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1. INTRODUCTION 

Consider z 1 = (y i' xl')', = 1, ... ,n, independent and identically 

distributed observations, where y is a scalar and x is a pxl vector. The 
I 1 

classical linear regression model with random regressors assumes that 

y = a + x'(3 + u. i = 1, ...• n, O.ll 
1 1 1 

where u is an error independent of X and (a, (3')' is a (p+llxl vector of 
1 I 

unknown parameters. The observations Z arise from a "central" model H (y,x)
1 o 

characterized by a marginal distribution G (x) for the x. and a zero mean 
o i 

marginal distribution F (ulG') for the u where G'o is a scale parameter.o 0 I'
 

For example F = NW,G' ).
o 0 
n 

2
Write B = (a, (3')' and let ~ = (~, ~')' = argmin Le (B) be the least 

1 
B 1=1 

squares estimator of B. where e (B) = y - a - x·(3. The least squares
1 I I
 

residuals
 

~ = e (~) = y - ~ - x'~, (1. 2)
.j 1 1 I 

i = 1, ... ,n, are used to check the adequacy of the model and to detect 

unusual patterns in the data. The behaviour of the residuals is studied 

conditioning on the observed value of the nxp design matrix X = (x ,
1 

... ,x )'. Residual analysis is generally conducted in a graphic way. The 
n 

idea is to plot the residuals against any other quantity orthogonal to them, 
1\ 1\

generally the fitted values Y. = et + x:~, i = 1, ... ,0, such that, under the 
1 1 

null of a correctly specified parametric model, the expected behaviour of 

the plot contains no visible pattern. Observed patterns are then attributed 

to inappropriate assumptions. See Cook and Weisberg (982). Weisberg (984) 

or Atkinson (1985) for details. 

It is well known that ~ is very sensitive to both outliers in the nxl 

vector of responses Y = (YI' ""Yn)· and extremes in the rows of X and, 

therefore, sever'al alternative robust estimators 8 = (ex, ~')' have been 
n n n 

proposed. Plotting the residuals 

e = e (8 ) = y - ex - x'~ 0.3)
1 I n i n 1 n' 

is advocated by some authors, among others Rousseeuw and Leroy 0987. p. 

92-93) as an after-fit diagnostic tool. The question is if residual plots 

based in robust estimators can be interpreted in the same form as the 

standard least squares residual plots. This seems to be the case for R 

estimators and for M estimators with monotone l/J function as shown by McKean, 
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Sheather and Hettmansperger 0990, 1993). However, some complications arise 

when using high breakdown point estimators. This is reported by Cook, 

Hawkins and Weisberg (992) and McKean et al. (in press a) for the case of 

the least median of squares (LMS) estimator of Rousseeuw (984), and by 

McKean et al. (993) for the case of GM estimators. 

Properties of least squares residuals are studied under the assumption 

that the carriers X are fixed or equivalently, as stated above, conditioning 

on X in the. model 0.0. An assumption in robust regression is that (1.1) 

holds only approximately and, therefore, the joint distribution H(y,x) of 

the observations is different but close, in some way, to the central model 

H (y,xl. As a consequence, while in linear least squares the carriers x are o I 

considered as known constants, the robust approach takes into account the 

stochastic nature of the x. in the appearance of dubious data. Comparison of 
1 

the properties of the vectors of residuals ~ = (~, ... ,~)' and e = (e
1 n 1' 

... ,e)' is then at issue because each vector is obtained under a different 
n 

set of premises. The aim of this paper is to study, under a common framework 

of assumptions, some aspects of the comparison between plots based on 
1\ e and 

e. Notation is established in section 2 while section 3 contains the main 

results. Section 4 illustrates the theory with two real data examples and 

section 5 concludes with some final comments. 

