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ABSTRACT The objective of this paper was to obtain an 
encoding structure that would allow the genetic evolution of 
rules in such a manner that the number of rules and relationship 
in a Classifier System (CS) would be learnt in the evolution 
process. For this purpose, an area that allows the definition of 
rule groups has been entered into the condition and message part 
of the encoded rules. This area will be named Internal Tags. 
This term was coined as the system has some similarities with 
natural processes that take place in certain animal species, where 
the existence of tags allows them to communicate and recognize 
each other. Such CS has been named Tags Classifier System, 
TCS. The TCS has been tested in the game of draughts and 
compared with the classical CS. The results show an improving 
of the CS performance. 

1. INTRODUCTION 

A Classifier System [ 1, 2, 3 ,4 ,  5. 6, 7, 81 is composed of three 
main components, which can be considered as activity levels. 
The first level (Classifier System) is responsible for giving 
responses (satisfactory or otherwise) to solve the problem 
proposed. At this level, there are system rules, encoded by 
means of restricted alphabet character strings. When this level is 
executed, a response is given to a particular situation. The 
fitness of the response to the problem that is to be solved is 
measured by means of the reward received by the above rule 
from the environment. The second level (Credit Assignment) 
evaluates the results obtained at the lower level, distributing the 
rewards received by the rules that provide the output among all 
those that contributed to activating each of the latter rules. As 
this is a reinforced learning method, this evaluation can be 
adjusted by applying a reward or payment by the environment, 
whose value will be high if the solution is satisfactory and low if 
it is not. Reassignment can be carried out by means of different 
algorithms [4, 91, of which the Bucket Brigade [3] is the most 
commonly used and the one employed in this paper. At this 
level, it is not possible to modify system behaviour by changing 
its rules; however, it is possible to adjust their values and 
establish some sort of hierarchy of good and bad rules. The 
mission of the third level (Discovery) is to find new means for 
the system to discover new solutions, for which purpose a 
Genetic Algorithm (CA) is used. 

Rules can be activated in parallel at the CS action level, whereas 
they are activated in series in traditional production systems. 
During each recognition cycle, a traditional system activates a 
single rule. This rule-by-rule procedure is a bottleneck for 
productivity growth; moreover, many of the differences between 
production systems architectures are related to the selection of 

the best strategy for activating the rule in question. CS's 
overcome this boaleneck by allowing the parallel activation of 
rules during a particular recognition cycle, or internal cycle. So, 
different activities can be coordinated in parallel in a CS. When 
a choice has to be made between mutually exclusive 
environmental actions or when the size of a rule has to be 
pruned to adapt its length to that of the listed messages, these 
decisions are left until the last possible moment when they are 
selected competitively, for example. So, the sequence of 
operations of a traditional CS can be outlined as shown in Table 
1. 

Table 1: Sequence of operations at the action level of a 
traditional CS. 

message will be activated. One message can activate 

Therefore, traditional CS operation is based on three 
fundamental concepts: 
1. The solution of the global problem is a set of rules (a subset 

of rules is a solution to a particular situation, and a single 
rule may even be a solution for a very specific situation, 
although this is unusual). 
Each rule's payment is distributed' among the rules that 
activated it in the internal cycles. 
The Genetic Algorithm allows rules to be generated from 
the best rules, which leads, theoretically, to an 
improvement in overall system operation. 

2. 

3. 

The manner in which Classifier Systems operate has some 
drawbacks, of which the following deserve a special mention: 

1. With regard to the system's ability to learn chains of rules 
which, moreover, do not break from one learning instant to 
another; the loss of a rule from the chain can lead to a loss 
of all the knowledge due to the interrelations between rules. 
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The rules make sense not individually but only as groups 
which are unknown a priori. 
With regard to the need to apply the discovery algorithm to 
generate increasingly better classifiers and, finally, 
With regard to the sequencing of the cases put to the 
system in order to guide learning towards an improvement 
in overall system behaviour. 

