
On the Design of State-of-the-Art Pseudorandom
Number Generators by Means of Genetic Programming

Julio Cesar Hernandez, Andre Semec
CAPS Team

M A - I R I S A
Campus de Beaulieu

35042 Rennes, France
Email: {jcesar, semec}@irisa.fr

Abstract- The design of pseudorandom number
generators by means of evolutionary computation is a
classical problem. To day, it has been mostly and
better accomplished by means of cellular automata
and not many proposals, inside or outside this
paradigm eauld claim to be both robust (passing all
the statistical tests, including the most demanding
ones) and fast, as i s the ease of the proposal we
present here. Furthermore, for obtaining these
generators, we use a radically new approach, where
our fitness funrtion is not at all based in any measure
of randomness, as is frequently the case in the
literature, but of non-linearity. Effieieney is assured
by using only very efficient operators (both in
hardware and software) and by limiting the number of
terminals in the Genetic Programming
implementation.

1. INTRODUCTION

The relation between pseudorandom number generators
(PRNGs) and evolutionary computation techniques has
been long and fruitful. It could he divided in two major
areas: the first and more popular has as scope trying to use
evolutionary computation techniques to develop good
PRNGs. In this area, literally hundreds of works have been
published and virtually all EC paradigms have been used,
ranging from genetic algorithms [6] to genetic programming
[12], including cellular automata [31] (and cellular
programming [28]) and ant colony systems [7, 8, 91, to
name only a few.

Results obtained diverge very much in its quality and
applicability, as they typically cannot pass a battery of
very demanding statistical tests or, if they can, it is usually
at a high cost to its efficiency and, hence, to its
applicability. This seriously limits the practical
implications of this field of research, with the notable
exception of Cellular Automata, where some recent papers
[25, 261 have shown that some models are able to produce
an output that pass the most difficult tests batteries while
being very efficient and quite adequate to he implemented
in hardware.

Pedro lsasi
Computer Science Department

Carlos I11 University
2891 1 Legants, Madrid, Spain

Email: isasi@ia.uc3m.es

The second approach, more recent and that could
probably lead in the near future to very interesting results,
is to use the behavior of EC algorithms to measure the
quality of PRNGs. Some quite promising papers [I , 21,
22,231 have been recently published in this area.

However, in this work we will focus on the first subject
area, and will present a novel proposal that, using a
paradigm different to Cellular Automata, is able of
producing both very efficient and high quality PRNGs,
which are able of passing even the more hard tests,
including some that have recently been published and are
considered very difficult. What is even more important, we
will do so by using a completely new strategy.

A. Fitness Functions and Randomness

The most common approach in the literature seems to
be to use as a fitness function, for whatever the EC
algorithm, some measure of the randomness properties of
the output. In this vein, the result of one (i.e. entropy per
b p e as in [6]) or; more usually, many, (i.e. the FIPS140
battery, as in [7]) statistical tests are used to assign a given
fitness to an individual, typically mixing these results in a
mathematical expression (possibly assigning certain
weights to the different tests, depending on its
significance, etc.).

Other possibility also found in the literature [26] is to
use MOO (Multi Objective Optimization) over the results
of these tests.

The common problem to these approaches is that the
generators obtained need not to pass any other tests than
those that form part (or other, quite related, statistical
independence does not necessary hold between
randomness tests) of the fitness function, and this is
frequently the case: the generators produce, naturally,
nearly optimal values for all the tests included in the
fitness function hut quickly fail other, not related,
previously unseen, tests. Even very simple ones. It is true

0-7803-8515-2/04/$20.00 0 2 0 0 4 IEEE I510

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

mailto:semec}@irisa.fr

that, sometimes, the aforementioned strategy seems to
work, but in most of the cases it does not.

That's why we propose a completely new strategy,
which does not include any kind of randomness measure in
the fitness function (such as entropy, serial correlation
coefficient, average, etc.) but a measure of non-linearity.
This change is quite important, because randomness has
not a clear definition, depends of the observer, the tests
used, the applications where one will use the generators,
and there are multiple definitions for the concept which
not satisfy all authors and which, more importantly, make
it very difficult, if not impossible, to obtain an undisputed
measure (excellent discussions on this topic are presented
in [2, IO, 11, 121).

