
©

Evolutionary Design of Nearest Prototype Classifiers

FERNANDO FERNÁNDEZ∗
PEDRO ISASI
Universidad Carlos III de Madrid, Avda/de la Universidad 30, 28911-Leganés, Madrid, Spain
email: ffernand@inf.uc3m.es

Submitted in October 2003 and accepted by Zbigniew Michalewicz in April 2004

Abstract

In pattern classification problems, many works have been carried out with the aim of designing good classifiers
from different perspectives. These works achieve very good results in many domains. However, in general they
are very dependent on some crucial parameters involved in the design. These parameters have to be found by a
trial and error process or by some automatic methods, like heuristic search and genetic algorithms, that strongly
decrease the performance of the method. For instance, in nearest prototype approaches, main parameters are the
number of prototypes to use, the initial set, and a smoothing parameter. In this work, an evolutionary approach
based on Nearest Prototype Classifier (ENPC) is introduced where no parameters are involved, thus overcoming
all the problems that classical methods have in tuning and searching for the appropiate values. The algorithm is
based on the evolution of a set of prototypes that can execute several operators in order to increase their quality
in a local sense, and with a high classification accuracy emerging for the whole classifier. This new approach
has been tested using four different classical domains, including such artificial distributions as spiral and uniform
distibuted data sets, the Iris Data Set and an application domain about diabetes. In all the cases, the experiments
show successfull results, not only in the classification accuracy, but also in the number and distribution of the
prototypes achieved.

Key Words: classifier design, nearest prototype classifiers, evolutionary learning

1. Introduction

Nearest Neighbour Classifiers are defined as the sort of classifiers that assign to each new
unlabelled example, v, the label of the nearest prototype, ri , from a set, C , of N different
prototypes previously classified (Duda and Hart, 1973). When the set C is very reduced, as
is the goal of this work, these kinds of classifiers can be called Nearest Prototype Classifiers
(Bezdek and Kuncheva, 2001) (NPC).

These classifiers are very related to vector quantization techniques (Gersho and Gray,
1992) since the nearest neighbour rule is the cornerstone of its design, and similar tech-
niques can be used for both. The design of these classifiers is difficult, and relies on the
way of defining the number of prototypes needed to achieve a good accuracy, as well as
the initial set of prototypes used. Furthermore, most learning algorithms introduce addi-
tional different parameters, that are often summarized in a unique smoothing parameter.
This learning parameter defines whether the updates on the classifier are higher (typically

∗Author to whom all correspondence should be addressed.

1

at the beginning of the learning phase) or lower (typically at the end of the learning
phase).

Many discussions about what the right technique to use is can be found in the literature
(Kuncheva and Bezdek, 1998). Some approaches based on clustering techniques (Patanè
and Russo, 2001; Pal et al., 1993; Bermejo and Cabestany, 2000) can be performed in two
main steps. The first one is to cluster a set of unlabelled input data to obtain a reduced set of
prototypes, for instance, with the LBG algorithm (Linde et al., 1980). The second step is to
label these prototypes based on labelled examples and the nearest neighbour rule. Although
this approach produces good results, it is obvious that introducing information about the
classification performance in the location of the prototypes seems to be needed to achieve
a higher performance.

Neural networks approaches are also very common in the literature, such as the LVQ
algorithm (Kohonen, 1984) and the works with radial basis functions (Fritzke, 1994). To find
the right number of neurons of the net, two basic approaches can be found. On the one hand,
some techniques try to introduce or to eliminate prototypes (or neurons) while designing the
classifier following different heuristics, such as the average quantization distortion (Russo
and Patanè, 2000) or the accuracy in the classification (Pérez and Vidal, 1993). On the other
hand, other approaches try to define first the optimal size of the classifier and then learn it
using the previous value. Genetic algorithm approaches are typically used to find an initial
set of prototypes, as well as its right size, in addition to another technique to achieve local
optimization (Merelo et al., 1998). In Zhao and Higuchi (1996), an evolutionary approach is
presented based on the R4 rule (recognition, remembrance, reduction and review) to evolve
nearest neighbour multi-layer perceptrons.

In this work, an evolutionary approach called Evolutionary Nearest Neighbour Classifier
(ENPC), is introduced to dynamically find the optimal number of prototypes of the classifier
as well as the location of these prototypes. The main difference with previous works is
that this approach is a full integrated algorithm. Most algorithms that solve initialization
problems take advantage of a previously known technique, which is modified to introduce the
new capabilities. For instance, they introduce some heuristics for including or eliminating
prototypes, or they use genetic algorithms for optimizing the initialization, but typically in a
batch mode. However, in this work, both the operations to modify the size of the classifier and
the learning algorithm are fully integrated and can not be used separately from the other part.

In this sense, the method is able to obtain a very good map of prototypes, without having
to indicate any initial configuration, number of prototypes that would be good to obtain,
nor learning parameters.

The method allows the prototypes to execute several operators, like introducing new
prototypes, changing their related class, etc. in order to improve the global accuracy of
the classifier. Furthermore, the execution of these operators is controlled by the prototypes
themselves, taking into account their relationship with the rest of the prototypes of the
classifier. In previous works (Fernández and Isasi, 2001, 2002), the biological inspirations
of this algorithm were presented, following an ecosystem metaphor.

In the next section, the operators are explained, as well as the main concepts that are used.
Section 3 shows principal experiments performed and comparative results with previous
works, while Section 4 shows main conclusions achieved and further research.

2

2. The ENPC algorithm

2.1. Concepts

In the following, the main concepts used in ENPC are described:

Labeled Prototype, ri . Defines each prototype of the classifier system. The prototype is
composed by the location of the prototype in the space (p) and the class of the prototype
(s). So a prototype r will be denoted by 〈p, s〉. The region of a prototype is the space,
within which, all the examples will be labeled as the prototype class. This region is
computed using the nearest neighbour rule.

