CONSISTENT TESTING OF COINTEGRATING RELATIONSHIPS
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In this paper we investigate methods for testing the existence of a cointegration rela-
tionship among the components of a nonstationary fractionally integrated (NFT) vector
time series. Our framework generalizes previous studies restricted to unit root inte-
grated processes and permits simultaneous analysis of spurious and cointegrated NFI
vectors. We propose a modified F-statistic, based on a particular studentization, which
converges weakly under both hypotheses, despite the fact that OLS estimates are only
consistent under cointegration. This statistic leads to a Wald-type test of cointegration
when combined with a narrow band GLS-type estimate. Our semiparametric method-
ology allows consistent testing of the spurious regression hypothesis against the alterna-
tive of fractional cointegration without prior knowledge on the memory of the original
series, their short run properties, the cointegrating vector, or the degree of cointegra-
tion. This semiparametric aspect of the modelization does not lead to an asymptotic
loss of power, permitting the Wald statistic to diverge faster under the alternative of
cointegration than when testing for a hypothesized cointegration vector. In our simula-
tions we show that the method has comparable power to customary procedures under
the unit root cointegration setup, and maintains good properties in a general frame-
work where other methods may fail. We illustrate our method testing the cointegration
hypothesis of nominal GNP and simple-sum (M1, M2, M3) monetary aggregates.

KEYWORDS: Cointegration, spurious regression, long memory, fractional processes,
narrow-band frequency analysis, Wald test, semiparametric inference.

1. INTRODUCTION

IT IS A WELL-KNOWN EMPIRICAL FACT that many economic time series are
typically nonstationary. This nonstationarity can induce (seemingly) signifi-
cant correlations between the levels of these time series, despite the fact that,
from a theoretical viewpoint, there is no justification for any relationship be-
tween them, giving rise to what is known in the econometric literature as the
spurious problem. Using Monte Carlo simulations, Granger and Newbold’s
(1974) classic study showed that this phenomenon occurs when independent
random walks are regressed on one another. In 1986, Phillips developed an as-
ymptotic theory for regressions between independent integrated of order one
I(1) processes showing the invalidity of standard ordinary least squares (OLS)
inference. In particular, the customary F-statistic has divergent asymptotic be-
havior in such regressions so that there are no asymptotically correct critical
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values for this conventional significance test. Extending Phillips’ (1986) ap-
proach, it is now well understood that the spurious regression phenomenon
also occurs for a wider class of time series, including I1(2) processes (Haldrup
(1994)), stochastic unit root processes (Granger and Swanson (1997)), nonsta-
tionary fractionally integrated processes (Marmol (1998)), and some particu-
lar types of stationary processes (Tsay and Chung (2000), Granger, Hyung, and
Jeon (2001)).

Standard OLS inference is not useful in spurious systems because regression
estimates are not consistent for any fixed projection vector and the usual stan-
dardization does not take full account of the residual autocorrelation. There-
fore, spuriously significant test statistics appear, despite the fact that the degree
of serial dependence of the OLS residuals is similar to that of the series levels.

In this paper we explore alternative forms of studentization in the frequency
domain of least squares estimates in the presence of nonstationary fractionally
integrated (in short NFI) processes. We say that z, is a (p x 1) vector of NFI
processes with filter matrix A(L) = diag{(1 — L)™,..., (1 - L)}, d; > 1,
i=1,...,p,if A(L) 'z is a short-memory 1(0) process, where L is the lag
operator. This model has been used in applied work where flexible charac-
terization of low frequency dynamics is important, since fractionally integrated
processes accommodate unit root-type persistence as well as long range depen-
dence and mean reversion. We propose an alternative to the usual F-statistic
with an autocorrelation-robust frequency domain studentization. This provides
an adequate automatic normalization such that the new Wald or adjusted
F-statistic has a well-defined (nonstandard) limiting distribution, which in the
case of common memory d does not depend on additional parameters.

The natural alternative to a spurious relationship is cointegration. Following
Marinucci and Robinson (2001) and Robinson and Yajima (2002), we say that
a (p x 1) vector z, of NFI processes with filter matrix A(L) is cointegrated of
orders (dy, d,,...,d,; ) withd, >d, >d3>--->d,_, > d, if atleast d, = d,,
and there exists a (p x 1) vector 4 with nonnull first element such that the
linear combination /'z, is a fractionally integrated process of order 0 < 6 < d,.
Otherwise, i.e., if 6 = d, for all A, we say that the components of z, are spuri-
ously related. Cointegration is commonly thought of as a stationary relation be-
tween nonstationary variables. When 0 < 6 < %, the linear combination 4'z, is
a stationary long-memory process and the slow decay of the effect of shocks
allows for slow adjustments to equilibrium. The nonstationary case (8 > 1) is
also worth entertaining. For instance, when % < 8 < 1, the error term will ex-
hibit transitory memory, implying that a shock will have no permanent effect
on /'z,. Also, from a methodological point of view it is reasonable to consider
a model that permits values of & arbitrarily close to the memory parameters of
the observables z,.

Fractional cointegration has become an important and relevant topic in em-
pirical analysis in recent years. A partial list includes Cheung and Lai (1993),
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Masih and Masih (1995), and Soofi (1998) who test the purchasing power par-
ity hypothesis, Baillie and Bollerslev (1994) and Hassler, Marmol, and Velasco
(2003) who investigate the memory of exchange rates, and Booth and Tse
(1995), Masih and Masih (1998), and Dittmann (2000) who are concerned with
the dynamic of interest rate future markets, exchange rate dynamics, and stock
market prices, respectively. All of them find evidence of fractional cointegra-
tion in their data.

Following the initial suggestion of Engle and Granger (1987), when the se-
ries of interest are I(1), testing for cointegration in a single-equation frame-
work is usually conducted by means of residual-based tests (cf. Phillips and
Ouliaris (1990)). Residual-based tests rely on the residuals calculated from re-
gressions among the levels of the relevant time series. They are designed to
test the null of no cointegration by testing the null that there is a unit root in
the residuals against the alternative that the root is less than unity, i.e., that the
regression errors are 1(0). Inference on 1(1)/1(0) cointegrated systems in the
framework of a fully parametric error correction mechanism (ECM) represen-
tation has been developed by Johansen (1988, 1991).

However, to the best of our knowledge, there is no test available in the liter-
ature that is powerful against fractionally cointegrated alternatives irrespective
of the (generally unknown) memory properties of trending data. In this line, we
investigate the properties of our Wald statistic under cointegration, using a tri-
angular representation of NFI processes that encompasses both hypotheses by
means of a single correlation parameter, p. Despite the well-known consistency
of OLS coefficients under cointegration, our Wald statistic still converges to a
well-defined distribution. This observation is the basis for a consistent test of
cointegration comparing the OLS regression estimates with any other estimate
of the long-run projection vector that shows opposite consistent properties un-
der the competing hypotheses. This methodology, combined with information
on the projection vector obtained through a semiparametric generalized least
squares (GLS)-type estimate, permits consistent testing of the null hypothesis
of no cointegration against the alternative of fractional cointegration, indepen-
dently of knowledge of the memory of the original vector and the degree of
cointegration. This is achieved using semiparametric estimates of the memory
parameters of the components of the NFI vector and of the OLS residuals.

In this sense, our methodology does not require the specification of the
short-run dynamics of the underlying processes because of the use of semi-
parametric estimates of memory parameters and long-run covariance matrix.
This semiparametric aspect of modeling does not lead to an asymptotic loss
of power, and permits the Wald statistics to diverge faster under the alterna-
tive of cointegration than when testing for a hypothesized cointegration vec-
tor. Thus we take advantage of the simultaneous (super) consistency of OLS
estimates and of the inconsistency of GLS estimates under cointegration. Our
test avoids in this way problems found in approaches based directly on mem-
ory estimates (Marinucci and Robinson (2001), Hassler, Marmol, and Velasco
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(2003), Velasco (2003)) or on estimates of p, whose distribution under the nuil
may be unknown or may have only semiparametric rates of divergence under
the alternative. By means of simulations we show that for series of moderate
size our method has comparable power to customary procedures under the unit
root cointegration setup (which heavily exploits such knowledge) but maintains
good properties in a general framework where other methods may fail.

The present paper is organized as follows. Section 2 introduces some prelim-
inary theory and a triangular representation for fractional processes. Section 3
analyzes the behavior of the customary least squares statistics in the presence
of no cointegrated NFI processes. We prove the invalidity of the customary
OLS inference in this setup and suggest a local or narrow-band adjusted ver-
sion in the frequency domain of the F-test. The asymptotic distribution of this
Wald statistic is investigated for both spurious and cointegrated relationships.
Section 4 gives a feasible and consistent version of the local Wald test for frac-
tional cointegration and Section 5 examines the finite-sample properties of
the test in a Monte Carlo experiment and illustrates our method by testing
the cointegration hypothesis of nominal GNP and simple-sum (M1, M2, M3)
monetary aggregates in the framework of the quantitative theory of money.
Proofs of all results are outlined in the Appendix.

2. MODEL AND ASSUMPTIONS
2.1. Preliminary Theory for Fractional Processes

Let &, be an independent and identically distributed (p x 1) vector sequence

of zero-mean random variables with E(g,&)) =1, E||&||* < oo, where || - || de-
notes the Euclidean norm. For d; > 1,i=1,..., p, let
(1) z, = A(L){u,1150(1)} (t=0,+1,4£2,...),

where 1 4(-) is the indicator function of the set 4, u, = Z]f'i_oo A,_je;is alinear

process with long-run covariance matrix 2 = A(1)A(1), A(1) = Z;:m Aj,
and the coefficient 4; of L* in the expansion of (1 — L)~ = Y77 Ay L* is
defined by

ik

_ Tlkrd) o .
T I'(k+1)I'(d)’ F(S)—/U e dn (k=1,2,...).

