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Abstract

In a moral hazard model with heterogeneous beliefs, we show that the efficient risk-

sharing contract does not result in a constant wage and the optimal first-best contract

may not be increasing in output. When actions are unobservable, heterogeneity in be-

liefs implies that the monotone likelihood ratio ranking does not ensure that the wage

scheme in the optimal contract is non-decreasing in output. This is because differences

in beliefs may affect the incentive provision in a non-monotone way. The standard mono-

tonicity result with common beliefs extends to belief heterogeneity when the agent is

more optimistic than the principal. Yet, in the reverse case, the optimal contract can be

non-monotone.
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1 Introduction

Since the classic work of Holmström (1979), moral hazard theory has focused on the interplay

between differences in information and differences in risk-aversion of two players, the principal

and the agent that share common beliefs. However, principal and agent might differ in another

dimension: their beliefs. Consumer surveys clearly indicate differences in beliefs among agents

(see, e.g., Fan et al. (2020)). Many real-life contracts involve individuals with very different

expectations about their performance. Beliefs can differ for many reasons; for example,

principal and agent may not share a common understanding of the production technology,

due to possibly having diverse experiences in the past, or having information coming from

different or conflicting sources. In this paper we extend the canonical moral hazard model

to allow for such heterogeneity. In particular, we model heterogeneity in beliefs about the

output levels resulting from agents’ action choices.

We study a generalization of the model in Grossman and Hart (1983) (henceforth GH), where

each of the agent’s actions is associated with a pair of probability distributions over output

levels, one perceived by the agent and another by the principal. Except for the divergence of

beliefs, the set-up follows closely that of the traditional model. The principal is risk-neutral,

the agent is risk-averse, the contract stipulates a payment from the principal to the agent,

i.e. a wage, that depends on the realized output level, and the parties’ beliefs are common

knowledge. Indeed, a version of our model where for all actions the principal and the agent

share common beliefs specializes to the canonical model. We use this model to understand

the role belief heterogeneity plays in the fundamental efficiency-incentives trade-off, and to

what extent it affects the qualitative properties of optimal contracts, in particular, their

monotonicity.

We begin by considering the perfect information case, where the agent’s action is observed

by the principal and can be specified in the contract. With homogeneous beliefs, optimal

risk-sharing dictates that the agent receives a constant wage. This result is a straightfor-

ward implication of Borch (1962) rule for optimal risk-sharing with common beliefs since,

in the absence of an incentive problem, the risk-neutral party absorbs all the risk. With

heterogeneous beliefs the Borch rule implies that a constant contract is no longer efficient

because the contract must now account for differences in beliefs in addition to the agent’s

risk-aversion.

The first-best contract in an environment with heterogeneous beliefs has some more interest-

ing features: First, wages are not necessarily monotone in output because they must account

for the relative difference in beliefs between the two parties. The relative “optimism” or

“pessimism” over a particular output level dictates whether the agent will be paid higher or
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lower wages for that output compared to another. For example, if the agent places higher

probability on some output it could be cheaper to pay him a higher wage for that output and

a lower wage for another output level over which the principal has more optimistic beliefs.

Thus, the principal can exploit the difference in beliefs and end up with a lower expected

wage bill than paying a constant wage across all output realizations.

Second, following the same intuition, our comparative static results show that in the first-best

scenario wages move in the opposite direction of the (small) change in the principal’s belief.

Finally, even for the first-best it is hard to determine the entire shape of the wage function in

general given that wages are sensitive to belief differences. To get a sharper characterization,

we examine the case where the beliefs of the two parties over output levels can be ranked

by the Monotone Likelihood Ratio Property (MLRP). We show that if the principal is more

optimistic than the agent (in MLRP ranking), then cost minimizing wages are decreasing,

while they are increasing in the opposite scenario.

When actions are not observable, the belief structure involves multiple dimensions of com-

parison and the analysis of the optimal contract is more complex. For example, the beliefs

of the agent over multiple actions play into the incentive constraints, while for a particular

action the two players have different beliefs. Hence, in this case the incentive problem of the

agent cannot be studied in isolation from the principal’s beliefs. These elements are reflected

in the first-order conditions of the problem that entail different components which depend

on the beliefs of different parties: one term depends on the beliefs of the principal, while the

other two depends only on the beliefs of the agent. As in the standard case, the optimal wage

scheme involves a term capturing the risk-sharing role and a term capturing the incentive

provision role. Unlike the standard case, the incentive provision term can sometimes become

irrelevant, as it may be undermined by the principal’s ability to exploit the differences in

beliefs to provide cheaper incentives.

Because of this more complicated trade-off between risk-sharing and incentives, for tractabil-

ity, we focus on the model with two actions that serves as a base for the core results of our

work: In the common beliefs case, monotonicity follows from the MLRP ranking of beliefs

for different actions. In our model,we show that monotonicity features of the optimal wage

scheme can be driven by the difference between the beliefs of the two parties. Contrary to the

standard framework of GH, the MLRP ranking of the parties’ beliefs does not ensure that the

optimal wage scheme is non-decreasing in output when beliefs are heterogeneous. We show

that under MLRP condition the monotonicity result of GH extends to belief heterogeneity

when the agent is more optimistic than the principal. On the other hand, when the agent is

relatively more pessimistic the optimal contract can be non-monotone.
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Our analysis provides also novel insights into the marginal effects of disagreement on incen-

tives. Using a semi-parametric setting with two actions and three output levels for tractabil-

ity, we show that small perturbations in the principal’s relative optimism drive the wage in

the optimal contract in the opposite direction. To the best of our knowledge, there is no

general characterization of the responsiveness of wage schemes to perturbations in beliefs in

the existing literature. For that reason, we view our result as novel.

De la Rosa (2011) also focuses on characterizing the shape of the optimal contract, but of-

fers a particular formulation of heterogeneous beliefs.1. With observable actions, our results

generalize those in De la Rosa (2011). With unobservable actions, the assumed heterogeneity

is different and results are not directly comparable, although they are based on similar intu-

itions. Also, our work is related to the literature in finance that analyzes the consequences

of managerial overconfidence. Gervais et al. (2011), for example, study the capital budgeting

decisions of an overconfident manager. This approach differs from ours, as we do not ex-

plicitly focus on the agent’s overconfidence and, following GH, pursue a more general moral

hazard setting. Finally, characterizing systematically the cost of implementation in relation

to the agent´s relative optimism/pessimism is a difficult problem to tackle in general. For

that reason, we restrict our analysis to two actions and finite output levels and concentrate

in characterizing the monotonicity of the contract. To exemplify how one can get misled in

this framework, we show that the MLRP ranking in the case of two actions does not guaran-

tee monotonicity of the wage contract when beliefs are heterogeneous. Santos-Pinto (2008)

proposes to analyze the consequences of overconfidence from the part of the agent on the

principal’s welfare when the wage scheme is increasing with output for a finite number of

actions and finite number of output levels. Although our framework is more restrictive, our

conclusions result from a rigorous analysis that does not make use of local approximations

and shows that the direction of the asymmetry in beliefs can affect the nature of the optimal

contract. For example, we show that the results of Santos-Pinto (2008) may hold only in

the special case of overoptimism from the part of the agent and cannot extend to the case of

overpessimism.

