
COMPUTING AND INFORMATICS
(formerly: Cornputers and Artificial Intelligence)

Editor-in-Chief: Ladislav HLUCHY, Slovak Aeademy of Scienees, Bratislava

Editorial Board:
H. BISCHOF, Teehnical University Graz

(Austria)
D. BJ0RN

POKORNY, Charles University
(Czeeh Republie)

H. PRADE, Université Paul Sabatier (Franee)
1. PRÍVARA, Infostat (Slovakia)
M. M. RICHTER, Universitat Kaiserslautern

(Germany)
G. ROSSI, Universitil. di Parma (Italy)
B. ROVAN, Comenius University (Slovakia)
P. RUZICKA, Comenius University (Slovakia)
V. SGUREV, Bulgarian Aeademy of Seienees

(Bulgaria)
F. SLOBODA, Slovak Aeademy of Seienees

(Slovakia)
1. H. SUDBOROUGH, University of Texas at

Dalias (USA)
O. SYKORA, University ofLoughborough (UK),

and Slovak Aeademy of Scienees (Slovakia)
J. SAFAR.fK, Slovak University of Teehnology

(Slovakia)
R. TAKAHASHI, Tokyo Institute of Teehnology

(Japan)
C. THOMBORSON, Auekland University

(New Zealand)
E. TYUGu, Royal Institute of Teehnology

(Sweden)
M. VAJTERSIC, Slovak Aeademy of Seienees

(Slovakia)
R. WAIT, Uppsala University (Sweden)
1. WALUKIEWICZ, Warsaw University (Poland)

Published by: Slovak Aeademy of Scienees, Institute of Informaticsj Slovak University of Teeh-
nology, Faeulty of Eleetrical Engineering and Information TeehnologYj Comenius University, Fae-
ulty of Mathematics, Physies and Informaticsj and Slovak Society for Computer Seienee. Printed
by SAP - Slovak Aeademie Press Ltd., Bratislava. Published bimonthly.

Editorial Office: Institute of Informaties, Slovak Aeademy of Scienees, Dúbravská cesta 9,
84237 Bratislava, Slovakiaj te!. (+4217)5941 2204, fax (+4217)5477 1004, e-mail eai.ui@savba.sk

Production Editor: Mareel TAKÁC

Subscription Inforrnation: Subseription orders should be sent to the Editorial Offiee of Com-
puting and Informaties, Institute of Informaties, Slovak Aeademy of Scienees, Dúbravská cesta 9,
842 37 Bratislava, Slovakia, or to Slovart G.T.G. Ltd., Krupinská 4, P.O. Box 152, 852 99
Bratislava 5, Slovakia.

Copyright @ by Slovak Aeademy of Seienees - Institute of Informatics

COMPUTING AND INFORMATICS is abstraeted in ISI Current Contents® - Engineering,
Computing and Teehnology, SciSearch®, Researeh Alert®, CompuMath Citation Index®,
INSPEC, Bulletin d'Information-Newsletter de l'AIC, Cybernetica.

Computing and Informatics, Vol. 20, 2001, 429-449

OPTIMIZING THE NUMBER OF LEARNING CYCLES
IN THE DESIGN OF RADIAL BASIS NEURAL
NETWORKS USING A MULTI-AGENT SYSTEM

José M. MOLINA, Inés M. GALVÁN, José M. VALLS, Andrés LEAL

Computer Science Department
Carlos IJI University of Madrid
Avenida de la Universidad, 30. 28911 Leganés, Spain
e-mail: molina@ia.uc3m.es

Manuscript received 22 May 2001; revised 5 November 2001
Communicated by Pavol Návrat

Abstract. Radial Basis Neural (RBN) network has the power of the universal ap-
proximation function and the convergence of those networks is very fast compared
to multilayer feedforward neural networks. However, how to determine the archi-
tecture of the RBN networks to solve a given problem is not straightforward. In
addition, the number of hidden units allocated in an RBN network seems to be
a critical factor in the performance of these networks. In this work, the design of
RBN network is based on the cooperation of n + m agents: n RBN agents and
m manager agents. The n + m agents are organized in a Multi-agent System. The
training process is distributed among the n RBN agents, each one with a different
number of neurons. Each agent executes a number of training cyeles, a stage, when
the manager decides about that is the best RBN agent and sends it the correspond-
ing message. The m manager agents have in charge to control the evolution of
each problem. Each manager agent controls one problem. Manager agents gov-
ern the whole process; each one decides about the b~st RBN agent in each stage
for each problem. The results show that the proposed method is able to find the
most adequate RBN network architecture. In addition, a reduction in the number
of training cyeles is obtained with the proposed Multi-agent strategy instead of
sequential strategy.

Keywords: Multiagent systems, distributed systems, distributed learning, neural
networks, radial basis NN

becweb
Rectángulo

430 J. M. Malina, J. M. Galván, J. M. Valls, A. Leal

1 INTRODUCTION

RBN networks [13, 15] originated from the use of radial basis functions, as the
Gaussian functions, in the solution of the real multivariate interpolation problem.
RBN networks are composed of a single hidden layer with local activation functions
distributed in different neighborhoods of the input space. The significance of this
is that RBN networks construct local input-output approximation, which allows to
obtain a very fast convergen ce of the learning algoritlull [5, 13].

Despite these advantages RBN networks are not as widely used as they should
be. One of the main reasons seems to be that it is not straightforward to design
an appropriate RBN network to solve a given problem. The design of a success-
fuI RBN network involves to determine the topology, i.e., the number of radial
basis units 01' hidden units, which is a critical factor in the performance of these
networks.