2. 

3. 

The problem addressed in this paper is in particular how to 
combat the problem of the loss of rules and the need to 
"maintain acquired knowledge". Both problems are due to CS 
discovery level action, which leads the mechanisms of the CS to 
fail when forming and maintaining associations between rules. 

The discovery level acts on the set of classifiers that have just 
been executed in such a manner that the new rules are generated 
from the best rules prior to discovery level action. This 
operation can lead to the loss of rules that are necessary for 
solving certain points of the problem and which appeared at the 
start of the learning period but failed to do so later on. This 
means that rules which were very good at the start of the 
execution can be considered by the GA as less valuable, because 
other rules are stronger. 

"Internal Tags" (IT), proposed by Holland 161 and others for 
application to Genetic Algorithms, were introduced for this 
purpose, giving rise to a new class of CS, Classifier Systems 
with Tags (TCS). Apart from preventing the loss of rules, 
different rules must be made to coexist at all times, thus 
stopping the rules becoming uniform, leading to a loss of variety 
in the rule population. 

2. CLASSIFIER HIERARCHIES 

Ad-hoc internal CS hierarchies 
The problems of rule loss have been addressed from various 
viewpoints in the literature with a view, in all cases, to 
improving CS's. Shu et al. [IO] c Consider introducing 
hierarchies into CS's, that is, groups of tules that have to be 
maintained throughout the learning process. The rule groups are 
formed a priori and are given by the expert problemsolver. This 
is an attempt to solve the problem which DeJong [ 111 solved by 
means of crowding in the field of Genetic Algorithms. So, on 
the one hand, they establish rule groups (families) and, on the 
other, they propose genetic operators that act intrafamily and 
interfamily. The payment system is also modified, and when a 
rule from one group wins, all the other rules in its group also 
partake of that prize. 

Basically, the problem with discovery level action is that all the 
rules are considered to be 'equal. This idea, which is logical in 
other Evolutionary Computing techniques, where each 
individual is a solution to the problem, and they, therefore, all 
have to compete with each other, is not directly extendible to 
CS. This is because no one rule is capable of solving the 
problem on its own in many cases, which means that not all the 
rules are equal. A rule that is fired in a particular situation and 
whose action solves the problem is not the same as a set of rules 
that must be fired in order so as to address a different situation. 
Here, the strength of the first rule is likely to grow much more 
than the strength of all the rules chained in the second case. In 
order to solve this problem, Shu proposes dividing the CS rule 
set into subsets, each of which has rules specialized in a 
particular point of the problem, in such a manner as to make the 
members of the same family of rules compete. 

Furthermore, the distribution of the payment among members of 
one f a ~ ~ d y  means that the knowledge acquired earlier is not so 
quick)! forgotten, as a rule that attains a given strength value 
continues to receive strength as a result of the execution of rules 
belonging to its family. The loss of rules is especially critical 
when the problem that is to be solved requires complex rule 
chainings. as the loss of a rule in the chain at the discovery level 
can mean that all the chaining is overlooked and the chain is 
entirel! forgotten, which will mean that it will have to be learnt 
again later. 

Hierarchically organized independent CS 
In 1995. Dorigo [I21 presented the results of solutions designed 
to make Classifier Systems learn faster. The tools he used are: 
parallelism, a distributed architecture and training. With respect 
to parallelism and the parallel architecture, he proposes a 
parallel version of ICs [13], and designed a parallel Classifier 
System. called Alecsys, applied to what is termed the "animal 
problem" [ 141. This problem is addressed from the viewpoint of 
dividing the problem into smaller parts, based on a hierarchical 
architecture in which a series of ICs's learn to cooperate in 
solving the leaming problem. The different ICs levels are 
executed in parallel on different machines, and, moreover, 
different ICs's, responsible for different tasks, are also executed 
in parallel. The author [12] takes up Brooks's idea of "reactivity" 
[15], that is, the existence of a set of behaviours, each of which 
is implemented by means of an ICs and which are independent 
of each other and produce an output for each input. The whole 
system is composed of three systems: an ICs to overcome 
obstacles, another to attain a goal and, finally, a system that 
decides which of the two possible outputs is the output of the 
combined system. 