Our paper also relates to the literature on robustness of contracts under ambiguity. It turns

out that our setup of a moral hazard problem with probabilistic but heterogeneous beliefs

can be viewed as falling somewhere in between the standard homogeneous beliefs models and

models with ambiguity as sets of probabilities. Robust contracts in the latter setting turn out

to have simple forms: e.g. linear (Dumav and Khan (2021)) or step functions (Lopomo et al.

(2011)). Interestingly, the disagreement between the parties is what drives these shapes, in

1Relative to our work, De la Rosa (2011) makes specific parametric assumptions about the probability
distributions, whereas we do not impose any such restrictions. Also, the notion of heterogeneity considered in
that paper depends on the optimal contract, while it is fully exogenous in our case.
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particular these are the contracts that either eliminate the disagreement, or exploit it, for

Pareto improvement. Disagreement also drives the shape of the contracts in our model, but

the contracts themselves turn out to be more complicated and generally sensitive to the details

of the belief structure. These differences in properties of optimal contracts arise because the

disagreement in our model is exogenously fixed, whereas the disagreement in models of moral

hazard with ambiguity are endogenous to the contractual form. Hence in the latter setting,

the contracts themselves become the tool to shape the equilibrium level of disagreement,

which is not possible in our setting given exogenous heterogeneity in beliefs.

The reminder of the paper is organized as follows: the next section describes the model and

Section 3 presents the observable action case. Section 4 presents results under unobservable

actions and Section 5 concludes. The appendix collects various proofs of propositions and

lemmas presented in the main text.

2 Model

We use the classical moral hazard environment of GH. The principal owns a technology

that produces stochastic output with the agent’s effort which determines the probability

distribution over outputs. Formally, there are a finite number S of output levels, the set

of outputs is denoted by Y =: {y1, . . . , yS} and we label output levels s so that higher

subindexes correspond to higher outputs: 0 ≤ y1 < y2 < ... < yS with the highest output yS

being finite. In referring to different output levels it will be helpful to denote the state space

by S = {1, . . . , S}.

The principal chooses the wages paid to the agent contingent on the output, denoted by the

vector w ∈ RS , and keeps the difference between output and wages for herself. The agent

chooses an action a ∈ A, which is a compact set. In keeping with the traditional moral

hazard model, we assume the principal is risk-neutral while the agent is risk-averse. More

specifically, we make the following assumptions on the preferences:

Assumption 1. The agent’s utility function is additively separable in monetary outcomes

and effort U(w, a) = u(w)−g(a). Here the utility function u is continuous, strictly increasing,

and concave function, which satisfies an Inada condition, limw↘W u(w) = −∞ for some W .

The effort cost function g(a) is continuous and increasing in a. The principal is risk-neutral

with a linear utility function.

As a novel element in the model of moral hazard, we allow the principal and agent to have

different beliefs about how each action influences the distribution of output. Formally, for

each action taken by the agent there are two probability distributions, πP (a) ∈ ∆(Y) and
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πA(a) ∈ ∆(Y), representing the beliefs of the principal and the agent respectively (∆(Y)

denotes the S-dimensional simplex). We assume that the probability distributions πP (a) and

πP (a) are continuous functions of a. When the agent chooses an action a the principal’s

utility function is given by

UP (w; a) =
S∑

s=1

πP
s (a)(ys − ws) (2.1)

and the agent’s utility function is given by

UA(w; a) =

S∑
s=1

πA
s (a)u(ws)− g(a). (2.2)

We assume that the parties’ beliefs are common knowledge and have a common full support.

More specifically, we make the following assumption on the belief structure.

Assumption 2. For each action a ∈ A, the beliefs of the principal and the agent, πP (a) and

πA(a), respectively, are common knowledge and have a common full support:

For all a ∈ A and s = 1, . . . S, πP
s (a) > 0 and πA

s (a) > 0. (2.3)

As in GH, for simplicity we assume that common support condition (2.3) holds. Assump-

tions 1 and 2 in this model with heterogeneous beliefs ensure existence of an optimal first-best

and a second-best contracts (For the details, see Lemma 3 in the appendix).

Finally, unless we specify otherwise, in what follows we will focus on the problem of finding

the contract that implements a given action, rather than explicitly discussing the optimal

action. As GH discuss, finding the optimal action is relatively straightforward.

3 Observable Actions

The first-best contract corresponds to the situation in which the agent’s action is observable

and the principal can explicitly make it part of the contract. In this case, the problem

reduces to a standard risk sharing problem. When beliefs are identical, this problem has a

well-known solution: pay the agent for the utility of the outside option plus the disutility

of taking the desired action via a constant wage across states. This result follows from the

simple observation that the (Pareto) optimal risk-sharing solution for a risk-neutral principal

and risk averse agent entails the principal bearing all the risk. In our setting this result

no-longer holds because (Pareto) optimal risk sharing between a risk-neutral principal and a
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risk-averse agent with heterogeneous beliefs will imply the latter still carries some risk.

When the agent’s action is observable/contractible, the principal’s contracting problem can

be described as follows. For each action a ∈ A, let wa denote a contract so that the agent is

willing to choose the action a: UA(wa; a) =
∑

s∈S πA
s (a)w

a
s − g(a) ≥ U . Over such a pair of

actions and wage schemes the principal maximizes UP (wa; a) =
∑

s∈S πP
s (a)[ys − wa

s ]. The

principal’s contracting problem can be divided into two parts: (1) for each action a ∈ A
the principal finds the least costly way of implementing the action a; (2) given the cost

of implementing each action and their expected output the principal optimally chooses the

action a∗ that maximizes the expected profit. Similar to GH, under Assumption 1 this

problem can be simplified by a change of variables so that vs := u(ws) and by taking inverse

function h := u−1, ws = h(vs). The least costly way of implementing an observable action a

solves the following minimization problem

min
v∈RS

S∑
s=1

πP
s (a)h(vs) (3.1)

subject to

S∑
s=1

πA
s (a)vs − g(a) ≥ u. (3.2)

Here, without loss of generality, we assume that if the agent is indifferent between two actions,

then he will choose the one preferred by the principal. Under Assumptions 1 and 2, the

first-best contract that solves this minimization problem exists (See part (a) of Lemma 3

in the appendix). When the principal and the agent have a common belief for each action

πA(a) = πP (a), GH show that the least costly way of implementing an action a is a fixed

wage contract wa independent of output realization that exactly compensates the agent for the

effort cost: u(wa)−g(a) = u. This result does not necessarily hold under belief heterogeneity,

as illustrated below.

