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Abstract. Radial Basis Neural (RBN) network has the power of the universal ap-
proximation function and the convergence of those networks is very fast compared 
to multilayer feedforward neural networks. However, how to determine the archi-
tecture of the RBN networks to solve a given problem is not straightforward. In 
addition, the number of hidden units allocated in an RBN network seems to be 
a critical factor in the performance of these networks. In this work, the design of 
RBN network is based on the cooperation of n + m agents: n RBN agents and 
m manager agents. The n + m agents are organized in a Multi-agent System. The 
training process is distributed among the n RBN agents, each one with a different 
number of neurons. Each agent executes a number of training cyeles, a stage, when 
the manager decides about that is the best RBN agent and sends it the correspond-
ing message. The m manager agents have in charge to control the evolution of 
each problem. Each manager agent controls one problem. Manager agents gov-
ern the whole process; each one decides about the b~st RBN agent in each stage 
for each problem. The results show that the proposed method is able to find the 
most adequate RBN network architecture. In addition, a reduction in the number 
of training cyeles is obtained with the proposed Multi-agent strategy instead of 
sequential strategy. 

Keywords: Multiagent systems, distributed systems, distributed learning, neural 
networks, radial basis NN 
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1 INTRODUCTION 

RBN networks [13, 15] originated from the use of radial basis functions, as the 
Gaussian functions, in the solution of the real multivariate interpolation problem. 
RBN networks are composed of a single hidden layer with local activation functions 
distributed in different neighborhoods of the input space. The significance of this 
is that RBN networks construct local input-output approximation, which allows to 
obtain a very fast convergen ce of the learning algoritlull [5, 13]. 

Despite these advantages RBN networks are not as widely used as they should 
be. One of the main reasons seems to be that it is not straightforward to design 
an appropriate RBN network to solve a given problem. The design of a success-
fuI RBN network involves to determine the topology, i.e., the number of radial 
basis units 01' hidden units, which is a critical factor in the performance of these 
networks. 

The design of RBN networks is generally carried out using a tedious trial and 
error process, i.e., different architectures of RBN networks varying the number of 
hidden units are completely trained. From those, the topology being able to obtain 
the best performance of error is chosell as the definite topology to solve the problem. 
There are no general systematic ways to design a near optimal topology for a given 
task. The trial and error process, generally, implies a large computational cost, in 
terms of learning cycles, because the learning process must be completed for each 
RBN network architecture. 

During the last years, the interest of the scientific community to develop me-
thods or algorithms to automatically design appropriate topologies of artificial neu-
ral networks has increased. The main attention in this field has been paid to the 
multilayer feedforward neural networks, for instance [4, 7, 9). Only a few works 
concerning determination of the architecture of RBN network appear in the htera-
ture. One hne research in this field is focused on use evolutionary techniques, as 
genetic algorithm, to determine the optimal number of hidden units in an RBN net-
work [8, 18, 19]. It has been shown that those strategies can be successful in sorne 
applications. However, they generally imply a large computational cost because 
a large set of RBN network must be trained. Other works in a different research line 
are found in the literature. For instance, in Platt [14]' an algorithm is developed to 
determine the number of clustering 01' hidden units necessary to solve the problem. 
The number of hidden neurons is initiahzed to one and the algorithm allocates a new 
computational unit whenever an unknown pattern is presented to the network. Va-
riants of this method are presented in Kadirkamanathan and Niranjan [10); Yingwei 
et al. [21], where pruning strategy is incorporated. These methods imply, generally, 
sophisticated algorithms that might identify useless hidden neurons and in many 
cases the performance of methods depends of the quahty of training data. 

Most of the methods mentioned above treat not only to find the optimal number 
of hidden units in an RBN network, but they also calculate the parameters of the 
RBN network proposing new methods and strategies to determine them. Taking into 
account that the most usuallearning method to train RBN network - described 
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in Section 2 - is ver y simple, faster and efficient when the number of hidden neurons 
is appropriate. The interest of this work is not to modify that learning mechallism, 
but to propose other strategies that allow to determine the best architecture. In ad-
dition, the goal of this papel' is also to avoid a trial and error process to obtain 
adequate RBN networks and to propose a strategy that requires les s learning cycles 
than the trial and error mechanism without modifying the usuallearning algorithm. 