Classifier, C. A set of N prototypes C = {r1, . . . , rN }.
Pattern, vr . Is each of the examples that will be used for training or testing the system. They

all compose a set V = {v1, . . . , vM}, and, as well as the prototypes, they are composed
by their position (p) in the space and by their class (s), so a prototype v will be denoted
by 〈p, s〉.

Class, s j . Both prototypes and patterns belong to a class from the set S = {s1, . . . , sL}. The
goal of a prototype, ri , of class, s j , is to contain in its region as many patterns of class s j

as possible and not to contain any pattern of other classes sk �= s j .
Quality of a prototype, quality(ri). Is a measure of the goodness of the prototype, taking

into account the number of patterns in its region, and whether those patterns belong to
the same class as the prototype or not.

In order to compute the quality value for each region, additional features must be taken into
account and computed, and they are defined next.

2.2. Structure

The system can be represented by a bidimensional matrix, where each row is associated to
a prototype of the whole classifier ri ∈ C , and each column is associated to a class s j ∈ S.
Each position (i, j) of the matrix is a structure that contains features about the set of training
examples (Vi j) that are in region ri and belong to class s j .

Figure 1 shows the structure used to keep all this information. This structure is dynamic, in
the sense that if any set is empty, the node is not created, solving some memory requirements
in complex domains.

2.2.1. Class sets. The set Sj is defined as the set of patterns that belong to class s j .
Membership function to this set is the equivalence between the class of the pattern and the
class associated to the set (i.e. s j), as defined in Eq. (1).

∀ v ∈ V, v = 〈p, s j 〉, s j ∈ S, then v ∈ Sj (1)

3

Figure 1. ENPC architecture.

From this set, some interesting features can be obtained:

– regions(s j) is the number of regions whose prototype class is s j . This function can be
computed from Eq. (2).

regions(s j) =
N∑

i=1

δ(ri , s j), where δ =
{

1, iff ri = 〈p, s j 〉
0, otherwise

(2)

– expectation(s j) is the number of patterns that any prototype ri of the class s j is expected to
correctly classify. This number is computed in a relative way, by the relationship among
the number of patterns belonging to class s j (‖Sj‖) and the number of regions of each
class s j . This value gives an idea about how many patterns must classify each prototype
so that they all classify a similar number, and it is computed using Eq. (3).

expectation(s j) = ‖Sj‖
regions(s j)

(3)

2.2.2. Pattern sets. The set Vi j is defined as the set of patterns that are located in region ri

and belong to the class s j . Each set Vi j is the intersection among the sets Ri (see Section 2.2.3)
and Sj , and its membership function is defined in Eq. (4).

∀ v = 〈pv, s j 〉 ∈ V, s j ∈ S, ri = 〈pi , s ′〉 ∈ C, then
(4)

v ∈ Vi j iff ∀ r ′
i = 〈pi ′ , s ′′〉 ∈ C, d(pv, pi) ≤ d(pv, pi ′)

4

Distance metric used in this work is mean square error, as defined in Eq. (5).

d(x, y) =
i<K∑
i=0

(x[i] − y[i])2 (5)

where K is the dimension of the data.

2.2.3. Prototype sets. The set Ri is defined as the set of patterns that are located in the
region ri . Membership function to this set is the nearest neighbour rule, and it is defined in
Eq. (6).

∀ v = 〈pv, s j 〉 ∈ V, ri = 〈pi , s ′〉 ∈ C, then
(6)

v ∈ Ri iff ∀ ri ′ = 〈pi ′ , s ′′〉 ∈ C, d(pv, pi) ≤ d(pv, pi ′)

Note that in the case that several regions satisfy the condition, only one of them will be
chosen. Distance metric used here is again the mean square error defined in Eq. (5).

For each prototype ri = 〈p, s j 〉 ∈ R, its own classification accuracy can be computed
following the Eq. (7).

accuracy(ri) = ‖Vi j‖
‖Ri‖ (7)

where ‖Vi j‖ is the number of prototypes located in the region ri that belong to the same
class as the prototype ri (see Section 2.2.2).

From this accuracy, the final value of the prototype quality is computed. The quality is a
relation between the accuracy of the prototype, that is, the capability of classification, and
the size, in number of patterns gathered, of the prototypes. For computing the size, not only
the patterns gathered by the prototype have been taken into account, but also the expectation
of the class to which this prototype belongs. This relation has been called apportation of the
prototype to the whole classification task, and it is defined for each prototype ri = 〈p, s j 〉 ∈ R
as shown in Eq. (8).

apportation(ri) = ‖Vi j‖
expectation (s j)

2

(8)

The motivation of dividing the expectation value by 2 is to give the prototype a less rigid
measure of its apportation, given that the distribution of the patterns of each class may not
be uniform.

From this, the computation of the final measure of prototype quality is as defined in
Eq. (9).

quality(ri) = min(1, accuracy(ri) ∗ apportation(ri)) (9)

The main idea is that the quality of a prototype is high only if it classifies correctly, and
if it classifies a sufficient amount of patterns. The value is limited to the range [0, 1].

5

Table 1. Example of the ENPC classifier.

S1 S2

R1 = 〈p1, s2〉 ‖V11‖ = 7 ‖V12‖ = 9

R2 = 〈p2, s1〉 ‖V21‖ = 10 ‖V22‖ = 2

R3 = 〈p3, s2〉 ‖V31‖ = 3 ‖V32‖ = 9

An example of how computing previous values is defined in Table 1. The table shows
a situation of the classifier, where the number of prototypes is 3 and the number of dif-
ferent classes is 2. Furthermore, a set of instances has been introduced in the different
sets Vi j (giving only the sizes of these sets), representing the instances that are in region
ri and belonging to class s j . If we begin to compute characteristics of the Class Set, for
instance, ‖S1‖ = ∑N=3

i=1 Vi1 = 20, so there is a total of 20 instances belonging to class
s1. Regions(s1) = 1, given that there is only a prototype (r2), that belongs to class s1, so
expectation(s1) = 20 (the only prototype belonging to class s1 is expected to classify all the
instances belonging to that class). On the other hand, accuracy(r2) = 10/12 = 0.83, while
apprtation(r1) = 10/(20/2) = 1, given that it correctly classifies the 10 instances that it is
supposed to classify. Last, quality(r2) = min(1, 0.83 ∗ 1) = 0.83.