2. BACKGROUND AND MOTIYATION 

2.1 Model 

For the purpose of comparison of this paper, observations Zi' = 1, 

... ,n, are assumed to be of the form 

Z = (1-£)z + £'IZ1'1' (2.ll
I i iO 

where Z = (y , x')' and z = (y , x')' are (p+Ox1 random vectors,
iO iO iO il il 11 

and £ is a random variable taking values 0 and 1 with probabilities 1-£ and 
i 

£ (0:::£:::.5). The triplets (c ,z ,z ) are LLd. and unobservable and £ is 
I iD 11 i 

independent of the pair (z ,z). z arises from the "central" model 
10 il iD 

Ho(y,x) of O.ll and zil is an outlying component with distribution H (y,x)
1

that, in principle, can have any form. To get meaningful results, it will be 

assumed that H (y,x) is characterized, as H (y,x) in O.ll, by a marginal
1 0 

distribution G (x) for the x and a relation between the response and the 
1 I 

regressors of the form 

y = ex + x'(3 + u, (2.2) 
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• • 

where (x,u) are independent and u has a zero mean distribution F (u/er )
1 1 

depending on an unknown scale parameter er. The setup (2.1)-(2.2) is quite
1 

flexible and allows to model data anomalies only in the response (G == G ), 
1 0 

only in the predictors (F == F, er = er), or on both parts of the 
101 0 

observation at the same time. Recall that a and (3 identical for H and H so 
o 1 

that both the central model and the perturbation keep the ~ ~ 

~ in the conditional mean. Anomalous points are "identified" by the 

nonzero coordinates of e = (e, ... ,e )'. (2.1) is inspired by a general
1 n 

contamination model in time series proposed by Martin and Yohai (986). 

It is clear that, under (2.1)-(2.2), the common distribution H of the 

z is a mixture of the form 
i 

H(y,x) = O-elH (y,x) + cH (y,x), (2.3)
o 1 

which is a particular case of distribution in the e-contamination 

neighborhood of Tukey 

Jf = {G: G = O"':elH + cH ,H arbitrary},e 0 

under which much work in robust regression has been done. The 

following results clarify the meaning of (2.1)-(2.2). All proofs are given 

in the appendix. 

Proposition 2.1. Consider model (2.1)-(2.2) for LLd. observations z = 
i 

(Y.t x~)', = 1, ... ,n, and suppose that both G (x) and G (x) have 
1 I o 1 

densities denoted, respectively, by g (x) and g (x) with respect to a common 
o 1
 

dominating measure m(dx) in !Rp. Then:
 

a) Conditionally on X = (x, ... ,x)', the components of Y = (Yl'
1 n 

... ,y )' are independent with conditional distribution functions 
n 

where 
eg (x )

1 i
dx ) = -------- ­

1 

and
 

q = y - a - x' (3.

1 i 1 

The dx ) are LLd. with mean e and variance bounded by cO-c);
i 

b) 'ElY Ixl = WB, where W = On IX);
 

c) v[y IXl = D(X), where D(X) = diag(d (X), d (X)) is an nxn diagonal

1 n 

2 2 2 2
matrix such that E[D(X)l = er I , with er = 0-c)er + cer . 

n 0 1 
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The main implications of proposition 2.1 can be summarized as follows. 

Proposition 2.2. Under (2.1)-(2.2): 
2a) (q •...•q )' are LLd. with zero mean and variance rr ; 

1 n 

b) Conditionally on X. (q. . .. ,q)' are: W independent with zero mean 
1 n 

but	 (U) not identically distributed if G and G are distinct. Therefore, 
o 1 

the models O.ll and (2.ll-(2.2) are, in general. different. 

Remark. It might seem tempting trying to generalize model (2.ll-(2.2) by 

assuming an structure for H (y,x) of the form 
J 

H (y,x) =J F [(y - a: - u'(3) Irr] G.(du), (2.4) 
J u::!:x J J J J J 

for j	 = 0,1, where (a: • (3')' differs from (a:, (3')'. (2.4) implieso	 0 1 1 

E[y Ix] = a:(x) + x'Q(x ),
i i i {' I 

with	 intel'cept and slope parameters 

. a:(x ) = [l-c(x )Ja: + c(x )a: • 
. i i 0 I 1 

(3(x ) = [l-dx )](3 + dx )(3 . 
I I 0 I 1 

Also,	 var[y.tx.l = d (X) + [l-dx)] (a: + x'(3)2 + dx) (a: + x' (3)2 ­
1 1 i I 0 i 0 I 1 i 1 

2
[o..(x) + x:(3(x.)]. The intuitive basis of (2.4) is then counterbalanced by

I I I 

the untractability of the latter expressions which suggests following the 

discussion under the framework (2.ll-(2.2l. 