The design of RBN networks is generally carried out using a tedious trial and
error process, i.e., different architectures of RBN networks varying the number of
hidden units are completely trained. From those, the topology being able to obtain
the best performance of error is chosell as the definite topology to solve the problem.
There are no general systematic ways to design a near optimal topology for a given
task. The trial and error process, generally, implies a large computational cost, in
terms of learning cycles, because the learning process must be completed for each
RBN network architecture.

During the last years, the interest of the scientific community to develop me-
thods or algorithms to automatically design appropriate topologies of artificial neu-
ral networks has increased. The main attention in this field has been paid to the
multilayer feedforward neural networks, for instance [4, 7, 9). Only a few works
concerning determination of the architecture of RBN network appear in the htera-
ture. One hne research in this field is focused on use evolutionary techniques, as
genetic algorithm, to determine the optimal number of hidden units in an RBN net-
work [8, 18, 19]. It has been shown that those strategies can be successful in sorne
applications. However, they generally imply a large computational cost because
a large set of RBN network must be trained. Other works in a different research line
are found in the literature. For instance, in Platt [14]' an algorithm is developed to
determine the number of clustering 01' hidden units necessary to solve the problem.
The number of hidden neurons is initiahzed to one and the algorithm allocates a new
computational unit whenever an unknown pattern is presented to the network. Va-
riants of this method are presented in Kadirkamanathan and Niranjan [10); Yingwei
et al. [21], where pruning strategy is incorporated. These methods imply, generally,
sophisticated algorithms that might identify useless hidden neurons and in many
cases the performance of methods depends of the quahty of training data.

Most of the methods mentioned above treat not only to find the optimal number
of hidden units in an RBN network, but they also calculate the parameters of the
RBN network proposing new methods and strategies to determine them. Taking into
account that the most usuallearning method to train RBN network - described

Optimizing the Number af Learning Cycles in the Design af RBNN using a MAS 431

in Section 2 - is ver y simple, faster and efficient when the number of hidden neurons
is appropriate. The interest of this work is not to modify that learning mechallism,
but to propose other strategies that allow to determine the best architecture. In ad-
dition, the goal of this papel' is also to avoid a trial and error process to obtain
adequate RBN networks and to propose a strategy that requires les s learning cycles
than the trial and error mechanism without modifying the usuallearning algorithm.

In this work, the proposed automatic system to determine an appropriate RBN
network for a given problem is based on the cooperation of different agents which
are organized in a Multiagent system [11, 12, 17]. The proposed system is composed
of n + 171 agents: n RBN agents and 171 manager agents. The RBN agents are RBN
networks with different topology, i.e., with different number of hidden neurons. Each
manager agent receives information about the evolution of the training process in
each RBN agent for a problem. Each manager agent is in charge to control the
evolution of each problem and it decides what topology is most suitable to solve its
problem in terms of being able to reach the minimum error in the least number of
learning cycles. In this way, in the Multiagent system, only one RBN agent (that
defines a particular topology) is training at a time for a problem and the training
process is distributed among the n RBN. Each agent executes a number of training
cycles, a stage, when the manager decides that is the best RBN agent for a given
problem (each manager agent solves a problem). The whole process is governed by
manager agents, each one determines the best RBN agent in each stage for each
problem and sends the corresponding message to it.

The number of learning cycles executed by the proposed system until finding
the most adequate RBN network is measured. In order to show the effectiveness
of the Multiagent system, the number of learning cycles that would involve a trial
and error process is also measured. In this case, the trial and error mechanism is
organized as a sequential procedure without manager agents, i.e., all architectures
candidates - the same as the number of RBN agents - are trained simultaneously
one learning cycle at a time until one of them reaches the minimum error.

The Multiagent system allows to reduce the number of training cycles of all
RBN networks compared with a sequential training process. In addition, the pro-
posed Multiagent system is a general architecture that could be useful to execute
several tasks. Although in this work it is only used in the training task for a given
problem, the Multiagent system can also be used for different tasks. For instance,
agents could execute different training tasks (each task for each problem), 01' test
tasks: while some networks are trained, tests could be carried out by other networks
simultaneously.

The structure of the rest of the papel' is as follows: Section 2 presents au overview
of RBN networks. The general characteristics of Multiagent systems are presented
in Section 3. In Section 4, a description of the Multiagent system Architecture and
the communication protocol is included. The experimental results are presented in
Section 5. Sorne conclusions derived from this work are presented in Section 6.

432 J. M. Molina, 1. M. Galván, J. M. Valls, A. Leal

2 RADIAL BASIS NEURAL NETWORKS

RBN network involves three functionally distinct layers (see Figure 1). The input
layer is simply a set of sensor units, which transmits the external input without
connections. The second layer is the hidden layer, which performs a non-linear
transformation of the input space. The third and finallayer consists of one neuron
that combines the hidden units linearly. The equation describing the output of a
radial basis networks is as follows:

k

Yx = Wo + L W¡ . ep¡(x), (1)
¡=1

where Wi, i = 1, ... , k, are the weights of the network; Wo is the threshold associated
to the output node; x = (Xl, ... , X n) is the external input to the network; and epi, i =
1, ... , m, are the radial basis or activation functions. The radial basis functions are
often taken to be translated dilations of a prototype function, ep, as follows:

(2)

where Ci = (Cil, ... , Cin) E Rn is the center of the function ep, di is the dilation, width
or scaling factor for the radius Ix - c¡11 and 1·11 is typically the Euclidean norm. The
most general class of prototype functiolls is the Gaussian function:

(3)
The activation of the hidden units have an appreciable value only in the neighbor-
hood of the vector Ci; for any given input, only the small fraction of processing units
with centers ver y close (in the input space) to the input will respond with activation
which differs significantly from zero. Thus, only those weights that belong to hidden
units with centers close enough to the input need to be evaluated and trained. In
this sense, it is said that radial basis neural networks have a local character.

