,p2 (—TM) - Ep,p2 (—r(a—")-) + Ep p2 (M) pd

(25) , Sn(o'n) r(an) 8"(0,;) Sn(an)
— n + EHop2 (8"(0") ]
- r(6n) . , , -
,,1‘_’,20 En,p2 m—')' = 0 implies (21) again, but this contradicts (F7). Hence, there

. exists a compact set C in R? such that ainf Eyx,.p2 ( r(6) ) > 0. On the other hand

€C 5:(0)

ot Bhnp (((oo))) = Ener: <(Tae))> + B (((‘9«3)) ~ Enopz (%) *

(26) En,p2 (%%) 2 -2, - ;1;1; Ey,p2 (:—f;%) - En,p2 (%z—;) +
iyt Enopa (%)

Using Lemma 1 (b) and items (a) and the uniform continuity of R(€,s) on compact sets,
-7, — sup

r(8) (6)
En (ay) ~ 2o ()
Occ & sn(0) P2 s(0)
statement follows. Under assumptions (II) or (III) the proof follows closely to that of item
(b) under sucl: conditions.

converges to 0 almost surely. Using (b), the

Proof of Lemma 6 Let
Co={f:{1,...,p} = {1,...,n} such that f(i) # f(j)if i # j} and
T™ = {t; = {£fi(1),..., fi(p)} where f; € C,.}.
#T(”) = ( ; ) =¢,. UT, =(t1,...,tn) denotes a vector of N randomly chosen elements of

T(™ then
P(Tn = (ttl)v . '$1’(],V) = ]/(C,,,C.,,,_l . '(C'Il - (N - 1)))

for a given (#§,...,1%). Let Yy € ®?, X;; € RP*? and A;, € RP*? be given by Yy, =
(Yfi(l]""‘yfi(;’]),’ Xl.. = (in(]],...,in(p))T and and Al.‘ = (X“X't..)-l. (Y,AY)T" > 62
will denote the set {Y; Ay, Yy, > €,...,Y; A, Yy > €2}, Define the set
In= {{tiy,--. ti,} such that t;, € T™ and t;, Nt;, = Qif 1 <k # j < h}
and N/(T,,) = max #1,,. Therefore, given ¢ > 0 and M > 0 we get that
h
P(auéiB" |l > €) = P(anéiB" le|l > €N N'(T,L) > M)+
P(aain llall > €0 N'(T,) € M) = 41 + By,
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where A; and B; denotes the first and second term respectively. We have that
A= ET..P(&Igg lel[ > €N NY(T2) > M|T,) =
> P(Tn=Tn)P(Y'AY)r, >ENN'(T,) > M|T,, =T,) =

T
;‘_, P(T. = Tw)P((Y'AY)7, > €)I(M,00)(N'(T))

where the last equality follows since (x!,y;)’ and T, are independent. ThUS, ‘
> P(Tu =To)P(Y'AY)7 > €)(p,00)(N'(T0)) <
T

Y P(Tu = Tu)P(Y] Ay, Y5, > €M) (N'(T2)) £ P(Y1A1Y; > )M
Tn

where Y; and A; are based on the first p vectors (x7,%1)',.:.,(x},4)"
On the other hand,

B, = ET"P(&‘QB ]| > en N(T3,) < M|T) =
S P(T, = T)P((Y'AY)r, > €0 N'(T,) < M|T,, = T,) =

T

> P(T, = T,)P((Y'AY)5 > )l a(N'(Ty))
Tn
> P(T, = To)lpa(N'(Th)).
T

We will prove that _ _

(27) ' "1’_1}010 E P(T, = Tn)I[o,M](NI(Tu)) = 0.

Tn

Take a subset of indexes Jn, such that #Jn, = No. We suppose that Ng = Ng(n) and A =
lim sup,,_, o, No(n) < co. Now, we define the set

AJNO = {Tn = (tl,”-,tN)’tt' ET(") and t,‘ﬂJNo # 0if1<¢< N}

p
_ No n-No ) _ [ n n - Ny
w2 () (520) = (5)- (73"

and we denote

Hence,

N

bung =5 +1 _ (bang\N T 1= (G = D)/bun
P(T,. € A = 20 =< : 0) - =0 and
(T Ine) H en—j+1 cn E 1-(G-1)/en

j=1

P(T, € Ayy, for some Jy,) < ( ]::0 ) P(T, € Ayy,)-
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We want to prove that 1}220 ( " ) P(T, € AJNO) = 0. To get this result we should note

No
that
N-1 .
) 1-3/b, .
(1) H M < 1, since each factor is less than 1.
j=1 1- ]/Cn

N=No
iy [ 2) (- No)N 2 1=(No+p—j)/n |
ii : <Myll1-11] : i cant N
( ) ( ) ( Cy - 0 H 1- (p - ])/n or somg constan }MO >

n ban, \ N
( No ) (T) - .
7\%6? ﬁ, (1 B (Non— j)) (1 _j'v—ofl) (1 - ﬁ 1—1(1\, c(>p+-p5/1;l)/n) | e

P 1o (No+t N N-No j=1 1 (Nes N N-No
_ —(No+p—3j)/n _ —(No+p=7)/n
x(l ,1;11 = (=) ) < My (1 II )

j=1

s B TI-G-7/n

for some positive constant My. This follows from the fact that

nl1- P 1~ (No+p—3)/n - 1‘+O(1/n)—1+0(1/n) _
(‘ I—==6=7n )‘ ( 71— (= )/n )‘O(”'

Consequently,

lim o (b"%)wﬁ] =G = Dlbune _ g
N—t OO No Cy =1 1- (] - ])/Cn [
a NN-1 .
. n bn,i 1- (] - ])/bn,i _
"1'1']’202( i )(Cn) ]'_'[ 1—(j_1)/cn =0

=1 i=1

Let IN,',(T ) be defined as above and s,, € IN,',(T,.)- Put Ep, = U;ies'j; where A, = #E,, <

n

pM V n. 1t follows that I[o,M](N,';(Tn)) = 1 implies that T,, € AEg,, - Hence,

nl-l-l.lgo Z P(Tn = Tn)I[O,M'](A”(Tﬂ)) <

”

oM
13220 ZP(T,, € Ag,, forsome E5, if Ay = 1) =
iz

=1
pM N N-1 ,
. n ) (b 1=j/bni _
’}HEOZ( ') ) (C") H l—j/Cn =0

i=1 1=1

and (27) is valid.

Thus,
. . 1 1\M
1}220 P(ollxéxbxn ]l > €) £ P(Y1AY > €)
Since M can be taken arbitrarily large, we can conclude that c;zl}siB ]| = op(1). O
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