2.2	 Estimators 

Estimators considered in this paper will be of the form 

B =	 T [z, ... ,z ] = T[H ], (2.5) 
n n 1 n n 

1where T is a functional defined on a space of distributions in lR P 
+ and H 

n 

is the empirical distribution function of the sample Z1' z2' ...• z. If the 
n 

estimator is both consistent and Fisher consistent at the central model 

then, under H. B converges to T[H ] = B. However, for general H in 1f ,
OnO (; 

T[H] will be different from B. In large samples, a suitable measure of the 

robustness of B
n 

over the neighborhood 1f 
(; 

is the curve of maximum asymptotic 

bias (Martin, Yohai and Zamar (989)) 

B(T,HO,e) = max{b (T.H): He1f >,	 (2.6)
M e 

where bM(T,H) = IIT[H]-BII , IlallM = (a'Ma)1/2 and M is a (p+llx(p+ll positive
M

definite matrix properly chosen. An example illustrates the concept of 

asymptotic bias T[Hl - B. 
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1Example 2.1 Let H(y,x) be a general distribution in IR P 
+ • Following Hinkley 

(977), the functional defining the least squares estimator of B is 

LS[HI = [~ :l'El[:J 
where S = E[xx'] and 11 = E[x] (All expectations are taken with respect to 

Hl. For HCy,x) as in (2.1)-C2.2), proposition 2.1 yields Ely] = a + E[x'](3 

and E[xy] = E[x]a: + E[xx'](3 and, therefore, 

LS[H] = [1 E[X']]-l[ 1 El X']] [a] 
E[xx'] (3 = B,Elx] El xx'] Elx] 

so the least squares estimator has no asymptotic bias. Observe also that, by 

the same arguments, LS[H] = LS[H] = B and, in particular, the least 
o 1 

squares estimator is also Fisher consistent. The functional for an M 

estimator is defined implicitly by the solution of the equation 

ElwtJ!(Cy-w'M[H])/CI]] = 0, 

where .p is an odd and" bounded function, w = 0, x')' and Cl is a scale 

parameter. If F is symmetric about the origin, M[H] = B and the M 
o 0 

estimator is Fisher consistent. However, if F (U/CI) is not symmetric about 
1 1 

zero, the expectation 

E[w.p[ (y-w'B)/CI]] = E[mdx) (~)] = me [J 1 ] , 
xG (dx)

I 

where m = J.pCU/CI)F (du/Cl ), is, in general, not null and, as a consequence,
1 I 

M[H] is different from B. 

• 
For the estimators C2.5), it will be assumed that the representation 

below holds: 
n 

- 1 -112
B = T[H ] = T[H] + n L EICCz.l + 0 Cn ), C2.7) 

n n j=l J P 

where EICCz) is an empirical version of the influence curve of the 
j 

estimator at z (see, for example, Hampel, Ronchetti, Rousseeuw and Stahel 
J 

1986, p. 85 and 93). The framework C2.5)-C2.7) includes least squares 

estimators, M estimators and GM estimators. However, it excludes the high 
. . h t t' . 1/3breakdown pomt LMS estImator w ose asymp 0 lC convergence rate IS n . 

3. RESIDUALS AND ASYMPTOTIC BIAS 

3.1 Least squares residuals 
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The least squares estimator is B= (W'Wflw,y, where, as in proposition 

2.l.b), W = (l IXl. Write the vector of least squares residuals ~ = (~, 
n 1 

... ,~ )' and the vector of fitted values ~ = (~ , ... ,~ )' = W~ in the form 
n 1 n 

~ = (I -H)Y, ~ = HY, (3.1) 
n 

where H is the nxn orthogonal projection matrix H = W(W'Wf1w,. From 

proposition 2.1 it easily follows that, under (2.1)-(2.2): 

a) E[e/\ I X] = 0, V[e/\ IX] = (I -HlD(X)(I -H); 
n n 

b) E[~ IX] = WB, V[~ IX] = HO(X)H, and (3.2) 

c) C[(~,~) IX] = (I -H)O(X)H. 
n 

where O(X) is as in proposition 2.1.c). A first approximation for the dx)
I 

is dx) E:! E[dxi)] = c or, equivalently, O(X) E:! (j'2I . From the group of 
i n 

expressions (3.2), this yields 

V[~ IX] E:! (j'2(I -H)
 
n
 

and, for practical purposes, the usual properties and interpretation of 

plots of least squares residuals versus fitted values should be expected to 

hold under the setup (2.1)-(2.2). 