In general, there may be more than one first-best optimal action and more than one first-

best optimal incentive scheme.2 However, in the cost minimization problem (3.1), the agent’s

utility function u is strictly concave and hence its inverse function h is strictly convex. There-

fore, there is a unique first-best optimal incentive scheme which implements any particular

first-best optimal action.

Notice also that in the cost minimization problem (3.1) the constraint set involves finite

2Here we focus on the characterization of the first best. We demonstrate the existence of an optimal first-
best contract when beliefs are heterogeneous by generalizing GH’s analysis of the second -best contract under
a full common support assumption on the beliefs in part (a) of Lemma 3 in the Appendix.
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number of linear conditions. Therefore, as there are finite number of actions in A, the Kuhn-

Tucker theorem implies that an optimal first-best contract is characterized as a solution to

the necessary and sufficient first-order conditions for optimality:

πP
s (a)h

′(vs) = λπA
s (a) for all s ∈ {1, . . . , S}, (3.3)

where the variable λ is the Lagrange multiplier corresponding to the individual rationality

constraint (3.2). A simple evaluation of the equations (3.3) implies that an optimal contract

must satisfy

πP
s (a)h

′(vs)

πA
s (a)

=
πP
s′ (a)h

′(vs′)

πA
s′(a)

for any s, s′ ∈ {1, . . . , S}. (3.4)

This condition characterizes Pareto optimal risk-sharing between individuals who have dif-

ferent beliefs. It can alternatively be rewritten as equality between the marginal rates of

substitutions of the agent and the principal across any two output levels. Let wFB(a) be a

contract that solves the principal’s minimization problem (3.1) for implementing the action a,

and denote by CFB(a;πP (a), πA(a)) the expected cost for the principal, when she has belief

πP (a) while the agent’s belief is πA(a).

If the principal and the agent have common beliefs so that πP
s (a) = πA

s (a) = πs(a) for all

s ∈ S and for all a ∈ A, the optimality condition (3.4) implies that h′(vs) must be constant

and independent of the output realization ys. Hence, the value of the fixed wage w in the

optimal contract is found by solving individual rationality (3.2) holding with equality. In this

case, the first-best cost is CFB(a;πP (a), πA(a)) = CFB(a;π(a), π(a)) = h(u+ g(a)).

When the principal and the agent have different beliefs, i.e., πP
s (a) ̸= πA

s (a) = πs(a) for at

least two output levels, a constant payment w cannot satisfy the condition (3.4) and therefore

the optimal first-best wage scheme cannot be constant. Given that the agent’s participation

constraints is independent of the principal’s beliefs, the principal’s minimization implies that

CFB(a;π(a), π(a)) = h(u + g(a)) ≥ CFB(a;πP (a), π(a)). The principal takes advantage of

the disagreement with a contract that ends up being cheaper than h(u+g(a)). 3. Intuitively,

when the principal is more optimistic than the agent about a state, the payment in that

state will be lower; again, this is a simple consequence of Pareto efficient risk sharing. Since

this is true irrespective of the output associated with that state, the first-best contract is

not necessarily monotone in output in general. This analysis constitutes the proof of the

following Lemma:

3As the agent’s utility function u is strictly concave, and hence its inverse function h is strictly convex,
The principal in most cases can achieve strictly smaller cost of implementation under belief heterogeneity so
that CFB(a;πP (a), π(a)) < CFB(a;π(a), π(a)) = h(u+ g(a))

8



Lemma 1. Under Assumptions 1 and 2, a first-best contract that implements an action

a is generally not a constant wage when πP (a) ̸= πA(a) = π(a), unless πP (a) = πA(a) =

π(a), in which case the first best contract is constant. Additionally, the principal’s cost

of implementation is lower under belief heterogeneity: CFB(a;π(a), π(a)) = h(u + g(a)) ≥
CFB(a;πP (a), π(a)).

As Lemma 1 shows the optimal first-best contract is typically non-constant. Moreover, we can

also see from the optimality condition (3.4) that the optimal first-best contract is typically

non-monotone, as for the action a, belief heterogeneity πP
s (a) ̸= πA

s (a) can take arbitrary

forms. However, if the relative likelihood ratio in the optimality condition πA
s (a)

πP
s (a)

is monotone

increasing(decreasing) in output levels ys, then (3.4) implies that the first-best contract is

monotone increasing(decreasing). We can therefore characterize monotonicity of the first-best

contract if the beliefs of the principal and the agent are ordered according to the Monotone

Likelihood Ratio Property (MLRP). 4

We say that two probability distributions f and g over ∆(Y) are ranked according to MLRP,

and f is said to dominate g in MLRP, if the relative likelihood f(s)
g(s) is increasing in s. In that

case, we write f ≿MLRP g. While it is sufficiently clear that MLRP ranking is an incomplete

order of distributions over output levels, it is a useful order to classify belief heterogeneity as

in the following definition:

Definition 1. We say that the agent is more optimistic about an action a ∈ A than the

principal if πA(a) ≿MLRP πP (a). Analogously, the principal is relatively more optimistic

about an action a, if πP (a) ≿MLRP πA(a).

MLRP ranking is familiar in the literature on moral hazard problems. In moral hazard

problems, the parties have common beliefs about actions, and MLRP ranking over different

actions is useful to characterize monotonicity of optimal contracts under unobservable actions.

We show below that when the beliefs are heterogeneous, ranking of beliefs of the contracting

parties for a given action characterizes monotonicity of optimal contracts when actions are

contractible. Using Definition 1 and the first-best optimality condition (3.4), the optimal

first-best contract that implements an action a is monotone increasing(decreasing) if the

agent is more optimistic(pessimistic) than the principal. This observation is formalized in

the following result.

Proposition 1. Consider an optimal first-best contract that implements an action a.

(a) If the agent is more optimistic about the action a than the principal, πA(a) ≿MLRP

4Santos-Pinto (2008, Proposition 1) argues a similar result which relies on approximations and, hence, does
not hold true generally. Our analytical result holds generally.
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πP (a), then the first-best contract is monotone increasing in output.

(b) If the principal is more optimistic about the action a than the agent, πP (a) ≿MLRP

πA(a), then the first-best contract is monotone decreasing in output.

In addition to monotonicity, in this framework one can ask how the optimal contract responds

to (possibly small) changes in the beliefs of one party. For instance, we consider perturbing

the principal’s beliefs so that the probabilities of only two states are different relative to the

original distribution. In this case, the contract will reflect these changes in an intuitive way

as stated in the following proposition.

Proposition 2. Consider πP (a) and π̃P (a) such that: (i) πP
t (a) = π̃P

t (a) for all t ̸= s, s′, (ii)

πP
s (a) = π̃P

s (a)+ε , and (iii) πP
s′ (a) = π̃P

s′ (a)−ε, with min(πP
s (a), π

P
s′ (a)) > ε > 0. Let wFB(a)

and w̃FB(a) be the first-best contracts corresponding to πP (a) and π̃P (a), respectively. Then,

wFB
s (a) ≤ w̃FB

s (a) and wFB
t (a) ≥ w̃FB

t (a) for all t ̸= s with at least two of the inequalities

being strict.