Even the quite intuitive term of entropy is not enough
to cover the randomness concept, as it is possible to be
presented with generators with exceptionally high output
entropy [6 , 121 which are far from random.

That is the reason why we prefer to measure something
that has a clear definition, that is univocally measurable,
that could not mislead us, and our proposal is to measure
one mathematical property of mathematical functions that
is, in some way, a measure of non-linearity. It is called the
avalanche effect.

B. 7he Avalanche E@ct andSiricl Avalanche Crilerion

Similarly to randomness, nonlinearity C M be measured
in a number of ways or, what is equivalent, has not a
complete unique and satisfactory definition.

Fortunately, this is of no concem to us as we do not
pretend to measure non-linearity but a very specific
mathematical propel?. named avalanche effect. This
property tries to reflect, to some extend, the intuitive idea
of high-nonlinearity: a very small difference in the input
producing a high change in the output, thus an avalanche of
changes. Mathematically, F : 2" 3 2 " has the

avalanche effect if and only if it holds that:

x , y ~ ~ (x , y) = l A w (H (F (x) , F (y))) = ;

So if F is to have the avalanche effect, the Hamming
distance between the outputs of a random input vector and
one generated by randomly flipping one of the bits should
be, on average, d2.

That is, a minimum input change (one single bit)
produces on average a maximum output change (half of the
bits). This definition also tries to abstract the more general
concept of independence of the output from the input
(this justifies our proposal and its applicability to the

generation of good PRNGs). Although it is clear that this
independence is impossible to achieve (a given input
vector always produces the same output) the ideal F will
resemble a perfect random function where inputs and
outputs are statistically unrelated. Any such F would have
perfect avalanche effect, so it is natural to try to obtain
such functions by optimizing the amount of avalanche. In
fact, we will use an even more demanding propel?. that
has been called the Strict Avalanche Criterion [3] which, in
particular, implies the Avalanche Effect, and that could be
mathematically described as:

1
v x , y l H (x , y) = l H (F (x) , F (y)) = B (. r , n)

It is interesting to note that this implies the avalanche
effect, because the average of a Binomial distribution with
parameters 1/2 and n is d2, and that the amount of
proximity of a given distribution to a certain distribution
(in this case a Binomial B(I/2,n)) could be easily measured
by means of a chi-square goodness-of-fit test. That is
exactly the procedure we will follow.

II. GENETIC PROGRAMMING

Genetic Programming [IS] is a method for automatically
creating working computer programs from a set of high-
level statements of a given problem.

This is achieved by breeding a population of computer
programs using the principles of Darwinian natural
selection and other biologically inspired operations that
include reproduction, sexual recombination (crossover),
mutation, and possibly others.

Starting from an initial population of randomly created
programs derived from a given set of functions and
terminals, populations gradually evolve, giving birth to
new, more fitted individuals.

This is performed by repeating the cycle of fitness
evaluation, Darwinian selection and genetic operations
until a certain ending condition is met. Each individual (or
program in the population) is evaluated to determine how
fit is at solving a given problem, and then programs are
selected probahilistically from the population according to
their fimers values for being applied the rest of genetic
operators.

It is important to note that, while fitter programs have
higher probabilities of being selected, all programs have a
chance. ARer some generations, a program may emerge
that solves, completely or approximately, the problem at
hand.

151 I

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

Genetic Programming combines the expressive high-
level symbolic representations of computer programs with
the leaming efficiency of genetic algorithms. Genetic
Programming techniques have been successfully applied to
a number of different problems: apart from classical
problems such as function fitting or pattem recognition,
where other evolutionary computation techniques also
work fine, they have even produced results that are
competitive with humans in some non-trivial tasks as
designing electrical circuits [I41 (some of which have been
patented) or at classifLing protein segments [13].

111. IMPLEMENTATION ISSUES

We have used the lilgp genetic programming system
(341, but a number of modifications were needed for our
problem.