3.2 Robust residuals 

Properties of least squares residuals can be derived explicitly because 

of the tractability of expressions (3.1l. In contrast, for a general robust 

estimator in the framework (2.5)-(2.7), an approximate method of analysis 

seems necessary. Put w = (1, x')'. For B = T[H ], the residuals e 
~ 

= Y. ­
i i n n I I 

w'B and the fitted values y = w'B can be decomposed
i niln 

e = y - w'B = q - w'(E - T[H]) - w'(T[H] - B),
I i I nil n i 

(3.3) 

= w'(E - T[H])) + w'T[H],
i n i 

where the ql = Yj - w~B are the variables of proposition 2.1. Inserting the 

representation (2.7) into (3.3) then, to first order, 

n
 

e E:! q - w'[n-I 
~ EIC(z )] - w'(T[H] - B),


I 1 I L. J I 
J =1 

(3.4) 

n
 

- E:! w'[n- I ~ EIC(z )] + w'T[HJ.
Yi i L. J I
 
j =1
 

Observe that the (eventually) nonnull asymptotic bias term T[H] - B appears 

7 
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in the right hand side of expressions (3.3) and (3.4). Put Y = G 
1' 

... ,y )'. The next result follows from proposition Z.1. 
n 

Proposition 3.1. Under (Z.ll-(Z.Z), approximation (3.4) yields: 
n 

a) E[e IXl 9:' -Wa and E[Y IXl 9:' W(B+a ), where a = n-1 LE[EIC(z.l\ Xl + 
n n

n J =1 J 

(T[Hl-B); 

n 
1b) V[YIXl - H = WV[n- LE[EIC(z.l!XlW';
 

n J=1 J
 

c) VIe IXl 9:' [D(X)-H 1 + C, where C = ZH -(r +r') and r is an nxn 
n n n n nn n 

n 

matrix of the form r = n-1 L r , for r .=C[(Y,EIC(z )) IXlW', j = 1, ... ,n; 
n J =1 nJ nJ J 

d) C[(e,Y)IXl - r H 
n n 

Remark. It is easy to see that application of approximation (3.4) in the 

case of the least squares estimator goes back to expressions (3.1). 

Following Hinkley (1977), an empirical version of the influence curve for 

the least squares estimator LS[Hl is EIC(z) = n(W'Wf1w (y - w'Bl. Since 
J j j J 

LS[Hl = Band W = (w, ... ,w )' the right hand sides of (3.4) are simply Y ­
1 n 

HY = ~ and HY = ~. 

Some relevant comments on (3.4) and proposition 3.1 are: (i-) From 

(3.4), one can write 

e 
~ 

-
1\ 
e + Wo , (3.5) 

n 

n 

where 0 = 13 [n- 1 LEIC(z.ll T[Hl. (3.5) shows how in the sampling 
n n 

J =1 J 

decomposition 

Y = WB + e, 
n 

the residuals might retain information on the carriers X, a phenomenon not 

desirable in residual analysis; (U) E[e IXl is, approximately, a nonnull 

vector in the linear manifold spanned by the matrix W. This vector depends 

on the asymptotic bias T[Hl - B; (ill) C[(e,Y) IXl is, in general, not zero 

and, therefore, the interpretation of a residual plot based on robust 

estimators might be complicated by a nonorthogonal association pattern 

between e and Y; (w) VIe IXl is obtained from the matrices Hand r whose 
n n 

expressions depend on concrete specifications of both the model (Z.ll-(Z.Z) 
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and the functional estimator T[. J. A suitable standarization of the 

residuals is difficult to define. 

3.3 Simulation results 

A small simulation study is conducted to illustrate the comments 

above. Besides the least squares estimator (LS) ~, three different robust 

estimators of B are used: 