This result shows that if the principal gives more weight to one state and less to some other

state the contract must reflect this by paying the agent less in that state. Given that the

agent’s participation constraint is binding in any optimal contract, this implies that the

principal should pay higher wages in other states. Proposition 2 illustrates how changes in

beliefs lead to changes in the first-best contract. While the proposition is written in terms

of changes to the principal’s beliefs, one can obtain a similar result by perturbing the beliefs

of the agent. Notice that it is straightforward to extend Proposition 2 to perturbations to

beliefs that involve changes in multiple output levels.

3.1 First-Best Contract with CARA Utility

In what follows we exemplify the content of Proposition 2 by assuming that the agent’s utility

function belongs to the constant relative risk-aversion class, and there are only three states,

S = {1, 2, 3}. We assume the agent’s Bernoulli utility function over monetary outcomes has

the following form u(x) = −e−x where x > 0. For a wage level w, the agent’s utility is given

by: −e−w.

In this setting, an interior solution solves the first-order conditions (3.3)

πP
s (a) = λπA

s (a)e
−ws(a) for all s ∈ {1, . . . , S}, (3.5)

together with the agent’s participation constraint. The first-best optimal wage scheme (w∗
s)
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follows directly by:

e−w∗
s (a) =

πP
s (a)

πA
s (a)

(u+ g(a)). (3.6)

Notice that consistent with Proposition 1 in the optimal risk-sharing contract the wage

scheme satisfies: w∗
s(a) is increasing in s if πA(a) ≿MLRP πP (a); w∗

s(a) is decreasing in

s if πP (a) ≿MLRP πA(a). Notice also the optimal w∗
s(a) is decreasing in πP

s (a) and does not

depend on πA
s′(a).

To illustrate the comparative statics of Proposition 2 in this setting, consider the ε re-

allocation between the probabilities of state 2 and state 3, i.e., πP
2 (a) + ε and πP

3 (a) − ε.

One can observe from (3.6) that as ε > 0 increases in the optimal risk-sharing contract:

w∗
2(a) decreases, w

∗
3(a) increases, while w∗

1(a) remains unchanged. Hence, in the CARA util-

ity case the comparative statics of perturbing beliefs shows that only the payments of the

optimal contract for the states involved in the perturbation are affected.

4 Unobservable Actions

We now move on to analyzing the second-best situation in which the principal cannot observe

the agent’s behavior and therefore actions are not contractible. The optimal contract is such

that the agent voluntarily chooses the action the principal would like to see implemented.

In order to implement the desired action, the principal now has to deal with an incentive

compatibility constraint in addition to the individual rationality constraint.

In what follows, we assume that a more costly action entails an “improvement” of both

the principal’s and the agent’s beliefs in the sense of MLRP. Formally, this means that

g(a) > g(a′) implies πP (a) ≿MLRP πP (a′) and πA(a) ≿MLRP πA(a′).

The principal’s problem is to maximize her utility subject to individual rationality and in-

centive compatibility. This problem can be divided into two steps: (i) for any given action,

find the optimal payment schedule that incentivizes the agent to take that action, and (ii)

given these payment schedules, choose the action to incentivize. As in the previous section,

we focus on the first of these problems as our attention is centered around optimal incentive

schemes.

Similar to the standard case with homogenous beliefs, this problem is equivalent to minimizing

expected wages, as expected revenues can be treated as a constant. In the first step, analogous
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to the problem (3.1), the principal solves,

min
v∈RS

S∑
s=1

πP
s (a)h(vs) (4.1)

subject to

S∑
s=1

πA
s (a)vs − g(a) ≥ u (4.2)

S∑
s=1

πA
s (a)vs − g(a) ≥

S∑
s=1

πA
s (a

′)vs − g(a′) ∀a′ ∈ A. (4.3)

It is straightforward that the individual rationality constraint must hold as an equality; if not,

the payments can be reduced by the same infinitesimal amount in all states without affecting

the incentive compatibility constraints. In what follows, we analyze how heterogeneity in

beliefs affects the characteristics of the optimal contracts.

4.1 Two Actions and Finite Number of Outputs

As we illustrate in the following analysis, analyzing the case of more than two actions available

to the agent is complex. For that reasons, we restrict our setting so that only two actions

are available to the agent: A = {h, l}. The principal’s cost minimization problem implies the

following first-order conditions

πP
s (h)h

′(vs) = λπA
s (h) + µ

[
πA
s (h)− πA

s (l)
]

for all s ∈ {1, . . . , S}, (4.4)

where the terms λ and µ are the Lagrange multipliers corresponding to individual rationality

and incentive compatibility constraints, respectively. Comparing with equation (3.3) one no-

tices that, as usual, the first-best optimality condition is modified by the presence of an extra

term that depends on incentives, reflected in the term with the Lagrange multiplier µ. This

extra term involves a term that depends on the differences in the beliefs of the agent for the

high and low action, πA(h) and πA(l), which is at the core of the incentive provision, weighted

by the principal beliefs about the high action, πP (h). Notice that the principal’s beliefs cor-

responding to the low effort action have no impact on the optimal contract that implements

high effort (although they matter for the choice of which action to implement).

In this optimization problem, the Lagrange multipliers are strictly positive when the corre-

sponding constraint binds. The multiplier λ cannot be zero because the individual rationality

constraint must always bind. However, as illustrated below, in the case of two actions and

two output levels, incentive compatibility constraint can be non-binding and, hence, the mul-

tiplier µ can be equal to zero at an optimum. The fact that incentive compatibility constraint
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can become irrelevant is a major difference with the case of common beliefs.

As in the case of the first-best, here we are interested in establishing conditions for the optimal

contract to be monotone in output (i.e. increasing in ys). The optimal second-best contract is

characterized as a solution to the first-order conditions (4.4), individual rationality (4.2), and

incentive compatibility (4.3). Notice that these conditions characterizing the set of optimal

contracts do not depend on the probability distribution πP (l) of the low action perceived by

the principal. This is a natural consequence of the fact that implementing the low action

entails no agency cost to the principal.

We next turn to characterize the optimal contract under different scenarios consistent with

the monotone likelihood ratio ranking. There are two possibilities depending on the relative

ranking of the high action: (a) the agent has a more optimistic belief for the high action:

πA(h) ≿MLRP πP (h) and (b) the opposite, i.e., πP (h) ≿MLRP πA(h).

Proposition 3. Let h be the action that is implemented by the principal in the optimal

contract. (a) If πA(h) ≿MLRP πP (h) then the wage scheme in the optimal contract is

monotone increasing in output. (b) If πP (h) ≿MLRP πA(h) then the wage scheme in the

optimal contract can be non-monotone.

