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Abstract- The design of pseudorandom number 
generators by means of evolutionary computation is a 
classical problem. To day, it has been mostly and 
better accomplished by means of cellular automata 
and not many proposals, inside or outside this 
paradigm eauld claim to be both robust (passing all 
the statistical tests, including the most demanding 
ones) and fast, as i s  the ease of the proposal we 
present here. Furthermore, for obtaining these 
generators, we use a radically new approach, where 
our  fitness funrtion is not at  all based in any measure 
of randomness, as is frequently the case in the 
literature, but of non-linearity. Effieieney is assured 
by using only very efficient operators (both in 
hardware and software) and by limiting the number of 
terminals in the Genetic Programming 
implementation. 

1. INTRODUCTION 

The relation between pseudorandom number generators 
(PRNGs) and evolutionary computation techniques has 
been long and fruitful. It could he divided in two major 
areas: the first and more popular has as scope trying to use 
evolutionary computation techniques to develop good 
PRNGs. In this area, literally hundreds of works have been 
published and virtually all EC paradigms have been used, 
ranging from genetic algorithms [6] to genetic programming 
[12], including cellular automata [31] (and cellular 
programming [28]) and ant colony systems [7, 8, 91, to 
name only a few. 

Results obtained diverge very much in its quality and 
applicability, as they typically cannot pass a battery of 
very demanding statistical tests or, if they can, it is usually 
at a high cost to its efficiency and, hence, to its 
applicability. This seriously limits the practical 
implications of this field of research, with the notable 
exception of Cellular Automata, where some recent papers 
[25, 261 have shown that some models are able to produce 
an output that pass the most difficult tests batteries while 
being very efficient and quite adequate to he implemented 
in hardware. 
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The second approach, more recent and that could 
probably lead in the near future to very interesting results, 
is to use the behavior of EC algorithms to measure the 
quality of PRNGs. Some quite promising papers [ I ,  21, 
22,231 have been recently published in this area. 

However, in this work we will focus on the first subject 
area, and will present a novel proposal that, using a 
paradigm different to Cellular Automata, is able of 
producing both very efficient and high quality PRNGs, 
which are able of passing even the more hard tests, 
including some that have recently been published and are 
considered very difficult. What is even more important, we 
will do so by using a completely new strategy. 

A. Fitness Functions and Randomness 

The most common approach in the literature seems to 
be to use as a fitness function, for whatever the EC 
algorithm, some measure of the randomness properties of 
the output. In this vein, the result of one (i.e. entropy per 
b p e  as in [6] ) or; more usually, many, (i.e. the FIPS140 
battery, as in [7]) statistical tests are used to assign a given 
fitness to an individual, typically mixing these results in a 
mathematical expression (possibly assigning certain 
weights to the different tests, depending on its 
significance, etc.). 

Other possibility also found in the literature [26] is to 
use MOO (Multi Objective Optimization) over the results 
of these tests. 

The common problem to these approaches is that the 
generators obtained need not to pass any other tests than 
those that form part (or other, quite related, statistical 
independence does not necessary hold between 
randomness tests) of the fitness function, and this is 
frequently the case: the generators produce, naturally, 
nearly optimal values for all the tests included in the 
fitness function hut quickly fail other, not related, 
previously unseen, tests. Even very simple ones. It is true 
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that, sometimes, the aforementioned strategy seems to 
work, but in most of the cases it does not. 

That's why we propose a completely new strategy, 
which does not include any kind of randomness measure in 
the fitness function (such as entropy, serial correlation 
coefficient, average, etc.) but a measure of non-linearity. 
This change is quite important, because randomness has 
not a clear definition, depends of the observer, the tests 
used, the applications where one will use the generators, 
and there are multiple definitions for the concept which 
not satisfy all authors and which, more importantly, make 
it very difficult, if not impossible, to obtain an undisputed 
measure (excellent discussions on this topic are presented 
in [2, IO, 11, 121). 

Even the quite intuitive term of entropy is not enough 
to cover the randomness concept, as it is possible to be 
presented with generators with exceptionally high output 
entropy [6 ,  121 which are far from random. 

That is the reason why we prefer to measure something 
that has a clear definition, that is univocally measurable, 
that could not mislead us, and our proposal is to measure 
one mathematical property of mathematical functions that 
is, in some way, a measure of non-linearity. It is called the 
avalanche effect. 

B. 7he Avalanche E@ct andSiricl Avalanche Crilerion 

Similarly to randomness, nonlinearity C M  be measured 
in a number of ways or, what is equivalent, has not a 
complete unique and satisfactory definition. 