Therefore, z, is a (p x 1) vector of NFI processes. For ease of exposi-
tion we assume that z, is free of deterministic components. The case where
z, has both deterministic and NFI components can be analyzed, e.g., as in
Marmol (1998). Truncation in u, is necessary because the coefficients A, are

not square-summable ford; > 1, i=1,..., p.
Define the normalizing matrix function D,, ford, = (d,, ...,d »), as
D, =diag{n"*% ..., n'/?),



and let z,(r) = D,z,, for 0 <r <1, where [nr] stands for the integer part of
nr, n being the sample size. Let us further introduce the following assumptions.

oC

ASSUMPTION A: } 77
negative diagonal elements.

ljlIl4;]l < oo and A(1) is upper triangular with non-

ASSUMPTION B: rank(A(1)) = p.
ASSUMPTION C: u > max(4,2/(2d, — 1)), d, = miny <, d;.

The stationary linear specification for u, in Assumption A entails a mild form
of short-range dependence, whereas assuming that E(e,€)) =1, and A(1) is
upper triangular causes essentially no loss of generality. See, e.g., Jansson
and Haldrup (2002, p. 1322). Assumption B ensures that the limiting process
will have nondegenerate finite-dimensional distributions. On the other hand,
a larger d, in Assumption C entails weaker moment conditions, at least for
d, < 1. A heuristic explanation is that a lower value of d, implies a smaller
normalization in z,(r) and hence tighter bounds are needed to obtain a well-
defined limiting distribution. Assumptions A and C are satisfied, for example,
whenever u, has a Gaussian VARMA representation.

Under Assumptions A-C, Theorem 1 of Marinucci and Robinson (2000)
implies that, as n — oo, z,(r) = B(d,; r), where = signifies convergence in
the Skorohod J; topology of D[0, 1]7, the space of R”-valued vector functions
on [0, 1] whose components are continuous on the right with finite left limit,
and

2 B(d;r)=(0,...,0) as, r=0,

3) Bd,;r)= f G(r,s)dB(s), r>0,
0

with B(r) being a (p x 1) Brownian motion with long-run covariance matrix {2
and with G(r, s) being a (p x p) matrix with (i, j)th element I"(d;)~'(r — 5)41,
i,j=1,..., p, for 0 <s <r, and zero otherwise. Formally, B(d,; r) is defined
in terms of a Holmgren—-Riemann-Liouville fractional integral. Itisa (p x 1)
Gaussian vector process with almost surely continuous sample paths and non-
independent (and nonstationary) increments. See Marinucci and Robinson
(1999) for further details. In the particular case where d; =d, =--- =d, =d,

(4) z"(r) = nl/ZAdZ[,,,]

= B(d;r):F(d)‘I/ (r—s)"1dB(s), r>0,
0

so that in the unit root case where d = 1 we obtain the well-known result
z,(r) =n"1Y2z,,, = B(r),r > 0.



Consider now the partition z, = (y,, x,)’, where y, is a scalar NFI variate with
memory parameter d; and x, is an m vector of NFI processes with memory
parameters d,, ..., d, (p=m+ 1). It will be also useful in the sequel to work
with 2 and B(r) in partitioned format as

_ [y _ (B
© a=(o pe) so=(30),
with the partition conformable with z, = (y,, x})". Further, in view of Assump-
tion A and (5), we shall parameterize A(1) as follows:

wf(1=pH)'? pw 07
©  an=(""" o)

. ey e
where w,, > 0, @, is an m-vector satisfying o, )" /o,, = 0,,, and

M) =

is the squared coefficient of multiple correlation computed from (2, so that
0 < p* < 1. The long-run covariance w,, is given by p@,,, where @,, expresses
the direction of the covariance while p measures the strength of the covariance.
Consequently, B(r) = A(1)W(r), where W (r) = (W,(r), Wi(r)")’ denotes a
(p x 1) vector of standard Brownian motions and

®)  B,(r) =0 (1 - p)) W, (r) + 0, 2P W(r),
©)  B.(r)=QPW.),

so that
(10) B(dz;r)=/ G(r,s)A(1)dW(s), r>0.
0

In addition to Assumptions A-C, let us introduce the following regularity
conditions.

ASSUMPTION D: (2, > 0.
ASSUMPTIONE: d\=d,=---=d,=d > 1/2.

Assumption D is fairly standard in the related literature and implies that
x, is a noncointegrated NFI process. Assumption E is a natural first research
step. It is clearly stronger than needed in view of our definition of fractional
cointegration and a higher degree of generality can be achieved by allowing
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different memory parameters. See Remark 2 below. Under Assumption E it
follows from expression (10) that B(d,; r) = B(d;r) = (B,(d;r), B,(d;r)") =
AW (d; r), where

(11) W(d;ry=T(d)" r(r—s)d’ldW(s), r>0.
0

To complete the specification of the model, in the rest of the paper we shall
assume thatd € (%, %), the most empirically relevant range. See, e.g., Gil-Alafa
and Robinson (1997). Doing so will not alter most results in any interesting way
and will simplify the exposition in Section 4.

2.2. A Triangular Representation
Applying the well-known polynomial decomposition A(L) = A(1)+ AA(L)
to (1), we have

(12)  z,=AL)A(l)e, + A(L)A(L)As,, >0,

where A(L) = PR ZL' is a lag polynomial with coefficients Zj =
— > iej41 Ai < 0o by Assumption A.

Taken together, Assumptions D-E and (6) imply that, for t > 0, z, = (y,, x})’
can be represented as

17201 = p?)1/2 0-12
(13) ()yc) _ (‘"w( o’ ) szl/;x )(y ) + A A(L)e,

with (y}, x,*')’ := A~?g, being uncorrelated NFI processes of order d. Then
(14) Buxr = wl/z(l PZ)”ZY,* +(1, _Bz))en

where e, = A4 A(L)s, is a fractionally integrated process of order d — 1 and
Bo is the projection or fundamental vector (cf. Park, Ouliaris, and Choi (1988))
computed from (2, i.e.,

(15) Bo=0w, =0 pa,.

Notice that in the representation (14), the gap between the memory para-
meter of z, and that of the error term is always equal to 1. To encompass the
possibility of fractional cointegration, we generalize (1) by assuming that the
Wald representation of the vector z, is given by

(16)  z = AL){vLo(0)} (t=0,41,+2,...),
17) v ={A(L) + A" °C(L)}e,,



for some 6 < d, where C(L) = Z}_% C,L’ is a lag polynomial with coeffi-
cients C; satisfying

18) Y IlGl < oe.

j==o0

Basically, this amounts to including a perturbation of memory d — & in the
d-memory filter A(L) of (1).

Under Assumptions A-E, z, = (y;, x,)’ defined by (16)—(17) continues verify-
ing that n'/>~z,,, = B(d; r) = A(1)W(d; r) with the same long-run covariance
matrix (2, but now it can be represented as

(19)  z,= A)A e, + A" A(L)e, + A°C(L)e,.

Thus, z, in (16) can be decomposed as the sum of a (p x 1) vector of NFI
processes of order d plus a (p x 1) vector of fractionally integrated processes
of order (d — 1) plus a (p x 1) vector of fractionally integrated processes of
order 8, and such that

20)  yi—Byxi= w21 = p))' Py + (1, = Bye],

where now e} = A A(L)e, + A3C(L)e, is a fractionally integrated process
of order 6* := max{d — 1, 8}.

Since x, is noncointegrated by Assumption D, the series (y;, x})’ are fraction-
ally cointegrated (d, d, ..., d; 6*) with (unique) cointegrating vector (1, —B;)’
if and only if p?> = 1. When |p| < 1, {y, — B;x.} is an NFI process of order d
and the series (y;, x})’ are spuriously related. In the extreme case where p =0,
w,, = 0 so that y, and x, are asymptotically independent NFI processes of or-
der d and By = 0. This is the situation where the maximal degree of spurious-
ness is obtained.

3. REGRESSIONS WITH NFI PROCESSES
3.1. Spurious OLS Inference

We first study the asymptotlc properties of basic OLS statistics for spuriously
related NFI processes. Let @ and 8 be the OLS estimators in the multiple
regression

(21) Y =aq, + B'x, +res.,

where ¢, = (1, ..., t"~!) for some m, > 1 (m, = 0 would denote the absence
of g, in (21)), and let F be the standard F-statistic used to test the null hypoth-
esis Hy: B = B based on the regression (21).



By defining the normalizing matrix

diag(n'?, ..., 0™ V2) 0, m
Wn = / ’
( Omxmq ndIm

it is not difficult to prove that, in the spurious case, under Assumptions A-E,
as n— oo,

oy @
(22) n ‘I'n<ﬁ_ﬂo)
1 -1 1
:>w;;2(1—p2>”2( / Q(r)Q(r)’dr> ( f Q(r)Wy(d;ndr>,
0 0

so that B is not a consistent estimator of By, and

11l fy Wad; nnWi(d; r)dr|?
m fol W2 (d; r)2dr

3 n'F=

where Q(r) = (q(r), B:(d;r)), Qu(r) = (q(r),Wi(d;r)), q(r) = (L,r,

o,y

1 —1/2
Wild;r)= (/ Wi(d; s)yWi(d; S)’dS) Wid;r),
0

Wid;r) =W(d;r)
1

1 1 -
—(/ Wx(d;S)q(S)’dS>(/ q(S)q(S)’dS> q(r),
0 0

and W(d; r) and W,2+(d; r) are defined similarly.