In Proposition 3 part (a) extends the monotonicity result of GH under the monotone likeli-

hood ratio ranking to heterogeneous priors, provided the agent is more optimistic than the

principal about higher output levels given that the high action is chosen. GH’s Proposition 6

implies that in the case of two actions and common beliefs π(h) ≿MLRP π(l) is sufficient to

ensure that the optimal contract is monotone increasing in output. The result in part (a)

therefore generalizes this result whenever the agent is more optimistic than the principal.

part (b), more importantly, suggests that a failure of monotonicity is possible even if both

parties find that the high action is better than the low action according to the MLRP rank-

ing. When the agent is relatively more pessimistic than the principal, the MLRP condition,

however, does not guarantee monotonicity. We illustrate this below with an example inspired

by GH’s Example 1.

Example 1. Consider an economic environment with two possible action A = {h, l} and

three outcomes S = {1, 2, 3}. The principal and the agent have the same beliefs about the

low action: π(l) := πP (l) = πA(l) = (23 ,
1
4 ,

1
12), while their beliefs about the high action is

given by: πA(h) = (13 ,
1
3 ,

1
3), π

P (h) = ( 1
12 ,

1
4 ,

2
3). Assume additive separability such that effort

cost of the high action is g(h) = ( 1
12

√
5
3 +

1
4

√
7
8), g(l) = 0, and that the inverse of the agent’s

utility function is h(v) = 1
3v

3. Notice that in this specification MLRP conditions holds for

both the principal and the agent: πP (h) ≿MLRP πA(h) ≿MLRP π(l).

13



We start with computing the cost of implementing the actions h and l, respectively, C(h)

and C(l). It is clear that C(l) = 0. To compute the C(h), we use the first-order conditions

(4.4):

v21 = 4λ− 4µ, v22 =
4

3
λ+

1

3
µ, v23 =

1

2
λ+

3

8
µ,

together with individual rationality (4.2) and incentive compatibility (4.3) conditions. These

conditions for the cost minimization problem of implementing action h are solved by setting

λ = µ = 1. This implies that v1 = 0, v2 =
√

5/3, v3 =
√

7/8, and the agent is indifferent

between h and l:

1

3
v1 +

1

3
v2 +

1

3
v3 − g(h) =

2

3
v1 +

1

4
v2 +

1

12
v3

As the first-order conditions are both necessary and sufficient, we conclude that C(h) =
1
4
v32
3 + 2

3
v33
3 = 0.36.

Note that the incentive scheme with payments ws =
1
3(vs)

3, which implements the action h,

w1 = 0, w2 =
1

3
(5/3)3/2, w3 =

1

3
(7/8)3/2

is not non-decreasing: w1 < w3 < w2.

Observe that C(h) > C(l) = 0. It is then easy to show that we can find finite output levels

y1 < y2 < y3 such that
∑

s π
P
s (h)ys − C(h) >

∑
s πs(l)ys. This means that it is optimal for

the principal to implement the action h using the incentive scheme {ws} described above. △

In this example, the optimal contract is not increasing despite the fact that there are two

actions and MLRP conditions are satisfied both for the principal and the agent. In the

seminal work of GH with common beliefs, when there are two actions MLRP condition

guarantees that the optimal contract is non-decreasing in output. Relative to GH, we apply

the MLRP ranking to compare the heterogeneous beliefs over the same output levels, while

each party’s beliefs over different actions satisfy GH’s MLRP condition separately. Even if

we have such natural extension of MLRP conditions, the optimal contract fails to satisfy the

same monotonicity property.

To understand the intuition behind this counter-example, it is key to realize that the prin-

cipal’s optimism results in higher payments in the states that the agent considers relatively

more likely and, instead, lower payments in the states that the principal perceives more likely.

Hence, differences in beliefs generate a gap that allows for optimal wage schemes that are

non-monotone in output level.
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GH in their Example 1 also show that in the common belief setting MLRP condition does

not ensure monotonicity of optimal contracts when there are more than two actions. Yet,

monotonicity is restored when a stringent condition, i.e.,concavity of distribution function

condition (CDFC), is assumed in their framework. Our Example 1 shows that even when there

are two actions, under belief heterogeneity MLRP condition for each party is not sufficient

for monotonicity of the optimal contract. For that reason, it is not clear whether concavity

can help in easing the analysis of the principal’s problem. Extending the analysis beyond two

actions is an open problem.

We have thereby shown that in the case of heterogeneous beliefs the classic results of GH do

not apply in general. This is an important result since it highlights that in the presence of

belief heterogeneity monotonicity is not always guaranteed. 5 Without more specific assump-

tions about functional forms of the utility function and about the probability distribution of

the parties under the two actions, a sharper characterization of the optimal contract in the

case in which the agent is relatively more pessimistic is not straightforward.

As in the case of observable actions we now turn to characterize how the optimal contract

responds to changes in the beliefs of one party. In a similar vein as in Proposition 2, we

consider changing the principal’s beliefs to a nearby distribution in which the probabilities

of only two states are different relative to the original distribution. For tractability, we use a

parametric setting for the next result.

4.2 Two Actions and Two Outputs

Here, we focus on a two action and two output levels case and illustrate some of the major

issues one faces when going to a more general setting. We denote by h and l the two actions

available to the agent A = {h, l}, where the cost of the action h is g(h) = c, and the action l

has zero effort cost, g(l) = 0. We also assume that output levels are such that the principal

always prefers to implement the high effort action h unless otherwise stated. Denote by πP
H(h)

the principal’s belief about the high output when action h is taken, while the agent’s belief

for this output is πA
H(h).

For simplicity, we assume that the principal and the agent have the same beliefs about the high

output when the action l is taken, i.e., πA
H(l) = πP

H(l). We also assume that higher cost action

yields higher probability of high output both for the principal and the agent: πP
H(h) > πP

H(l)

and πA
H(h) > πA

H(l). Notice that in the case of two output levels, a probability distribution

over binary states is uniquely determined by the probability of high output.

5For example, in his analysis Santos-Pinto (2008) suggests erroneously that the monotonicity result holds
in the case in which the agent is more pessimistic than the principal.
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In this binary action and binary outcome case, the principal’s cost minimization problem is

given by:

min
{wL,wH}

πP
H(h)wH + (1− πP

H(h))wL

s.t.