Fortunately, this is of no concem to us as we do not 
pretend to measure non-linearity but a very specific 
mathematical propel?. named avalanche effect. This 
property tries to reflect, to some extend, the intuitive idea 
of high-nonlinearity: a very small difference in the input 
producing a high change in the output, thus an avalanche of 
changes. Mathematically, F : 2" 3 2 "  has the 

avalanche effect if and only if it holds that: 

x , y ~ ~ ( x , y ) = l  A w ( H ( F ( x ) , F ( y ) ) ) = ;  

So if F is to have the avalanche effect, the Hamming 
distance between the outputs of a random input vector and 
one generated by randomly flipping one of the bits should 
be, on average, d2. 

That is, a minimum input change (one single bit) 
produces on average a maximum output change (half of the 
bits). This definition also tries to abstract the more general 
concept of independence of the output from the input 
(this justifies our proposal and its applicability to the 

generation of good PRNGs). Although it is clear that this 
independence is impossible to achieve (a given input 
vector always produces the same output) the ideal F will 
resemble a perfect random function where inputs and 
outputs are statistically unrelated. Any such F would have 
perfect avalanche effect, so it is natural to try to obtain 
such functions by optimizing the amount of avalanche. In 
fact, we will use an even more demanding propel?. that 
has been called the Strict Avalanche Criterion [3] which, in 
particular, implies the Avalanche Effect, and that could be 
mathematically described as: 

1 
v x , y l H ( x , y ) = l  H ( F ( x ) , F ( y ) )  = B ( . r , n )  

It is interesting to note that this implies the avalanche 
effect, because the average of a Binomial distribution with 
parameters 1/2 and n is d2, and that the amount of 
proximity of a given distribution to a certain distribution 
(in this case a Binomial B(I/2,n)) could be easily measured 
by means of a chi-square goodness-of-fit test. That is 
exactly the procedure we will follow. 

II. GENETIC PROGRAMMING 

Genetic Programming [IS] is a method for automatically 
creating working computer programs from a set of high- 
level statements of a given problem. 

This is achieved by breeding a population of computer 
programs using the principles of Darwinian natural 
selection and other biologically inspired operations that 
include reproduction, sexual recombination (crossover), 
mutation, and possibly others. 

Starting from an initial population of randomly created 
programs derived from a given set of functions and 
terminals, populations gradually evolve, giving birth to 
new, more fitted individuals. 

This is performed by repeating the cycle of fitness 
evaluation, Darwinian selection and genetic operations 
until a certain ending condition is met. Each individual (or 
program in the population) is evaluated to determine how 
fit is at solving a given problem, and then programs are 
selected probahilistically from the population according to 
their fimers values for being applied the rest of genetic 
operators. 

It is important to note that, while fitter programs have 
higher probabilities of being selected, all programs have a 
chance. ARer some generations, a program may emerge 
that solves, completely or approximately, the problem at 
hand. 
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Genetic Programming combines the expressive high- 
level symbolic representations of computer programs with 
the leaming efficiency of genetic algorithms. Genetic 
Programming techniques have been successfully applied to 
a number of different problems: apart from classical 
problems such as function fitting or pattem recognition, 
where other evolutionary computation techniques also 
work fine, they have even produced results that are 
competitive with humans in some non-trivial tasks as 
designing electrical circuits [I41 (some of which have been 
patented) or at classifLing protein segments [13]. 

111. IMPLEMENTATION ISSUES 

We have used the lilgp genetic programming system 
(341, but a number of modifications were needed for our 
problem. 

Firstly, we need to define the set of functions: This is 
critical for cur problem, as they are the building blocks of 
the algorithms we would obtain. Being efficiency one of 
the paramount objectives of our approach, it is natural to 
restrict the set of functions to include only very efficient 
operations, both easy to implement in hardware and 
software. Another, hut minor, objective was to produce 
portable algorithms; so the inclusion of the basic binary 
operations as rotd (right rotation), roti (left rotation), xor 
(addition mod 2), or  (bit wise or), not (bit wise not), and 
and (hit wise and) are an obvious first step. Other 
operators as the sum (sum mod 2”) are necessary in order 
to avoid linearity, being itself quite efficient. 

Another interesting operator introduced was kte, an 
operation that, whatever its inputs, retums the 32-hit 
constant value Ox9e377969 (which are the most significant 
digits of the expression of the golden ratio in hexadecimal 
notation). The idea behind this operator was to provide a 
constant value that, independently from the input, could 
he used by the aforementioned operators to increase non- 
linearity, and idea suggested by [30]. 