In this work, the proposed automatic system to determine an appropriate RBN 
network for a given problem is based on the cooperation of different agents which 
are organized in a Multiagent system [11, 12, 17]. The proposed system is composed 
of n + 171 agents: n RBN agents and 171 manager agents. The RBN agents are RBN 
networks with different topology, i.e., with different number of hidden neurons. Each 
manager agent receives information about the evolution of the training process in 
each RBN agent for a problem. Each manager agent is in charge to control the 
evolution of each problem and it decides what topology is most suitable to solve its 
problem in terms of being able to reach the minimum error in the least number of 
learning cycles. In this way, in the Multiagent system, only one RBN agent (that 
defines a particular topology) is training at a time for a problem and the training 
process is distributed among the n RBN. Each agent executes a number of training 
cycles, a stage, when the manager decides that is the best RBN agent for a given 
problem (each manager agent solves a problem). The whole process is governed by 
manager agents, each one determines the best RBN agent in each stage for each 
problem and sends the corresponding message to it. 

The number of learning cycles executed by the proposed system until finding 
the most adequate RBN network is measured. In order to show the effectiveness 
of the Multiagent system, the number of learning cycles that would involve a trial 
and error process is also measured. In this case, the trial and error mechanism is 
organized as a sequential procedure without manager agents, i.e., all architectures 
candidates - the same as the number of RBN agents - are trained simultaneously 
one learning cycle at a time until one of them reaches the minimum error. 

The Multiagent system allows to reduce the number of training cycles of all 
RBN networks compared with a sequential training process. In addition, the pro-
posed Multiagent system is a general architecture that could be useful to execute 
several tasks. Although in this work it is only used in the training task for a given 
problem, the Multiagent system can also be used for different tasks. For instance, 
agents could execute different training tasks (each task for each problem), 01' test 
tasks: while some networks are trained, tests could be carried out by other networks 
simultaneously. 

The structure of the rest of the papel' is as follows: Section 2 presents au overview 
of RBN networks. The general characteristics of Multiagent systems are presented 
in Section 3. In Section 4, a description of the Multiagent system Architecture and 
the communication protocol is included. The experimental results are presented in 
Section 5. Sorne conclusions derived from this work are presented in Section 6. 
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2 RADIAL BASIS NEURAL NETWORKS 

RBN network involves three functionally distinct layers (see Figure 1). The input 
layer is simply a set of sensor units, which transmits the external input without 
connections. The second layer is the hidden layer, which performs a non-linear 
transformation of the input space. The third and finallayer consists of one neuron 
that combines the hidden units linearly. The equation describing the output of a 
radial basis networks is as follows: 

k 

Yx = Wo + L W¡ . ep¡(x), (1) 
¡=1 

where Wi, i = 1, ... , k, are the weights of the network; Wo is the threshold associated 
to the output node; x = (Xl, ... , X n ) is the external input to the network; and epi, i = 
1, ... , m, are the radial basis or activation functions. The radial basis functions are 
often taken to be translated dilations of a prototype function, ep, as follows: 

(2) 

where Ci = (Cil, ... , Cin) E Rn is the center of the function ep, di is the dilation, width 
or scaling factor for the radius Ix - c¡11 and 1·11 is typically the Euclidean norm. The 
most general class of prototype functiolls is the Gaussian function: 

(3) 
The activation of the hidden units have an appreciable value only in the neighbor-
hood of the vector Ci; for any given input, only the small fraction of processing units 
with centers ver y close (in the input space) to the input will respond with activation 
which differs significantly from zero. Thus, only those weights that belong to hidden 
units with centers close enough to the input need to be evaluated and trained. In 
this sense, it is said that radial basis neural networks have a local character. 