The F-statistic diverges at the rate n for all d > 1. A similar result was first
obtained by Jansson and Haldrup (2002) in the particular d = 1 case. The fail-
ure of standard OLS inference can be expected because the variance estimate
based on the residual sum of squares (RSS) does not fully take into account the
residual autocorrelation. The persistence or degree of serial dependence in the
residuals of a spurious regression is equivalent to that of the levels of the data.
Consequently, any underestimation of it would inevitably lead to spuriously
significant test statistics.

Notice, however, that n~'F has a nondegenerate limiting distribution free of
unknown parameters (apart from d, m, and m,). In particular, it does not de-
pend on p. Thus, after proper normalization, one could obtain F-type statistics
with asymptotically pivotal distributions. This possibility is explored in the next
subsection.



3.2. Modified Wald Statistic

From a frequency domain point of view, the persistence in the sample paths
of trending NFI processes is reflected by periodograms with very high power
at low frequencies. Due to this low frequency dominance, inference can be
carried out in only a narrow band around zero frequency, neglecting high fre-
quency behavior (cf. Robinson and Marinucci (2000, 2001)), so that we can
define the class of local frequency domain least squares estimates

M -Im
(24) EM = < Z Iu(/\j)) Z Ixy(/\j)a
; —m

j=—M

where 1 <M <n/2, \; = 2mj/n are the Fourier frequencies, and

Lp(A) = waA)wy(=A)),  wa(A)) = Qan)™ 2y a,explith,),

t=1

is the (cross) periodogram matrix of any vectors a, and b,. The OLS coefficients
satisfy B= E[,,,zl (assuming 7 is odd) by symmetry and Parseval’s formula, but
fMn'+M"' = 0asn— oo, EM is the narrow band least squares estimator of
Robinson and Marinucci (2000, 2001), which neglects the information at high
frequencies. Dropping the zero frequency in the summations in (24) would
account for estimation with intercept by mean correction, while the symmetric
sum around j = 0 eliminates the imaginary parts of the periodogram matrices.

For studentization of LS coefficients we propose the following feasible esti-
mate of the variance—covariance matrix of E s

M -1y M -1
25) V= ( > Ix(,x(,u,-)) > lxl,xq(A,)lgg(Aj)< > Ix{,xl,()\,)) ,

j=—M j=—M j=—M

with I, (A;) being the periodogram of the series x,, = x,,(M) obtained af-
ter detrending x, by q,, namely, x,, = x, — Z;\i_M qu(/\j)(zjhi_M L,(A)) g,
and where Iz () stands for the residual periodogram computed with the ob-
served residuals E, =EI(M )=y — (a9 + E;wx,). The use of statistics similar
to ¥, is common in autocorrelation-robust frequency domain studentization
for weakly dependent stationary time series regressions, with Izz(A;) replaced
by a smoothed estimate of the error spectral density, and where proper stan-
dardization requires consideration of all frequencies. See, e.g., Robinson and
Velasco (1997).

Next result analyzes the effects of focusing on a degenerating band around
the origin in our spurious framework.
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LEMMA 1: Under Assumptions A-E, with p* < 1,if @ =a, B= B[,,/Z] de-
note the OLS estimates and V = V[,, 121, then

n v, (; ; ) O,(M"™ +M")y=0,(1) as M,n— oo;

?—VMzOp(M““““"“'d’)=0,,(1) as M,n— oo.

Notice that the result is valid as long as M increases with » as slowly as
desired and it could also be a fixed proportion of n. Two immediate corollaries
of Lemma 1 are that B, has the same limiting distribution as B (see (22)),
and that its corresponding usual F-statistic is also O,(n). Thus, though narrow
band OLS is able to control some bias terms in the asymptotic distribution
of regression estimates for some cointegrated NFI vectors (cf. Robinson and
Marinucci (2001)) no apparent gains to alleviate the spurious problem seem
to be achieved by using restricted versions in the frequency domain of OLS.
In a similar fashion to standard OLS statistics, the asymptotic behavior of V' is
only determined by the very low frequencies. Therefore, Lemma 1 allows us
to restrict the analysis to full band statistics with M = [n/2] without loss of
generality.

Using V, computed with the OLS residuals, we propose the following Wald
or adjusted F-statistic:

~ 1 ~ ~ o~
(26)  W(B, Bo):= —(B- BV (B~ Bo)-

By contrast with the customary F-statistic, constructed using the usual (time-
domain) RSS, the Wald statistic W has a well-defined limiting distribution as
given in the next theorem.

THEOREM 1: Under Assumptions A-E, with p* < 1, as n — oo,
(27)  W(B, Bo)
= Wiy = %_/01 W,(d;n\Wid;r) drV ! /01 Wa(d; r)W,(d; r)dr,
where
Vi= /01 VROV g2y () F Vigry () + Vg (1= ) + ¥, (1= 5)'} ds,
Yr(S) := /OH W (d; YW (d; r + ) dr,

1-s
Vipey(8) = f Wa(d; YWA(d; r +s) dr.
0
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The normalization ¥ is not consistent for any limit matrix for nonstationary
series, but provides an adequate automatic normalization so that W(B, B) is
0,(1), with a nondegenerated limiting distribution free of nuisance parameters
(apart from d, m, and m,). Note that W,, = W.(d, m, m,) is defined in terms
of Wi(d,r) and not using W"(d r) as in (23) because the normalization is
mcluded nV. _ _ R

The fact that 8 — B, and V' weakly converge in such a way that W(B, B)
is 0,(1), however, prevents W(, B,) from providing a consistent testing de-
vice for hypotheses on S, since it can be checked that WW( E , B) remains O, (1)
for any B.

REMARK 1: It is possible to studentize the OLS estimates with a variety of
heteroscedasticity and autocorrelation consistent (HAC) robust procedures,
including the following time domain estimate,

u -1
p— /
V=n E X1qX;,
=1

n—1 -1
><Zﬂo(j)v“(j)(quu)+7quq(1) (szqx,q> ,

Jj=0 t=1

where I)(0) = 53 Lo(j) = 1, j # 0, ¥z(j) = n™' L1 €&y, and 7, (j) =
(1/n) Zt 1 Xiq%14,, (se€, e.g., Robinson (1998)). Vs asymptotically equiva-
lent to ¥ for weakly dependent time series, but for NFI processes the asymp-
totic distribution of ¥ is slightly different from that of I’. See Marmol and
Velasco (2002) for a similar proposal.

REMARK 2: The assumption of equal memory for all series is not critical for
these results and Assumption E can be relaxed to allow for different values of
d.=(d,d,,...,d,). Assume for instance that the vector z, can be partitioned
as z; = (y, x},, X,)’, where y; is a scalar NFI variate with memory parame-
ter dy, and x;, and x,, are m;- and m,-dimensional vectors of NFI processes
(m; + m, = m) with memory parameters d and d, respectively, with d > d > 1
According to our definition of fractional cointegration, a necessary condmon
for cointegration in this fractional setting is that d; = d. Let

Wyy Wy Wy
0= w y Oy ),
wWyy Oy Oy
conformably with z,, where the diagonal submatrices (2;; and (2, are assumed

to be positive definite such that x;, and x,, are not permitted to be individually
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cointegrated. Then, it can be proved as in Theorem 1 that, under Assump-
tions A-C, as n — oo, when the elements of z, are spuriously related of or-
der d, the Wald statistic has a well-defined asymptotic distribution depending
upon the number of NFI processes of orders d and d in the system.

3.3. Wald Test under Cointegration

We now address the asymptotic analysis of our Wald statistic with a
HAC-type studentization under cointegration. For this, let z, = (y;, x})’ be
fractionally cointegrated of orders (d,d, ..., d; 6*), 6* < d, so that (2 is sin-
gular and, in view of Assumption D, p? =1 and B, = 2;!@,,. In this case,
(20) becomes

(28) B()xl &,
where &, = (1, —By)er.

ASSUMPTION F: (i) z, is fractionally cointegrated (so that p* = 1) with
d>6>: 1

(11)w§§x_w§ @ (2w, > 0;

(iii) (1, —BO)C(l)(l Opn) > 0.

With condition (i) we focus on cointegrated systems with nonstationary er-
ror terms to guarantee that 6* = & in our triangular representation, so that the
error term &, essentially behaves as an NFI process of order § with innovation
¢ = (1, —By)C(L)e,. See, however, Remark 3 in Section 4 for the stationary
case. Assumption F(ii) states that the fractional cointegration is regular in the
sense of Park (1992, Definition 2.3). Assumption F(iii) entails that the corre-
sponding limiting process has nondegenerate finite-dimensional distributions.