The author proposes that internal conditions be included to 
achieve rule chaining (which is equivalent to behaviour chaining 
in this case). This allows messages from the environment to be 
distinguished from messages from earlier cycles. Dorigo's study 
centres on the usefulness of the internal conditions without 
clearly explaining how they are used internally by the CS. The 
results of this part of the paper show that the size of these 
internal conditions, as applied in this case, is not very relevant 
for learning. 

In short. Dorigo's paper [I21 proposes a sort of hierarchy, since 
the final CS is composed of three CS's: two basic CS's and 
another that decides which CS is appropriate for each situation. 
In each case, rules are evolved independently, in such a manner 
that each behaviour evolves separately. The problem with this 
hierarchical approach as compared with Shu's proposal is that it 
is impossible to perform genetic operations that allow holistic 
evolution. as each Classifier System is evolved independently 
and is unrelated to the others. That is, no relationships can 
evolve between each behaviour such that a rule from one 
classifier can activate a rule from another. The question is 
whether the separation of the Classifier System into several 
Classifier Systems raises system effectiveness in particular 
situations. In any case, it prevents the generalization of learning. 

Automatic category generation within a CS has not been 
addressed in any paper to date. The idea can perhaps be 
borrowed from nature: some species use "tags" to limit a "call or 
warning" to a set of individuals, discriminating a subset among 
the total set. In the same manner, parts can be included in rules 
that allow some to be discriminated from others. What we will 
call Internal Tags (IT) can be defined in an ad hoc manner by 
creating a given string of calls [lo] or can be defined in such a 
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manner that the ITS themselves evolve, determining what groups 
are necessary. In short, each rule can be provided with a field 
which will evolve genetically and which identifies that the rule 
in question is a member of a group, similarly to the tags 
proposed by Holland [6]. 

3. EVOLUTION OF TAGS IN A CS: THE TCS 

As discussed in the preceding section, any solution that seeks to 
prevent the loss of rules necessarily involves creating subsets 
within the set of classifiers of which the CS is composed. The 
two solutions studied are: creation of a hierarchy in the a priori 
population and composition of several independent Classifier 
Systems. These solutions limit the generality of the CS learning 
process, as the hierarchies are considered to have been learnt in 
one case or because of the decomposition into several CS in the 
other, in such a manner that the learning context is subject to 
these constraints. 

The proposed solution must, therefore, combine the ability to 
learn without a priori knowledge and the capability of 
generating some kind of internal subdivision within the CS to 
allow categories of rules to exist. A CS, called TCS, has been 
designed that allows groups to evolve automatically. For this 
solution to be implemented, the encoding of the classifiers will 
have to be modified to include a field that represents the type or 
group to which each classifier belongs. So, for example, given a 
CS, such as: 

A 1-bit field can be reserved to establish the classes making up 
the CS, and the resulting CS would be as follows: 

This field can be used to subdivide the CS into several groups of 
classifiers, each of which contains the classifiers that have the 
same value in the new field. This field can be said to establish 
the classifier type or group. So, for example, the specimen CS 
could contain the following classifiers: 

According to the definition of the value of the field that 

establishes the classes, there are 2 classes: one defined by 
classifiers whose value is 1 (Classifiers I ,  2 and 3) and the other 
by those whose value is 0 (classifiers, 4, 5 and 6). Note that the 
definition of a class is determined by the value of the above field 
in the condition part of the rule, that is, rules that must have the 
same value in the field for activation are members of the same 
group. 

