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1. INTRODUCTION 

Goodness of fit tests have been mostly developed for univariate distributions and, except 

for the case of multivariate normality, very few references can be found in the literature 

about multivariate goodness of fit tests. (See Krishnaic.k, 1980, Kotz and Johnson, 1983 and 

D'Agostino and Stephens, 1986). 

In principle, the chi-square test can be applied for testing any multivariate distribution 

but it is unknown what is the best way to choose the cell limits and what is the best 

statistic to be used. Moore and Stubblebine (1981) suggested choosing as cell boundaries 

the concentric hyperellipses centered at the sample mean and with shape determined by the 

inverse of the covariance matrix, and used the Rao and R.obson (1974) modification of the 

chi-squared statistic. However, much work need to be done on the properties of this test. 

The two most important classes of tests of goodness of fit based on the empirical distri­

bution function of a random sample, the Kolmogorov-Smirnov statistic and the Cramer-von 

Mises group, have not been extended to the multivariate case. The problem is that the 

probability distribution of these multivariate statistics are not distribution free as in the 

univariate case. Rosenblatt (1956) proposed a simple transformation of an absolutely con­

tinuous p-variate distribution into the uniform distribution 011 the p-dimensional hypercube 

and suggested using this transformation to build multivariate goodness of fit tests. The dis­

tribution function of the Cramer-von Mises statistic in the multivariate case has been studied 

by a number of authors (see Kotz and .Johnson, 1985, pp: :35-39) but a general multivariate 

test of goodness of fit based on this statistic that can be readily applied has not yet been 

developed. 

Mardia (1970) seems to be the first to have published a practical multivariate test of 

goodness of fit for the multinormal distribution using multivariate measures of skewness 

and kurtosis. Malkovich and Afifi (197:3) used the univariate normality of all linear com­

binations to derive three tests of normality. These tests search for the linear combination 

with the largest measures of skewness, kurtosis and the negative of the Shapiro and Wilk 

statistics, respectively. Cox and Small (1978) suggested finding the linear combination of 

the variables maximizing the curvature when regressed on the other. Other procedures to 

check for multivariate normality have been proposed by An?rews et al. (1973), Dahiya and 
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Gurland (1973), Hensler et al. (1977), Csorgo (1986), Mudholkar et al. (1992) and Ghosh 

and Ruymgaart (1992). 

In this paper we present two multivariate goodness of fit test. In section 2 we present a 

multivariate goodness of fit statistics which is distribution free and reduces to the Kolmogorov­

Smirnov statistic in the univariate case. The computation of the proposed statistic is a prob­

lem in itself, and in this section we develop another statistic that can be easily computed for 

any dimension. Section 3 presents a procedure to compute the test statistics in the bivariate 

case. In section 4 we present some simulation results for the exact and the approximated 

Kolmogorov-Smirnov statistics. Finally, section 5 includes some concluding remarks. 

2. THE MULTIVARIATE KOLMOGOROV-SMIRNOV STATISTIC 

Given a sample ZI, ... ,Zll of LLd. random va.riables with distribution function F, con­

sider the problem of testing Ho : F = Fo versus HI : F :f: Fo, where Fo is some specified 

distribution function. In the univariate case, Ho can be tested using the Kolmogorov-Smirnov 

statistic 

Dn = sup 1 Fn(:r) - F(:r) I, 
xER 

where Fn is the empirical distribution function of the sample. It is also well known that this 

statistic is distribution free and it can be expressed as 

where Gn (u) is the empirical distribution function of the uniform 0-1 transformed sample 

Ui = FO(Yi), for i = 1, ... ,71. 

The distribution free property of the Kolmogorov-Smirnov statistic is derived from the re­

sult that any continuous random variable X with distribution function F can be transformed 

to a uniform random variable Y by the transformation Y = F(X). A similar result holds 

for a continuous multivariate random variable X, as it is shown in the following theorem, 

due to Rosenblatt (1952). 