Learning in RBN network involves determination of the centers Ci, i = 1, ... , k,
the dilations di, i = 1, ... , k, and the weights W¡, i = 1, ... , k. The learning of RBN
networks can be carried out using two different styles of learning [13J: a fully super-
vised method and a hybrid method which combines supervised and unsupervised
methods. The first approach uses an error measure defined at the output and the
problem is solved as a single global nonlinear optimization problem. The learning
of RBN network can be also carried out by breaking it into two phases. The first
phase determines the centers C¡ and the radial dilation factors, di, in an unsuper-
vised manner using self-organizing methods, while the second phase performs the
optimization via supervised training to determine the weights Wi. In this work, the
learning of RBN networks is carried out according to the second learning approach,
as follows:

1. The values C¡ are determined by using the standard k-means algorithm. That
algorithm is used to find k receptive field centers in the input trailling examples.

r ,
I

I

!

Optimizing the Number of Learning Cycles in the Design of RBNN using a MAS 433

Fig. 1. Radial basis neural network

The center of the cluster determines the values C¡ for the basis function (center
of each hidden neuron). The number of k value is equal to the number of hidden
neurons established in the network.

2. The width of each field or dilation coefficients di are calculated as the square root
of the product of the Euclidean distances from the center ci to its two nearest
neighbours.

3. The determination of the weights is -in this work- properly the training stage of
the RBN network because the centers alld dilations are previously calculated.
The weights of the RBN network, Wi, are fOUlld from the millimization of the
mean square error:

1 N
E = 2N L(Yx - Yx)2

k=l
(4)

where Yx and Yx are the desired and actuallletwork output for the input pattern
x, respectively and N is the number of training samples. The minimization
of the error function is carried out by an iterative process. Thus, the weights
are updated for each input-output pair (x, Yx) following the negative gradient
direction of the error function E, as follows:

(5)

3 MULTIAGENT SYSTEM

Multiagent system proposed in this paper allows training the best RBN for a given
problem concurrently with other problems. The development of a Multiagent sys-

434 J. M. Malina, 1. M. Galván, J. M. Valls, A. Leal

tem is based on Distributed Artificial Inte11igence (DAI) techniques [6]. The general
philosophy of DAI is the decolllposition of a problelll to be solved by several subsys-
telllS. A distributed system could be defined through the fo11owing characteristics
[2]:

• The system consists of a co11ection of subsystellls (agents). Each agent has
various skill, including sensing, communication, planning and acting.

• The group as a whole (the system cOl1lposed of agents) has a set of assigned
tasks (goals) to be solved.

• Each subsystel1l (agent) has only lilllited knowledge, there is no place in which
a11 the knowledge is contained.

• Each subsystem (agent) has different capabilities and, then, differing appropri-
ateness for a given problelll or subproblel1l.

Compared to a traditional centralized systelll, in a Multiagent systelll (MAS)
[1] the global problem is decomposed into subproblell1s that are solved ~y~amica11y
by different agents as functions of its appropriateness. Several charactenstIcs about
control and data must be taken into account in a MAS (different from a centralized
architecture) :

• A global system control does not existo There is no central agent that monitors
the execution of a11 tasks in each agent (in a centralized architecture the control
of the global solution is placed in one subsystem and the execution of any task
is contro11ed by this subsystem).

• Data is not centralized, so a11 agents must share data. Each agent is able to
sense the environment to obtain its own data, 01' input data could be received
from any other agent. Any agent has a global vis ion of a11 data in MAS, each
agent takes its own decision as function of its local data.

• System execution is asynchronous; any agent can be working while it receives
queries any time. The synchronization of the system is related with the in-
terchange of messages among agents (in a centralized architecture the control
subsystem imposed a synchronization of tasks).

As mentioned aboye, a MAS system is based, fundamenta11y, on two ideas: the
agent concept and the coordination of agents to achieve a common goal(s). An agent
can be defined as a system with the fo11owing properties [20]:

• Autonomy: an agent is able to decide what to do using its local control over its
actions and internal state.

• Social Ability: agents interact with other agents using some kind of agent com-
munication language.

• Reactivity: an agent is able to sense the environment and respond to the changes
on it.

r
I

Optimizing the Number 01 Learning Cycles in the Design 01 RBNN using a MAS 435

• Pro-activeness: agents have their own goals.

The architecture of an agent could be decoll1posed into three cOll1ponents [11]:
task solving cOll1ponent, the cooperation super-strate and the communication fun-
cionality. These components could be defined for each type of agent for a given
problell1 in order to specify its capacity in two dimensions: what can the agent do
(skills) and how can the agent coordinate with other agents (control and communi-
cation)?

The coordination of those different agents is a complex problem [16]. In a di s-
tributed architecture, the coordination to obtain the solution of global goals is ob-
tained by means of its local control and the communication among agents. Basica11y
two dimensions, the control and the cOl1lmunication, ought to be addressed [3]. The
control defines the cooperation, the organization of agents and the dynamics of the
control organization in time. The c011ll11unication specifies the protocols, the con-
tents of the message al1long agents and the paradigl11 by which the conullunication
takes place.

The advantages of MAS are lllainly related in the characteristic of distributed
problems:

• They are able to solve large size problems, especia11y those where classical sys-
tems are not successful.

• They a110w different systems to work in connection and cooperation.
• They provide efficient solutions where information is distributed among different

places.
• They a110w software reusability and flexibility adopting different agent capabil-

ities to solve problems.

4 RBN MULTIAGENT SYSTEM

The Multiagent system proposed in this paper is designed to find out the optimal
topology of the radial basis neural networks being able to solve several problems
simultaneously. The system is composed of two types of agents: RBN agents and
manager agents (MA).

RBN agents are able to execute an RBN network. Each RBN agent can train a
topology (different for each agent), i.e., an RBN with a pre-defined number of hidden
neurons. There is no communication among RBN agents; they only communicate
with manager agents.