a) The M-estimator a based on the Huber t/J function (Huber 1973),
M 

defined as solution of the estimating equation 
n 

L t/J[(YI-w'B)/lTJx\ = 0, (3.6) 
1=1 

where t/J(t) = t min[I,kl It IJ and k = 1.345. In (3.6), the scale parameter (j 

is replaced by the median absolute deviation (MAD) ii = 1.483 med le 
o i 0,1 

med e I computed from an initial set e = Y - w'a of residuals;
j O,j 0,1 1 1 0 

b) The three-step estimator a of Simpson, Ruppert and Carroll (992)
GMM 

based On the Hampel t/J function with bends at a = 1.5, b = 3 and c = 8, and 

constructed by iterating the one-step scoring relation 

n 

where a is the LMS estimator, = ii LW t/J(e lo.)x, M = o o 1 0,1 0 i o 
i =1 

n 

n-
1 I t/J'(e la- )W'OW, and the matrix 0 is an nxn diagonal matrix of weights

0,1 0 
i =1
 

diag(w, ... ,w ). The weights are given by
 
1 n 

(3.7) 
Wi = min { 1, [ (x.-~ )'; (x.-il ) ] }, 

1 n n I n 

2
where c is the 95~ percentile ofaX distribution and the pair (il ,f ) is 

p n n 

taken from the minimum volume ellipsoid (MVE) estimator for the sample of 

regressors x, ... ,x. In this paper, the exact algorithm proposed in Cook 
1 n 

et al. (1993) is used to compute the MVE. a has 50~ breakdown point and 
GMM
 

bounded influence function in the x and y spaces.
 

c) The one-step estimator a of Coakley and Hettmansperger (1993)
GMS
 

based on the Huber t/J function of (3.6) and given by
 

B = B + M-1g , 
o S S 

n 

where B is as in (3.7), gs = ii LW t/J(e I(w 0. ))x , M = W'TIW, where TT = 
0 o 1 0,1 i 0 i S 

1=1 

diag( IT , ... , IT ) , and IT = t/J' (e I(wa- )). The weights (w ) are as in 
1 n 1 O,i i 0 i 
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(3.7). B has 50% breakdown point and bounded influence function in both x 
GMS 

and y. 

To simplify matters, the discussion is centered on a simple linear 

regression model 

E[y Ixl = 0: + x(3, 

where both the response and the regressor are scalar so that p = 1. N = 200 

samples of size n = 40 are generated through a model of the form 

H(y,x) = O-dH (y,x) + cH (y,x),
o 1 

where Hh,x) = G.(x)F [(y-w'B) Ier l, w = 0, x)', B = (0: , (3)' = 0, 0', Go 
J J j j 

== F == N( 0,0 (er = 0, G == F == NW, 16) (er = 4), and the contamination o 0 1 1 1 

proportion is c = .25. Figure 3.1 displays the sample means of the 

residuals (left) and the correlation coefficients between residuals and 

fitted values (right) for the simulated samples. The box plots for the 

estimators GMM and GMS show a clear deviation from the behaviour of the LS 

estimator. Nonnull, both positive· and negative, sample means and sample 

correlation coefficients, occur in a rather symmetric fashion. These 

phenomenon is not unexpected in the light of comments U) and ill) at the 

end of section 3.2 and might alterate the visual perception of the standard 

residual plots. Figure 3.2 is a 2x3 matrix array of plots describing the 

situation for a particular sample. The plot in cell 0,1) is the scatter 

cloud of the data (y.,x.), i = 1, ... ,40. Cases 3 and 39 are identified as 
1 1 

extreme points with the largest values of x. Cell 0,2) contains the plot of 

F 2
the studentized least squares residuals r. = ~ /[{;.O-h ] versus the 

1 I ii 

fitted values ~., where {;. is the least squares estimate of the standard 
J 

deriation cr and h is the ith diagonal element of the nxn orthogonal
ii 

projection matrix H. Cases 3 and 39 stand out along the horizontal axis. The 

plot in cell 0,3) is the plot of r. versus case number. Cases 3 and 39 lie 
1 

within a not very noticeable cloud of residuals. The situation changes, 

however, in the second row, where raw residuals based on the GMS estimator 

are used to construct plots (2,1), (2,2) and (2,3). In (2,1) and (2,2), 

cases 3 and 39 are detected in both the horizontal and vertical axis, and in 

(2,3), cases 3 and 39 have the largest associated residuals e . This is 
i,GMS 

an illustration on how robust residuals might retain harmful information on 

the regressor variable, in the spirit of comment i.) at the end of section 

3.2. 

Figure 3.1 
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Figure 3.2 

Remark. Estimators B ,B and B are used by McKean, Sheather and 
M GMM GMS 

Hettmansperger (993) in a previous work on the properties of residuals 

obtained from both least squares and robust estimation techniques. A 

comparison of their results with the ones obtained in this paper is given in 

section 5 below. 