πA
H(h)u(wH) + (1− πA

H(h))u(wL)− c ≥ u (4.5)

πA
H(h)u(wH) + (1− πA

H(h))u(wL)− c ≥ πA
H(l)u(wH) + (1− πA

H(l))u(wL) (4.6)

The first-order conditions take the following form:

πP
H(h) = [λπA

H(h) + µ(πA
H(h)− πA

H(l))]u′(wH) (4.7)

1− πP
H(h) = [λ(1− πA

H(h))− µ(πA
H(h)− πA

H(l))]u′(wL) (4.8)

As mentioned earlier, in this setting, the individual rationality condition (4.5) always bind

at an optimal contract andthe associated Lagrange multiplier λ > 0. Notice that the first

order conditions (4.7) and (4.8) imply that at the optimum the Lagrange multiplier, µ, on

the incentive compatibility condition (4.6) satisfies:

µ
(
πA
H(h)− πA

H(l)
)
=

(1− πA
H(h))πP

H(h)

u′(wH)

(
1−

πA
H(h)(1− πP

H(h))

πP
H(h)(1− πA

H(h))

u′(wH)

u′(wL)

)
(4.9)

Clearly, the heterogeneity in beliefs determines how binding the incentive compatibility con-

dition (4.6) can be. Notice that at an optimal contract when the incentive compatibility

condition (4.6) binds so that µ > 0 the optimal wages wH and wL solve both the individual

rationality condition (4.5) and the incentive compatibility condition holding with equality

and satisfy:

(πA
H(h)− πA

H(l))[u(wH)− u(wL)] = c (4.10)

Here, since the agent assigns higher probability to the high output when he works rather

than shirks (i.e., πA
H(h) > πA

H(l)), the optimal wage is increasing in output: wH > wL. As

indicated in Proposition 3, this result is not general. This is because in the case of binary

actions and output levels, the optimal contract for the two wage levels wL and wH are the

unique solution to the individual rationality and the incentive compatibility constraints both

holding with equality, which are entirely determined by the agent’s beliefs. However, when

the number of outcomes increases the principal’s beliefs shapes the optimal wage scheme.

To exemplify this, when there are two actions and three outputs, incentive compatibility

and individual rationality constraints holding with equality gives a set of wage schemes that

can implement the high action. This set typically contains more than one contract that can
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implement action h (two equations with three unknowns) and the principal uses his beliefs

to chose the optimal among them.

Equation (4.9) implies that the Lagrange multiplier µ is strictly decreasing as the principal’s

belief πP
H(h) decreases. This results from using the fact that the optimal contract in the

binary case is independent of the principal’s beliefs when the IC binds and that wH > wL.

Notice also that if the agent is relatively more optimistic about the high action so that

πP
H(h) < πA

H(h) and πP
H(h) is sufficiently low, then the Lagrange multiplier is nil, i.e., µ = 0

and, hence, the incentive compatibility constraint does not bind. Given the agent’s beliefs,

the minimum of the principal’s belief π̄ > πP
H(l) about the high action for which µ ≥ 0 is

determined by

1 =
πA
H(h)(1− π̄)

π̄(1− πA
H(h))

u′(wH)

u′(wL)
(4.11)

This therefore yields a two part characterization of the optimal contract depending on the

belief heterogeneity. First, if the principal’s belief about the high action is sufficiently more

pessimistic compared to the agent’s so that πP
H(h) ≤ π̄, in the optimal contract that imple-

ments the high action, the incentive compatibility constraint does not bind and its allocation

is the same as in the first-best contract. Naturally, when µ = 0, the first-order condi-

tions imply that the optimal wage is increasing(decreasing) in output if the agent is more

optimistic(pessimistic) than the principal about the high action, as in case of observable

action.

Second, if on the other hand the principal’s belief is optimistic enough πP
H(h) > π̄ then

the incentive compatibility constraint binds in addition to the individual rationality and

the optimal contract differs from the first best. Moreover, interestingly enough, starting

from the common belief case πP
H(h) = πA

H(h), there is a range for the principal’s belief

πP
H(h) ∈ [π̄, πA

H(h)] for which the second-best contract is not responsive to changes in the

principal’s belief πP
H(h). Depending on the belief heterogeneity, the analysis therefore yields

a two part characterization of the optimal contract that implements the High action and it

is summarized in the following result:

Lemma 2. Consider an economic environment with two actions and two outputs, where the

agent’s belief about the High action is πA
H(h), the principal’s belief about the high action is

πP
H(h), and the parties have common belief πA

H(l) about the low action. If the principal’s

belief threshold π̄ for the high action is given in (4.11), then in this setting the optimal

contract that implements the high action satisfies:

(a) If πP
H(h) ≤ π̄, then the optimal contract is the same as the first-best contract.
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(b) If πP
H(h) > π̄, then the incentive compatibility constraint binds and the second-best

contract differs from the first best. Moreover, in this case the optimal contract is

determined only by the agent’s beliefs and is not sensitive to the principal’s belief

about the high action.

Notice that in this Lemma, the threshold belief π̄ is determined by the primitives as explained

in the derivation of the equation (4.11).

In words, this result says that if the principal is not too optimistic about the high action,

the optimal contract is monotone in output, and it is not sensitive to small changes in the

principal’s beliefs. On the other hand, when the principal becomes very pessimistic about it,

the optimal contract for the high action is the first-best contract.

4.3 Comparative Statics: Two actions and Three output levels and CARA

utility

In this section, we analyze how the optimal contract changes as disagreement between the

principal and the agent increases by a small amount. Formally, the probability the principal

assigns to some output level increases by some ε > 0, simultaneously the probability of a

different output level is decreased by that same amount.

For simplicity, we consider an interior optimal contract that is a unique solution to the set of

first-order conditions (4.4), when both individual rationality (4.2), and incentive compatibility

(4.3) bind. The solution to this system of equations depends implicitly on the parameter ε.

Formally, the wage scheme (w∗
s(ε)){s∈S} and the Langrange multipliers λ∗(ε) and µ∗(ε) are

functions of ε. Notice from (4.4) that the comparative static analysis on the optimal incentive

scheme (w∗
s(ε)){s∈S} depends on how the Lagrange multipliers λ∗(ε) and µ∗(ε) change as ε

increases. Even for monotone contracts, i.e, (w∗
s(ε)){s∈S} increasing in s for any ε > 0,

λ∗(ε) and µ∗(ε) can be non-monotone in ε. This is the reason a tractable characterization

of the comparative statics is not straightforward without making further assumptions on the

contracting environment.

We employ the CARA utility example of section 3.1. That is, there are three possible

outcome levels (S = {1, 2, 3}) and the agent’s utility function belongs to the CARA family.

Given the CARA family assumption, there is a linear relationship between the utility and the

marginal utility functions and can the optimal contract can be solved explicitly and conduct

the comparative statics analysis as ε changes.

Proposition 4. Consider a moral hazard environment with two actions and three possible

output levels. Moreover, the beliefs of the agent and principal satisfy MLRP conditions.
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Assume the principal’s probability distribution is such that one can write the probabilities of

output levels ys and ys′ as π
P
s (h)+ ε and πP

s′ (h)− ε, for a small ε > 0. Then, ws is decreasing

in ε and ws′ is increasing in ε.

Remark 1: This result contrasts with the first-best comparative statics in the same envi-

ronment with observable actions. In that environment, similar comparative static analysis

shows that the incentives move in the direction of increasing disagreement (see Section 3.1).