MA agents are able to solve a real problem using RBN agents. The initial
definition of this problem and the function to evaluate the learning process of each
RBN is known by each MA. Each MA has knowledge about a11 RBN agents. Using
that knowledge, in the end of each stage each manager agent decides which is the best
RBN agent, this is, which one is the most appropriate to solve the problem. Below,
the tasks of the agents involved in the Multiagent system and their architecture are
described.

436 J. M. Malina, 1. M. Galván, J. M. Valls, A. Leal

The responsibilities of a manager agent are as follows:

• Send the initial information of the problem. This information is the number of
cycles, the credit evaluation function to be used (from a set of possible functions),
etc.

• Data collection from RBN agents.
• Monitoring the evolution of the problel11, in order to ensure that the systelll

goals are achieved.

• Choosing the RBN agent with the best performance, this is associated with the
best credit value, which is explained in Section 4.1.1.

On the other hand, an RBN agent has to carry out the following tasks for each
problelll:

• Establishing the communication to the manager agent (recei ving the initial in-
formation) .

• Executing a fixed number of learning cycles when indicated by the manager
agent; the number of cycles is named a stage (this information is received ini-
tially) .

• Evaluating the credit value associated to its radial basis neural network when the
number of learning cycles is reached, in order to specify the optimal architecture
(see Section 4.1.1). The credit evaluation function used depends on the problem
and is received as initial information.

• Checking whether the goal has been reached.
• Checking when the training process must be stopped.

4.1 RBN Agents Architecture

As shown in Figure 2a, RBN agents have three different modules:

a) Communication module ~ This module performs the communications to
manager agents using a simple protocol following the KQML one, described in
Section 4.3.

When several MA send a message in order to execute the RBN for its problem,
this module decides the priority of petitions as function of the evolution of
results.

b) Control module ~ The control module stores information about the training
state of the RBN network for each problelll. That infonnation is useful to
measure the fitness of the neural network to solve the given problem.

• The number of learning cycles accomplished until the current instant in order
to measure the computational effort involved.

r
I

Optimizing the Number af Leaming Cycles in the Design af RBNN using a MAS 437

• The mean square error reached until the current instant to measure the
fitness of the RBN lletwork.

• The derivative of the mean square error with respect to the number of learn-
ing cycles to measure the speed of the convergen ce.

• The mean square error desired to solve the problem.
• The credit value associated to the RBN network.

On the other hand, the control module performs the following operations:

• Starting a training stage.
• If the goal is achieved, the training is stopped.
• Computing the credit value, as shown in 4.1.1., using the credit evaluation

function sent by the corresponding MA.

To Manager Agent From Manager Agent From RBN Agents To RBN Agents

NN output Control Module

Training patterns

a) RBNagent b) Manager agent

Fig. 2. Agents architecture

e) Low level module (NN Module) ~ The low levél module is the radial basis
neural networks in the strict sense. It receives the training input patterns and
produces the output network.

4.1.1 Credit Evaluation Functíon

One ,of the most important aspects of the Multiagent System proposed in this work
is the way to assign the credit value to each RBN agent. The manager agent uses
that value to decide whicl! RBN agent must start a new training stage. Hence, the
result of the Multiagent System depends widely on the credit value chosen. The
simplest function that a MA could send uses the number of the learning cycles (n)
and the mean square error given by eq. (4) (E) to evaluate the credit value because

I

I

l

438 J. M. Malina, 1. M. Galván, J. M. Valls, A. Leal

they are the main parameters to reflect the fitness of an RBN network. In this work
the credit function selected is as follows:

C=_l.
nE

(6)

Several considerations have been taken into account, which are briefly described
below:

• The smaller the error is, the better is the RBN network. So, C should be
inversely proportional to E.

• The sooner the agent achieves a small error, the better. So, C should be inversely
proportional to the number of training cycles n.

In any case, ifthe derivative ofthe mean square error is very small « 0.000001),
and this error is bigger than the goal (defined by the problem), the agent must be
discarded. A value of C = -1 has been chosen to represent this situation.

4.2 Manager Agent Architecture

As shown in Figure 2b, the manager agent has two different modules:

a) Communication module This module performs the communication with
RBN agents. If all RBN agents are able to solve the problem, the protocol
followed is explained in Section 4.3. When the RBN agent rejects an ORDER
message, the communication module selects the next RBN agent to perform the
learning stage.

b) Control module

• Stores the information about the credit value of each RBN agent.
• Decides which of the RBN agents is the best.

4.3 Communication Protocol

A manager agent (MA) initiates the process (see Figure 3). Its communication
module generates a REQUEST.ORDER(Init, GP) act, and a message is sent to
each RBN agent (RA). GP is a data structure containing the general parameters of
the system: Epsilon (Goal Error), MaxCycles (max. number of training cycles), N
(number of training cycles in each training stage) and the credit evaluation function.

Each RA acknowledges this message generating an ACCEPT(Nj) act which,
when processed, sends an answer message to the manager agent, and starts the initial
training stage. That initial training stage differs form the rest of training stages
because it involves, on one hand, the determination of the centers and dilatations
coefficients, and on the other hand, N learning cycles over the weights applying eq.
(5). If the RA is not ready to perform this task, it generates a REJECT(Nj) act
which, when processed, sends a message to the MA.

r
I
I
i
!

Optimizing the Number af Learning Cycles in the Design af RBNN using a MAS 439

The MA waits to have all the answers from the RA From now on, the com-
munication is established among the MA and the RA's which accepted the first
message.

When the RA's finish their initial training stage, their control module computes
the credit value, and sends it to the conullunication module which generates an
INFORM (Ni, C) act which produces amessage to the MA. The MA control module
writes the value of Cinto atable indexed by the RBN Agent number (Credit Table).