This field, which appears in the encoding, evolves in the same 
manner as the other fields, which means that the number and 
size of each class in the CS hierarchy is variable and must be 
learnt. Wide ranging groups can be established, and all the 
classifiers could actually have the same value, in which case the 
system would operate like a classical CS. 

Apart from establishing the classifier type according to the value 
of the condition part, as it is included in the message part which 
evolves similarly, not only are the rule groups evolving, so is the 
form of intergroup activation. So, in the preceding example, a 
set of classifiers could evolve as follows: 

I I Rule Message Classifier 

I 1 I 01101 OOOOO 
2 I OOO11 11 100 I 

I 
~~ ~ 

3 I 11011 loo00 
4 I OOOOO 0001 1 

I 5 I 11100 1101 I 
6 I 00010 01 101 1 

In this case, the group 1 classifiers activate group 0 classifiers 
and vice versa. Obviously, this type of activation must be learnt 
by the CS and there are range of possible configurations. 

Finally, it is important to take into account that the inclusion of a 
field in the classifiers means that a value must also be entered in 
the input message in the above position. This value is not 
determined by the environment; it is defined a priori by means 
of a value encoding the fact that the message in question is the 
environmental message. In this manner, the CS will have to 
learn which rule group having the same group definition field 
value is to be activated in response to the environmental 
message. 

The appearance of hierarchies in the CS is subject to the 
information about the category to which the rule belongs being 
maintained in each rule. This information must evolve 
genetically; obviously, if the information about the category in 
each rule is capable of representing “n” different categories, the 
solution to the problem could be composed of m ( m a )  
categories and the remaining categories would be irrelevant. If 
this information is represented in each rule and it is allowed to 
evolve, the number of rules associated with a particular category 
is also variable; in this respect, the genetic evolution of the 
categories will not only allow the categories required to evolve 
but also for each one to have the size required to solve the 
problem. 

TCS Operational Schema 
The sequence of operations at the action level is the same as for 
traditional CS (Table 1). However, there are fields in the 
conditions and messages whose sole mission is to define the 
category to which the rules which sent their messages to the 
message list in the preceding cycle belong. The first activation 
takes place using the environmental message, as shown in Table 
1. The environmental message should contain default values that 

V -626 

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:27 from IEEE Xplore.  Restrictions apply.



indicate that it is an environmental message. As of this first 
message, the activated classifiers will send their messages to the 
message list, and we will then have a generation of messages of 
different categories which will have specialized in responding to 
the environmental message. This information in the messages 
will have an impact on the next classifiers activated, that is, i t  
will be involved in chaining the rules that are fired. In this 
manner, rules of the following type will evolve: 

Starting instant: 

IF The external-signal is d y p e  I >  
THEN message <001 ... > and group <X> 

Subsequent instants: 

IF the message is 4 0 1  ... > and the group is <x> 
THEN message 4 0 1  ... > and group <Y> 

In short, the mechanism of including Internal Tags (IT) in rules 
is beneficial for evolving complex solutions within a CS. As the 
TCS is executed in parallel and all the rules are activated at the 
same time, a range of complex strategies are generated in the 
messages list by chaining rules from different groups. These 
strategies are maintained during the internal CS execution cycles 
and the best are learnt by means of credit reassignment and 
discovery processes. 

Apart from having to differentiate the encoding for different 
groups, another two levels of the CS will have to be adjusted: 
the credit reassignment algorithm (BBA) and the discovery 
algorithm (GA). This is due to the need for each rule group or 
hierarchy to gradually evolve in parallel. On the one hand, the 
credit eamed by one rule needs to be distributed among all the 
rules of its group in order for these rules to beat other groups, in 
such a manner that the strength of each group can be considered 
as a factor to be taken into account when performing intergroup 
genetic operations. In this case, it is not only an individual that 
evolves; evolution ' is  focused on the generation of compact 
groups, which are widely used and should, therefore, have a 
better rule set, without overlooking the need for groups whose 
elements, though perhaps fewer, are essential for developing the 
final strategy. Note that if the strength of all the rules of a group 
increases when one of the rules of the group is assessed as 
positive by the BBA, the strength of those groups of rules that 
are chained with this group will also be increased, as the 
percentage strength awarded for activation will be calculated on 
larger sums. 