For z; = (&, x)), let

O = [ @& “’;g
wxf Qxx

stands for the long-run covariance matrix of (c,, A%x!)" with * partitioned
in the obvious way. Define the normalizing matrix function D7 = diag{n'/*-?,
n'?=[,}, and let z;(r) = D;z},,,, for 0 < r < 1. Then, under Assumptions A~F,
as n — 00, zi(r) = (B(8;r), B(d; r)')' using the obvious notation. Using the
Continuous Mapping Theorem (CMT), it follows that

1 1
nw, (B B) (/ omQO(ry dr) (/0 Q(r)Bg(S;r)dr>,

obtaining the well-known result that B is consistent for By under fractional
cointegration. It is also possible to show that @y and Bj have the same
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asymptotic distribution under fractional cointegration than their full-band
counterparts if M~' + Mn~' — 0 (cf. Robinson and Marinucci (2001)). This
consistency of ﬁ, however, has no effect on the convergence rate of WW( E , Bo),
whose asymptotic behavior under fractional cointegration is described in the
following result. Proof of this theorem follows as in Theorem 1 and is thus
omitted.

THEOREM 2: Under Assumptions A-F, as n — oo,
W(B, Bo)

1 1 1
=W :ZEf B.(8; r)Bj(d;r)’drV*"f Bi(d;r)B¢(6;r)dr
0 0
and
1
V* = ./o y;(s){yj;qxq(s) Y Y, 1=+, (1= s)'} ds,
1-s
Yr(8) ::/ B:(8;r)B¢(8; 1+ 5)dr,
0
1-s
'y;qxq(s) ::/ Bi(d;r)Bi(d;r +s) dr.
0

Under cointegration B is n¢-?-consistent for B, but ’~! diverges as n*“*~?
producmg an automatic normalization of the Wald statistic W(B Bo) asin the
spurious case, though with a different asymptotic distribution. By contrast with
the spurious case, this result would allow consistent testing of the value of B,
under cointegration, since W(B, B) diverges as n*“~® as n increases for any
B # Bo-

In our single equation framework we are interested in testing the hypothesis
that there exists a cointegrating vector. Indeed, since there are p variables con-
tained in z,, there could be up to p* < p linearly independent (p x 1) vectors
H = (hy, hy, ..., hp+)such that H'z, is a fractionally integrated (p* x 1) vector
of orders (61, 82, ..., 8,+),say,withd > 6" (:=max{8;, 8, ..., 6,+}) > 2 Then
it is simple to generalize our triangular representation allowmg for pt >1
cointegrating relationships. In contrast to the standard I(1)/I(0) cointegration
case (cf. Wooldridge (1991), Johansen (1992)) it can be proved under mild
regularity conditions that, when p* > 1, the single equation OLS estimates B
do not provide a consistent estimate of a suitable linear combination of the
cointegrating relations, though they remain bounded in probability. In the par-
ticular case of a common error memory §* =é;,i=1,..., p*, the OLS residu-
als .f, can be shown to approximate a linear combmatlon of NFI(6") processes
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as in the single equation setup. Nonetheless, not all the conditioning regres-
sors in (21) will satisfy Assumption D, affecting the limit distributions of V'
and W(B, B).

4. A TEST OF COINTEGRATION

We are interested in testing the null hypothesis
Hy: (y:, x,)' are spuriously related NFI processes of order d > }
against (nonstationary) fractional cointegration alternatives where & > 1

H,:(y,, x;) are fractionally cointegrated of orders (d, d, ..., d;
8), % <6 <d.

For convenience of analysis, herein we restrict the analysis to a form of weak
cointegration where 8 > 1 under H;. For 8 < 1, the asymptotic theory changes,
but our test can be shown to remain c0n51stent see Remark 3.

In previous sections, we have illustrated the asymmetnc behavior of the
numerator and denominator of W(B, Bo) under spurious and cointegrated
relationships, in spite of the fact that W(B, Bo) converges to well-defined dis-
tributions under both hypotheses. Suppose now that an estimate B, of S, is
available, consistent under Hy, but inconsistent under H;. Then, using the OLS
residuals, we compute V' and

W(B, Bo) = (B~ Bo) V(B - Bo),

SO W(B Bo) - W(ﬂ Bo) = 0,(1) under H,. However, under H, the numer-
ator B BO of W(B BO) is bounded away from zero, but the denominator 1%
computed with OLS residuals is still 0,(1). This suggests a consistent coin-
tegration test by means of comparing W(B, BO) with the appropriate critical
value of the W, distribution, so the test has correct asymptotic type-I er-
ror (cf;\Theorem 1), but from Theorem 2, W(B, B,) diverges as n — oo be-
cause V! diverges while EO is inconsistent for B,.

To develop this idea, we propose in this section a semiparametric narrow
band estimate ﬁo , depending on a bandwidth number N, which diverges with n
under H,. This permits V! and BO’" to diverge simultaneously under cointe-
gration, accelerating the rate of divergence of W( B, BO ) under the alternative
hypothesis. Our estimate of BO depends in turn on knowledge of the memory
d and 8( < d) of levels and errors, so we also discuss semiparametric estima-
tion of such parameters, which permits us to keep modelling assumptions to a
minimum.

In the spirit of the Hausman (1978) principle, our approach relies upon com-
paring two estimates of the projection vector 3, with different properties under
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the competing hypotheses. However, our test has several important differences
with respect to the standard case where both estimates are n'/?-consistent un-
der the null hypothesis, with asymptotic normal distributions but different ef-
ficiency. First, in our framework, limiting distributions are not standard and
rates of convergence of basic statistics change under the different hypothe-
ses, SO we use an automatic normalization by V. Second, instead of comparing
efficient vs. inefficient estimates under the null, in our test we compare consis-
tent vs. 1ncon51stent estimates. As a consequence, the asymptotic distribution
of W(B Bo) is the same as that of W(B Boy) under H,. Furthermore, under
the alternative, B, is not only inconsistent for B, but diverges, improving the
rate at which W(E, Eo) diverges when cointegration is detected.

4.1. Memory Estimation

We consider H and H, simultaneously with z} := (£, x})" and &, := y, — Byx,
with z, = (y, x})’ given by (16) and (17) in both cases. Most theoretical work
on semiparametric inference on long memory and fractional time series has
been developed under the assumption that the observed series, differenced an
integer number of times if necessary, are exactly covariance stationary. Then,
under Assumptions A and B, we define the stationary version of the incre-
ments Az} of the NFI vector z}, as

As; =diag{A?, A" ... A (t=0,+1,42,..)),

now feasible with infinite fractional filters since (1 —6), (1 —d) € (—5, 2) The
vector process vy (v,, v'")’ is covariance stationary, where v =[A4"(L) +
A CY(L)le, — Bov and v¥ = [A*(L) + A4°C*(L)]e,, with A(L) and C(L)
partitioned in the obvious way, and since d — 6 > 0, v} is integrated of order
zero. It can be checked that As} converges in a mean square sense to Az} as
t grows because the initial conditions play asymptotically no role when the de-
gree of integration is less that 2, though their effect may last for a long period.
This initial conditions problem might affect the properties of estimates and test
statistics based on the observed, only asymptotically stationary, Az}, compared
to those based on the stationary As; (see, e.g., Velasco (2002)).

Under Assumptions A-F and (18) (allowing for p? < 1) the spectral density
matrix of As; satisfies

1 -
(29)  HiearM) = ﬁA!)*A(l +O0(A + A1)

as A — 0%, where A :=diag{e/™®~V/2N\1-2, gimd=DRNI=d | eimtd=D2\1=d} “and
A is the complex conjugate of A. See Lobato and Robinson (1996) and Lobato
(1999).
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Under this set of assumptions we obtain that each element of A(A) :=
Z;’:O Ajexp(ijA) and C(A), defined similarly, is differentiable in (0, 7] with

(30) %Aa()\)=0()\_1I|Aa(A)II), A= 07,

where A, is the ath row of A(A). This implies that each element of H s 45 (A)
is differentiable in (0, 7] and

EXH”0)=OO4”L“MD as A—0" (a,b=1,...,p).
For the estimation of d, we minimize the concentrated local Gaussian likeli-
hood (cf. Robinson (1995a), Lobato (1999)),

2m(d —1)
@) YMa) —logl.QM(d)I—TZlog()\j),

j=1

with
o~ 77 M
(32) Q%) := MEA (d) Re{l 14 (AN} (),

where Re stands for real part. Note that A;(d) := diag{A} ™%, ..., A]™} is ap-
proximately, for low frequencies, the (square root) spectrum of Ax,, up to a
constant. Here M grows slower than n as n — oo. 2% (d) can be replaced by
any of its diagonal terms (and the factor m in (31) by 1) to obtain an initial
univariate consistent estimate. N

An efficient semiparametric estimate dy can be calculated through a

Newton-Raphson iteration
oYM (a)
ay ad ay ’

starting from a root-M consistent estimate ;1\(,‘}), obtained, e.g., by the previous
univariate Gaussian (or by a log-periodogram) procedure applied to 4x;, or
any other component of Ax, (or Ay,). _

Thig\ method gives a better-than-logn consistent estimate dy, ie.,
logn(dy —d) -5 0 (see Robinson (1994, 1997)), if we could use as input As’
and M-! log2 n — 0. However, in our setup we have to check that the use of Ax,
makes no asymptotic difference for consistency of estimates of d. This is for-
malized in the next lemma. We concentrate only on the Gaussian semiparamet-
ric estimate, but a similar result is possible for the log-periodogram estimate
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under stronger conditions on the distribution of z,. See Hassler, Marmol, and
Velasco (2003).

LEMMA 2: Under Assumptions A-F, (18), and
(34) (M4 Mlogn)login+Mn' -0
as n — oo, for some € > 0, then logn(EM —d) A 0, where

dy =arg min YY(7)
7€[V1. V3]

and the true value d € [V,, V,] C (3, 3).