Firstly, we need to define the set of functions: This is
critical for cur problem, as they are the building blocks of
the algorithms we would obtain. Being efficiency one of
the paramount objectives of our approach, it is natural to
restrict the set of functions to include only very efficient
operations, both easy to implement in hardware and
software. Another, hut minor, objective was to produce
portable algorithms; so the inclusion of the basic binary
operations as rotd (right rotation), roti (left rotation), xor
(addition mod 2), or (bit wise or), not (bit wise not), and
and (hit wise and) are an obvious first step. Other
operators as the sum (sum mod 2”) are necessary in order
to avoid linearity, being itself quite efficient.

Another interesting operator introduced was kte, an
operation that, whatever its inputs, retums the 32-hit
constant value Ox9e377969 (which are the most significant
digits of the expression of the golden ratio in hexadecimal
notation). The idea behind this operator was to provide a
constant value that, independently from the input, could
he used by the aforementioned operators to increase non-
linearity, and idea suggested by [30].

The inclusion of the mult (multiplication mod 2’)
operator was not so easy to decide, because, depending on
the particular implementations, the multiplication of two
32 bit values could cost up to fifty times more than an
xor, a rotd or an and operation (although this could
happened in certain architectures, it’s nearly a worst case:
14 times [5] seems to be a more common value), so it is
relatively inefficient, at least when compared with the rest
of the operators used. In fact, we did not include it at first,
hut after extensively experimentation, we conclude that its

inclusion was beneficial because, apart from improving
non-linearity; it at least doubled and sometimes tripled the
amount of avalanche we were hying to maximize, so we
finally introduce it in the function set.

Equally, after many experiments, we concluded that the
functions roti and rotd where absolutely interchangeable
and not necessary, nor useful, at the same time, so we
arbitrarily decided to remove roti and left rotd We also
used ephemeral constants. The set of terminals in OUI case
is easy to establish, as the input will be exclusively formed
by one 32 bits integer ao, and it will he at the branches of
the function trees that the genetic programming algorithm
will construct, with functions from the function set in the
nodes.

The fitness of every individual (algorithm or function)
was evaluated by generating 1024 32-hit random vectors
(using the Mersenne Twister generator [19]), then
randomly flipping one of the bits and calculating the
Hamming distance over their outputs.

For each of these 1024 experiments a Hamming distance
between 0 and 32 was obtained and stored. The fitness of
the individual (or function) under observation was
proportional to the inverse of the value of the chi-square
statistic that measured the distance from the optimal
probability distribution (the B(1/2,32)) of the observed
distribution of these Hamming distances. Thus

1000 Fitness(1) =
h = 3 2 (O n --Eh)* T
L,
h=O Eh2

whereE, = 1024 *Pr(B(1/2,32) = k) and we

are calculating the value of the chi-square statistic without
the commonly used restriction of adding up only the
values when p5.0 for amplifying the effect of a had
output distribution, thus, the sensibility of our measure.

When using genetic programming approaches, it is
necessary to put some limits to the depth and to the
number of nodes the resulting trees could have. We tried
various ideas here, both limiting the depth and not limiting
the number of nodes and vice versa and the best results
where consistently obtained using this latter option, so we
fixed the number of maximum nodes to 20 and did not put
a limit (other that the number of nodes itself) to the tree
depth. This is also an important step for assuring the
efficiency of the resulting algorithm.

We selected a population size of 100 individuals, a
crossover probability of 0.8, which produced better results

1512

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

than the default 0.9 probability proposed, and an ending
condition of reaching 10000 generations. Ten different runs
were performed, each one seeded with the 6 most
significant digits of the expression (314159)'40-' and the
best results achieved alter every run are shown in
Appendix A.

IV. RESULTS

From the different IO individuals obtained atler each
run, we selected the best three (in terms of their fitness
functions, in hold in Appendix A) and calculated their
simplified expressions. We then combined (a la KISS [17])
these three PRNGs to form a new and better PRNG, that
we will afterwards call genbgen, and used a new and very
demanding battery of tests to evaluate the performance of
the new PRNG.

This battery of tests is claimed to be harder to pass
than the classical DIEHARD [I61 test suite, and includes
some improved and harder versions of tests already
present in DIEHARD, toghether with some new tests. We
have used the implementation in [33]. The authors say
[I81 that every generator they had tested that passes the
three hard tests in the battery (GCD test, Birthdays
spacing test and Gorilla test) not only passes all tests in
the DIEHARD battery but all statistical tests they know
of.