2.3. The algorithm

The learning phase is an iterative process where the prototypes can execute several operators,
once the features defined in Section 2.2 have been computed. These operators consist of
heuristics that allow the prototypes to change their location, to introduce new prototypes,
etc. The algorithm is summarized in the flow shown in figure 2. Firstly, there is a simple
initialization phase where the classifier is composed by only one prototype. After that, the
classifier evolves by executing, in a loop, all the operators, described below. These operators
take advantage of some information gathered at the beginning of the loop.

Notice that most of the operators/heuristics defined here are taken from the literature. This
approach uses them from an evolutionary point of view, giving the prototype capabilities to
decide when to execute each of the operators and introducing a high level of randomness
in those decisions.

2.3.1. Initialization. One relevant feature of this method is the absolute lack of initial
conditions. These initials conditions are usually summarized in three: the number of proto-
types, the initial set of prototypes and a smoothing parameter. The ENPC algorithm allows
learning without those parameters, given that:

– The initial number of prototypes is always one. The method is able to generate new
prototypes stabilizing in the most appropriate number, in terms of the above defined
“quality” measure.

– The initial location of the only prototype is not relevant (it clusters all the domain,
wherever it is located).

6

Figure 2. ENPC algorithm flow.

– There are no learning parameters. The method automatically adjust the intensity of change
in prototypes taking into account their qualities in each iteration.

2.3.2. Getting information. At the beginning of each iteration, the algorithm must com-
pute the information required to execute the operators. This information was presented in
previous section, and it refers to the prototypes, class, and pattern sets.

Getting information is a phase where the patterns are “inserted” into their class, prototype
and instance sets defined in previous section, using the membership functions defined in
Eqs. (1), (4) and (6) respectively. At the end of this phase, all the patterns will have been
“introduced” in the sets, and the required information about them will have been computed.
We must point out that previos sets are not really stored, so instead of “introducing” instances
in the sets, the information about these set is updated as if the instances would have been
introduced.

2.3.3. Mutation operator. The goal of this operator is to label each prototype with the
most populate class in each region. Once the features are obtained, each prototype knows
the number of patterns of each class located in its region. Then, the prototype changes, if
needed, and becomes the same class as the most abundant class of patterns in its region.
Figure 3 shows an example of this operator. In the example, a prototype of class 2, changes
to class 1, given that it has 19 patterns of class 1 and only 7 of class 2.

This way of getting the main class is typically used when unsupervised learning is applied
to supervised classification (Bermejo and Cabestany, 2000; Pal et al., 1993). In these works,

7

Figure 3. Example of mutation operator execution.

the algorithms typically generate a set of clusters that takes into account only the distribution
of the data. In a second phase, the clusters are labelled as the most populate class in the
cluster. However, in our work, the supervision is included in each iteration of the algorithm,
and not only in “a posteriori” phase. Remember that the quality of each prototype depends
on the relationship among the number of patterns in its region, and the number of patterns
that belongs to the same class as the prototype, so the way to improve this value is becoming
to the most populate class. The formulation of this operator is defined in Eq. (10).

∀ri = 〈p, s〉 ∈ C, s = arg
j

max ‖Vi j‖ (10)

where ‖Vi j‖ is the size of the set Vi j .

2.3.4. Reproduction operator. The goal of this operator is to introduce new prototypes in
the classifier. The insertion of new prototypes is a decision that is taken by each prototype,
in the sense that each prototype has the opportunity of introducing a new prototype in order
to increase its own quality. The reason for providing the prototypes with this capacity is
to achieve each one of them only containing patterns that belong to the same class. If we
remember the structure of the approach shown in figure 1, we see that this goal corresponds
with a situation where there is only a non empty set Vi j for all ri , i.e. there is only a non
empty set Vi j in each row. Figure 4 shows a region r1 that has two non-empty sets V11 and
V12, being 1 the class of the prototype. A single way to achieve the desired situation is by

Figure 4. Example of reproduction operator execution.
8

introducing another region r2 of class 2 that contains the set V12, that should be renamed as
V22. Summarizing, the regions with patterns belonging to different classes can create new
regions containing the patterns of a different class from the class of the prototype.

There is only one decision to take: in which situations are new prototypes introduced? To
solve this, each prototype, ri , of the class s j , executes a roulette. Each slice of the roulette
represents a set Vi j ′ , for all j ′ ∈ S. The size of each slice is proportional to the number of
elements of the set Vi j ′ which it represents. The possible results of the roulette are two. On the
one hand, if the resulting set Vi j ′ is the set Vi j , i.e. j = j ′, no reproduction is executed. On the
other hand, if the resulting set Vi j ′ is not the set Vi j , i.e. j �= j ′, the reproduction is executed,
and a new region ri ′ is created to contain the patterns in Vi j ′ , that is renamed to be Vi ′ j ′ .

We can see that if the goal situation of having only one non-empty set Vi j for each region
ri is kept, no reproduction will be executed. But if the number of non-empty sets grows, as
well as their size, the probability of reproduction will grows too.