Learning in RBN network involves determination of the centers Ci, i = 1, ... , k, 
the dilations di, i = 1, ... , k, and the weights W¡, i = 1, ... , k. The learning of RBN 
networks can be carried out using two different styles of learning [13J: a fully super-
vised method and a hybrid method which combines supervised and unsupervised 
methods. The first approach uses an error measure defined at the output and the 
problem is solved as a single global nonlinear optimization problem. The learning 
of RBN network can be also carried out by breaking it into two phases. The first 
phase determines the centers C¡ and the radial dilation factors, di, in an unsuper-
vised manner using self-organizing methods, while the second phase performs the 
optimization via supervised training to determine the weights Wi. In this work, the 
learning of RBN networks is carried out according to the second learning approach, 
as follows: 

1. The values C¡ are determined by using the standard k-means algorithm. That 
algorithm is used to find k receptive field centers in the input trailling examples. 

r , 
I 

I 
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Fig. 1. Radial basis neural network 

The center of the cluster determines the values C¡ for the basis function (center 
of each hidden neuron). The number of k value is equal to the number of hidden 
neurons established in the network. 

2. The width of each field or dilation coefficients di are calculated as the square root 
of the product of the Euclidean distances from the center ci to its two nearest 
neighbours. 

3. The determination of the weights is -in this work- properly the training stage of 
the RBN network because the centers alld dilations are previously calculated. 
The weights of the RBN network, Wi, are fOUlld from the millimization of the 
mean square error: 

1 N 
E = 2N L(Yx - Yx)2 

k=l 
( 4) 

where Yx and Yx are the desired and actuallletwork output for the input pattern 
x, respectively and N is the number of training samples. The minimization 
of the error function is carried out by an iterative process. Thus, the weights 
are updated for each input-output pair (x, Yx) following the negative gradient 
direction of the error function E, as follows: 

(5) 

3 MULTIAGENT SYSTEM 

Multiagent system proposed in this paper allows training the best RBN for a given 
problem concurrently with other problems. The development of a Multiagent sys-
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tem is based on Distributed Artificial Inte11igence (DAI) techniques [6]. The general 
philosophy of DAI is the decolllposition of a problelll to be solved by several subsys-
telllS. A distributed system could be defined through the fo11owing characteristics 
[2]: 

• The system consists of a co11ection of subsystellls (agents). Each agent has 
various skill, including sensing, communication, planning and acting. 

• The group as a whole (the system cOl1lposed of agents) has a set of assigned 
tasks (goals) to be solved. 

• Each subsystel1l (agent) has only lilllited knowledge, there is no place in which 
a11 the knowledge is contained. 

• Each subsystem (agent) has different capabilities and, then, differing appropri-
ateness for a given problelll or subproblel1l. 

Compared to a traditional centralized systelll, in a Multiagent systelll (MAS) 
[1] the global problem is decomposed into subproblell1s that are solved ~y~amica11y 
by different agents as functions of its appropriateness. Several charactenstIcs about 
control and data must be taken into account in a MAS (different from a centralized 
architecture) : 

• A global system control does not existo There is no central agent that monitors 
the execution of a11 tasks in each agent (in a centralized architecture the control 
of the global solution is placed in one subsystem and the execution of any task 
is contro11ed by this subsystem). 

• Data is not centralized, so a11 agents must share data. Each agent is able to 
sense the environment to obtain its own data, 01' input data could be received 
from any other agent. Any agent has a global vis ion of a11 data in MAS, each 
agent takes its own decision as function of its local data. 

• System execution is asynchronous; any agent can be working while it receives 
queries any time. The synchronization of the system is related with the in-
terchange of messages among agents (in a centralized architecture the control 
subsystem imposed a synchronization of tasks). 

As mentioned aboye, a MAS system is based, fundamenta11y, on two ideas: the 
agent concept and the coordination of agents to achieve a common goal(s). An agent 
can be defined as a system with the fo11owing properties [20]: 

• Autonomy: an agent is able to decide what to do using its local control over its 
actions and internal state. 