Once the MA has received the messages from all the RA 's, it selects the best
value from the credit table, takes its index j, and generates a REQUEST.ORDER
(Train, N j) act which produces a message sent to the j-th RA. This agent acknowl-
edges it with an ACCEPT act, and starts a new training stage - N learning cycles
over the weights to minimize the global error function E using eq. (5). If this agent
is working in another problem, the agent sends a REJECT act and the MA selects
the next best agent. When the MA receives an ACCEPT message, it means that
the RBN agents are running a stage of learning and the result will be received later.
Meanwhile, the MA stays on a wait state, until an INFORM(Nj , C) message from
the j-th agent is received. When this happens, the MA writes the new value of C
into the table, and, again, selects the best value from the credit table, takes its index
j, and generates a REQUEST.ORDER(Train, Nj).

The negotiation stops when:

1. All the credit values are -1, so none ofthe RA's is suitable. In this case, the MA
communication module generates a REQUEST.ORDER(Kill, Fail) act, which,
when processed, sends a message to every RA, to stop the system. The result
is that none of the agents is able to perform the task.

2. The k-th RA reaches an error E that EK <= Egoal. In this case, this agent
stops its training stage, and generates an INFORM(Success, Status, Nd act
which produces the respective message to the MA which generates a REQUEST.
ORDER(Success, Nk) act that implies a message to be sent to all the RA's to
stop the system, informing that the goal has been achieved by the k-th agent.

440 J. M. Molina, I. M. Galván, J. M. Valls, A. Leal

Manager Agent RBN Agent

<MA,{Nj} ,RO(lnit,GP»
REQUEST.ORDER(lnil,GP) r---------_-->o.1 REQUEST-TO-

DO.ORDER(Init)
ACCEPT(Nj)

INFORM(Nj, Cj)

REQUEST.ORDER(Trnin,Ni)
ACCEPT(Ni)

INFORM(Ni, Ci)

REQUEST.ORDER(Train,Nk) r--------_->o..1 ACCEPT(Nk)

INFORM(Success,Status,Nk)

REQUEST.ORDER(Stop,Nk)
<MA, {Nj} ,R.O(Stop,Nk»

<MA,Nk, R.O(T rnin,Nk»
REQUEST.ORDER(Train,Nk) ,-------___ --'"

ACCEPT(Nk)

INFORM(Nk, -1)

REQUEST.ORDER(Kill,Fail <MA, {Nj} ,R.O(Kill,Fail»

Fig. 3. Communication protocol

,-
¡
I
I

¡ Optimizing the Number 01 Learning Cycles in the Design 01 RBNN using a MAS 441

5 EXPERIMENTAL RESULTS

The Multiagent System proposed in this work is developed in a UNIX environment.
Agents are executed in paraHel (each agent is a difIerent UNIX process) and are
communicated using the socket paradigm. This system has been applied to three
difIerent approximation domains: the logistic time series, the Hermite polynomial
and a piecewise-defined function. The aim for each experimental case is to find the
most appropriate RBN network topology, which is measured in terms of finding the
RBN network topology being able to reach the minimum error in the least number
of learning cycles. In this work, several simulations varying the minimum mean
square error that must be reached by the networks have been carried out.

With this purpose, a set of RBN agents with difIerent number of hidden neuron's
is established for each domain and the Multiagent system has to determine the most
adequate architecture. In arder to verify whether the architecture obtained by the
Multiagent system is certainly the best, aH RBN networks of the set are trained and
the evolution of the mean square errors during a large number of l~arning cycles is
obtained.

In addition, for each domain, the number of learning cycles involved in the
Multiagent system has been compared with the number of learning cycles required
when aH RBN networks are simultaneously trained. In the simultaneous training an
adaptation step is carried out at a time in each agent. The simultaneous training
stops when an RBN network reaches the desired mean square error. Then, the
number of cycles is obtained by adding aH the training cycles carried out by aH the
RBN networks.

5.1 Logistic Time Series

The logis tic map given by the foHowing equation describes a chaotic time series:

x(t) = AX(t - 1)[1- x(t - 1)], (7)

where A = 3.97 and x(O) = 0.5. Data of the logis tic time series from t = O to t = 100
have been used as training patterns.

The simulations have 'been conducted using 10 RBN agents, in which the topol-
ogy ofthe networks is fixed to 5, 10, 15,20, 25, 30, 35, 40, 45 and 50 hidden neurons,
respectively. In Table 1, the RBN networks obtained by the proposed system for
three representative minimum errors are shown.

Minimum error
0.001
0.0007
0.0005

Optimal RBN network
10 hidden neurons
15 hidden neurons
15 hidden neurons

Table 1. Optimal RBN networks obtained by the MA System for the logistic time series

442 J. M. Malina, 1. M. Galván, J. M. Valls, A. Leal

As can be seen in Figure 4 - in which the evolution of the 10 RNN networks is
shown - the Multiagent system is able to find the most adequate architecture for
each minimum error. When the minimum error is fixed to 0.001, the best topology
is composed of 10 hidden neurons. However, for a minimum error of 0.0005, 15 or
20 hidden neurons provide the best performance.

In Table 2 the Multiagent system is compared to a trial and error process. The
number of learning cycles involved in the Multiagent system and in a simultaneous
training process for different minimum error are shown. The performance of the
Multiagent system is very similar to the simultaneous process when the minimum
error is large. However, as the minimum error required decreases, the Multiagent
system needs smaller number of cycles.

0,0025 ! \i 1

::: ! ~ .