THEOREM 1. Let X = (X], ... , X p ) be a random vector with joint density 
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and define the tran,<;formation Y =T( X), by 

Y1 F1(Xd� 

Yi - Fj(Xj I XI,' .. ,Xi-d 1,
. = .)_, ... ,po (2.2)� 

Then Y1 , • •• ,}~ arc i. i. d. uniform 0-1. 

The probability distribution function of the statistic 

where Fn is the empirical distribution function, is not distribution free. However, as sug­

gested by Rosen blatt (1952) we could use the transformation defined in theorem 1 to test 

whether the values (Yl' ... Yn) are a sample from a uniform distribution on the p-dimensional 

hypercube. The natural extension of the statistic (2.1) to the multivariate case is 

(2.3) 

where Gn is the empirical distribution function of the transformed sample y = T(~). 

Unfortunately, and unlike in the univariate case, the computation of (2.3) is very involved, 

as it is shown in the next section, in which we present an algorithm for the case p = 2. 

Although this algorithm could be extended to the ]J > 2 case, the computation difficulties 

appear to be considerable. A much simpler to compute statistic, Dn , can be defined by 

taking the supremum on the set of transformed sample points A, 

which, by the same argument above, is also distribution free. When n is large, Dn will be 

close to Dn , as it is shown in the simulation results reported in Section 4. 

D
By theorem 1, the multivariate Kolmogorov-Smirnov statistic Dn and its approximation 

n are distribution free in the class of continuous multivariate distributions. The percentiles 

of the distribution of Dn can be computed for the bivariate case by Monte Carlo simulation 

and table 1 presents the percentiles of this statistic in the standard case in which Fo is 

completely specified by Ho. Table 2 presents the percentiles in the particular case of testing 



normality and when the parameter are estimated by the sample mean and the sample covari­

ance matrix, that is the multivariate generalization of the Kolmogorov-Smirnov-Lilliefords 

statistic. 

(Table 1 and 2 around here) 

Table 3 presents the percentiles for the distribution of the approximated Kolmogorov­

Smirnov statistic in the bivariate case. 

(Table 3 around here) 

3. AN ALGORITHM TO COMPUTE THE BIVARIATE KOLMOGOROV-SMIRNOV STATISTIC 

In a one-dimensional sample the empirical distribution changes only in the observed 

points, and the univariate Kolmogorov-Smirnov statistic is obtained by evaluating the dis­

tance between the empirical and theoretical distribution functions in these points. Neverthe­

less, when the dimension p is larger than one, the empirical distribution function jumps on 

an infinite number of points. Here we develop a procedure for calculating the Kolmogorov­

Smirnov statistic (2.3) in the two-dimensional case by evaluating it on a finite set. 

Since theorem 1 holds we may assume that u] = (:r], Yd, .. . , u" = (x"' V,,) is a random 

sample from two independent uniform 0-1 distributions. In this context, the pair (xj, Vi) is 

called an intfTseetion point if :ri < :r j and Yi > Yj. For u = (:r, y) we define the superio7' 

distance D~(u) = (G 71 (u) - G(u)) and the inf(Tio7' di.'itance D;;(u) = (G(u) - G,,(u)), where 

G is the distribution function of two independent uniform random variables on (0,1) and 

C" is the empirical distribution function. Also, the left empirical distribution function in u 

is defined as G,,(u-) = limG,,(x - c, Y - c). The proof is based on the behavior of the lateral 
(-0 

Kolmogorov-Smirnov statistics D~ = supu D~ (u) and D;; = supu D;; (u). 

LEM MA 1. If :ro = Yo =0, then D~ =max D~ (v), whe7'e 
vEl 

1= {(Xj,Yd IXi ~ Xj, Yi ~ Yj; i,j = 0,1, ... , n}. 