3.4 (Partially) Modified residuals 

A possible way to overcome (i)-(w) of section 3.2 is to construct 

plots based on a suitable modified vector of residuals. Given a set of p 

regressors Xl' ... , x p indexed by I = {I, p}, denote by I = {i... , k l' 

... ,i} (1=:i < ... <i =:p) a selected subgroup and consider the matrix W = 
k 1 k k 

(1 IX ), where X is the nxk matrix formed with the regressors in I . The 
n I I k
 

k k
 

class of partially modified residuals e is defined by
M,k 

e = (I -H le, (3.8)
M,k n k 

where H = W (W'W f1 W' is the orthogonal nxn projection matrix on the 
k k k k k 

linear manifold spanned by W. Notice that, since e = (I -H)e = 
k M,p n p 

(] -H)(Y- WB ) = ~, the fully modified residuals are identical to the least 
n n 

squares residuals. The idea behind the modified residuals is, in some way, 

similar to the idea of projected residuals in nonlinear regression 

suggested by Cook and Tsai (1985), although in a different context. 

For plotting purposes, the use of e can be implemented as follows. 
M,k 

Once that an anomaly is detected in a plot based on e, construct the family 

of plots 

(e, x ), (3.9.a) 
r 

for r = 1, ... ,po The goal is to detect directions in the x-space where the 

nonorthogonal association between e and X is most harmful. Construct then, 

sequentially, the families 

(eM,{j )' x ),r 
1 (3.9.b)

(e , x ),
M,O ,I} r 

1 2 

.... , until reaching an index subset I = {i, ... ,i } where the associated 
k 1 k 

group of plots have no visible pattern and then conduct a residual 

analysis based on the class e . From (3.5), one obtains 
M,k 

11 



e - =:: (I -H HeA + Wo ) = e A + h ,
M,k n k n k 

where h = (I -H)W 0 ,W is the nx[(p+1)-k] matrix of the 
k n k (k) n,(k) (k) 

regressors not in I and 0 is formed with the corresponding coordinates 
k . n,(k) 

of O. If no pattern is observed, the following (heuristic) results follow 
n 

if h is taken to be approximately constant: 
k 

- A 2VIe IX] =:: VIe IX] =:: 0" (I -H), (3.1O.a)
M,k n 

and 

e' W=::(~+h)'W=(Olh'W)' (3.1O.b)
M,k k k (k) 

(3.1O.a) suggests replacing the modified residuals e- by standardized 
M,k,' 

versions 

I' - = e l[cTO-h )1/2] (3.11 ) 
M,k,i M,k,i ii' 

where c; is a robust estimate of the scale of the q = y - w'B. From the 
I i 

sequential construction of I above, it is reasonable to expect a small 
k 

magnitude for the row· vector h'W Since the modified residuals have 
k (k) 

sample mean equal to zero, the plot of the standardized r = (r )
M,k M,k,i 

versus the fitted values Y should be a corrected version of the initial of e 
versus Y. 

4. EXAMPLES 

Two well-known real data examples are used to illustrate both the 

results in sections 3.1 and 3.2, and the methodology based on the partially 

modified residuals introduced in section 3.4. The data are assumed to be 

generated by an appropriate setup of the form (2.1)-(2.2). 

4.1 Gesell adaptive score data 

The Gesell adaptive score data are n = 21 observations on scalar 

variables y and x whose meaning and description can be found, for example, 

in Cook and Weisberg (982). It is accepted that case 18 is extreme with the 

largest value of x, and case 19 is an outlying response. For this example, 

the residual plots based on both M and GMS estimates had a similar behaviour 

to the plots based on the LS residuals. However, graphical displays based on 

GMM residuals presented an anomaly as shown in the 3x3 matrix array of 

figure 4.1. Cells 0,2) and 0,3) are the standard LS residual plots where 

case 18 has a small studentized residual and case 19 has the largest 
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residual as it should be. The second row presents the problem. Plots in 

cells (2,ll and (2,2) of the raw GMM residuals versus, respectively, x and 

the fitted values suggest linear trends as remarked by the superimposed 

least squares lines. Residuals based on the GMM estimator retain information 

on x and cases 18 and 19 have now the largest residuals in absolute 

magnitude. Plots in row 3 correspond to the standardized modified GMM 

residuals using the MAD as the estimate ii- for 0'. Cells (3,2) and (3,3) 

identify properly the character of cases 18 and 19. 