2.3.5. Fight operator. This operator provides the capability of getting patterns from other
regions to the prototypes. Formally, this operator allows a prototype, ri , to modify its sets
Vi j from the sets Vi ′ j of another prototype ri ′ , for i �= i ′. This operator takes place in several
steps:

1. Choose the prototype ri ′ to fight against. Prototypes are chosen from the set
neighbours(ri), that is defined as the set of regions that have a common border with
the region ri . To decide which prototype to choose from the neighbours’ set, a roulette
is used to assign to each region r j ∈ neighbours(ri) a slice of size proportional to the
difference between its quality and the quality of ri .

2. Decide whether to fight or not. Probability of fighting between prototypes ri and ri ′ is
proportional to the distance of their qualities, as shown in Eq. (11).

Pfight(ri , ri ′) = |quality(ri) − quality(ri ′)| (11)

3. If prototype ri = 〈pi , si 〉 decides to fight with prototype ri ′ = 〈pi ′ .si ′ 〉, there are two
possibilities:

– If si �= si ′ (cooperation). Both prototypes belong to different classes. In this case,
the prototype r ′

i will give to the prototype ri the patterns of the class si . This is done
by inserting the patterns of the set Vi ′si into the set Vi si and setting Vi ′si to empty.
Figure 5 shows an execution of this operator, where the prototype 1, which owns
patterns of the classes 1 and 2, gives the patterns of class 2 to the prototype 2, by
introducing the patterns into the set V12 in the set V22.

– If si = si ′ (competition). In this case, patterns can be transfered from set Vi ′si to the
set Vi si , or vice versa, depending on who wins the fight. Figure 6 shows an execution
of this operator, where prototype 1 steals some patterns from prototype 2. The winner
is decided again using a roulette with only two slices, each slice belonging to each
prototype, and sizes proportional to the qualities of each prototype. Furthermore, the
amount of patterns that are transferred depends on a probability proportional to the
qualities of both prototypes.

9

Figure 5. Example of fight operator execution with cooperation.

Figure 6. Example of fight operator execution with competition.

Last, notice that in figures 5 and 6, the translation of patterns from one set to another
is done only by changing the border between the regions. So, when it is said that some
patterns are extracted from one set and inserted into another one, the only thing that it is
done is to move that border. In a nearest neighbour approach, this movement can be done
only by changing the centroid of the sets, given that these centroids define, with the nearest
neighbour rule, the borders among the regions.

2.3.6. Move operator. The move operation implies relocating each prototype in the best
expected place. So each prototype, ri = 〈pi , s j 〉, decides to move to the centroid of the set
Vi j , as shown in Eq. (12).

pi = centroid(Vi j) (12)

Figure 7 shows the execution of the move operator from the situation achieved in figure 5,
and how the prototype 2 changes its position to the centroid of the set V22.

This operation based in the second step of Lloyd iteration (Lloyd, 1982) allows making
a local optimization of the classifier, increasing its performance.

10

Figure 7. Example of move operator execution.

2.3.7. Die operator. Probability to die is 1 minus the double of the quality, as defined
in Eq. (13). Then, successful prototypes will survive with probability of 1, while useless
prototypes with quality less than 0.5 might die. A wide range of heuristics about how to
reduce the number of prototypes in a classifier can be found in the bibliography (Fritzke,
1994; Russo and Patanè, 2000; Cagnoni and Valli, 1994).

Pdie(ri) =
{

0, when quality(ri) > 0.5

1 − 2 ∗ quality(ri) when quality(ri) ≤ 0,5
(13)

2.3.8. End condition. End condition is the hardest element to define in this approach. It
is supposed that the algorithm convergence to an optimal solution is desirable, but: what
is an optimal solution? In this area, an optimal solution is said to be that solution that
achieves a highest classification success with the smallest number of prototypes. However,
what is the heaviest parameter? Some people may think that if increasing the number of
prototypes, the accuracy of the classifier can also be increased, it is better to increase this
number, but over-fitting problems may occur. On the other side, if we reduce the number
of prototypes, we can do it only by decreasing the accuracy. So, what is the best solution?
The approach of this work is to let the population evolve, and the user decides when and
why to stop. Obviously, a lot of different conditions could be introduced to decide when
to stop: convergence in the number of prototypes, convergence in the accuracy, a weighted
version of both, or even a learning parameter. Anyway, the experiments will show how the
algorithm always converge to a small accuracy range, and in most of the times to a small
range in the number of prototypes.

Anyway, several stopping criteria may be be used, and are defined next:

1. Number of iterations. The user defines a maximum number of iterations.
2. Accuracy. The user defines its desired classification success, so the algorithm will work

until that value has been reached.
3. Accuracy and Number of Iterations. The user defines its desired accuracy, but it also

defines a maximum number of iterations, so even if the algorithm is not able to achieve
the expected result in that time, it stops.

11

4. Convergence to a number of prototypes: This is an automatic way to verify the conver-
gence of the algorithm to a defined number of prototypes. This criteria stops only when
the relative frequency of appearance of the size of the classifier is higher than a certain
level, after the algorithm has been executed a minimum number of iterations in order to
get enough statistics. Thus, if the algorithm converges to a defined number of prototypes,
the frequency of this number will increase, and the end condition will become true.

5. Convergence to an accuracy: This is an automatic way to verify the convergence of the
algorithm to an accuracy. The algorithm will stop when it is not able to increase the
accuracy of the classifier in a large number of iterations.

6. Any combination of previous approaches. For instance, executing the algorithm until
user success and convergence to a number of prototypes are achieved, stopping before
only if the algorithm is executed a user defined number of iterations.

Once the convergence criteria have been defined, the winner classifier can be obtained
in several ways. A single one is to find the classifier with higher accuracy in the training
set. However, in order to improve generalization capabilities and to avoid fitting over the
training set, it could be useful to select another classifier with fewer prototypes and similar
success.