Elements in the set I are: the pair (0,0), the observed points and the intersection points. 
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Proof. For each II = (;r, y) in the unit square, let ;1:U and yU be 

XU= Xku = maxj=o,I, ,,,{;rj I ;rj:S: ;r, Yj:S: y} 

yU = YPu = maxi=O,I, ,,,{Yi I Yi :S Y, Xi :S x}. 

The relationship between the coordinates is given by x pu :S max {Xi :S x I Yi :s: y} = Xku and 

Yku :s: max{Yi :s: Y I Xi:S: x} = YPu' Hence (XU,y u 
) E I. By the definition of (XU,yU), it is 

immediate that G,,(x,y) = G,,(XU,y) = G,,(x,y u ) and the set {Xi I xi E (XU,X], Yi E (yU,yJ) 

is empty. Then 

and, therefore, for each lL 

D~(lL) = GII(x,y) - G(;r,y):s G71 (:r
U,yU) - G(;r\yU):S I~~tl D~(v). 

Hence the lemma follows. 

LEMMA 2. If ;z;o = 0, Yo = I, ;rll+1 = 1 and YII+I = 0, then D;; = max (G(v) - Gn(v-)),
vE? 

whe7'e 

P = {(;rj,]ld I Xj > ;ri, Yj < Yi; i,j = 0,1, ... ,7/ + I}. 

Element8 in ,'let P arc: the pair (1, I), the inte7'8eetion point8 and the projection8 of the 

ob.'ierved point$ on the right and on the top lL71it $qUa7'(' border8. 

Proof. For each u = (:r, y) in the unit square, let :rUand yU be 

;r tl = ;rku =mini=O.I, ,,,+1 {;ri I :ri > ;r} 

yU = YPu = mini=O,I, ,'I+1 {Vi IYi > y, Xi :s: x}. 

Q - {(:rjd/i)I;r.j>:ri; i,j=O,l, ... ,7/+I} 

= PU {(;r.i,Yi) I ;rj > ;ri, Yj > Vi; i,j = 1, ... ,n}. 

Since F is continuous and increasing, the inferior distance is bounded by 

n;;(u)� - G(u) - G,,(lL) < G(:r 1',yU
) - Gn(u) = 

_ G(:rU,yU) -lim Gn(:ru
- (,Y u 

- () + Hm G,,(:ru
- (,yU - f) - Gn(u) :s: 

(-0� (-0 

< max(G(v) - G,,(v-)) +Hm Gn(XU- (,yU - f) - G,,(u).� (:3.4)
vEQ� (-0 . 
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Because of the definition of (;rU,yu), Gn(u) ='lim Gn(;r" - f,y) = lim Gn(x,ytJ - f) and 
(-0� (-0 

the set {(Xi, Yi) I Xi E (x, XU), Yi E (y, yU)} is empty. The left empirical distribution function 

verifies 

In addition, if (xU, ytJ) E Q-P, wedefinexw = min {Xi IXi> xu, Yi < ytJ}. Then the pair 

(XW,ytJ) is in P, G(xtJ,ytJ) < G(XW,ytJ) and the set {(Xi,Yi) I Xi E [xtJ,XW), Yi E (_oo,yU)} 

is empty. Hence lim Gn(XW- f,ytJ - f) = lim Gn(XU- f,ytJ - f) and 
(-0� (-0 

(3.6) 

By (3.4), (3.5) and (3.6), max (G(v) - (.1'n(v-)) is a superior bound for D;;(u).
lIEP 

Finally, let uo = (:ro,yo) be given by uo = arg max(G(v) - Gn(v-)), then 
1/EP 

max (G(v) - Gn(v-)) - lim (G(xo - f,Yo - f) - Gn(xo - f,yo - f)) = 
~P	 (~ 

= limD;:(xo-f,Yo-f).
(-0 

Hence D;: = max(G(v) - Gn(v-)) = sUPu D;:(u) and the lemma follows. 
vEP 

THEOREM 2. If p = 2, the Kolmogorov-Smirnov statistic (2.3) i$ 

The Kolmogorov-Smirnov statistics may be expressed as Dn = max {D~, D,~} and the 

proof is straightforward by lemmas 1 and 2. 