The choice of M for memory estimation is only slightly more restricted than
for the study of the properties of the (local) LS By in Lemma 1, but note
that (34) holds if we choose M ~ Kn“ for any 0 < a < 1 and some positive con-
stant K. The mean square optimal rate is given by M ~ n*> for many processes
with regular spectral densities, including the increments of the stationary ver-
sions of NFI processes with Assumption A strengthened to 2-summability (see
Robinson and Henry (1996)). However, in our setup with innovation process v,
asin (17), where d € (3,2) and & > { so that d — § < 1, the optimal rate of M
for estimation of d is at most n>¢-/2@=5+1l ypder both H, and H,. This rate
can be arbitrarily slow for § close to d and never better than n?>.

The memory 6 of the errors ¢, is estimated by means of the increments AZ,
of the OLS residuals through

Oy = argfe?vl,igzl Y (7);
(35)
Y} (8) :=log N%(5) - 200 1)21 og(A)).

Jj=1

Because under the alternative the OLS estimate is consistent for B, with pos-
sibly a fast rate of convergence, the ¢, are asymptotically close to &, and &y is
log n-consistent for the memory 6 < d of the cointegration errors. By con-
trast, under H,, the residuals &, are a linear combination of NFI(d) processes
(conditionally on the estimate B) so their memory estimate 84, based on in-

crements A&, is log n-consistent for d under H,, and an appropriate choice of
the bandwidth M cf. (34).

4.2. Consistency of the Test

Since By = £2;!w,,, we consider separately the estimation of £2,, and w,,.
To estimate (2,, we use the GLS-type of estimate (32) obtained in the es-
timation of d, where the computation and consistency of 0% (d) requires a
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log n-consistent estimate of d. We allow in our notation for possibly different
values of the bandwidth numbers, M and N. Then, with d,; defined as in the
previous subsection, and using the same techniques, it is straightforward to
show that

(36)  DV.(dw) S 0.,

where N satisfies the same conditions of M in (34), and could be equal to or
different from M. R

For the estimation of w,, we use a similar strategy by means of ’u?ﬁ’y(SM),
where

~ 27 o ~
(37) wi\ly(s) = WZRC[AXA)'(A]))‘IZ'(B 1),
j=1

6,’(‘;(’6\,‘4) is consistent for w,, under H, and the assumptions of Lemma 2 be-
cause the memory of errors is equal to d under H,. However the errors are
NFI(§), § < d, under H, so the estimates 8" and ZBQ’Y(S) have different prop-
erties under H;.

Then, our proposal to complete the estimate of By is

BY = BY (dy, o) = ﬁfx(gM)_laxNy(gM),
from which it follows at once that
(38) W(B, BY) = W, under H,

from the consistency of BY. In the next theorem we summarize the conditions
for the consistency of our Wald test for cointegration testing.

THEOREM 3: Under Assumptions A-F, (18), and (34), for both M and N,
prob lim inf n*®~O N*¢-9W (B, BN) > 0, under H,,

ifd—8<3and

prob lim infr*®YNW(B, BY) >0, under H,,
ifd—6> %, so the test based on rejecting H, of no cointegration for large values
of W(B, Eg’) is consistent for H.

The divergence rate of W(B, Eg ) under H; can be arbitrarily slow if d is very
close to 8. In practice we expect lower power the higher N but with Nn=! - 0
as n — oo. Note that the choices of N and M are not linked, so M can be
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chosen so as to produce the most reliable estimates of d and & as possible,
because M does not enter mto the divergence rate of W under H,.

The consistency of the W( B /30 ) test is based on the different properties of
the residual memory estimate BM, and thus of B(, , under the null and alterna-
tive hypotheses. A direct semiparametric Wald test based on the memory Su
estimated from residuals compared to dy,, estimated from original data, could
diverge with n at most at the rate M™n1:2@=9) ynder H, (cf. Velasco (2003)).
However the properties of such a test are yet unknown under the null hypoth-
esis, and could depend on the particular regression estimate used to obtain
these residuals. Similar inefficiency problems might arise for the Hausman
test based on comparing different semiparametric estimates of d proposed in
Marinucci and Robinson (2001). Alternatively, the inclusion of 8y in our Wald
statistic through ,80 , allows us to outperform this semiparametric rate up to

nod=9 N4@=-d which, taking M = N, is always faster than M™in!-2@=9) because
Nn=' = 0.

In the case where the number of cointegrating relationships is unknown,
OLS residuals still can be used to obtain consistent semiparametric estimates
of 8, but when p* > 1, dy is no longer consistent due to the failure of As-
sumption D on x; (as exploited for z, by Robinson and Marinucci (2001)), so
it can be a good policy in general to base dy on a restricted set of variables
known not to be cointegrated, possibly just one smgle series. Then, desprte the
fact that IV~ does not diverge as n — oo when p* > 1, the W(B /30 ) test still
inherits the consistency properties of the residual based Sy

For unit root series, d = 1, Krdmer and Marmol (2004) have proved that
standard ordinary residual-based tests are consistent under fractional cointe-
gration alternatives, showing that the Z, test diverges faster than the (z-type)
augmented Dickey—Fuller (ADF) test under fractionally cointegrated alterna-
tives (see Section 5.1 for details on these tests). Specifically, they find that the
divergence rate of the ADF testis O,(n'~?), whereas the divergence rate of the
Z, testis O (n”1 ‘”) ifi<é<1. By contrast, when § < § < d =1, the square
root of our W(B, /30 ) test statistic diverges at the rate n‘ 3(nN~121-% which
is always faster than that of the ADF test (because Nn~' — 0) and also than Z,
if Nn='2 — 0. Hence, the fact that W(j, BY) takes advantage of the possibly
simultaneous superconsistency of OLS estimates and of the (semiparametric)
inconsistency of GLS estimates under cointegration, entails no asymptotic loss
of power compared with these parametric procedures in spite of the semipara-
metric nature of our modelization.

REMARK 3: For convenience of analysis in the previous two subsections
we have considered a form of weak cointegration where & > % in H,. In this
sense, the possibility of having stationary equilibrium errors may affect the as-
ymptotic properties of our tests in various ways. In the first place it might be
possible that d — 1 > §, so the cointegration vector in general is of memory
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&* = max({8, d — 1}. Then the rate of convergence of OLS estimates of B8 has

a different form when d + 8* < 1, 6* > 0, and the studentization by V also
has different properties. Regarding memory estimates, we can only hope that
1

(3;4 -3 —3 because of the use of (noninvertible) increments of regression

residuals, so the divergence rate of W(E, E{)" ) also would be affected by this
fact. If knowledge of d < 1 can be used (so 8 < 1), the estimate of §* can be
constructed in terms of original residuals &, or on tapered observations (see
Velasco (2003)), increasing the asymptotic power. Nonetheless, in the Monte
Carlo experiment in the next section we show that the empirical power of the
Wald test is not much affected if 8 is only slightly smaller than %

5. EXPERIMENTAL AND EMPIRICAL EVIDENCE
5.1. Monte Carlo Simulations

To evaluate the finite sample properties of our proposal for fractional coin-
tegration testing we have simulated several configurations of the following bi-
variate DGP,

(39) »={0{x+¢,

where, fort=1,...,n,

t 1-L)° '
(40) (il) = (( 0 ) Qa _OL)~d) (Z;) Liso(2)

so that A%y, = {uy, + A %uy, := vy, and

(1—¢L)u1t ~ 0 (1)]2 w1y ) _ w12
w (B )e((6) (50 %) =T

Assumption (41) on the dynamics of (uy,, uy,)' is not very restrictive in our
fractional framework, since many economic time series seem to be well repre-
sented as fractional white noise or finite autoregressive processes. The regres-
sion equation is

“42)  y=a+pBx+E.

The spurious case comes out by setting { =0 (so that y, = ¢, and p =),
8 =d, and |p| < 1. As for the alternative of fractional cointegration, we set
{=1land 6=d — % We also normalize w; = 1, so that w, stands for the
signal-to-noise ratio. The parameter y controls the value of p under H, and
the endogeneity of regressors under H;. The autoregressive parameter ¢ in-
troduces some flexibility in the short properties of u;,. The complete experi-
mental design is given by

d=1{7,1,13}, y=1{0,.5 8}, w=1{512}, ¢=1{0,.3,.6).
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Since the estimation of dM, 8M, and Bo is invariant to w, under the null of no
cointegration, we fixed w, = 1 when evaluating the empirical size of WW( B, BO

The number of replications is 100,000 under H, and half of this number un-
der H,, and the nominal size is 5%. For each combination and replication we
obtain first x, and ¢, and then y,, t =1,2,..., n, by means of (39). We re-
port the results for two sample sizes n = 100 and 200 (400 is also used for
size simulations) and three values of N = n*, n®, n” for the computation of

EON = E{;’ (dy, EM), The choice N = n* is important because for slower grow-
ing N than n-° our Wald test is asymptotically more efficient than the Z, test,
but finite sample performance of semiparametric estimates could deteriorate
if N is too small. For the LS estimates 8 and ' we always used full band OLS
regressions, because the differences when using a narrow band (e.g., those de-
fined by the bandwidths N proposed for By) were negligible, as predicted by
our asymptotic theory.

The bandwidth M used for the computation of (dM, BM) was fixed to
M = n*? for all cases and choices of N, because this choice turned out to be
secondary in terms of performance of /30 and W(B B(] ). Since the optimal
choice of M depends on the smoothness of the spectral density of u, and on the
degree of cointegration, we used this value which is the best under our model
(as far as & > 1) and is also optimal under standard I(1)/I(0) cointegration.