3. Experiments

In this section, several experiments performed with the ENPC algorithm in different domains
are shown: in Section 3.1 is a two spiral data set, a domain with two interlaced spirals each
one belonging to a different class; in Section 3.2 domain Uniformly Distributed Data; in
Section 3.3 the Iris Data Set; and in Section 3.4, the Pima Indians Diabetes Database.

For all the experiments, the end condition is defined by a maximum number of iterations,
and the classifier returned is the one with highest accuracy over the training data set.
Comparative results are divided in two. On the one hand, the algorithm has been compared
with four different classifiers in all the domains. These classifiers are decision trees (C4.5)
(Quinlan, 1993), decision rules (PART) (Frank and Witten, 1998), Naive Bayes (Duda and
Hart, 1973; John and Langley, 1995), and IBK (Aha and Kibler, 1991) for different values
of k. The implementation of these algorithms is provided by WEKA (Witten and Frank,
2000), and they are used with the pre-defined parameters. On the other hand, in the domains
where comparative results have been found in the literature, they have been included too.

3.1. Spiral data

This domain consists of two squared spirals of data, as shown in figure 8. The examples in
the same spiral belong to the same class and there are 500 examples for each spiral. Thus,
a total of 900 examples were used for training and 100 for testing.

For all the experiments, 20 executions have been performed; in this case, of a length of
300 iterations per execution. Results of these experiments for the spiral data set are shown in
Table 2. The table shows, for each of the executions, some information about the classifier
that obtains better classification success on training (iteration when it was obtained, training

12

Table 2. Results of different executions of the ENPC algorithm over the spiral data
set.

Iteration Prototypes Learning (%) Test (%)

289 82 99.33 97.0

158 75 99.0 96.0

174 81 99.11 95.0

267 81 99.33 96.0

282 81 99.44 97.0

260 78 99.11 97.0

170 79 99.56 96.0

182 82 99.33 97.0

120 79 98.67 95.0

281 73 98.9 96.0

300 84 99.44 97.0

123 84 99.56 96.0

81 79 99.33 94.0

260 82 99.44 96.0

131 77 98.67 95.0

81 81 99.33 98.0

97 79 99.33 96.0

299 78 99.56 96.0

291 84 99.78 97.0

179 75 99.0 97.0

Average 201.25 79.7 99.26 96.2

Average deviation 71.77 2.5 0.24 0.74

Figure 8. Spiral data.
13

Table 3. Comparative results of spiral data set.

C4.5 PART Naive Bayes IBK (k = 1) IBK (k = 3) ENPC (best) ENPC (worst) ENPC (average)

62 56 50 100 100 98 94 96.2

success, test success, and number of prototypes). This classifier is selected for executing
the test (which result is shown in the table too). The table shows that classification success
obtained in learning is around 99%, while for test set this value ranges from 94 to 98%,
obtaining an average value of 96.2%, and an average deviation of 0.74 (less that one test
instance). The average number of prototypes achieved is 79.7, with and average deviation
of 2.5 prototypes over that value.

Table 3 shows a comparative of previous results with other classifiers, using the average
value obtained by ENPC in the previous 20 executions as comparative result. The table
shows that results for decision trees (C4.5), decision rules (PART), and Naive Bayes re-
sults are poor, and they are far from the results obtained by ENPC. IBK is the one that
achieves best results, obtaining a 100% success rate both for k = 1 and for k = 3, that is
expected in domains where instances from different classes are very separated, as shown in
figure 8.

The evolution of an execution of the algorithm is shown in figure 9, where the number of
prototypes, and the accuracy obtained over the training and test sets are shown. In only 25
iterations of the algorithm, the number of prototypes has been increased up to 64, providing
an accuracy over the training set of 91.34% and of 85.00% for the test set. However, the
number of prototypes is still increased until the range 70–80, where it continues the search

Figure 9. Evolution of the ENPC algorithm over spiral data set.
14

Figure 10. Classifier of 76 prototypes obtained with ENPC in spiral data set.

and achieves the best result in iteration 203 of 98.56% for the training set and 96.00% for
the test set, with 76 prototypes. Maximum accuracy obtained for the training set is 99.34%
in iteration 176, where the accuracy of the test set is 94.00%. The classifier obtained in this
execution is shown in figure 10.

3.2. Uniformly distributed data

In this experiment, the algorithm has been tested in a domain that follows a uniform distri-
bution with 2 different classes shown in figure 11, as defined in Burrascano (1991). As in

Figure 11. Data with uniform distributions.
15

Table 4. Results of different executions of the ENPC
algorithm over uniform distributed data.

Iteration Prototypes Learning (%) Test (%)

1 2 98.6 98.6

1 2 98.6 98.6

1 2 98.6 98.6

1 2 98.6 98.6

1 2 98.6 98.6

1 2 98.6 98.6

1 2 98.6 98.6

1 2 98.6 98.6

1 2 98.6 98.6

1 2 98.6 98.6

1 2 98.6 98.6

266 19 98.8 98.3

1 2 98.6 98.6

279 30 98.8 98.7

1 2 98.6 98.6

1 2 98.6 98.6

1 2 98.6 98.6

179 14 99.1 98.73

37 2 98.7 98.93

that case, the data contains 2000 instances of each class, using 500 for training and 1500
for testing.

Given that evolution introduces random behaviours, different executions of the algorithm
may achieve different solutions. Table 4 shows the resulting classifier for 20 different
executions with a maximum length of 300 iterations. The same information as in previous
experiments is given, i.e. the iteration, accuracy over training and test set and the number
of prototypes of the best classifier achieved in each execution of the algorithm.