The inclusion of the mult  (multiplication mod 2’) 
operator was not so easy to decide, because, depending on 
the particular implementations, the multiplication of two 
32 bit values could cost up to fifty times more than an 
xor, a rotd or an and operation (although this could 
happened in certain architectures, it’s nearly a worst case: 
14 times [5 ]  seems to be a more common value), so it is 
relatively inefficient, at least when compared with the rest 
of the operators used. In fact, we did not include it at first, 
hut after extensively experimentation, we conclude that its 

inclusion was beneficial because, apart from improving 
non-linearity; it at least doubled and sometimes tripled the 
amount of avalanche we were hying to maximize, so we 
finally introduce it in the function set. 

Equally, after many experiments, we concluded that the 
functions roti and rotd where absolutely interchangeable 
and not necessary, nor useful, at the same time, so we 
arbitrarily decided to remove roti and left rotd We also 
used ephemeral constants. The set of terminals in OUI case 
is easy to establish, as the input will be exclusively formed 
by one 32 bits integer ao, and it will he at the branches of 
the function trees that the genetic programming algorithm 
will construct, with functions from the function set in the 
nodes. 

The fitness of every individual (algorithm or function) 
was evaluated by generating 1024 32-hit random vectors 
(using the Mersenne Twister generator [19]), then 
randomly flipping one of the bits and calculating the 
Hamming distance over their outputs. 

For each of these 1024 experiments a Hamming distance 
between 0 and 32 was obtained and stored. The fitness of 
the individual (or function) under observation was 
proportional to the inverse of the value of the chi-square 
statistic that measured the distance from the optimal 
probability distribution (the B(1/2,32)) of the observed 
distribution of these Hamming distances. Thus 

1000 Fitness(1) = 
h = 3 2 ( O n  --Eh)* T 
L, 
h=O Eh2 

whereE, = 1024 *Pr( B(1/2,32) = k) and we 

are calculating the value of the chi-square statistic without 
the commonly used restriction of adding up only the 
values when p5.0 for amplifying the effect of a had 
output distribution, thus, the sensibility of our measure. 

When using genetic programming approaches, it is 
necessary to put some limits to the depth and to the 
number of nodes the resulting trees could have. We tried 
various ideas here, both limiting the depth and not limiting 
the number of nodes and vice versa and the best results 
where consistently obtained using this latter option, so we 
fixed the number of maximum nodes to 20 and did not put 
a limit (other that the number of nodes itself) to the tree 
depth. This is also an important step for assuring the 
efficiency of the resulting algorithm. 

We selected a population size of 100 individuals, a 
crossover probability of 0.8, which produced better results 
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than the default 0.9 probability proposed, and an ending 
condition of reaching 10000 generations. Ten different runs 
were performed, each one seeded with the 6 most 
significant digits of the expression (314159)'40-' and the 
best results achieved alter every run are shown in 
Appendix A. 

IV. RESULTS 

From the different IO individuals obtained atler each 
run, we selected the best three (in terms of their fitness 
functions, in hold in Appendix A) and calculated their 
simplified expressions. We then combined (a la KISS [17] )  
these three PRNGs to form a new and better PRNG, that 
we will afterwards call genbgen, and used a new and very 
demanding battery of tests to evaluate the performance of 
the new PRNG. 

This battery of tests is claimed to be harder to pass 
than the classical DIEHARD [I61 test suite, and includes 
some improved and harder versions of tests already 
present in DIEHARD, toghether with some new tests. We 
have used the implementation in [33]. The authors say 
[I81 that every generator they had tested that passes the 
three hard tests in the battery (GCD test, Birthdays 
spacing test and Gorilla test) not only passes all tests in 
the DIEHARD battery but all statistical tests they know 
of. 

It is important to note that this was the first time our 
generator (our any of their components) where tested for 
randomness. The results over ten different nms are shown 
in Table I. The three seeds needed for each run were 
obtained in Random.org [32] 

TABLE I : THE RESULTS IN EACH TEST SHOULD 
FOLLOW A UNIFORM DISTRIBUTION IN THE ( & I )  

INTERVAL. 

These results clearly show that the proposed generator 
passes all the tests in the battery (generators that do not 
pass the tests produce values too close to 0 or I ,  up to 6 
or more digits.), which is a very important result as many 
widely used, well known generators fail to pass these tests 
[IE].  Additionally, we have tested our generator against 
some other well-known strict tests commonly used in the 
literature [31]. Results are shown in Table II. 