4. TSC EVALUATION IN THE GAME OF DRAUGHTS 

In this paper, we seek to get a measure of the contribution of 
Internal Tags (IT) to the learning process in a Classifier System. 
A clear evaluation of the contribution of ITS in the encoding 
calls for a problem that is solved in a perfectly defined 
environment. The environment chosen in this case was the 
learning of draughts end games, that is, draughts matches where 
only a few pieces remain on the board at an advanced stage of 
the game. 

The objective of applying the TCS to learning the game of 
draughts is not to obtain a CS that plays draughts; i t  is to apply 
Classifier Systems in a clear and defined environment that 
allows traditional Classifier Systems to be compared with the 
modification proposed in this paper, including IT. Obviously, 
there are a lot of systems that play draughts, some very 

successfully [16]. However, for the purposes of this study and 
comparison, a player following a random strategy will be used, 
and measurements will be taken of the games each type of CS 
(classical/with IT) wins against the random player using 
different configurations. 

Game Rules 
There are a lot of variations on the game of draughts. In this 
paper, a @-square board is used with black and white squares. 
The game is played by two players one with white pieces and 
the other with black pieces, which are either pieces or kings. 
Initially, the white pieces are placed at the bottom of the board 
and the black pieces at the top, and there no kings. In this paper, 
the opening boards are not used, as we work only with end 
games, where the maximum number of pieces is 5. These can be 
pieces of any kind and be situated in any valid position on the 
board. The kings are crowned when a piece reaches opposite end 
of the board. The edges of the board are the limits of the moves. 
The edges of the board are not continuous. In this paper, the 
directions of the moves are considered as absolute. When an 
opponent's piece is positioned in any of the directions in which a 
player's piece can be moved, the latter will take the piece that is 
in its path, by jumping over it onto the next vacant square in that 
direction. The piece captured will be removed from the board. 
This process will be repeated as many times as possible before 
the opponent player can take its turn. When either player has 
made a move or taken a piece (and cannot capture another 
piece), it will be the opponent's turn. The game will end when 
only one player's pieces remain on the board or there is a draw. 
There is a draw when the player whose turn it is cannot make 
any move. 

Information encoding 
This involves analysing how and what information about the 
board, the pieces, players, turns, moves, etc., can be supplied to 
the CS as an input message. The encoding chosen for the game 
of draughts is such that an output from the CS is always 
interpreted as a move. This means that the CS decisions are 
interpreted depending on the system status. Obviously, the 
system must be able to play with both black and white pieces, so 
an encoding was chosen that does not take into account "the 
colour" of the piece. Additionally, the directions of the moves 
have been taken to be absolute as explained above. 

Input Message: The information available on the board and that 
can be entered into the system is: the number pieces on the 
board, the colour of each piece, coordinates (x,y) of each piece, 
piece type (piece or king), directions in which it can move or 
take and how far it can move or take in each direction. The input 
messages include the status of the board at any one time: total 
number of pieces, number of pieces belonging to the CS player, 
colour, who's turn i t  is, how many kings there are, etc. This 
information will be encoded in a 57-bit length input message for 
the traditional CS. The number of bits will be 61 for a classifier 
with IT, as 4 bits are entered to represent the ITS. The first 
position of the input message encodes the information about the 
possibility of taking (with a 1) or only moving (with a 0). The 
next 4 positions contain information about the total number of 
pieces there are on the board, and the next 12 on the pieces that 
belong to the player whose turn i t  is, how many of these are 
kings and the number of the opponent's kings, all encoded using 
4 bits in each case, considering the percentage represented. 
Then, the information regarding the position of these pieces is 
recorded, by transforming this decimal number into a binary 
number of up to 8 bits. Finally, if the total number of pieces is 
under 5 ,  the remainder of the message is filled in v i t h  "#" 
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symbols. 