In the table it is shown that in 16 of the 20 executions, the algorithm returns the solution
of only 2 prototypes and 98.6% of accuracy in classification over the test set, a value that is
achieved in the first iterations of the algorithm. However, given that the algorithm is allowed
to continue searching for better solutions, in some occasions it is able to improve this value
up to 98.93 with the same number of prototypes, introducing an average deviation of only
0.05 from the average success of 98.61. It is very interesting that the algorithm achieves
very good results with 2 prototypes in only one or two iterations. This surprising result is
due to the fact that the initialization of the algorithm is very adequate for this domain. In
the initialization, the only operators that could be executed are reproduction and move. The
latter moves one prototype to the center of the first distribution and the other one to the

16

Figure 12. Evolution of the ENPC algorithm over uniformly distributed data.

center of the second distribution, which becomes one of the best solutions. From this point,
improvement is really difficult.

Figure 12 shows the evolution of the algorithm for the last of previous executions. As in
the rest of the experiments, the x-axis shows the iteration, and the y-axis shows both the
number of prototypes used and the accuracy of the classifier for the training and test data
sets.

In figure 12, how the classifier with only two prototypes is achieved at the beginning
of the evolution is shown. Later, the number of prototypes is increased to achieve better
accuracies. In this case, in iteration 79, a classifier of 12 prototypes achieves an accuracy
of 98.967%.

Table 5 shows the comparison of these results with previous approaches, such as the
LVQ algorithm (Kohonen, 1984), and two implementations of the Probabilistic Neural Net-
works (PNN) (Specht, 1990) that allow reducing the structure of the network. LVQ-PNN

Table 5. Comparative results for uniform distributed data classification.

Algorithm Number of prototypes/neurons Accuracy

LVQ 10 96.13

LVQ 100 97.77

LVQ-PNN 10 96.99

LVQ-PNN 100 98.17

Improved PNN 8 98.85

ENPC (average) 2 98.6

ENPC (best) 2 98.93

17

Table 6. Additional comparative results over the uniformly distributed data.

C4.5 PART Naive Bayes IBK (k = 1) IBK (k = 3) ENPC average ENPC best

96.97 96.6 96.77 98.7 98.47 98.6 98.93

Figure 13. Classifier obtained with ENPC over uniformly distributed data domain.

(Burrascano, 1991) does this by using LVQ to find a reduced set of neurons in its sec-
ond layer, instead of using as many neurons as input patterns. For LVQ and LVQ-PNN,
two different executions are reported in Burrascano (1991), one with 10 neurons and
another with 100 neurons, giving the best results for LVQ-PNN with 98.17% accuracy
throushout the test. The second one (Mao et al., 2000) is an algorithm that permits de-
signing PNN by determining the smoothing parameter by Genetic Algorithms and the
structure of the network by an orthogonal algorithm that selects important neurons, so
the number of neurons to use is automatically computed by the algorithm, as is the case
of ENPC. In the table it is shown that the typical solution of 2 prototypes obtained with
the ENPC algorithm (98.6% accuracy) is very close to the best solution of the improved
PNN algorithm (98.85%), while other classifiers obtained may improve that value (98.93%
with 2 prototypes). The classifier obtained by ENPC of only two prototypes is shown in
figure 13.

Lastly, Table 6 shows some comparative results with other algorithms, showing that ENPC
results are always close to the best results obtained by other algorithms, and achieving the
best results in some cases.

3.3. Iris data set

Iris Data Set from UCI Machine Learning Repository1 (Blake and Merz, 1998) is used for
this experiment. The dataset consists of 150 samples of three classes, where each class has

18

Figure 14. Evolution of the ENPC algorithm over the Iris data set.

50 examples. The dimension of the feature space is 4. In this case, and for comparison
reasons, the whole data set was used for training and for testing.

The ENPC algorithm was executed 20 times as in previous experiments, and results
are described in Table 7. The table shows that the best solutions achieved are for 2 and
3 misclassifications (98.667% and 98.000% accuracy respectively) with classifiers of 5
prototypes for 3 misclassifications, and a range of 7–12 prototypes for 2 misclassifica-
tion results. In figure 14 one of the executions is shown. As in previous experiments, the
figure represents the iteration in the x-axis, while the accuracy and the number of pro-
totypes are shown in y-axis. Given that all the data set is used for training and testing,
only one accuracy evolution is shown. The figure shows that the result of 5 prototypes and
98.000% success is found in only 15 iterations, after keeping with 3 prototypes for sev-
eral iterations, and around 90% success. After achieving 98.000%, the algorithm evolves
to new classifier sizes, finding better accuracy (98.667%) for 7 prototypes in iteration
138.

These results are compared with the ones presented in Kuncheva and Bezdek (1998)
and Mao et al. (2000), and are summarized in Table 8, where the number of prototypes
and the misclassifications are shown. The algorithms compared are LVQ (Kohonen, 1984),
GLVQ-F and DR (Bezdek et al., 1998), and the improved PNN algorithm (Mao et al., 2000)
introduced in Section 3.2.

We can see how ENPC algorithm improves the results of MFCM3, LVQ and GLVQ-F,
but cannot achieve the results of the improved PNN, which has one misclassification with
only 3 prototypes.

Lastly, the results are also compared with other algorithms, as is shown in Table 9. The
table shows that C4.5 produces only 3 mistakes, while PART produces 4 and NAIVE BAYES
6. Obviously, IBK with k = 1 produces 0 mistakes, given that test set is the as the training
set, but if k is increased up to 3, the number of errors increases up to 5.

19

Table 7. Results of different executions of ENPC algorithm over
the Iris data set.

Iteration Accuracy Prototypes

86 98.667 7

39 98.000 6

138 98.667 7

107 98.667 7

152 98.667 11

236 98.667 8

24 98.667 7

24 98.000 5

43 98.667 12

19 98.000 5

25 98.000 5

252 98.667 10

133 98.667 8

134 98.667 10

145 98.667 9

10 98.000 5

12 98.000 5

143 98.667 7

255 98.667 11

95 98.000 6

Average 103.6 98.43 7.55

Average Deviation 65.9 0.3 1.86

Table 8. Comparative results for Iris data set.