0,0022 I \ -
0.0021 I!\ :j
0,002 I ;1

J í
::::: +-+-c'I-+t-l+-------------------------__i
0,0017 ++-+-t+l-~-----------------------____i

~::;: ~:II :~~~\~\==~I r:::;:::=5N
0.0014 +-+-' It---'\'\\-\\,\lo------------------------__i -:-:~~

E ~:::~; \\~\. i =~~
0.0011 I \~~\". ! =:~

0.001 +---'.--~ ~\~__"c\....:.'o'.,...,."'~""";:::::___...c-----------------------ii -40N

0.1lIl9~=~,\~=~':::2=~:;;:;;~¡:;;=;;;~;;-;-;;;;-;;;;;;~¡ ~
O,r0J8 j,:\;, ~~ _, ~~.¡-+++_¡.+.~ i-.¡-.¡-+_l •• I_++-t.t .•. .¡.¡+-l--I_+_¡. •• -••• -.-_¡._¡--1--1-+-1-1-1-........ -11 ::: t~~~~--c·:;;':,~~~~~~~:~~::.:=-~~~.:;~;:=.:..============_~_;;;_ =1_-,
O.Oll5 LS:~¡.'r'¡<-"';._ .. _'"-.;:-~=c===~=~~c:;>" . .,.,,'v"">.,,""",;;c,<,,;:o:;./_-,,""_,.,.""' •. ;.. .. "."'-"",.-;."""'~-""'0'7n"'i";;.7>>[-,,"".,-,""f~."'-,.70N"",~::_,."'.,,"'.,:"";,-""_ .. -,.;>'>~~~-j
0,0004 +---------------------------------1
0,0003 +---------------------------------1
0.=+---------------------------------1
0,0001 +---------------------------------1

11 21 41 51

""" .. 61

!
71 91 91

Fig. 4. Evolution of the mean square error for different RBN network topologies: logistic
time series

5.2 Hermite Polynomial

The Hermite polynomial is given by the following equatiQn:

(8)

r
I Optimizing the Number 01 Learning Cyeles in the Design 01 RBNN using a MAS 443

Logistic time series
Minimum Simultaneous Multiagent

error training system
0.001000 29 20
0.000950 29 20
0.000900 38 21
0.000850 57 37
0.000800 66 38
0.000750 66 38
0.000700 75 39
0.000650 84 40
0.000600 92 41
0.000550 117 44
0.000500 164 51

Table 2. Multiagent system vs. ~imultaneous training for the logistic time series

A random sampling of the interval [-4,4] is used to obtain 100 input-output
points for the training seto Data are normalized in the interval [0,1].

As for the logistic time series case, 10 RBN agents - with 5 10 15 20 25
30, 35, 40, 45 and 50 hidden neurons - have been used by the M~ltia~ent' sys~em:
The most appropriate RBN network obtained by the Multiagent system fol' three
representative values of minimum error is shown in Table 3. In Figure 5 the evolution
of the mean square error for the 10 architectures of RBN network is also displayed.

Minimum error
0.001
0.0007
0.0002

Optimal RBN network
20 hidden neurons
20 hidden neurons
35 hidden neurons

Table 3. RBN networks obtained by the MA System for the Hermite polynomial

Figure 5 shows that the best topology of RBN network is composed of 20 01' 35
hidden neurons. The Multiagent system has also provided those architectures as the
best. In addition, the Multiagent system requires less learning cycles to find it than
a simultaneous training process, as shown in Table 4. In this case, the advantage
of the Multiagent system in terms of learning cycles is more significant when the
minimum error required is reduced,

444 J. M. Malina, I. M. Galván, J. M. Valls, A. Leal

0)JJ2 i
0.0019-1--~·1~+-l-\'-------------------------
0.0018 -I---'A--Hi~--------------------------:
0.0017 .\-----li--.+-l-'.-------------------------_'1

,

0.0016 -I--~~-\--H------------------------_'1

0.0015.\---4l~__l_L-----------------------_____,

0.0014 .\----4jH--\~+!,---------------------------,

0.0013 -I----4¡'! --1',--++\----------------------------1 r:::;::::s¡:¡
0,0012.J----Ju..\-'i-· -\-1.----------------------------' -.. ···10N

'\ , 15N
0,0011 .J-----4+',r+-\-L-\\ --------------------------¡ =~~

~. 0,001.\----+\++,+\--1\+-----------------------_____,
"~o tI ; ~3üN

O.[(JJ9+----i~lJ.,,--"',f-\ \\--------------------------: .. : =:~~
o.croa +--+\---\\:"'I~.8--\. ---------------------------j ~
O,OC07 .J--+l;¡+ \,-+\ --l\r.\", q.r.; •• .,. •• "" .. .,--• .,-•• -.~-•• -•• -•• -.. -.-•• -•• - •• -."" •• 'C':_:-::-•• cc:.=--.. -:-: •• :::-.. :-:: .. =-=.'O': •• :::-•• :-:C .. :-::._= ... :::-.:::-.. :-::.=-= ... -=-=.:::-•• :-:C •• =-=.'O': •• -=-= ... :-:C .. == ...
O,OOJ6+----------',~\ \\---',\----l,-é \'\r-\,\.-------------------j
O,OCOS .J-----;\c-\;\\'-'¡,'~c'_\-.-'.L';..,,"', ,"':c-c_-_-,-, .-,.-, , -.,.----.-.• -,,-.. --,.-.-----,-, -, .-.,-.-, -,,---j, , :

0,1IIl4 +--~\;"~~::t---',.L' ..c._,,:.: .. .;:~:.=.--=.:.~2=~"""-:..:..:...c=-':-"-==========::::<
0,0003 t------.::~·'"::"'~e,:;~;;~~~i:,Lf.~:;:;.~ ... ~=!!!!~,~!!"_~_~-e~-_!!'._ ... ~_ ... ~l. __ .~,,!!'.,_~ __ ~_~-,~~_.~, .. ~_~ .. ~'~ __ ~,e!!'''!!_~ __ ~_,,~~ .. _~.,2,_~ __ ~ __ !!'.,_~,~_,!!'._~,.~!
0,1IIl2+---------"'=~- ...,~ ~~~_~~~~~~~~_~~---:

O,lIIll.\---------------------------------j

11 21 31 51

cycles

61 71 81 91

Fig. 5, Evolution of the mean square error for different RBN network topologies: Hermite
polynomial

5.3 A Piecewise-Defined Function

The Multiagent strategy has also been applied to the approximation of the single
variable piecewise-defined function. This function is given by the following equation:

{

-2,186x - 12,864,
f(x) = 4.246x,

lOeC- o,o5x-o.5) sin[(0.03x + 0.7)x],

if -10 :S x < -2,
if -2 :S x < O,
if O :S x :S 10.