Output message : The output message has the same length as 
the input message, 61 or 57 bits, depending on whether or not 
the ITS are taken into account. Only the last 16 bits of the entire 
message sent through the output interface of the CS after having 
performed the chaining process for several internal cycles are 
used as an output. With regard to the output messages, the 
respective positions will be taken and the decoding process will 
be performed. 

5. COMPARISON BETWEEN CS AND TCS 

The objective of this section is to compare the traditional CS 
with the TSC. For this purpose, the above systems will be 
played against a player who makes random moves, having a 
variable degree of randomness and starting from different 
situations. The two systems commence without any previous 
knowledge, that is, their entire population is randomly 
generated, which means that their rules and messages are not 
adapted to any particular case and their moves Will, in principle, 
also be random. The three types of experiments conducted under 
this point were performed by gradually increasing their 
difficulty level in order to examine the behaviour of the two 
systems in face of the above changes. In the first type of 
experiments, the randomness of the random player is gradually 
raised. This means that there are different levels of randomness 
within a random player. This level of randomness is entered in 
the output message produced by the random player. The output 
message of the random player has the same make-up as that of 
the CS; however, it possesses only the sixteen characters 
required by the decoding process for transformation into a 
particular move. The output message of the random player for 
all the games that have been executed in this section is based on 
a fixed message. Randomness is entered in the output message 
of the random player depending on the number of characters in 
the above message that are generated randomly. This generation 
is regulated proportionally, that is, there are random players 
whose output message is composed, for example, of 4% 
random characters. This percentage of randomness in the output 
message is applied to each move to be made by the random 
player in each game, which means that a different output 
message from that created in the previous move is generated in 
each move. 

Three groups of experiments with a different starting situation 
were performed for the comparison. The experiments were 
defined in increasing order of complexity, depending on the 
opening board with which each game that was to be played 
commenced: first, the opening board will be fixed for all the 
games, then the positions of the pieces that appear on the board 
in each game will be altered and, finally, the opening board will 
be generated at random for each game. In the first experiment, 
differing degrees of randomness will be applied to the opponent 
player, starting with 0% randomness and increasing this 
percentage up to 100% randomness. In the last two experiments, 
the opponent will 100% random throughout, and the opening 
boards will be modified incrementally, either by changing the 
position of the pieces or by generating a new board.The result 
will show the evolution of the games won and lost by the two 
types of Classifier Systems. These results correspond to the 
average of five groups of games. In order to analyse the results 
obtained in more detail, the percentages of games won at the end 
of learning for each CS and' for each experiment, and the 
percentage improvement of the TCS as compared with the CS 
are set out in Figures 1, 2 and 3. Analysing the results, we find 

that the contribution of ITS to the cs is not relevant in all 
situations. In problems where the CS has to learn a very simple 
sequence of operations, because the problem to be solved is less 
complex, the ITS can turn out to be more of a handicap, as their 
inclusion means that the system is forced to "learn" how to chain 
rules, when such chaining may be unnecessary. As the problem 
becomes more complex, the need for rule chaining increases, 
and the contribution of the ITS becomes evident, since their 
existence encourages rule chaining. So, we find that the results 
of the TCS in the first experiments (Figure 1) only improve on 
the CS in the last case. On the other hand, an improvement is 
seen in the results obtained with the TSC as compared with the 
CS in the subsequent experiments performed (Figure 2 and 
Figure 3). 

Fixed Opening Board 

0.6 

0.4 

Figure 1: Percentage of games won by the TCS and the classical CS, 
averaged out over 5 different situations on the same opening 
board, against an opponent player whose randomness 
increases from 0% to 100%. 