It is important to note that this was the first time our
generator (our any of their components) where tested for
randomness. The results over ten different nms are shown
in Table I. The three seeds needed for each run were
obtained in Random.org [32]

TABLE I : THE RESULTS IN EACH TEST SHOULD
FOLLOW A UNIFORM DISTRIBUTION IN THE (& I)

INTERVAL.

These results clearly show that the proposed generator
passes all the tests in the battery (generators that do not
pass the tests produce values too close to 0 or I , up to 6
or more digits.), which is a very important result as many
widely used, well known generators fail to pass these tests
[IE]. Additionally, we have tested our generator against
some other well-known strict tests commonly used in the
literature [31]. Results are shown in Table II.

TABLE II :THE RESULTS IN EACH TEST SHOULD
FOLLOW A UNIFORM DISTRIBUTION IN THE (0,I)

INTERVAL.
1 Exp.# I p-vdue I p-value 1
I I Freauencv I Collisions I

V. CONCLUSIONS

From the results shown in Table I and II, we can
conclude that the proposed generator is able of passing one
of the most demanding battery of statistical tests and some
other quite strict tests, so its output should be considered
as having excellent pseudorandom properties, better than
many other commonly used PRNGs. Our proposal, at the
same time, has the advantage of being portable, efficient,
highly parallelizable and compact.

We have also shown that a completely new strategy for
generating pseudorandom number generators by means of
evolutionary computation could lead to very interesting
results, a strategy that does not need in any way to
evaluate the randomness (if this could be done, anyway) of
the individuals but only evaluate the proximity of a given
function to a certain, well-defined, mathematical propelty.

Although not being able of distinguishing the output of
our proposed generator,(source code in C in Appendix B),
it is clear that we cannot recommend it for cryptographic
use. It is obvious that it presents some undesirable
properties for cryptography, and, for example, it should
be seeded with random numbers because otherwise (i.e.
null seeds) the output of the generator could present very

1513

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

http://Random.org

bad statistical properties. This, however, is quite a
common feature of many PRNGs, as, for example, in
LFSRs [4].

Finally, we should conclude that the output of the
proposed generator, as proved by passing and performing
remarkably well in all the statistical tests examined, offers
enough quality to be used in a variety of scientific,
mathematical, engineering and industrial applications,
including Montecarlo simulations, decision theory, game
theory, sampling, etc.

Random numbers, and, extensively, random number
generators, are very difficult to create [Park98, Vattu951
but in this paper we have shown a completely new
approach that could significantly aid in easing. to the point
of making it automatic, this process.

ACKNOWLEDGMENTS

Supported by the Spanish Ministerio de Ciencia y
Tecnologia Research Project TIC2002-0449S-C05-4 and
by the INRIA Postdoctoral Fellowship program.

REFERENCES

[I] CantitPaz, E. “On Random Numbers and the
Performance of Genetic Algorithms.” GECCO 2002:
Proceedings of the Genetic and Evolufionory
Compufation Conference, p.3 1 1-3 I 8

[2] Chaitin, G.J. Informalion, Randomness &
Incompleteness. World Press Publishing, Singapore,
1987

[3] Forre R. “The strict avalanche criterion: spectral
properties of Boolean functions and an extended
definition.” Advances In Cryplology, CRYPT0 88,
Lecture Norm in Compufer Science, vol. 403, S .
Goldwasser ed, Springer-Verlag. pages 450-468, I990

[4] Golomb, S. Shifr Regisfer Sequences. Aegean Park
hess, Laguna Hills, CA, 1982.

[5] Hinton, Glenn et al. “The micro architecture of the
Pentium 4 processor. “Intel Technology Journol Q I ,
2001.