• Social Ability: agents interact with other agents using some kind of agent com-
munication language. 

• Reactivity: an agent is able to sense the environment and respond to the changes 
on it. 

r 
I 
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• Pro-activeness: agents have their own goals. 

The architecture of an agent could be decoll1posed into three cOll1ponents [11]: 
task solving cOll1ponent, the cooperation super-strate and the communication fun-
cionality. These components could be defined for each type of agent for a given 
problell1 in order to specify its capacity in two dimensions: what can the agent do 
(skills) and how can the agent coordinate with other agents (control and communi-
cation)? 

The coordination of those different agents is a complex problem [16]. In a di s-
tributed architecture, the coordination to obtain the solution of global goals is ob-
tained by means of its local control and the communication among agents. Basica11y 
two dimensions, the control and the cOl1lmunication, ought to be addressed [3]. The 
control defines the cooperation, the organization of agents and the dynamics of the 
control organization in time. The c011ll11unication specifies the protocols, the con-
tents of the message al1long agents and the paradigl11 by which the conullunication 
takes place. 

The advantages of MAS are lllainly related in the characteristic of distributed 
problems: 

• They are able to solve large size problems, especia11y those where classical sys-
tems are not successful. 

• They a110w different systems to work in connection and cooperation. 
• They provide efficient solutions where information is distributed among different 

places. 
• They a110w software reusability and flexibility adopting different agent capabil-

ities to solve problems. 

4 RBN MULTIAGENT SYSTEM 

The Multiagent system proposed in this paper is designed to find out the optimal 
topology of the radial basis neural networks being able to solve several problems 
simultaneously. The system is composed of two types of agents: RBN agents and 
manager agents (MA). 

RBN agents are able to execute an RBN network. Each RBN agent can train a 
topology (different for each agent), i.e., an RBN with a pre-defined number of hidden 
neurons. There is no communication among RBN agents; they only communicate 
with manager agents. 

MA agents are able to solve a real problem using RBN agents. The initial 
definition of this problem and the function to evaluate the learning process of each 
RBN is known by each MA. Each MA has knowledge about a11 RBN agents. Using 
that knowledge, in the end of each stage each manager agent decides which is the best 
RBN agent, this is, which one is the most appropriate to solve the problem. Below, 
the tasks of the agents involved in the Multiagent system and their architecture are 
described. 
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The responsibilities of a manager agent are as follows: 

• Send the initial information of the problem. This information is the number of 
cycles, the credit evaluation function to be used (from a set of possible functions), 
etc. 

• Data collection from RBN agents. 
• Monitoring the evolution of the problel11, in order to ensure that the systelll 

goals are achieved. 

• Choosing the RBN agent with the best performance, this is associated with the 
best credit value, which is explained in Section 4.1.1. 

On the other hand, an RBN agent has to carry out the following tasks for each 
problelll: 

• Establishing the communication to the manager agent (recei ving the initial in-
formation) . 

• Executing a fixed number of learning cycles when indicated by the manager 
agent; the number of cycles is named a stage (this information is received ini-
tially) . 

• Evaluating the credit value associated to its radial basis neural network when the 
number of learning cycles is reached, in order to specify the optimal architecture 
(see Section 4.1.1). The credit evaluation function used depends on the problem 
and is received as initial information. 

• Checking whether the goal has been reached. 
• Checking when the training process must be stopped. 

4.1 RBN Agents Architecture 

As shown in Figure 2a, RBN agents have three different modules: 

a) Communication module ~ This module performs the communications to 
manager agents using a simple protocol following the KQML one, described in 
Section 4.3. 

When several MA send a message in order to execute the RBN for its problem, 
this module decides the priority of petitions as function of the evolution of 
results. 

b) Control module ~ The control module stores information about the training 
state of the RBN network for each problelll. That infonnation is useful to 
measure the fitness of the neural network to solve the given problem. 