Modified Opening Board 

1 ,  I 

0.4 { A I  k 

": 
lG% 20% 30% 40% 50% 60% 7G% 80% 9 0 1 C 1 m  

Figure 2: Percentage of games won by the TCS and the classical CS, 
averaged out over 5 different situations on the an opening 
board modified by between 10% and 100%. against a 100% 
random opponent player. 

I Randomly Generated Opening Board 

I 1 ,  , I 

Figure 3: Percentage of games won by the TCS and the classical CS, 
averaged out over 5 different situations on an opening board 
of which between 10% and 100% was randomly generated, 
against a 100% random opponent player. 
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Figure 1 shows the results of the experiments in which the 
opening board was unchanged. In this case, the problem appears 
not to require rule chaining to develop strategies that can be 
used in unexpected situations, since the opening board is fixed 
and there are, therefore, only limited possibilities of different 
moves. So, the CS is faced with a player who, for all intents and 
purposes, makes a well-defined series of moves whose 
variability is very restricted. This is why the TCS results are 
14% worse on average than those obtained by the CS. 
Considering that this is the simplest possible case, it appears that 
is counterproductive to force the CS to employ ITS, as it makes 
the TCS play worse than the CS. In the last case, where the 
systems face maximum variability, the results are very similar, 
and those obtained by the TCS are slightly better, mainly 
because the need for chained strategies starts to become evident. 
Figure 2 shows the results obtained when the opening board is 
modified using an incremental degree of randomness. In this 
case, the TCS performs 10% better on average than the CS; this 
is because the system has to start to generate more complex 
actions to be able to respond to more diverse situations. It is 
noteworthy in this case that the two systems obtain poor results 
at the maximum level of randomness, compared to the results 
that they obtained at lower levels of variability. This is perhaps 
due to the fact that these are very indeterminate situations where 
it is difficult for the system to be able to extract knowledge. In 
Figure 3, the results obtained show that as the degree of 
uncertainty in opponent player performance is increased, a 
higher percentage of the results of the TCS are better than those 
of the CS, in this case 15% on average. Again neither of the two 
CS are able to obtain results of over 60% of games won with the 
effect of maximum randomness. 

6. CONCLUSIONS 

One of the major problems related to Classifier Systems is the 
loss of rules, when the learning process presents individual cases 
and allows the system to learn gradually from these cases. Each 
learning interval with a set of individual cases can lead the 
strength to be distributed in favour of a given type of rules that 
would in turn be favoured by the Genetic Algorithm. If this 
reasoning is extended to the entire learning process, genetic 
diversity, which is so necessary for learning, can disappear due 
to the growth of a given type of rules in the population. 
Furthermore, when different rule sets are needed to solve part of 
the problem, these may disappear if part of the problem 
(corresponding to the rules that can be lost) is not presented in 
the examples found up to a certain point. However, the above 
rules can be very necessary. 

The objective of this paper was to obtain an encoding structure 
that would allow the genetic evolution of these groups in such a 
manner that their number and relationship would also be learnt 
in the evolution process. For this purpose, an area that allows the 
definition of rule groups has been entered into the condition and 
message part of the encoded rules. This area will be named 
Internal Tags. This term was coined as the system has some 
similarities with natural processes that take place in certain 
animal species, where the existence of tags allows them to 
communicate and recognize each other. 

the same objective, is of special interest, and a study has, 
therefore, been conducted to analyse what effect they have and 
what results are obtained in each of the proposed Classifier 
Systems. In short, we can infer from the results obtained that 
Classifier Systems are able to learn in games environments and 
that when the game is complicated, it requires a complcx 
solution which is not satisfactorily provided by classical CS‘s 
and thus requires the inclusion of tags. 
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The results presented show how the proposed Classifier Systems 
are capable of improving on the classical approach of Classifier 
Systems in cases in which rule chaining is relevant. The 
importance of this contribution. is the discovery of a learning 
method that allows similar or related knowledge to be grouped. 
This property of ITS, the automatic grouping of rules that share 
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