(9)

The training set is composed of 120 points randomly generated by the uniform
distribution in the interval [0,1]. In this case, the number of hidden neurons for the
candidate RBN networks had to be increased in order to get an acceptable minimum
error. Thus, 14 RBN agents have been incorporated to the Multiagent system, in
which the topology of the networks is fixed to 5, 10, 15, 20, 25, 30, 35, 40, 45, 50,
55, 60, 65, 70 and 75 hidden neurons, respectively. The optimal topologies obtained
by the Multiagent system for the different minimum errors are shown in Table 5.

As observed in Figure 6, the best architecture is composed of 55 hidden neurons
for each minimun error. The Multiagent system is able to find this architecture.

In addition, the number of learning cycles req)lired by the Multiagent system is
smaller than if a simultaneous training process is used, as observed in Table 6. In

Optimizing the Number oi Learning Cycles in the Design oi RBNN using a MAS

Hermite polynomial
Minimum Simultalleous Multiagent

error training system
0,001000 58 47
0.000950 58 47
0.000900 58 47
0.000850 58 47
0.000800 58 47
0,000750 67 48
0.000700 67 48
0.000650 67 48
0.000600 67 48
0.000550 76 49
0.000500 76 49
0.000450 76 49
0.000400 85 50
0.000350 94 51
0.000300 103 52
0.000250 157 58
0.000200 276 198

Table 4. Multiagent system vs. Simultaneous for the Hermite polynomial

Minimum error
0.001
0.0007
0.00035

Optimal RBN network
55 hidden neurons
55 hidden neurons
55 hidden neurons

445

Table 5. RBN networks obtained by the MA System for the piecewise-defined function

that table, the number of cycles needed by the Multiagent system and the simulta-
neous training for different minimum errors are presented. For the piecewise-defined
function, the difference of learning cycles for both methods is larger than in previous
experimental cases where the minimum error is more restrictive.

6 CONCL USION

The design of optimal RBN networlcs for a given problem is generally based on the
experience of the developer and in most cases the trial and error process is used. On
the other hand, the performance of RBN networks depends strongly on the number of
hidden neurons allocated in the network. Consequently, it is interesting to develop
automatic methods that allow to determine the most appropriate architecture of
RBN networks - in tenns of reaching the minimum error in the minor number of
learning cycles - requiring the least mnnber of learning cycles that a exhaustive

.'

446

11 21 31

J. M. Malina, I. M. Galván, J. M. Val/s, A. Leal

51
cycles

61 71 61 91

Fig. 6. Evolution of the mean square error for difIerent RBN network topologies:
Piecewise-defined function

Piecewise-defined function
Minimum Simultaneous Multiagent

error training system
0.001000 236 208
0.000950 236 208
0.000900 251 209
0.000850 251 209
0.000800 266 210
0.000750 266 210
0.000700 281 211
0.000650 296 212
0.000600 311 213
0.000550 326 214
0.000500 341 215
0.000450 371 217
0.000400 426 221
0.000350 503 228

Table 6. Multiagent system vs. Simultaneous for the piecewise-defined function

Optimizing the Number of Learning Cycles in the Design of RBNN using a MAS 447

search. This work proposes the use of different RBN networks and the cooperation
among them in a Multiagent system in order to automatically detect the best suited
RBN network.

The Multiagent system proposed is composed of 11. + m agents: 11. RBN agents
and m manager agents. Each manager agent controls the evolution of the solution
for each problem. In this way, the proposed architecture allows to train several
problems (m, one for each manager agent) simultaneously, optimizing the use of the
RBN agents. The protocol used in this MAS follows the KQML one, adding the
initial inforl1lation that the manager agent sends to RBN agents in order to define
the problems exactly.

This architecture and the developed cOl1ll1lunication protocol has been tested in
different experil1lents. The results have demonstrated the validity of the proposed
system compared with an exhaustive search of the best RBN network. In l1lost of
the experimental simulations, the architecture provided by the MAS is the most
appropriate to solve the given problem and the number of learning cycles involved is
significantly les s that if a simultaneous learning process of the candidate architecture
is carried out.

In addition, it is interesting to point out that the proposed Multiagent system
is a general architecture that could be useful to execute several tasks. Although in
this work it is ollly used in the trainillg task for a given problem, the Multiagent
system can also be used for different problems. This would imply better exploitation
of system resources.

REFERENCES

[1] BRENNER, W.-ZARNEKOW, R.-WITTIG, H.: Intelligent Software Agents. Foun-
dations and Applications. Springer-Verlag, 1998, ISBN 3-540-63411-8.

[2] CAMMARATA, S.-McARTHUR, D.-STEEB, R.: Strategies of Cooperation in Dis-
tributed Problem Solving. In Readings in Distributed Artificial Intelligence, Ed. Alan
H. Bond and Les Gasser, Morgan Kaufmann 1988.