Figure 4.1 

4.2 Salinity data 

The data and previous analyses of them are described in Rousseeuw and 

Leroy (1987 p. 82). There are n = 28 cases and p = 3 regressors. It seems to 

be common agreement about the fact that cases 3, 5 and 16 are extreme rows 

of the matrix X. Case 1.6 has associated an outlying response as well. The 

analysis given in this paper is supported by the three graphical arrays in 

figures 4.2.a), 4.2.b) and 4.2.c). In this example, residuals based on M 

estimators behaved as least squares residuals. The situation was different 

for the case of GMM and GMS residuals which in turn, shared a similar 

pattern. GMM residuals are chosen for illustration purposes. The first row 

in 4.2. a) contains the plots of the least squares residuals and the relative 

position of cases 3, 5 and 16. As shown in the second row, the relative 

position of 3, 5 and 16 changes when the GMM residuals are used instead 

since now cases 5 and 16 have the largest residuals. The third row contains 

the plots (e ,x) and suggests a problem associated with the regressor x . 
GMM r 3 

figure 4.2. b) displays the family (e ,x) and supports this 
GMM,<i) r 

1 

impression since the residual for case 5 stands out unless the GMM residuals 

are projected onto the third regressor. From 4.2.c), I = O,3} seems to 
2 

produce a set of modified residuals with a reasonable degree of 

orthogonality versus the fitted values. As seen in the third row, case 16 

has the largest residual and case 5 remains unnoticed. 

Figure 4.2.a) 

Figure 4.2.b) 

Figure 4.2.cl 
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5. DISCUSSION AND COMPARISON WITH PREVIOUS WORK 

In this paper, properties of residual plots for both least squares and 

robust estimators are compared under a common set of assumptions. 

Theoretical results suggest that for high breakdown but biased robust 

estimators, the residuals retain information on the regressors, and this 

phenomenon might produce misleading residual plots. A remedial action is 

suggested in section 3.4 based on the class of partially modified residuals 
-e associated to a properly built subset I = {i, ... , i} of regressors.

M,k k 1 k 

These are thought to be a flexible compromise between the raw robust 

residuals e and their least squares counterparts ~. 

McKean et al. (1993) study the behaviour of residual plots based on 

M estimators and GM estimators. They consider first-order properties of 

residuals derived from fitting a model Y = WB + u, when the true model is Y 

= WB + Co + u, where C is a full rank nxq matrix whose columns are 
n 

independent of the columns of W, and 0 = n- l12e for a qxl vector e. Their 
n 

results conclude that plots based on M estimators behave quite similarly to 

the LS residual plots but the plots based on both GMM and GMS estimators 

might be misleading as they have negative correlation patterns even when the 

true model is fitted. McKean et al. (1993) propose specific standarization 

methods for each class of residuals e ,e ,and e . 
M GMM GMS 

Simi Jar conclusions are obtained in this paper regarding the behaviour 

of the residuals based on M estimators under the setup (2.1)-(2.2). As shown 

in figure 3.1., the correlation in the plot of residuals versus fitted 

vaJues will be hardly perceptible. For GMM and GMS estimators, however. 

figure 3.1. and examples 4.1 and 4.2 show that positive correlations can 

also occur under (2.1)-(2.2). An advantage of the modified residuals e 
M,k,i 

is that they can be standardized in a natural way that not depends on 

concrete specifications of both the functional defining the robust estimator 

and the associated empirical influence function. Recall, finally, that in 

McKean et al. (1993), the emphasis is more in model misspecification than in 

general properties as developed here. 

A remaining problem in this paper is the study of the behaviour of the 

LMS residuals. This has been done in McKean et al. (in press b) in the same 

context of model misspecification as in McKean et al. (1993). The 

conclusions are similar to the ones relative to the high breakdown 

estimators GMM and GMS. Plots are misleading since strong negative 

correlations appear to distort the visual perception of the plot. McKean et 

14 
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al. (in press b) study also the case of residuals based on the high 

breakdown LTS estimator of Rousseeuw (984), Nonetheless. as shown in 

Atkinson (986), Rousseeuw and van Zomeren (990). and Fung (993) the LMS 

residuals are a valuable tool in relation to the masking problem associated 

to the standard least squares diagnostic techniques. In fact. Fung (993) 

contains an interesting study of the salinity data based only on the first 

and third regressor variables where the role of cases 3, 5 and 16 is 

clarified in detail. Fung (993) concludes that case 16 is the only outlying 

response in the data set while case 5 is a slightly high leverage point. 