Following expression (42), we first regress y, on a constant and x,, obtaining
a, E, ¢ =y, —a— Bx,, and V using (25). Then, we estimate the memory para-
meter of x,. Because it is a nonstationary process, we first-difference x, prior
to d estimation, and then add unity For the computation of dy we use nar-
row band Gaussian estimates minimizing the univariate version of (31) based
on Ax,, and we employ the same strategy for Sy, this time using the differ-
enced LS residuals AZ,. We report results for joint semiparametric estimation
of (d, ) by means of a second step (33) starting from the previous univariate
Gaussian estimates, all with the same M = n**. This method improved finite
sample performance for hlgh values of y, where correlation among the series
can be used successfully in joint memory estimation. Finally, we compute BD
and W(B BO ) as in Section 4 and compare the observed value with the corre-
sponding critical value of W,..

The distribution of W, = Wy (d, m,m,) has been simulated for d =
.6(.1)1.4, m=1,2,3, and m, = 0, 1,2 using independent Gaussian series
for z, of length 1,000. The results of 100,000 replications are summarized in
Table I by means of the coefficients of polynomial OLS regressions of (the
fourth root of) the 1%, 5%, and 10% sample quantiles for each value of d on
(1,d,d* d*). This particular transformation was used to obtain approximately
homoskedastic errors in the polynomial regression. This table can be used with
great precision to obtain critical values for any value of d € (4, 3), replacing d
by dy.

Empirical size and power results are summarized in Tables II and III, respec-
tively.
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TABLE Ia
ASYMPTOTIC CRITICAL VALUES OF Wy, @ = 1%

m const. d a2 a3
1 no constant or trend —-4.377 15.169 —6.871 1.136
constant 1.624 —2.402 5.932 —1.945
trend 1.495 —.465 1.945 -.391
2 no constant or trend —4.852 15.874 —6.880 1.597
constant 1.239 —1.813 5.525 -1.517
trend 1.308 —.268 1.510 134
3 no constant or trend -5.737 18.609 -9.609 3.088
constant 981 —.856 3.875 -.292
trend 1.396 —.916 2.193 183

TABLE Ib

ASYMPTOTIC CRITICAL VALUES OF Wy, a = 5%

m const. d d? P
1 no constant or trend —.798 3.931 1.879 -1.317
constant 1.824 -2.518 4.371 —1.256
trend 1.388 =271 1.169 —.250
2 no constant or trend -1.571 5.614 1.119 —.841
constant 1.703 —2.794 5.094 —1.345
trend 1.373 —.662 1.634 —.198
3 no constant or trend -2.135 6.940 367 —.283
constant 1.240 -1.336 3.333 -.361
trend 1.196 —.230 1.062 .250

TABLE Ic

ASYMPTOTIC CRITICAL VALUES OF W,, a = 10%

m const. d d? a3
1 no constant or trend 430 303 4.163 —1.818
constant 1.600 —1.761 3.074 —.831
trend 1.148 326 332 -.017
2 no constant or trend —.459 2.379 3.075 —1.330
constant 1.647 —2.388 4.037 —.985
trend 1.141 .020 737 012
3 no constant or trend —.981 3.533 2.593 —.951
constant 1.349 —1.559 3.128 —.402
trend 1.148 —.134 .830 .186

Notes: The numbers given in each line of the table are the coefficients of an OLS regression of the
fourth root of simulated quantiles of the F-statistic on (1, d, d?,d3),d = .6(.1)1.4, under the three alterna-
tive specifications, with original data, demeaned data, and linear detrended data. In all cases, 100,000 sim-
ulations of m + 1 independent Gaussian series of length 1,000 with zero mean and unit variance are
fractionally integrated and then full band statistics are computed.
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TABLE 11
EMPIRICAL SIZE OF 5% W(B, BY) TESTS

N (n=100) N (n=200) N (n=400)
d P ns 26 w7 ns b nl S 2 wl
7 0 .0 6.08 5.24 4.86 5.55 4.85 4.81 5.03 4.82 4.81
3 5.23 4.81 4.72 4.95 4.70 4.75 4.79 4.74 4.66
.6 3.92 3.86 3.85 4.01 4.06 4.06 4.24 4.30 4.15
S .0 1013 7.13 533 10.54 7.17 526 1015 7.27 5.20
3 7.04 5.47 5.12 7.43 5.63 5.01 7.54 5.79 4.88
.6 4.22 4.24 5.15 4.48 4.71 6.03 4.63 4.88 6.72
8 .0 1922 11.83 712 2162 13.10 6.50 22.00 1422 6.89
3 1253 7.54 6.91 15.06 8.57 594 16.59 9.93 5.79
.6 5.56 542 1039 7.24 534 1264 9.61 499 1331
1.0 0 0 6.16 5.83 5.72 5.51 5.36 5.41 5.17 5.15 5.26
3 5.33 5.24 5.18 5.06 5.04 5.11 4.89 4.94 5.02
.6 3.72 371 3.70 3.89 3.98 3.98 4.10 4.16 4.17
5 .0 7.71 6.52 5.87 7.17 6.04 5.48 6.43 5.63 5.21
3 5.92 5.40 5.38 5.59 5.13 5.04 5.14 4.90 4.87
.6 3.69 3.97 4.62 3.56 4.01 4.69 3.38 3.80 4.61
8 .0 1174 8.38 6.52  11.86 8.13 590 10.63 7.64 5.63
3 7.71 5.93 6.25 8.12 5.70 5.38 7.17 5.26 4.83
.6 3.86 4.63 7.84 3.85 3.92 7.51 3.43 2.77 6.55
13 0 0 5.15 5.04 5.08 4.96 4.90 4.97 4.68 4.74 4.79
3 4.52 4.55 4.59 4.62 4.58 4.68 4.43 4.52 4.58
.6 3.36 3.41 3.47 3.61 3.74 3.76 3.74 3.88 3.88
S0 6.04 5.38 5.04 5.89 5.23 5.05 5.50 5.07 4.82
3 4.73 4.53 4.63 4.81 4.60 4.70 4.57 4.51 4.50
.6 3.44 3.76 4.37 3.38 3.81 4.36 321 3.62 4.26
8 0 8.59 6.68 5.55 8.64 6.60 5.35 7.98 6.28 5.23
3 5.86 4.96 5.41 6.06 4.88 4.91 5.53 4.61 4.61
.6 3.46 4.47 7.20 3.21 3.80 6.60 2.72 2.76 5.67

Overall, from Table II we learn that W(E, E{," ) has good size properties in
small to medium sample sizes and even for moderate values of p. This is spe-
cially so in the mean-averting case where d > 1, the asymptotic approximation
improving with sample size. The lower choice of N leads in general to overre-
jection of H, for the largest p (and d < 1) but the other two achieve more con-
servative tests, except when ¢ = .6, where the situation is reversed. As regards
power, it follows from Table III that the higher the signal-to-noise ratio w, and
the larger the correlation v, the higher the power of the statistic W(B, By ), as
expected. As predicted by the results in Section 4, the power is in general quite
large for the sample sizes considered and increases the smaller N. We only re-
port results for the two smaller values of ¢, but Table III makes clear that a
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TABLE III
EMPIRICAL POWER OF 5% W(B, BY) TESTS

$=0 6=3
N (n=100) N (n=200) N (n=100) N (n=200)

6 n? ns 6 7 5 6 7 5 6

d Y w ’l's n n n n n n n- n: Vl‘7
2

J 0 5 315 204 82 511 342 151 166 101 48 294 173 7.1
1.0 49.6 438 139 70.8 564 289 287 180 6.9 492 330 138
20 672 522 22,6 844 744 474 459 309 11.7 67.8 533 26.0

S5 512 388 19.0 739 63.6 421 331 233 105 559 442 244
1.0 63.1 50.2 244 829 750 540 428 30.8 133 674 56.1 33.0
20 748 628 32.0 895 842 66.6 557 412 18.6 782 66.6 44.7

8 5 665 544 29.6 883 827 65.6 458 349 345 720 63.8 42.0
1.0 746 634 336 92.1 883 73.7 535 412 20.7 782 70.7 483
20 825 727 389 949 924 817 63.7 500 25.0 844 779 56.6

10 0 5 226 147 75 350 214 100 113 7.6 47 179 102 52
1.0 372 251 114 56.0 386 18.7 19.0 11.8 6.0 321 192 8.6
2.0 550 40.0 18.0 748 59.6 331 315 202 86 512 348 158

S5 39.0 286 157 58.6 447 281 227 161 9.2 384 280 17.0
1.0 51.0 384 201 719 585 374 300 211 10.1 50.0 372 21.8
20 649 514 263 837 732 507 41.1 292 13.7 63.6 504 293

8 5 549 426 254 782 66.0 46.6 338 262 16.1 56.5 45.6 30.7
1.0 651 51.7 28.6 86.6 763 548 40.6 309 175 658 53.8 35.0
20 763 633 356 929 863 66.1 504 384 198 759 61.9 450

13 0 5 166 110 63 248 151 7.6 84 60 42 128 7.6 45
1.0 27.0 182 9.0 409 269 135 135 87 50 224 134 6.6
2.0 417 294 140 593 438 239 222 142 6.7 371 241 113

S5 289 214 129 432 320 211 165 122 77 277 205 134
1.0 38.6 284 160 558 428 276 21.8 157 89 365 267 165
20 51.1 390 21.0 69.7 56.7 37.7 30.0 21.3 109 48.6 36.7 219

8 5 430 335 215 62.6 50.2 364 258 20.7 13.6 434 350 24.8

1.0 524 409 243 73.0 603 427 31.0 24.0 14.6 513 412 278
20 642 513 285 834 724 523 390 293 162 62.1 50.2 32.9

large ¢ makes detection of cointegration much more difficult, since these val-
ues increase the finite sample persistence of &, and, therefore, of the observed
residuals &;.