Algorithm MFCM-3 LVQ LVQ GLVQ-F DR DR I. PNN ENPC ENPC

Prototypes 7 7 3 8 5 3 3 5 7

MisClass. 11 3 17 3 3 10 1 3 2

Table 9. Additional comparative results over the Iris data set.

C4.5 PART Naive Bayes IBK (k = 1) IBK (k = 3) ENPC (best) ENPC (worst)

3 4 6 0 5 2 3

20

3.4. Pima indians diabetes database

This domain, obtained from the UCI Machine Learning Repository (Blake and Merz, 1998)
includes medical information for diabetes diagnosis. The dataset consists of information
of eight continue-valued attributes plus the associated class, that in this case is binary. The
dataset is composed of 768 examples, and validation is done by a 10 fold cross validation.

When executing ENPC algorithm with the only parameter defined up to now, i.e. the
number of iterations, set to 300, the results are not good. On training data, the algorithm
obtains 94.21% success, but on test data it obtains only 65.72%, a similar result that the
obtained by ZeroR classifier. This means that there is an overfitting of the algorithm on
the training set, so the test set receives very bad results. These kinds of results are typical
of nearest neighbour approaches when useless attributes are used for classification. For
instance, IBK, for k = 1 obtains 70.18% success.

However, ENPC gives a single way to reduce this overfitting, only by modifying the
classifier selection method. Section 2.3 showed that typically, after the execution of a
defined number of iterations of the ENPC algorithm, the selected classifier from all the
ones generated in previous iterations is the one with higher classification accuracy over the
training data. A single way to improve generalization capabilities is to separate training set
into two sets: the first one, called the evolution set, will be used for training, as is typical. But
the second one will be used for classifier selection. So, in this case, the classifier selection
will be done using different data to the one used for prototypes evolution. Figure 15 shows the
results of executing the ENPC algorithm following this approach, and where the percentage
of data used for evolution and for classifier selection ranges from 10 to 90.

The figure shows results for training and for testing when the 10 fold cross validation is
executed, where the training result is the one obtained after classifier selection. The figure
shows how when using a different set for classifier selection, even when the percentage

Figure 15. Results of the ENPC algorithm for different sizes of the evolution and classifier selection sets.
21

Table 10. Comparative results over the Pima indians diabetes database.

C4.5 PART Naive Bayes IBK (k = 1) IBK (k = 3) CNN DEL DROP 5 SNN ENPC

73.83 75.26 76.3 70.18 72.65 69.78 71.61 73.05 67.97 73.38

of data used for this set is low, the differences among training and test sets are reduced
from almost 30 (value obtained when the same data is used for prototypes evolution and
classifier selection) down to a range of 10 points. The best result obtained is when data used
for classifier selection is 20% of the training data, achieving 73.38% classification success.

Last, Table 10 shows different classification results obtained by other different algorithms.
Added to the ones included previously (C4.5, PART, Naive Bayes, and IBK), we have also
introduced comparative results with other approaches based on editing and condensing
the training set, as is the case of CNN (Condensed Nearest Neighbour rule) (Hart, 1968),
SNN (Selective Nearest Neighbour rule) (Ritter et al., 1975), DEL (Decremental Encoding
Length) and DROP (Decremental Reduction OPtimization) (Wilson and Martinez, 2000).
All the results are obtained from Wilson and Martinez (2000).

4. Conclusions and future work

The algorithm presented in this work is an evolutionary approach to solve the problem of
finding a set of prototypes that are able to correctly classify the examples of a domain,
following a 1-nearest prototype approach. The main advantages of this method are, on the
one hand, that it is able to achieve high accuracy in all the domains where it has been
tested, even compared with other techniques from the literature. On the other hand, the
achievement of these good results is done without the user defining any initial conditions
nor learning parameter.

To achieve this, a fully integrated technique has been developed that includes elements
from other works, such as heuristics to introduce new prototypes, to eliminate other ones,
labelling phases, etc. Previous works typically introduce modifications over other techniques
that provides them the capability of defining the architecture. Typical solutions were genetic
algorithms or heuristics to modify the architecture. These techniques can be split in two steps,
defining or modifying the architecture and learning the problem with the new architecture,
sometimes even in an iterative process. However, in this work, all the mechanisms are fully
integrated, so it is not possible to separate the elements that define the architecture from the
ones that solve the problem with the architecture.

Comparisons with other techniques have shown that the ENPC algorithm is able to
successfully solve most of the problems presented without any additional parameter: the
user only has to define the training and test sets, and an additionaly (optionaly) end condition.
It is also well known that there is no technique able to behave better for all domains. In
this work we achieve one of the best results for all the domains in the experiments. This
makes our technique a good candidate when the domain is uncertain, or when it has to
be included in automatic processes. This is the case, for instance, in applying ENPC as
function approximator in reinforcement learning methods (Fernández and Borrajo, 2002).

22

The end condition used in this work is the number of iterations that the algorithm must be
executed. However, other end conditions could be defined, given that in all the experiments
it is shown that, even though the algorithm does not ever converge to a fixed solution, it
converges to a small set of very similar solutions. Note that the goal of the algorithm is not
to find an “optimal” solution, which in most cases may not exist, but a “useful” solution to
the problem. In this sense, we define a “useful” solution as a solution with a high accuracy
and a low number of prototypes: the algorithm does not ensure that both values, or the
combination of both, are optimal. But it will be very close.

Future work is oriented to the concept of similarity of the data, i.e. the distance metric
used. On one hand, the use of weighted distance metrics that learn which attributes are
important and which ones are not is an important issue, as well as techniques that are
able to automatically normalize the data without losing information. On the other hand,
the adaptation of all the ideas presented in this work to other non Euclidean domains, where
different distance metrics are defined appears as an interesting goal.

Note

1. http://www.ics.uci.edu/∼mlearn/MLRepository.html.