• The number of learning cycles accomplished until the current instant in order 
to measure the computational effort involved. 

r 
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• The mean square error reached until the current instant to measure the 
fitness of the RBN lletwork. 

• The derivative of the mean square error with respect to the number of learn-
ing cycles to measure the speed of the convergen ce. 

• The mean square error desired to solve the problem. 
• The credit value associated to the RBN network. 

On the other hand, the control module performs the following operations: 

• Starting a training stage. 
• If the goal is achieved, the training is stopped. 
• Computing the credit value, as shown in 4.1.1., using the credit evaluation 

function sent by the corresponding MA. 

To Manager Agent From Manager Agent From RBN Agents To RBN Agents 

NN output Control Module 

Training patterns 

a) RBNagent b) Manager agent 

Fig. 2. Agents architecture 

e) Low level module (NN Module) ~ The low levél module is the radial basis 
neural networks in the strict sense. It receives the training input patterns and 
produces the output network. 

4.1.1 Credit Evaluation Functíon 

One ,of the most important aspects of the Multiagent System proposed in this work 
is the way to assign the credit value to each RBN agent. The manager agent uses 
that value to decide whicl! RBN agent must start a new training stage. Hence, the 
result of the Multiagent System depends widely on the credit value chosen. The 
simplest function that a MA could send uses the number of the learning cycles (n) 
and the mean square error given by eq. (4) (E) to evaluate the credit value because 



I 

I 
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they are the main parameters to reflect the fitness of an RBN network. In this work 
the credit function selected is as follows: 

C=_l. 
nE 

(6) 

Several considerations have been taken into account, which are briefly described 
below: 

• The smaller the error is, the better is the RBN network. So, C should be 
inversely proportional to E. 

• The sooner the agent achieves a small error, the better. So, C should be inversely 
proportional to the number of training cycles n. 

In any case, ifthe derivative ofthe mean square error is very small « 0.000001), 
and this error is bigger than the goal (defined by the problem), the agent must be 
discarded. A value of C = -1 has been chosen to represent this situation. 

4.2 Manager Agent Architecture 

As shown in Figure 2b, the manager agent has two different modules: 

a) Communication module This module performs the communication with 
RBN agents. If all RBN agents are able to solve the problem, the protocol 
followed is explained in Section 4.3. When the RBN agent rejects an ORDER 
message, the communication module selects the next RBN agent to perform the 
learning stage. 

b) Control module 

• Stores the information about the credit value of each RBN agent. 
• Decides which of the RBN agents is the best. 

4.3 Communication Protocol 

A manager agent (MA) initiates the process (see Figure 3). Its communication 
module generates a REQUEST.ORDER(Init, GP) act, and a message is sent to 
each RBN agent (RA). GP is a data structure containing the general parameters of 
the system: Epsilon (Goal Error), MaxCycles (max. number of training cycles), N 
(number of training cycles in each training stage) and the credit evaluation function. 

Each RA acknowledges this message generating an ACCEPT(Nj ) act which, 
when processed, sends an answer message to the manager agent, and starts the initial 
training stage. That initial training stage differs form the rest of training stages 
because it involves, on one hand, the determination of the centers and dilatations 
coefficients, and on the other hand, N learning cycles over the weights applying eq. 
(5). If the RA is not ready to perform this task, it generates a REJECT(Nj ) act 
which, when processed, sends a message to the MA. 

r 
I 
I 
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The MA waits to have all the answers from the RA From now on, the com-
munication is established among the MA and the RA's which accepted the first 
message. 

When the RA's finish their initial training stage, their control module computes 
the credit value, and sends it to the conullunication module which generates an 
INFORM (Ni, C) act which produces amessage to the MA. The MA control module 
writes the value of Cinto atable indexed by the RBN Agent number (Credit Table). 