Recall that for the first best contract the wage was not affected in the output level whose

probability unaffected (i.e., wFB
1 ). Here, instead, the optimal second-best contract changes

for the state that is not involved in comparative static analysis, in particular it increases (for

the details, see the proof of Proposition 4 in the Appendix). Thus, the presence of moral

hazard is reflected not only on the shape of the optimal contract, but also on the way it is

affected by (small) changes in the beliefs of the principal.

In the appendix we show that tractable general comparative statics results analogous to

Proposition 4 are difficult to obtain when one increases the number of outputs in this setting.

In the two-by-three semi-parametric example analyzed above, we can explicitly characterize

the solution for the optimal wage scheme in terms of the distributions perceived by the parties.

However, as the number of output levels in the contracting problem increases, tractable

characterization of the optimal contract is not straightforward. 6

5 Conclusions

To what extent do the classic results that characterize optimal contracts in moral hazard

settings hold up in an environment where the players think different? We show that allowing

for belief heterogeneity opens the door to new trade-offs that can lead to contracts with

significantly different properties.

Extending the GH framework with belief heterogeneity, we characterize the shape of the

optimal contract and provide the literature with an important result: Contrary to the case

of common beliefs, the MLRP rankings of the parties’ beliefs do not imply that the wage

scheme in the optimal contract is non-decreasing in output. Under MLRP condition, the

monotonicity result of GH extends to belief heterogeneity when the agent is more optimistic

than the principal. On the contrary, when the agent is relatively more pessimistic the optimal

6Following an iterative approach, we have solved for the optimal contract by iteratively increasing the
number of outputs in the problem and show that this iterative method finds the solution to the optimal
contract. However, it does not yield a tractable enough characterization of the optimal contract that could
enable us to perform comparative statics analysis. This, again, is mainly due to the fact that the Lagrange
multipliers λ∗(ε) and µ∗(ε) can be non-monotone in ε. This derivations are available upon request by the
authors.
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contract can be non-monotone. This result is important since it implies that the MLRP

condition of GH cannot be indiscriminately applied in the presence of heterogeneity of beliefs.

We show that the MLRP condition in the case of two actions and finite output levels might

not hold when beliefs are heterogeneous, refining the original results of GH.

We conclude by acknowledging that there are limitations to our analysis. First, we limit

ourselves to only two actions and finitely many outputs, and for some results, we are restricted

to only three output levels. In the two action case, we illustrate that the classical analysis

on the properties of the optimal incentive schemes do not generalize to belief heterogeneity.

What can be said about the properties of optimal contracts with arbitrary numbers of outputs

and actions with reasonable degree of tractability is still very much an open question.
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A Appendix

Lemma 3. Under Assumptions1 and 2,

(a) there exists a first-best action and a first-best optimal incentive scheme;

(b) there exists a second-best action and a second-best optimal incentive scheme.

Proof of Lemma 3. The proof strategy extends and applies analogous arguments in the

proof of GH’s Proposition 1, which mainly exploits in the cost minimization problem to

implement a given action, the convexity of the principal’s objective function and the liner

constraint set, to heterogeneous beliefs.

To establish the part (a), we show first, that, if the constraint set is nonempty for an action

a∗ ∈ A, then the problem (3.1) has a solution, i.e.
∑

s π
P
s (a

∗)h(vs) achieves its greatest

lower bound C(a∗). Note that
∑

s π
A
s (a

∗)vs is bounded below by a finite number U on the

constraint set of the problem (3.1). Therefore, applying analogous arguments as in the proof

of Proposition 1 in GH, we can show that unbounded sequences in the constraint set implies

that
∑

s π
P
s (a

∗)h(vs) tend to infinity (roughly because the beliefs have a full common support

(Assumption 2) the variance of vi → ∞ while their mean is bounded below, and h is convex

and nonlinear. This in turn implies that the constraint set can be artificially bounded. As the

constraint set is closed and the objective function is continuous, the existence of a minimum

CFB(a) therefore follows from Weierstrass’ theorem. Moreover, the cost function CFB(a) is

lower semicontinuous in a.

Given, CFB(a) is lower semicontinuous and the action set A is compact, Weierstrass’ theorem

yields that maxa∈A[B(a) − CFB(a)] has a solution provided that CFB(a) is finite for some

action a. To show this, if the principal and the agent have common belief, πA(a) = πP (a)

for all a ∈ A, we denote the cost function by ĈFB(a). As in GH the lowest cost action

a∗, which minimizes ĈFB(a), can be implemented by a constant wage scheme such that

u(ws) = U + g(a∗) for all s ∈ S. As the fixed wage contract that implements the lowest cost

action satisfies the constraint set in the problem (3.1) CFB(a
∗) ≤ ĈFB(a

∗). This therefore

show that for some action a∗ the constraint set is non-empty and the cost ĈFB(a
∗) is finite

and hence an optimal first-best action exists. This in turn establishes the existence of a first-

best optimal incentive scheme, as we have also shown that if the constraint set is non-empty,

the problem (3.1) has a solution.

We next turn to establish the part (b). As in the problem (4.1) the objective function is convex

and the constraint set is linear, the problem in (4.1), following the arguments analogous to

the proof of part a) yields the existence of a minimum C(a) if the constraint set is non-
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empty. Moreover, the constraint set is non-empty as the incentive scheme which implements

the action a∗ in part a) satisfies the constraint set in the problem (4.1). The existence of a

second-best action and an incentive scheme that implements it then follows analogously to

the proof of part a).

Proof of Proposition 1. The result follows from the first-order condition of the first-best

problem. For any two output levels ys and ys′ with ys > ys′ the first-order conditions (3.3)

imply

πP
s (a)

πP
s′ (a)

=
πA
s (a)

πA
s′(a)

u′(ws)

u′(ws′)
.

This expression can be rearranged as

πP
s (a)

πA
s (a)

=
πP
s′ (a)

πA
s′(a)

u′(ws)

u′(ws′)
.

Note from this condition that if πP (a) ≿MLRP πA(a) then πP
s (a)

πA
s (a)

≥ πP
s′ (a)

πA
s′ (a)

and therefore the

first order condition can only hold if u′(ws)
u′(ws′ )

≥ 1 which implies ws ≤ ws′ by the concavity of

u. The proof of the other case follows analogous reasoning.

Proof of Proposition 2. The proof uses the first order conditions and the concavity of the

agent’s utility function. The first order conditions in output ys and any output level yt ̸= ys

for the two different beliefs of the principal imply

π̃P
s (a) + ε

πP
t (a)

=
πA
s (a)

πA
t (a)

u′(wFB
s (a))

u′(wFB
t (a))

and
π̃P
s (a)

π̃P
t (a)

=
πA
s (a)

πA
t (a)

u′(w̃FB
s (a))

u′(w̃FB
t (a))

Putting the two together one gets

π̃P
s (a) + ε

πP
t (a)

=
π̃P
s (a)

π̃P
t (a)

u′(wFB
s (a))

u′(wFB
t (a)))

u′(w̃FB
t (a))

u′(w̃FB
s (a))

Since ε > 0 and πP
t (a) ≤ π̃P

t (a) for all t, this last equality can only be satisfied if

u′(wFB
s (a))

u′(w̃FB
s (a)))

u′(w̃FB
t (a))

u′(wFB
t (a))

> 1

This shows that both fractions cannot be smaller than 1, and either wFB
s (a) ≤ w̃FB

s (a), or

wFB
t (a) ≥ w̃FB

t (a) for all t, or both. Moreover, by individual rationality one cannot have
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that wFB(a) pays less than w̃FB(a) in every output, while optimality implies that it cannot

pay more in every output level. This establishes the result.