Hemander, I., C., Rihagorda, A., Isasi, P. and Sierra, J.,
M. “Finding near optimal parameters for Linear
Congruential Pseudorandom Number Generators by
means of Evolutionary Computation.” Proceedings of
fhe Genetic and Evolufionnry Computation Conference
(GECCO-2001) p. 1292-1298. Morgan-Kauffmann,
2001

[6]

[7] Isaacs, I., C., Watkins, R., K. and Foo, S. , Y.
“Evolvable An1 Colony Systems for Pseudo-Random
Number Generation.” Proceedings o/ the Genetic and
Evohtionory Compufotion Conference (GECCO-2001)
p. 770, Morgan-Kauffmann, 2001

[8] lsaacs J.C., Watkins R.K.and Foo S.Y. “Evolvable
Random Number Generators: A Few Ants in Your
Hardware could be a Good Thing.‘‘ Proceedings of !he
2002 MAPLD International Con/erence.

[9] Isaacs, J., Warkins, R. and Foo, S. “Evolving Ant
Colony Systems in Hardware for Random Number
Generation.” Proceedings o/ the Congress on
Evolutionary Compulafion CEC2002, p. 1450-1455

[I O] Knuth, D. E., 1997, The Art o/ Computer
Progromming, Vol. 2, 3rd ed, Addison-Wesley

[I I] Kolmogorov, A. “Three approaches to the quantitative
definition of information” in Problems o/ln/ormation
Transmimion v.1 n. I . Faraday Press, NY, 1965

[I21 Koza, I. “Evolving a computer program to generate
random number using the genetic programming
paradigm.” Prae. o/ the Fourfh Inl. Con/ on Genetic
Algorifhms, Morgan Kauffman, pp. 37-44, 1991

[I31 Koza, I., Andre, D. “Automatic discovery of protein
motifs using genetic programming.” In Evolutionary
Computation: Theory and Applications. World
Scientific Publications, 1996

[I41 K o a , I., et al. Automated ”Synthesis of analog
electrical circuits by means of genetic programming.” In
IEEE Tronsacfions on Evolufionary Computation 1(2),
1997

[I51 Koza, J.: “Genetic Programming.” In Encyclopedia of
Computer Science and Technology, v.39, 29-43, 1998

[I61 Marsaglia, G., 1995, Diehard battery of tests of
randomness, The Marsaglia random number CDROM,
Department of Statistics, Florida State University.

[I71 Marsaglia, G. “Random number generators for C: Some
suggestions. ‘‘ Posting in newsgroups sdmath , January
1999.

[I81 Marsaglia, G. and Tsang W.W. “Some difficult to pass
tests.” Journol of Sfafisfical so f iare , Volume 7 , 2002,
issue 3.

[I91 Matsumoto M and Nishimura T., “Mersenne Twister: A
623-dimensionally equidiseibuted uniform
pseudorandom number generator” ACM Trans. on
Modeling and Compufer Simulaiion Vol. 8, No. I ,
January pp.3-30 1998

[20] Maurer, U,, 1992, “A universal statistical test for
random bit generators”, Journal qfcryplology 5 , No. 2,
89-105.

1514

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

[21] Meysenburg, M., M. and Foster, J., A. “The Quality of
Pseudo-Random Number Generators and Simple Genetic
Algorithm Performance.” Proc. o/ rhe Sevenrh Int.
Conf on Generic Algorithmsp. 276-282, 1997

[22] Meyesenburg, M., M., Hoelting, D., McElvain, D. and
Foster, J., A . “A Genetic Algorithm-specific Test Of
Random Generator Quality.” GECCO 2002:
Proceedings o/ rhe Genetic and Evolutionary
Compularion Conference, p. 691

[23] Meyesenburg, M., M., Hoelting, D., McElvain, D. and
Foster, J., A “How Random Generator Quality Impacts
GA Performance.” GECCO 2002: Proceedings of the
Generic nnd Evolutionary Compularion Conference p.
480-487

[24] Park S.K. and Miller K.W. “Random number
generators: Good ones are hard to find.”
Communicofions o f f h e ACM, v. 31, pags. 1192-1201,
1988

[25] Shackleford E., Tanaka M., Carter R.J., Snider G.
“FPGA implementation of neighborhoo&of-four
cellular automata random number generators” in
Proceedings sf Ihe 2002 ACM/SIGDA l0rh
hlernalional Symposium on Field-Programmnble
GateArrays,pgs. 106- 112,2002

[26] Sheng-Uei and Shu Zhang. “An evolutionary approach
to the design of controllable cellular automata structllre
for random number generation.” IEEE Trmsadions on
Evolutionary Compularion, Vol. 7, N. I , February
2003.