Once the MA has received the messages from all the RA 's, it selects the best 
value from the credit table, takes its index j, and generates a REQUEST.ORDER 
(Train, N j ) act which produces a message sent to the j-th RA. This agent acknowl-
edges it with an ACCEPT act, and starts a new training stage - N learning cycles 
over the weights to minimize the global error function E using eq. (5). If this agent 
is working in another problem, the agent sends a REJECT act and the MA selects 
the next best agent. When the MA receives an ACCEPT message, it means that 
the RBN agents are running a stage of learning and the result will be received later. 
Meanwhile, the MA stays on a wait state, until an INFORM(Nj , C) message from 
the j-th agent is received. When this happens, the MA writes the new value of C 
into the table, and, again, selects the best value from the credit table, takes its index 
j, and generates a REQUEST.ORDER(Train, Nj ). 

The negotiation stops when: 

1. All the credit values are -1, so none ofthe RA's is suitable. In this case, the MA 
communication module generates a REQUEST.ORDER(Kill, Fail) act, which, 
when processed, sends a message to every RA, to stop the system. The result 
is that none of the agents is able to perform the task. 

2. The k-th RA reaches an error E that EK <= Egoal. In this case, this agent 
stops its training stage, and generates an INFORM(Success, Status, Nd act 
which produces the respective message to the MA which generates a REQUEST. 
ORDER(Success, Nk ) act that implies a message to be sent to all the RA's to 
stop the system, informing that the goal has been achieved by the k-th agent. 
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Manager Agent RBN Agent 

<MA,{Nj} ,RO(lnit,GP» 
REQUEST.ORDER(lnil,GP) r---------_-->o.1 REQUEST-TO-

DO.ORDER(Init) 
ACCEPT(Nj) 

INFORM(Nj, Cj) 

REQUEST.ORDER(Trnin,Ni) 
ACCEPT(Ni) 

INFORM(Ni, Ci) 

REQUEST.ORDER(Train,Nk) r--------_->o..1 ACCEPT(Nk) 

INFORM(Success,Status,Nk) 

REQUEST.ORDER(Stop,Nk) 
<MA, {Nj} ,R.O(Stop,Nk» 

<MA,Nk, R.O(T rnin,Nk» 
REQUEST.ORDER(Train,Nk) ,-------___ --'" 

ACCEPT(Nk) 

INFORM(Nk, -1) 

REQUEST.ORDER(Kill,Fail <MA, {Nj} ,R.O(Kill,Fail» 

Fig. 3. Communication protocol 

,-
¡ 
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5 EXPERIMENTAL RESULTS 

The Multiagent System proposed in this work is developed in a UNIX environment. 
Agents are executed in paraHel (each agent is a difIerent UNIX process) and are 
communicated using the socket paradigm. This system has been applied to three 
difIerent approximation domains: the logistic time series, the Hermite polynomial 
and a piecewise-defined function. The aim for each experimental case is to find the 
most appropriate RBN network topology, which is measured in terms of finding the 
RBN network topology being able to reach the minimum error in the least number 
of learning cycles. In this work, several simulations varying the minimum mean 
square error that must be reached by the networks have been carried out. 

With this purpose, a set of RBN agents with difIerent number of hidden neuron's 
is established for each domain and the Multiagent system has to determine the most 
adequate architecture. In arder to verify whether the architecture obtained by the 
Multiagent system is certainly the best, aH RBN networks of the set are trained and 
the evolution of the mean square errors during a large number of l~arning cycles is 
obtained. 

In addition, for each domain, the number of learning cycles involved in the 
Multiagent system has been compared with the number of learning cycles required 
when aH RBN networks are simultaneously trained. In the simultaneous training an 
adaptation step is carried out at a time in each agent. The simultaneous training 
stops when an RBN network reaches the desired mean square error. Then, the 
number of cycles is obtained by adding aH the training cycles carried out by aH the 
RBN networks. 

5.1 Logistic Time Series 

The logis tic map given by the foHowing equation describes a chaotic time series: 

x(t) = AX(t - 1)[1- x(t - 1)], (7) 

where A = 3.97 and x(O) = 0.5. Data of the logis tic time series from t = O to t = 100 
have been used as training patterns. 