As a consequence of theorem 2, Dn may be obtained by evaluating the distance in a finite 

amount of points which ranks from 3n to 3n + (~) depending on the sample configuration. 

The theorem leads to the following procedure to compute the Kolmogorov-Smirnov statistic 

(2.3): 

1.� Compute the maximum distance in the observed points, D~l = ,max D~(ud. 
l=l •... ,n 

2.� Compute the maximum and minimum distances in the intersection points, 

D~ = . ,nax {D~(xj,yd I Xj > Xi, Yj < yd and D~ = 2fn - . ,min {D~(xj,yd I 
1 •.1=I, ... ,n� 1 •.1=l,... ,n 

Xj� > ·'ri, Yj < yd. 

6 



3.� Compute the maximum distance among the projections of the observed points on the 

right unit square border, D~l = 1/11, - ,min D~(1,yd. 
1=1,... ,11. 

4.� Compute the maximum distance among the projections of the observed points on the 

top unit square border, D~ = 1/n - ,min D~(Xi' 1).
l=l,... ,u 

5.� Compute the maximum Dn = max{D~1l D~, D~, D~, D~}. 

4. SOME SIMULATION RESULTS 

The power of the exact and the approximate multivariate Kolmogorov-Smirnov statistics 

when used as a normality test and as a general multivariate goodness of fit test have been 

investigated. In the first case, the null hypothesis is bivariate normal with mean p, = 0 and 

covariance matrix 

:E-_ (1 0.5) .0.5 1 

The alternative distribution is 

(1 - f)N(O,:E) + fN(p,,:E) 

for several values of f and p,. Tabla 4 shows the power of the normality test. As we may have 

expected, the power increases with n and is larger for the exact test than for the approximate 

one. However, for moderately largf' 11, (11, ~ .50 say) the power of the approximate test is very 

close to that of the exact one. Table 4 shows that both tests are very powerful when n is 

large and f ~ 0.2. 

(Table 4 around here) 

Table 5 shows the power of these statistics when the null distribution is Morgenstern 

(see Morgenstern, 1956) with parameters 0 =0.5. Similar results were also found for other 

values of o. We have chosen this distribution because it may have fixed marginal distribution 

allowing different degrees of dependency. The joint density function for the uniform marginal 

case IS 
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--------------------------

and it is straightforward to show that for this distribution 

The alternative distributions are independent Beta distributions with several combination 

of shape parameters, to allow for different degrees of asymmetry. Table 5 shows that again, 

as one could expect, for n small (n = 10) the power is very low unless the degree of kurtosis 

or asymmetry is high. The difference between the power of the exact and approximate test 

is negligible for large n (n :5 50). 

(Table 5 around here) 

5. CONCLUDING REMARI\S 

As in the univariate case, the multivariate Kolmogorov-Smirnov test presented in this 

paper may provide a general and flexible goodness of fit test, specially for situations when 

specific test are yet to be developed. The main problem in the application of the test 

is the computation of the statistic in the case p > 2. An extension of the computing 

algorithm developed in this paper may be possible, but still the numerical complications 

seem considerable. However, our simulation results show that the approximate Kolmogorov­

Smirnov test statistics introduced in this paper, that is trivial to compute, seems to be a 

promising alternative with a very small loss of power when n is moderately large. 
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Table 1: Monte Carlo approximation to thc perccntiles of thc Kolmogorov-Smirnov statistic 

distribution, with 2,000 replications. 