Notice that the exploratory sequential graphical method proposed in section 

3.4 reaches exactly the same conclusion, and identifies correctly the 

character of case 5. once the harmful effect of the bias of the estimator on 

the third variable is eliminated via projection. 
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APPENDIX 

n
Proof of proposition 2.1. a) Consider, for y = (Yl' .... yp)·ElR and X = (x , 

1 

... ,x )' of nxp, the function 
n 

n 

C(y.X) = IT {[I-c(x )]F (q!(J' ) + C(X )F (q !(J' H, (A.1) 
i=1 i 0 i 0 1 1 i 1 

Integrating (A. 1) with respect the joint of X = (x .... x )' yields, by
l' n 

independence and construction of (2.1) and (2.2), 

n 

IT [(l-dg (x) + cg (x )]m(dx )J C(y.X) 
i=1 0 ill I 

X=sX 

= iDl[(l-dJ Fo(q/(J'o) g (x )m(dx ) + cJ F (q!(J') g (x )m(dx )] 
o 1 i 1 i I III 

X =SX x =SX 
i i 1 1
 

n
 n
 

= IT lO-dH (y .X ) + cH (y ,X)] = IT H(y ,x )

i = 1 0 i 1 1 i 1 1=1 1 1 

= PlY =s y; X =s Xl, where X = (Xl' .... X )', and the notations a =s b, 
n 

between pxl vectors a = (a • ... ,a )' t b = (b • . ... b )' • and A =s B. 
1 P I p 
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between nxp matrices A = (a ), B = (b ), mean, respectively, a ~ b for j
IJ IJ J j 

= 1, '" ,p and a .. ~ b for i = 1, '" ,n, j = 1, ... ,po Equations above 
I) iJ 

imply the first part of al. Obviously c(x ) are LLd. with 
i 

expectation E[c(x)] = eJ g (x )m(dx.) = c. Since ° ~ c(x) ~ 1, E[c(xf] ~ 
I 1 i 1 I 1 

!RP 
2

E[c(XiJ] = c, whence var[c(x )] ~ c - c = c(1-c). b and c) For all i = 1,
l 

... ,n, by part a) and construction of F (u I0") and F (u I0"), it is easily
o 0 1 1 

seen that E[qll Xl = E[qi IXI] = 0, which is equivalent to statement bl. By 

the same arguments, cov[ (y ,y ) IX] = 0, for i:;tj, and d (X) = var[y IX] = 
I J I I 

var[y Ix ] = vadq Ix 1 = [l-c(x )]0"2 + c(x )0"2. Therefore, V[Y IX] = D(X) = 
I I I I I 0 I 1 

diag(d (X), ... ,d (X)), where E[d (X)] = O-c)0"2 + CO"2 = 0"2. 
1 n I 0 1 • 

Proof of proposition 2.2. a) E[q] = E[E[q Ix ]] and var[q] = 
I I I = ° I 

2E[var[q.lx.]] + var[E[q.lx]] = E{[l-c(X.)]0"2 + c(x )0"2} = 0". b) From part
1 1 1 I 1 0 I 1 

a) of proposition 2.1, the joint of (q, ... ,q )' given X is 
1 n 

n
 

IT {fj-c(x )]F (q /0" ) + c(x )F (q /0" H,
 
1=1 I 0 I 0 ill 1 

from where b) follows . 

• 
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CAPTIONS FOR FIGURES 

Figure 3.1 Sample means of the residuals (left) and correlation coefficients 

between residuals and fitted values (right). 

Figure 3.2 Residual plots based on the LS and GMS estimators for a 

particular sample of the simulation study of section 3.3. The notation for 

the legends on the axes are self explained. 

Figure 4.1 Gesell adaptive score data: 3x3 matrix array of residual plots 

based on the LS and GMM estimators. 

Figure 4.2.a) Sali..nity data: 3x3 matrix array of preliminary residual plots 

based on the LS and GMM estimators. 

Figure 4.2.b) Salinity data: 3x3 matrix array of plots of the 

one-dimensional partially modified GMM residuals versus the regressors. 

Figure 4.2.c) Salinity data: 3x3 matrix array of the two 

dimensional partially modified GMM residuals versus the regressors. The 

third row is the final output of the analysis. 
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