The simulations have 'been conducted using 10 RBN agents, in which the topol-
ogy ofthe networks is fixed to 5, 10, 15,20, 25, 30, 35, 40, 45 and 50 hidden neurons, 
respectively. In Table 1, the RBN networks obtained by the proposed system for 
three representative minimum errors are shown. 

Minimum error 
0.001 
0.0007 
0.0005 

Optimal RBN network 
10 hidden neurons 
15 hidden neurons 
15 hidden neurons 

Table 1. Optimal RBN networks obtained by the MA System for the logistic time series 
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As can be seen in Figure 4 - in which the evolution of the 10 RNN networks is 
shown - the Multiagent system is able to find the most adequate architecture for 
each minimum error. When the minimum error is fixed to 0.001, the best topology 
is composed of 10 hidden neurons. However, for a minimum error of 0.0005, 15 or 
20 hidden neurons provide the best performance. 

In Table 2 the Multiagent system is compared to a trial and error process. The 
number of learning cycles involved in the Multiagent system and in a simultaneous 
training process for different minimum error are shown. The performance of the 
Multiagent system is very similar to the simultaneous process when the minimum 
error is large. However, as the minimum error required decreases, the Multiagent 
system needs smaller number of cycles. 
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Fig. 4. Evolution of the mean square error for different RBN network topologies: logistic 
time series 

5.2 Hermite Polynomial 

The Hermite polynomial is given by the following equatiQn: 

(8) 

r 
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Logistic time series 
Minimum Simultaneous Multiagent 

error training system 
0.001000 29 20 
0.000950 29 20 
0.000900 38 21 
0.000850 57 37 
0.000800 66 38 
0.000750 66 38 
0.000700 75 39 
0.000650 84 40 
0.000600 92 41 
0.000550 117 44 
0.000500 164 51 

Table 2. Multiagent system vs. ~imultaneous training for the logistic time series 

A random sampling of the interval [-4,4] is used to obtain 100 input-output 
points for the training seto Data are normalized in the interval [0,1]. 

As for the logistic time series case, 10 RBN agents - with 5 10 15 20 25 
30, 35, 40, 45 and 50 hidden neurons - have been used by the M~ltia~ent' sys~em: 
The most appropriate RBN network obtained by the Multiagent system fol' three 
representative values of minimum error is shown in Table 3. In Figure 5 the evolution 
of the mean square error for the 10 architectures of RBN network is also displayed. 

Minimum error 
0.001 
0.0007 
0.0002 

Optimal RBN network 
20 hidden neurons 
20 hidden neurons 
35 hidden neurons 

Table 3. RBN networks obtained by the MA System for the Hermite polynomial 

Figure 5 shows that the best topology of RBN network is composed of 20 01' 35 
hidden neurons. The Multiagent system has also provided those architectures as the 
best. In addition, the Multiagent system requires less learning cycles to find it than 
a simultaneous training process, as shown in Table 4. In this case, the advantage 
of the Multiagent system in terms of learning cycles is more significant when the 
minimum error required is reduced, 
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Fig. 5, Evolution of the mean square error for different RBN network topologies: Hermite 
polynomial 

5.3 A Piecewise-Defined Function 

The Multiagent strategy has also been applied to the approximation of the single 
variable piecewise-defined function. This function is given by the following equation: 

{ 

-2,186x - 12,864, 
f(x) = 4.246x, 

lOeC- o,o5x-o.5) sin[(0.03x + 0.7)x], 

if -10 :S x < -2, 
if -2 :S x < O, 
if O :S x :S 10. 

(9) 

The training set is composed of 120 points randomly generated by the uniform 
distribution in the interval [0,1]. In this case, the number of hidden neurons for the 
candidate RBN networks had to be increased in order to get an acceptable minimum 
error. Thus, 14 RBN agents have been incorporated to the Multiagent system, in 
which the topology of the networks is fixed to 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 
55, 60, 65, 70 and 75 hidden neurons, respectively. The optimal topologies obtained 
by the Multiagent system for the different minimum errors are shown in Table 5. 