[27] Sipper M. and Tomassini M.. ‘To-evolving parallel
random number generators.” Proceedings sf rhe
Parollel problem solving from Nature-PPSN IV, pages
950.959, 1996, Springer-Verlag

[28] Sipper, M. and Tomassini, M. “Generating parallel
random number generators by cellular programming”
lnternarional Journal oJModern Physics C, p. 181-1 90,
1996

[29] Vattulainen I. , Ala-Nissila T. “Mission impossible: Find
a random pseudorandom number generator.” Computers
in Physics, September 1995.

[30] Wheeler, D., Needham, R.: “TEA, a Tiny Encryption
Algorithm.” In Proceedings qf the 1994 Fast Sopware
Encrypiion Workshop

[3 I] Wolfram S. “Random Sequence Generation by Cellular
Automata.’’ Advances in Applied Mathematics, 7. June
1986. pgs. 123-169

[32] Randam.org. The true random number service
http:llrandom.orgicgi-
binirandbyte?nbytes=256&format=hex

[33] Center for Information Security and Cryptography
(CISC) Library of Tests for Random Number
Generators at
http:lIwww.csis.hku.hisc/downloacVidete

[34] The lilgp genetio programming system is available at
http:ligarage.cps.msu.edu/soAware/lil-gp/-
index.html.

APPENDIX A

These are the three best individuals found after ten
rounds, used in the genbgen pseudorandom number
generator:

=- BEST-OF-RUN ===

generation: 48 nodes: 20 depth: 15
TOP INDIVIDUAL:
hits: 139091 raw fitness: 1137.5078
standardized fitness: 0.8791 adjusted fitness: 0.8791
TREE
(sum (mult a0 ecb8462d)

(rotd (rotd (rotd (rotd (mult (rotd (rotd (rotd (rotd
(rotd (rotd (rotd (

rotd (rod aO))))))))) ecb846W))))

= BEST-OF-RUN ===

generation: 76 nodes: 20 depth: 16
TOP INDIVIDUAL:
hits: 130468 raw fitness: 2456.0547
standardized fitness: 0.4072 adjusted fitness: 0.4072
TREE
(mult (xor a0

(rotd (rotd (rotd (rotd (rotd (rotd (rotd (rotd
(rotd (rotd (rotd (

rotd (rotd ao)))))))))))))))
(kte a0))

= BEST-OF-RUN ===

TOP INDIVIDUAL:
hits: 145664 raw fitness: 1260.9751
standardized fitness: 0.7930 adjusted fitness: 0.7930
TREE
(mult 81d6cfE5

generation: 321 nodes: 20 depth: 17

(rotd (rotd (rotd (rotd (rotd (rotd (rotd (rotd (rotd
(rotd (rotd (rotd

(rotd (rotd (rotd (mult a0 81d6cf85)))))))))))))))))

1515

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

http://Randam.org
http:llrandom.orgicgi
http:lIwww.csis.hku.hisc/downloacVidete
http:ligarage.cps.msu.edu/soAware/lil-gp

APPENDIX B

Cenbgen generator source code in C

/* The genbgen generator. The name stands for
GENetically Bom GENerator. Developed by Julio C.
Hemandez, Isasi P., and Semec, A. */

unsigned long genbgen(unsigned long seedl ,seed2,seed3)
(
ilinitializations
static unsigned long rl=seedl ,r2=seed2,r3=seed3, r2p;

rl=rl*Ox81d6cf85; rl=rl>>lS; rl=rl*Ox81d6cf85;

rZ=r2p;r2=(r2>>9)*0xecb8462d;
r2=(r2>>4)+(12p*OxecbS462d);

r3=((r3>>14)%3)*0~9e3779b9;

retum((r1 "r2)+(r3)+(rl%3)+(rl)+(r2"r3)+(r2));)

This code can be executed, for example, with the call
genbgen(Oxd2df48fl.OxOae72b 13,0xaf/e2238)

1516

Authorized licensed use limited to: Univ Carlos III. Downloaded on March 26, 2009 at 11:03 from IEEE Xplore. Restrictions apply.