For completeness, we have also studied the finite sample behavior of
two well-known classical residual-based tests, namely, the ADF test, which
amounts to calculating the OLS ¢-test of the null hypothesis a = 0 in the
regression

k
(43) AE: Zagz + Z aiAEr—i + errors,
i=1
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and the Z, test,

1 n n -
@) Z.=n@-1)- (n' Swey 3,3,_5) <n225,21> :
s=1 =2

t=s+1

where wy =1—-s/(I+ 1) and B, :E, - a’gf,_l. These tests, although not orig-
inally designed to test against fractional cointegration, are consistent against
fractionally cointegrated alternatives. See Kramer and Marmol (2004). The
order k in the ADF regression was determined using the Akaike information
criterion, whilst the lag truncation parameter, /, of the Z, test was determined
by means of Andrews’ (1991) data-dependent formula assuming that A€, — AE
follows an AR(1) process. Both procedures are fairly stable with respect to .,
so in Tables IV and V we only present the results for w, = 1.

It turns out that the Z, test has poor size properties except in the unit root
d =1 case, displaying vast rejection percentages if d < 1 and almost zero re-
jection percentages if d > 1. See Table IV. In terms of power, note that even in
the case d = 1, when ¢ = .3 the Z, test has almost no power and our Wald test
compares favorably for many parameter combinations. On the other hand, the
ADF test exhibits only moderate size distortions, but it has low power proper-
ties. See Table V. Our study, then, confirms previous findings of Gonzalo and
Lee (1998) and Dittmann (2000) on the lack of reliability of classical cointe-
gration tests in the presence of fractionally integrated error terms. By contrast,
our test has good size properties and shows comparable power to that of ADF
and Z, tests in spite of its semiparametric nature and the fact that, in contrast
with ADF and Z,, we treat d and § as nuisance parameters to be estimated
with only moderate efficiency losses in the particular unit root (d = 1) case.

TABLE IV
EMPIRICAL SIZE OF 5% RESIDUAL-BASED TESTS

$=0 6=23
n=100 n=200 n=100 n =200

d P ADF Za ADF Zy ADF Zo ADF Zy
i .0 8.7 62.3 13.0 81.3 83 27.7 12.2 533
5 8.5 61.2 12.7 80.8 8.1 29.8 11.9 55.4

.8 8.1 60.4 12.1 79.9 7.8 40.5 12.2 533
1.0 .0 5.8 5.1 53 5.4 5.7 1.9 5.3 2.6
.5 5.6 4.8 5.2 5.2 5.7 2.1 5.1 2.7
8 5.6 4.7 5.0 5.0 5.6 3.6 5.0 4.0

1.3 .0 5.3 2 33 1 5.3 1 3.4 1
5 5.1 2 33 1 5.2 1 34 1

.8 5.1 2 33 1 53 2 33 1




TABLE V
EMPIRICAL POWER OF 5% RESIDUAL-BASED TESTS

$=0 ¢=.23
n=100 n=200 n =100 n=200

d Y ADF Za ADF Zo ADF Zo ADF Za
N .0 17.4 99.7 37.4  100.0 15.6 88.7 33.9 99.7
.5 15.6 99.6 35.1  100.0 14.4 86.6 315 99.7
.8 11.3 99.6 27.9  100.0 10.9 80.1 24.3 94.4

1.0 .0 9.5 46.2 12.1 64.4 9.1 14.8 11.6 31.1
.5 9.2 47.8 12.1 66.9 8.8 14.0 11.3 31.1
.8 8.3 529 11.4 73.5 7.7 12.5 10.2 314
1.3 .0 6.7 23 5.1 1.9 6.7 i 5.2 9
.5 6.5 2.6 5.0 2.3 6.4 i 5.0 1.0
8 6.2 3.7 49 3.7 6.1 7 4.9 1.2

5.2. Empirical Evidence

In order to judge the empirical applicability of our testing procedure, herein
we are concerned with testing one of the most important implications of the
quantitative theory of money, namely, the stability of the (inverse of)) velocity
of circulation of money (the ratio of money stock to nominal income). The
dynamic properties behavior of the velocity of money has attracted a great
deal of attention in the literature given its implications for the monetarist po-
sition. The justification for the stable velocity of circulation is that people wish
to hold as little cash as possible in order to carry out their transactions. The
velocity of circulation of money will therefore be as fast as the existing money-
holding-technology permits and therefore relatively stable. Our empirical work
employs the data set of Engle and Granger (1987). All data series are season-
ally adjusted, quarterly observations of (the log of) U.S. simple-sum (M1, M2,
and M 3) monetary aggregates and (the log of ) GNP, covering the period 1959:1
to 1981:2 (n = 90). We also considered the extended sample period 1959:1 to
2000:1 and the fact that financial innovations of the 1970’s and the deregula-
tion of the early 1980’s might have affected the low-frequency properties of the
series, obtaining similar results which are not reported for the sake of brevity.

In their seminal paper, Engle and Granger tested whether velocity is station-
ary by means of the ADF test assuming the standard I(1)/1(0) cointegration
setup. Only for M2 was the test significant (at the 5% level). For the other
aggregates they reject cointegration and the stationarity of velocity. In Ta-
ble VI we present the results of applying our general testing strategy to Engle
and Granger’s data set. In order to judge robustness of our procedure to the
bandwidth N, we chose the same grid of values as in the simulation, namely,
N = {n3,n®, n7} = {9, 14, 23}. These values provide a reasonable balance be-
tween size and power, according to our Monte Carlo experiments and avoid
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TABLE VI
(LoG) MONEY VERSUS (LOG) GNP, 1959:1-1981:2

M dy B B N W, BY)
M1
20 1.386 .949 .630 9 2610.44
14 600.38"
23 197.45
M2
20 1.378 1.176 966 9 357.16*
14 763.42*
23 1714.42*
M3
20 1.366 1.133 1.083 9 128.98*
14 672.35*
23 2064.84*

Notes: The superscript * indicates statistical significance for the null hypothesis of no
cointegration at the 1 percent level.

higher frequencies that could be contaminated by seasonal or other cyclical
behaviors. M was fixed to n*/?.

Our estimates dy, 8y, and B are broadly comparable to those obtained by
Robinson and Marinucci (1998) for the same data set. In Table VI, dj, stands
for the Gaussian estimator of the memory parameter of log(GNP). Robinson
and Marinucci failed to reject the null of equal orders of integration in
a clear majority of cases for log(M1)/log(GNP), log(M?2)/log(GNP), and
log(M3)/log(GNP).

The integration order of log(GNP) turns out to be about 1.3 and esti-
mates 8, are strongly inconsistent with stationarity, ranging from .95 to 1.17.
For these values of d and 8, our Monte Carlo experiments show that ADF and
Z, are not reliable tests, with very low power to reject the null of no cointe-
gration. In our case we reject such a null for all three monetary aggregates at
1% level, uniformly in N.

6. CONCLUSIONS

We have developed in this paper a general theory for cointegrated and spu-
riously related NFI processes. We propose consistent tests of these hypotheses
based on the observation that the Wald statistic of OLS coefficients, appropri-
ately normalized, converges weakly under both hypotheses, in particular to a
distribution W,,, which only depends on d under the null. Our test exploits
the different properties of OLS coefficients and our normalization ¥ based
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on OLS residuals under the two hypotheses, by means of the comparison of
the OLSE B with a further estimate of the projection vector By. Our proposal
is to use an estimate B that diverges for cointegrated series for which 8 is con-
sistent, so we can improve the divergence rate of the adjusted Wald statistic.
However both aspects depend on the distance d — §, reflecting the fact that
closer alternatives are much more difficult to detect for a given sample size.
This also shows that, although the null hypothesis is composite when parame-
terized by means of the parameter p (p? < 1), the alternative is also composite
when stated as 8 < d vs. the simple null of 6 =d.