n 0.25 0.2 0.15 0.1 0.05 0.01 

10 0.4076 0.4244 0.4432 0.4668 0.5022 0.5731 

11 0.3863 0.4022 0.4190 0.4408 0.4796 0.5.548 

12 0.3739 0.3882 0.4041 0.4275 0.4629 0.5229 

13 0.3576 0.3716 0.3883 0.4082 0.4378 0.5015 

14 0.3491 0.362;3 0.3753 0.3988 0.4246 0.4874 

15 0.3383 0.3516 0.3644 0.3871 0.4116 0.4657 

16 0.3222 0.3347 0.3517 0.3699 0.4018 0.4637 

17 0.3177 0.3291 0.34;35 0.3628 0.3896 0.4415 

18 0.3120 0.3216 0.3349 0.3526 0.3819 0.4321 

19 0.3016 0.:31:37 0.3271 0.3435 0.3718 0.4237 

20 0.2923 0.:3041 0.:3161 0.3329 0.:3585 0.4088 

25 0.2643 0.2733 0.2849 0.3019 0.:3251 0.3759 

30 0.2410 0.2498 0.2602 0.2744 0.2964 0.3501 

35 0.2238 0.2:330 0.2441 0.2601 0.2831 0.3221 

50 0.1901 0.1981 0.2063 0.2174 0.2330 0.2763 

100 0.1360 0.1414 0.1473 0.1559 0.1686 0.1934 
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Table 2: Monte Carlo approximation to the J{olmogorov-Smirnov Lilliefords statistic di.c;;tri­

but ion, with 2,000 rcplication.'i. 

n 0.25 0.2 0.15 0.1 0.05 0.01 

10 0.3067 0.3155 0.3264 0.3416 0.3609 0.4040 

11 0.2935 0.3031 0.3140 0.3285 0.3539 0.3895 

12 0.2818 0.2892 0.2990 0.3096 0.:3274 0.3725 

13 0.2713 0.2796 0.2889 0.3004 0.:3227 0.3650 

14 0.2635 0.2713 0.2803 0.29216 0.3110 0.3473 

15 0.2583 0.2654 0.2749 0.2870 0.2997 0.3333 

16 0.2489 0.2561 0.2646 0.2760 0.2922 0.3338 

17 0.2400 0.2477 0.2567 0.2685 0.2888 0.3175 

18 0.2384 0.2455 0.2536 0.26:37 0.2805 0.3077 

19 0.2307 0.2379 0.2467 0.2579 0.2759 0.3063 

20 0.22.53 0.2318 0.2410 0.2.504 0.2673 0.3022 

25 0.2026 0.2088 0.2163 0.2254 0.2407 0.2773 

30 0.1862 0.1916 0.1981 0.2080 0.2204 0.2490 

35 0.1737 0.1798 0.1862 0.1932 0.2069 0.2325 

50 0.1469 0.1508 0.1556 0.1625 0.1737 0.1910 

100 0.1020 0.1048 0.1081 0.1125 0.1187 0.1329 
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Table 3: Monte Carlo approximation to the percentiles of the approximated J(olmogorov-

Smirnov statistic distribution, u,ith 2,000 replications. 