As observed in Figure 6, the best architecture is composed of 55 hidden neurons 
for each minimun error. The Multiagent system is able to find this architecture. 

In addition, the number of learning cycles req)lired by the Multiagent system is 
smaller than if a simultaneous training process is used, as observed in Table 6. In 
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Hermite polynomial 
Minimum Simultalleous Multiagent 

error training system 
0,001000 58 47 
0.000950 58 47 
0.000900 58 47 
0.000850 58 47 
0.000800 58 47 
0,000750 67 48 
0.000700 67 48 
0.000650 67 48 
0.000600 67 48 
0.000550 76 49 
0.000500 76 49 
0.000450 76 49 
0.000400 85 50 
0.000350 94 51 
0.000300 103 52 
0.000250 157 58 
0.000200 276 198 

Table 4. Multiagent system vs. Simultaneous for the Hermite polynomial 

Minimum error 
0.001 
0.0007 
0.00035 

Optimal RBN network 
55 hidden neurons 
55 hidden neurons 
55 hidden neurons 

445 

Table 5. RBN networks obtained by the MA System for the piecewise-defined function 

that table, the number of cycles needed by the Multiagent system and the simulta-
neous training for different minimum errors are presented. For the piecewise-defined 
function, the difference of learning cycles for both methods is larger than in previous 
experimental cases where the minimum error is more restrictive. 

6 CONCL USION 

The design of optimal RBN networlcs for a given problem is generally based on the 
experience of the developer and in most cases the trial and error process is used. On 
the other hand, the performance of RBN networks depends strongly on the number of 
hidden neurons allocated in the network. Consequently, it is interesting to develop 
automatic methods that allow to determine the most appropriate architecture of 
RBN networks - in tenns of reaching the minimum error in the minor number of 
learning cycles - requiring the least mnnber of learning cycles that a exhaustive 

.' 
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Fig. 6. Evolution of the mean square error for difIerent RBN network topologies: 
Piecewise-defined function 

Piecewise-defined function 
Minimum Simultaneous Multiagent 

error training system 
0.001000 236 208 
0.000950 236 208 
0.000900 251 209 
0.000850 251 209 
0.000800 266 210 
0.000750 266 210 
0.000700 281 211 
0.000650 296 212 
0.000600 311 213 
0.000550 326 214 
0.000500 341 215 
0.000450 371 217 
0.000400 426 221 
0.000350 503 228 

Table 6. Multiagent system vs. Simultaneous for the piecewise-defined function 
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search. This work proposes the use of different RBN networks and the cooperation 
among them in a Multiagent system in order to automatically detect the best suited 
RBN network. 

The Multiagent system proposed is composed of 11. + m agents: 11. RBN agents 
and m manager agents. Each manager agent controls the evolution of the solution 
for each problem. In this way, the proposed architecture allows to train several 
problems (m, one for each manager agent) simultaneously, optimizing the use of the 
RBN agents. The protocol used in this MAS follows the KQML one, adding the 
initial inforl1lation that the manager agent sends to RBN agents in order to define 
the problems exactly. 

This architecture and the developed cOl1ll1lunication protocol has been tested in 
different experil1lents. The results have demonstrated the validity of the proposed 
system compared with an exhaustive search of the best RBN network. In l1lost of 
the experimental simulations, the architecture provided by the MAS is the most 
appropriate to solve the given problem and the number of learning cycles involved is 
significantly les s that if a simultaneous learning process of the candidate architecture 
is carried out. 

In addition, it is interesting to point out that the proposed Multiagent system 
is a general architecture that could be useful to execute several tasks. Although in 
this work it is ollly used in the trainillg task for a given problem, the Multiagent 
system can also be used for different problems. This would imply better exploitation 
of system resources. 
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