Our tests are intuitive and simple to implement, and show good power prop-
erties, even when compared to unit root cointegration tests, which assume the
information on the degree of integration of the original series. These tests only
require the choice of a narrow band of frequencies that contains the relevant
information about the long run dynamics of the time series vector considered.
This feature is common to most devices used in econometrics to correct for
autocorrelation of unknown form. However the semiparametric character of
the methodology not only guarantees the suitability of our tests for general
processes without resort to difficult-to-justify parametric or distributional as-
sumptions, but hopefully provides desirable power properties in applications.
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28903 Getafe (Madrid), Spain, francesc.marmol@uc3m.es
and
Dept. of Economics, Universidad Carlos Il de Madrid, Calle Madrid 126,
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APPENDIX: MATHEMATICAL PROOFS

PROOF OF LEMMA 1: Assuming that 7 is odd (otherwise replace the lower limit in the sums
by 1 — [r/2]) we have that

[n/2] [n/2]
( ) ( Y Ig(A) =2 ) Rely(k ))

Jj==[n/2] j=M+1

[n/2] (/2]
x( > L2 Relgy(/\J)),

j==In/2) j=M+1
where Re stands for real part. Now, as n — oo,

(n/2] n
1 1
(A1) Y LY =Yy IZIgg(/\ W= Y g = =4
t=1

4ar
j==In/2] j=1

[n/2)

_dq,_ Z Igy()‘ )_-—W lzg:)’r LB,

j==In/2]
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where 4 = fnl Q(r)Q(r) drand B= ﬁ: Q(r)By(d; r)dr are nondegenerated random variables.
From the proof of Proposition 4.1 of Robinson and Marinucci (1998) we have that E1..(A;) =
O(IAj|™) if § <d < 1and O(A;|7[j|*“-") if d > 1, s0 that, | j| < n/2,

(A2) E|lL (A = O(n|j|72mn:1)

as A; — 0, using Cauchy-Schwarz for each element in I, (A;), implying that

(n/2] (n/2]
E| Y Rela(A)| = D ElL.OA)I
j=M+1 j=M+1
- 0( Z nZdelfzmin(zl,l)) =0(n24M172min(d.l))
j=M+1

as M — oo. Then using that, fora=1,2,..., |j| <n/2,
L (X)) = O(IA |22~ = O™ 72)

(see, e.g., Robinson and Marinucci (2001)), so for 4, = diag(n'/?, ..., n™~'/2),

[n/2] [n/2] n
o' Y Rel, (g, < Y ||w,:‘1qqu,->¢,:‘u=0< > |j|‘2)=0<M“),
j=M+1 j=M+1 j=M+1

and proceeding in a similar way for the cross terms, we obtain that

[n/2) [n/2]
E| 3 Rel,(Ap| < D (n™ELyA) Iy Lepw; ')
J=M+1 J=M+1
1n/2] )
:0< Z Lﬂ—mm!d.lkl)
J=M+1
— O(M—min(d.])) —OM +M™M).
Then finally,
[n/2] )
11,’:1 Z Relgg()\,-)‘I’JI :OP(M]~2mm(LLl) +M“1+M’l) :OP(MI‘Zd_i_M—I),
J=M+1
In/2] )
nly! Z Re I, (A;) =OF(M1—2mm(d,l) + M +M™) :Op(lezd +M7.
J=M+1

Collecting all the previous results, it follows that, as M — oo,

a (n/21 "
(%74) =( Z Iz:.c()\j)) [1+0,(M" + M~)]

j==ln/2]

(n/2)
x( > Igy()\/-)>[1+0P(M1‘Zd+M"')]

j==In/2]

= (%'I;Z: ) [1+0,(M" + M),
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Now we can write
Iiz(A) = Ly(A) = 2B}y Rell,y (AN + Big ey, (A)Bir.

Then we can obtain that, as M — oo, M <n/2, VM = IZ,, /21 + 0,(1), because taking expectations
of pairs of (cross) periodograms,

(n/2]
3 Re L., AD{Ly(A) = 2By Rellyy(A)] + Biy Ly, (A By}

j=M

[n/2]
— Op (néd Zj—4mm[1.41]) — Op(n4dM1—4mm(],d]) — Op(nw),

j=M

noting that by our Definition 5.1 and Theorem 5.1 of Robinson and Marinucci (2001) we can
control the fourth-order cumulant contribution to those expectations, and that our NFI processes
satisfy such definition, since u, is a well-behaved linear process with i.i.d. innovations and smooth
higher-order spectral densities. Then, the same result holds after detrending, replacing I,,
by I, ,,, etc., using similar methods. Q.E.D.

q%q>

PROOF OF THEOREM 1: We can write using standard equalities that

_ (/2] - w2 (n/2)
V.nm=< 3 Iww()‘i)> 3 quxq()\,)lzg(/\j)< Y L, ))

j==In/2] j==In/2] j==In/2}]

n ~1
’
=n Zx’v‘ixw
t=1

n-1
x <Z ()T Ty, (D + Frgrg 1) + Ty (1= )+ Ty, (01— j)’})

j=0

n -1
< (D xugxig) s
=1

where Io(0) = 1, h(j) = 1, j #0, () = n' Y1/ E &y and 3, () = £ i) x0 0 X -
Using the CMT we have that

n'y, (i, = 02y, ()7

and
n' T ((ns) = @,y (1= p*) 2 y(s).

Thus, a direct application of the CMT yields

n~*d Z xt,qx:‘qf/\N Z XX, =V

=1 =1
The asymptotic distribution of W(E u, Bo) follows from (22), Lemma 1, and the CMT. Q.E.D.
PROOF OF LEMMA 2: Following Robinson (1995a, Theorem 1) and Velasco (2003, Theorem 1)

we consider r, := Ax, — As, as a residual approximation and then use the methods developed
in these references. We consider for simplicity of notation that x, is scalar and bound first the
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expectation of the periodogram of r, at Fourier frequencies by Theorems 1 and 5 of Velasco
(2002). We have that

(A4) I (A) = Lasas(A) = 2Re Laas(A) + Laxax (R),

while by Theorem 1 of Robinson (1995b), j=1,...,M, M/n— 0 as n — oo,
Ellss(A)) = Hase(A){1 4 O( " logn))

and, on the other hand, by Velasco (2002, Theorems 1 and 5, for d > 1 and d < 1, respectively),
ElLsax(A)] = Haxax(A{1 4 O(a;)}

where a; == j~'logn+ j*"' + n7 [ + )\f’], and y=d — 1€ (-1, }). Using the same methods,
it is straightforward to obtain that E[/sa,(A;)] = Haxax(A){1 + O(a;)}, so that, using (A.4),

Ell, ()] = O(Haxax(A))a;),

and E[],4,(A;)] = O(H scax(Aj)e;) using the fact that [,5,(A) = Lsxa,(A) — I154,(A) and cancelling
the leading terms of each expectation.

Now, set V.=V, — 1 whend < § + V, and y > V > y — 1 otherwise, as in Robinson (1995a).
Then the lemma follows from Robinson (1997, Theorem 3) if

Mol N2Vl g |
@y X)) #2A
j=1

n=1
where R; := [Lscar(Aj) = Lasas(A)1/ BX)) = [=2Re La,(A)) + I, (A))/ h(X)), h(Aj) == |A;]*, and
additionally, for ¢ > 0 arbitrarily small,

V4
-0,

Moty N2 | A
(A.6) logznZ(M> = ZR,- 20
n=1 j=1
and
log*n
(A7) Ofl 2y RS0

j=1
Whend > % + V, we also need to show that

1 M
(A8) MZ(a, -DR; 50,
j=1
with a; = (j/ )"V, 1<j<h,and a; = (j/ W)XV "D h < j<M, h=exp(M ' ¥} log j).
As regards (A.5), notice that, for a generic positive constant K < oo, the left-hand side of (A.5)
is bounded by

M
(A9) KM= 1N " RUDIR| for V <y,

j=1

and by

logM &
(A10) K ,gw SIR) for v =y.
Jj=1
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The left-hand side of (A.9) is bounded by

M

- ras(A))] L, (7))
KM*-V-112 2(V—y) LTras A7y /1 2AV—y) P77
l Z h(Aj) Z h(A;)

and, taking expectations of each term in the summands, the order of magnitude turns out to be
2(y-V)-1 il 2(V—-y)
y=v)- 2V g
o)
=0,(1)+0,(M ' logMlogn) + O, (n" {M* + M**n~?"}),
and this is 0, (1) using (34). The bounds for (A.10) and (A.6) follow similarly.
The left-hand side of (A.7) is 0, (1) because it is bounded by

log?n & log?n & [ 1,5 (A)] 1,,(A,~)]
R;| < 2 +
M ;I 1=y ; h(A) T h(Ap)

log? n i
=0p< M Zaj)

=1

= 0,(M"'logM + M~ log M logn) log’ n
+0,(n" {M* + M n~*"}log M) log’ n,

which tends to zero with (34).
On the other hand, using (A.7), the left-hand side of (A.8) is bounded by

1 M
7 Y 4RI +0,(1),

j=1

and, as in Robinson (1995a), we can use that 4 ~ M/e as n — oo, and that a; = O(1), uniformly
for j > h, so the first term on the right-hand side is

M M
2y-9)-1 2(V—y) 2y-9)-1 2(V—
OP(M" ) Zl Ve + M*Y Z] v)aj>’
j=1 j=1

and using the same arguments and (34) we can show that this is 0,(1). Q.E.D.

PROOF OF THEOREM 3: In case of cointegration, & > 5, we obtain that log n(BM - 8)—> 0

(cf. Lemma 2 and Velasco (2003)), and using that logn(dM d) 5 0, this yields under H, when
d-—6<1
3

n\26-9 VoA n2(e=d) N 2omd) n 2(6—d)
(ﬁ) oY) = Quboyimea d)Z)\ (1+0,(1))+0, ((N) )

5 0.,BK(5,d)

for some constant K (8, d) > 0, so

n 2(5—d)A
(ﬁ) BY 5 BoK (8, d),
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ie. E{," diverges with n and N. It follows that, under the assumptions of Lemma 2,

prob lim\infn"“‘“”)N““’"”W(E, BY) >0,
under H,. Whend — 6 > %, reasoning in the same way,
N2 OGN (Gy) 5 02, BoK* (8, d),

for some K*(8,d) > 0, so an“‘““/?{}' B BoK*(8,d) and W(B, E{}) diverges at the rate
n®@=» N=1 (which tends to infinity since Nn~' — 0 and 6(d — 8) > 3) with an additional log™" N
termwhend — §=1. Q.E.D.
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