n 0.25 0.2 0.15 0.1 0.05 0.01 

10 0.3044 0.3209 0.3386 0.3654 0.4056 0.4758 

11 0.2914 0.3085 0.3264 0.3511 0.3896 0.4568 

12 0.2854 0.2998 0.3176 0.3452 0.3785 0.4394 

13 0.2732 0.2874 0.3066 0.3266 0.3589 0.4278 

14 0.2641 0.2770 0.290:1 O.:H 17 0.3440 0.4194 

15 0.2631 0.2764 0.2907 0.3105 0.3494 0.4221 

16 0.248:1 0.2640 0.2772 0.2970 0.3266 0.:1838 

17 0.2441 0.2572 0.2748 0.2964 0.:1277 0.:1875 

18 0.2377 0.24x4 0.2613 0.2812 0.:W83 0.3690 

19 0.2351 0.2455 0.2569 0.2764 0.:1058 0.:1631 

20 0.230:1 0.2401 0.2505 0.2702 0.2978 0.:1510 

25 0.2072 0.2168 0.2284 0.2438 0.2715 0.3261 

30 0.1919 0.2026 0.2138 0.2:103 0.2513 0.2878 

3r:.) 0.1798 0.1883 0.1992 0.2147 0.2365 0.2786 

50 0.1511 0.1586 0.1670 0.1797 0.1993 0.2396 

100 0.1134 0.1180 0.1249 0.1325 0.1449 0.1708 



Table 4: Empirical power of the I{olmogol'ov-Smimov (I{S) and approximated l{olmogorov-

Smirnov (AgS) teEd with size 0.1. The null hypothesis is a N(O, E) and the samples are 

generated from a normal mixture (1 - f)N(O, E) + fN(/l, ~). 

n = 15 n =25 n =50 n = 100 

KS AKS KS AKS KS AKS KS AKS 

p =(3,3)'� ( = 0.1 0.15 O.l:J 0.18 0.16 0.27 0.25 0.44 0.41 

( =0.2 0.30 0.26 0.45 0.41 0.72 0.70 0.96 0.95 

( = 0.4 0.75 o.n 0.93 0.92 1.00 1.00 1.00 1.00 

p=(3,-1)'� ( =0.1 0.16 0.11 0.21 0.14 0.30 0.21 0.50 0.36 

( = 0.2 0.:J4 0.20 0.51 O.:J:J 0.77 0.60 0.97 0.91 

( =0.4 0.80 0.59 0.95 0.83 1.00 0.99 1.00 1.00 
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Table 5: Empirical power of the I....olmogorov-Smirnov (/{S) and the approximated 

Kolmogorov-Smirnov (AKS) test of size Q. The null hypcthesis is a Morgcnstern with param­

eter 0.5 and uniform marginals. The samples are generated from two independent Beta(a,b). 

Beta( 10,1 0) 

n 

10 

20 

50 

100 

0' =0.1 

KS AKS 

0.948 0.424 

1.000 0.777 

1.000 0.999 

1.000 1.000 

0' =0.05 

KS AKS 

0.842 0.310 

0.999 0.692 

1.000 0.996 

1.000 1.000 

0' =0.01 

KS AKS 

0.372 0.157 

0.994 0.505 

1.000 0.975 

1.000 1.000 

Beta(3,:l) 10 

20 

50 

100 

0.241 

0.640 

0.992 

1.000 

0.177 

0.31-\5 

0.897 

0.999 

0.129 

0.459 

0.968 

1.000 

0.101 

0.260 

0.793 

0.997 

0.020 

0.175 

0.756 

0.999 

0.029 

0.097 

0.502 

0.973 

Beta(:l,2) 10 

20 

50 

100 

0.16i 

0.518 

0.983 

1.000 

0.145 

0.424 

0.969 

1.000 

0.079 

0.3:32 

0.943 

1.000 

0.059 

0.244 

0.878 

1.000 

0.008 

0.089 

0.574 

0.998 

0.007 

0.05:l 

0.471 

0.992 

Beta(0.5,1 ) 10 

20 

50 

100 

0.579 

0.842 

0.994 

1.000 

0.575 

0.816 

0.993 

1.000 

0.439 

0.753 

0.989 

1.000 

0.422 

0.713 

0.985 

1.000 

0.220 

0.508 

0.911 

0.999 

0.211 

0.451 

0.898 

0.999 

Beta(0.5,0.5) 10 

20 

50 

100 

0.308 

0.516 

0.850 

0.994 

0.247 

0.40:l 

0.792 

0.987 

0.212 

0.388 

0.759 

0.976 

0.153 

0.284 

0.651 

0.960 

0.077 

0.186 

0.456 

0.887 

0.053 

0.111 

0.358 

0.832 
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