[3] DECKER, K. S.: Distributed Problem-Solving Techniques: A Survey. IEEE Transac-
tions on Systems, Man, and Cybernetics, 1987.

[4] FOGEL, D. B.-FoGEL, L. J.-PORTO, V. W.: Evolving Neural Network. Biolog-
ical Cybernetics, 63, pp. 487-493, 1990.

[5] GALVÁN, 1. M.-ZALDIVAR, J. M.-HERNÁNDEZ, H.-MoLGA, E.: The Use of
Neura! Networks for Fitting Complex Kinetic Data. Computer Chemical Engineering,
Vol. 20, 1996, No. 12, pp. 1451-1465.

[6] GASSER, L.: An Overview of DA!. Distributed Artificial Intelligence: Theoryand
Practice. Kluwer Academic Publishers, 1992.

[7] G RU AU, F.: Automatic Definition of Modular N eura! N etworks. Adaptive Behaviour,
Vol. 2, No. 3, 1995, pp. 151-183.

[8] GRUAU, F.: Genetic Synthesis of Modular Neural Networks. Proceedings of the 5th
International Conference on Genetic AIgorithms, San Mateo CA, pp. 318-325, 1995.

448 J. M. Malina, I. M. Galván, J. M. Valls, A. Leal

(9) HARP, S.-SAMAD, T.-GUHA, A.: Designing Application-Specific Neural Net-
works using the Genetic Algorithm. Advances in Neural Information Processing Sys-
tems, Vol. 2, 1990, pp. 447-454.

[10) KADlRKAMANATHAN, V.-NIRANJAN, lv1.: A Function Estimation Approach to Se-
quential Learning with Neural Networks. Neural Computation 5, pp. 954-975, 1993.

(11) Lux, A.-STEINER, D.: Understanding Cooperation: an Agent's Perspective. Proc.
International Conference on Multiagent Systems, ICIVIAS-95, AAAI Press, San Fran-
cisco (CA), 1995.

(12) MOLINA, J. M.-JIMNEZ, F. J.-CASAR, J. R.: Cooperative Management of Net-
ted Surveillance Sensors. IEEE International Conference on Systems, Man and Cy-
bernetics, pp. 845-850. Orlando, EEUU, 1997.

(13) lVloODY, J. E.-DARKEN, C. J.: Fast Learning in Networks ofLocally-Tuned Pro-
cessing Units. Neural Computation 1, pp. 281-294, 1989.

(14) PLATT, J.: A Resource-Allocating Network for Function Implementation. Neural
Computation 3, pp. 213-225, 1991.

(15) POGGIO, T.-GIROSI, F.: Networks for Approximation and Learning. Proceedings
of the IEEE, 78, pp. 1481-1497, 1990.

(16) SYCARA, K. P.: Multiagent Systems. Al Magazine, 1998.
(17) WESSON, R.: Network Structures for Distributed Situation Assessment. Readings

in Distributed Artificial Intelligence, Ed. Alan H. Bond and Les Gasser, Morgan
Kaufman 1988.

(18) WHITEHEAD, B. A.-CHOATE, T. D.: Cooperative-Competitive Genetic Evolu-
tion of Radial Basis Function Centers and Widths for Time Series Prediction. IEEE
Transactions on Neural Networks 7, 4, pp. 869-880, 1996.

(19) WHITEHEAD, B. A.-CHOATE, T. D.: Evolving Space-Filling Curves to Distribute
Radial Basis Functions Over an Input Space. IEEE Transactions on Neural Networks
5, 1, pp. 15-23, 1994.

[20) VVOOLDRIDGE, :M.-JENNINGS, N. R.: Intelligent Agents: Theory and Practice.
Knowledge Engineering Review, 1995.

(21) YINGWEI, L.-SUNDARARAJAN, N.-SARATCHANDRAN, P.: A Sequential Learning
Scheme for Function Approximation using Minimal Radial Basis Function Neural
Networks. Neural Computation 9, pp. 461-478, 1997.

José M. MOLINA received his Ph.D. in Telecommunication En-
ginnering from Universidad Politecnica de Madrid, in 1997. He
was a member of the System, Signal and Radio Coomunications
of the University Politecnica of Madrid from 1992. He also joined
the Computer Science Department in 1993 of the University Car-
los III of Madrid, being enrolled in the Systems, Complex and
Adaptive Laboratory. He is author up to 9 journal papers and 60
conference papers. His current research focuses in the aplication
of soft computing techniques (NN, Evolutionary Computation,
Fuzzy Logic and Multiagent Systems) to engineering problems

as RADAR, robot control and visiono

Optimizing the Number af Learning Cycles in the Design af RBNN using a MAS 449

Inés M. GALVÁN received a doctorate-fellowship, as research
scientist, in the European Commission, Joint Research Centre
Ispra (Italy) from 1992 to 1995. She received her Ph.D. in Com-
puter Science at Universidad Politecnica de Madrid (Spain), in
1998. She has joined the Computer Science Department at the
University Carlos III of Madrid in 1995, being enrolled in the
Systems, Complex and Adaptive Laboratory. She current re-
search focuses in Artificial Neural Networks and other soft com-
puting techniques, as Evolutionary Computation and Multiagent
Systems. Her research interests cover also applications fields, as

time series prediction and control of dynamic process.

José M. VALLS received his degree in Computer Science from
Universidad Pontificia de Salamanca, in 1996. He joined the
Computer Science Department of the University Carlos III of
Madrid in 1998, being enrolled in the Complex and Adaptive
Systems Laboratory. He is author up to 2 journal papers and 5
conference papers. His current research focuses in the aplication
of Neural Networks.

Andrés LEAL is a student of the last course of Computer Sci-
ence degree. He works as analyst in Telefónica I+D (Investment
and Development) of an internet mobile platform. His research
interest is mainly focused in Intelligent Agents.