References

Aha, D. and K. Kibler. (1991). “Instance-Based Learning Algorithms.” Machine Learning 6, 37–66.
Bermejo, S. and J. Cabestany. (2000). “A Batch Learning Algorithm Vector Quantization Algorithm for Nearest

Neighbour Classification.” Neural Processing Letters 11, 173–184.
Bezdek, J.C. and L.I. Kuncheva. (2001). “Nearest Neighbour Classifier Designs: An Experimental Study.” Inter-

national Journal of Intelligent Systems 16, 1445–1473.
Bezdek, J.C., T.R. Rechherzer, G.S. Lim, and Y. Attikiouzel. (1998). “Multiple-Prototype Classifier Design.” IEEE

Transactions on Systems, Man and Cybernetics 28(1), 67–79.
Blake, C.L. and C.J. Merz. (1998). “UCI Repository of Machine Learning Databases.”
Burrascano, P. (1991). “Learning Vector Quantization for the Probabilistic Neural Network.” IEEE Transactions

on Neural Networks 2(4), 458–461.
Cagnoni, S. and G. Valli. (1994). “OSLVQ: A Training Strategy for Optimum-Size Learning Vector Quantization

Classifiers.” In IEEE International Conference in Neural Networks, pp. 762–775.
Duda, R.O. and P.E. Hart. (1973). Pattern Classification and Scene Analysis. John Wiley And Sons.
Fernández, F. and D. Borrajo. (2002). “On Determinism Handling While Learning Reduced State Space Repre-

sentations.” In Proceedings of the European Conference on Artificial Intelligence (ECAI 2002), Lyon, France.
Fernández, F. and P. Isasi. (2001). “Designing Nearest Neighbour Classifiers by the Evolution of a Population of

Prototypes.” In Proceedings of the European Symposium on Artificial Neural Networks (ESANN’01), pp. 172–
180.

Fernández, F. and P. Isasi. (2002). “Automatic Finding of Good Classifiers Following a Biologically Inspired
Metaphor.” Computing and Informatics 21(3), 205–220.

Frank, E. and I.H. Witten. (1998). “Generating Accurate Rule Sets Without Global Optimization.” In Proceedings
of the Fifteenth International Conference on Machine Learnin.

Fritzke, B. (1994). “Growing Cell Structures—A Self-Organizing Network for Unsupervised and Supervised
Learning.” Neural Networks 7(9), 1441–1460.

Gersho, A. and R.M. Gray. (1992). Vector Quantization and Signal Compression. Kluwer Academic Publishers.
Hart, P.E. (1968). “The Condensed Nearest Neighbour Rule.” IEEE Transactions on Information Theory.

23

John, G.H. and P. Langley. (1995). “Estimating Continuous Distributions in Bayesian Classifiers.” In Proceedings
of the Eleventh Conference on Uncertainty in Artificial Intelligence, pp. 338–345.

Kohonen, T. (1984). Self-Organization and Associative Memory, 3rd ed. Berlin, Heidelberg: Springer, 1989.
Kuncheva, L.I. and J.C. Bezdek. (1998). “Nearest Prototype Classification: Clustering, Genetic Algorithms, or

Random Search?” IEEE Transactions on Systems, Man and Cybernetics 28(1), 160–164.
Linde, Y., A. Buzo, and R.M. Gray. (1980). “An Algorithm for Vector Quantizer Design.” In IEEE Transactions

on Communications, Vol 1, Com-28, No. 1, pp. 84–95.
Lloyd, S.P. (1982). “Least Squares Quantization in PCM.” In IEEE Transactions on Information Theory,

pp. 127–135.
Mao, K.Z., K.-C. Tan, and W. Ser. (2000). “Probabilistic Neural-Network Structure Determination for Pattern

Classification.” IEEE Transactions on Neural Networks 11(4), 1009–1016.
Merelo, J.J., A. Prieto, and F. Morán. (1998). “Optimization of Classifiers using Genetic Algorithms.” In Honavar,

P. (ed.), Advances in Evolutionary Synthesis of Neural Systems. MIT Press.
Pal, N.R., J.C. Bezdek, and E.C.K. Tsao. (1993). “Generalized Clustering Networks and Kohonen’s Self-

Organizing Scheme.” IEEE Transactions on Neural Networks 4(4).
Patanè, G. and M. Russo. (2001). “The Enhanced LBG Algorithm.” Neural Networks 14, 1219–1237.
Pérez, J.C. and E. Vidal. (1993). “Constructive Design of LVQ and DSM Classifiers.” In Mira, J., Cabestany,

J., and Prieto, A. (eds.), New Trends in Neural Computation, Vol. 686 of Lecture Notes in Computer Science,
Springer Verlag.

Quinlan, J.R. (1993). C4.5: Programs for Machine Learning. Morgan Kaufmann.
Ritter, G.L., H.B. Woodruff, S.R. Lowri, and T.L. Isenhour. (1975). “An Algorithm for a Selective Nearest Neigh-

bour Decision Rule.” IEEE Transactions on Information Theory 21(6), 665–669.
Russo, M. and G. Patanè. (2000). “ELBG Implementation.” International Journal of Knowledge Based Intelligent

Engineering Systems 2(4), 94–109.
Specht, D.F. (1990). “Probabilistic Neural Networks.” Neural Networks 3(1), 109–118.
Wilson, D.R. and T.R. Martinez. (2000). “Reduction Techniques for Instance Based Learning Algorithms.”

Machine Learning 38, 257–286.
Witten, I.H. and E. Frank. (2000). Data Mining. Practical Machine Learning Tools and Techniques with Java

Implementations. Morgan Kaufmann.
Zhao, Q. and T. Higuchi. (1996). “Evolutionary Learning of Nearest Neighbour MLP.” IEEE Transactions on

Neural Networks 7(3), 762–767.

24