TABLE II :THE RESULTS IN EACH TEST SHOULD 
FOLLOW A UNIFORM DISTRIBUTION IN THE (0,I) 

INTERVAL. 
1 Exp.# I p-vdue I p-value 1 
I I Freauencv I Collisions I 

V. CONCLUSIONS 

From the results shown in Table I and II, we can 
conclude that the proposed generator is able of passing one 
of the most demanding battery of statistical tests and some 
other quite strict tests, so its output should be considered 
as having excellent pseudorandom properties, better than 
many other commonly used PRNGs. Our proposal, at the 
same time, has the advantage of being portable, efficient, 
highly parallelizable and compact. 

We have also shown that a completely new strategy for 
generating pseudorandom number generators by means of 
evolutionary computation could lead to very interesting 
results, a strategy that does not need in any way to 
evaluate the randomness (if this could be done, anyway) of 
the individuals but only evaluate the proximity of a given 
function to a certain, well-defined, mathematical propelty. 

Although not being able of distinguishing the output of 
our proposed generator,(source code in C in Appendix B), 
it is clear that we cannot recommend it for cryptographic 
use. It is obvious that it presents some undesirable 
properties for cryptography, and, for example, it should 
be seeded with random numbers because otherwise (i.e. 
null seeds) the output of the generator could present very 
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bad statistical properties. This, however, is quite a 
common feature of many PRNGs, as, for example, in 
LFSRs [4]. 

Finally, we should conclude that the output of the 
proposed generator, as proved by passing and performing 
remarkably well in all the statistical tests examined, offers 
enough quality to be used in a variety of scientific, 
mathematical, engineering and industrial applications, 
including Montecarlo simulations, decision theory, game 
theory, sampling, etc. 

Random numbers, and, extensively, random number 
generators, are very difficult to create [Park98, Vattu951 
but in this paper we have shown a completely new 
approach that could significantly aid in easing. to the point 
of making it automatic, this process. 
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APPENDIX A 

These are the three best individuals found after ten 
rounds, used in the genbgen pseudorandom number 
generator: 

=- BEST-OF-RUN === 

generation: 48 nodes: 20 depth: 15 
TOP INDIVIDUAL: 
hits: 139091 raw fitness: 1137.5078 
standardized fitness: 0.8791 adjusted fitness: 0.8791 
TREE 
(sum (mult a0 ecb8462d) 

(rotd (rotd (rotd (rotd (mult (rotd (rotd (rotd (rotd 
(rotd (rotd (rotd ( 

rotd ( rod  aO))))))))) ecb846W)))) 

= BEST-OF-RUN === 

generation: 76 nodes: 20 depth: 16 
TOP INDIVIDUAL: 
hits: 130468 raw fitness: 2456.0547 
standardized fitness: 0.4072 adjusted fitness: 0.4072 
TREE 
(mult (xor a0 

(rotd (rotd (rotd (rotd (rotd (rotd (rotd (rotd 
(rotd (rotd (rotd ( 

rotd (rotd ao))))))))))))))) 
(kte a0)) 

= BEST-OF-RUN === 

TOP INDIVIDUAL: 
hits: 145664 raw fitness: 1260.9751 
standardized fitness: 0.7930 adjusted fitness: 0.7930 
TREE 
(mult 81d6cfE5 

generation: 321 nodes: 20 depth: 17 

(rotd (rotd (rotd (rotd (rotd (rotd (rotd (rotd (rotd 
(rotd (rotd (rotd 

(rotd (rotd (rotd (mult a0 81d6cf85))))))))))))))))) 
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APPENDIX B 

Cenbgen generator source code in C 

/* The genbgen generator. The name stands for 
GENetically Bom GENerator. Developed by Julio C. 
Hemandez, Isasi P., and Semec, A. */ 

unsigned long genbgen(unsigned long seedl ,seed2,seed3) 
( 
ilinitializations 
static unsigned long rl=seedl ,r2=seed2,r3=seed3, r2p; 

rl=rl*Ox81d6cf85; rl=rl>>lS; rl=rl*Ox81d6cf85; 

rZ=r2p;r2=(r2>>9)*0xecb8462d; 
r2=(r2>>4)+(12p*OxecbS462d); 

r3=((r3>>14)%3)*0~9e3779b9; 

retum((r1 "r2)+(r3)+(rl%3)+(rl)+(r2"r3)+(r2));) 

This code can be executed, for example, with the call 
genbgen(Oxd2df48fl.OxOae72b 13,0xaf/e2238) 
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