Proof of Proposition 3. To show part (a) notice that πA(h) ≿MLRP πP (h) implies that

likelihood ratios πA
s (h)

πP
s (h)

and
[πA

s (h)−πA
s (l)]

πP
s (h)

are both increasing in s. Since the utility function u

is strictly concave and λ > 0 and µ ≥ 0, (4.4) implies that ws is increasing in s.

We next to turn to show part (b). Notice that if πP (h) ≿MLRP πA(h), then the likelihood

ratio πA
s (h)

πP
s (h)

is decreasing in s. However, the second term on the right-hand side of (4.4),

[πA
s (h)−πA

s (l)]
πP
s (h)

, is not necessarily monotone decreasing. Therefore, whether the contract is

monotone in this case is ambiguous.

Proof of Proposition 4. In this setting, for an interior solution ws > 0 the first-order con-

ditions take the following form:

πP
s (h) =

(
λπA

s (h) + µ(πA
s (h)− πA

s (l))
)
e−ws , s ∈ S. (A.1)

The individual rationality constraint is∑
s∈S

πA
s (l)(−e−ws) = u+ c (A.2)

and the incentive compatibility∑
s∈S

(πA
s (h)− πA

s (l))(−e−ws) = c (A.3)

Notice that the system of equations (A.1)-(A.3) is linear in marginal utilities e−w and in the

Lagrange multipliers, λ and µ. Using this system of equations we characterize the solution

for the incentive scheme algebraically. It will be useful to simplify the notation and define

the difference in the agent’s beliefs by ∆s := (πA
s (h)− πA

s (l)).

We start by expressing the Lagrange multipliers in terms of the wages. Summing over the

first-order conditions yields:

λ = πP
1 (h)e

w1 + πP
2 (h)e

w2 + πP
3 (h)e

w3 (A.4)

and using the first-order condition for s = 1 we can write µ as follows:

µ =
πP
1 (h)

∆1
ew1 − λπA

1 (h)

∆1
(A.5)
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Here ∆1 < 0, since πA(h) ≿MLRP πA(l) implies that πA
s (h)
πA
s (l)

is increasing in s. For otherwise,

πA(h) and πA(l) would not be different distributions. For the same reason, ∆3 > 0.7

To simplify notation in what follows, let κs′,s := (∆s′π
A
s (h)−∆sπ

A
s′(h)) = −πA

s′(l)π
A
s (h) +

πA
s (l)π

A
s′(h) > 0 whenever s′ > s. Now we use the linear system of equations (A.2) and (A.3)

to remove the terms with w3:

κ3,1e
−w1 + κ3,2e

−w2 = (−∆3u+ cπ3(l)) (A.6)

which can be solved to yield:

ew2 =
κ3,2

(−∆3u+ cπ3(l))− κ3,1e−w1
(A.7)

Similarly, using (A.2) and (A.3) we express marginal utility at w3 in terms of that at w1:

κ2,1e
−w1 − κ3,2e

−w3 = (−∆2u+ cπ2(l)) (A.8)

and solving:

ew3 =
κ3,2

κ2,1e−w1 − (−∆2u+ cπ2(l))
(A.9)

Now we use an equation that has not been used so far to solve for the term w1. For instance,

we use the first-order condition (A.1) for s = 2:

πP
2 (h) = (λπA

2 (h) + µ∆2)e
−w2

Using (A.5) the latter implies:

πP
2 (h) =

(
λ

(
πA
2 (h)−

πA
1 (h)∆2

∆1

)
+

(
πP
1 (h)e

w1∆2

∆1

))
e−w2

7 More specially, the relationship πA(h) ≿MLRP πA(l) implies:

πA
1 (h)

πA
1 (l)

≤ πA
2 (h)

πA
2 (l)

≤ πA
3 (h)

πA
3 (l)

and hence
πA
1 (h)

πA
1 (l)

< 1 and
πA
3 (h)

πA
3 (l)

> 1. For otherwise, if πA
1 (l) ≤ πA

1 (h), then πA
2 (l) ≤ πA

2 (h) and πA
3 (l) ≤ πA

3 (h).

But this then implies that πA(h) = πA(l). Therefore, ∆1 < 0 and ∆3 > 0.

25



Now, using (A.4) to substitute for λec in the last equation implies:

πP
2 (h) =

((
πP
1 (h)e

w1 + πP
2 (h)e

w2 + πP
3 (h)e

w3
)(

πA
2 (h)−

πA
1 (h)∆2

∆1

)
︸ ︷︷ ︸

:=γ2

+

(
πP
1 (h)e

w1∆2

∆1

))
e−w2

Simplifying and rearranging the previous equation implies:

πP
2 (h)(1− γ2) =

(
πP
1 (h)e

w1

(
γ2 +

∆2

∆1

)
+ πP

3 (h)γ2e
w3

)
e−w2

Finally, using (A.7) and (A.9) and substituting for ew2 and ew3 , respectively, yields:

πP
2 (h)(1− γ2) =

(
πP
1 (h)e

w1

(
γ2 +

∆2

∆1

)
+ πP

3 (h)γ2
κ3,2

κ2,1e−w1 − (−∆2u+ cπ2(l))

)
(
(−∆3u+ cπ3(l))− κ3,1e

−w1

κ3,2

) (M)

Here γ2 =
(
πA
2 (h)−

πA
1 (h)∆2

∆1

)
= −κ2,1/∆1 > 0 and γ2 ≤ πA

2 (h) ≤ 1. Moreover, the MLRP

relationship πA(h) ≿MLRP πA(l) implies that
(
γ2 +

∆2
∆1

)
> 0, by an argument similar to that

in the footnote 7.

The equation (M) (implicitly) determines the unique solution for w∗
1 and relates it to the

primitives in this setting. In turn, substituting for w∗
1 in (A.6) and (A.8), respectively yields

the unique solutions for w∗
2 and w∗

3. Using (M) we can show that w1 increases in ε. Suppose

to the contrary that w1 and hence ew1 decreases as πP
2 (h) increases. This implies that the

left-hand side in (M) increases.

On the right-hand side, notice that the two terms in the product are both increasing in ew1

(In the first term, larger ew1 makes the denominator a smaller positive number and hence

makes the ratio larger). Under the contradictory hypothesis, both the first and the second

term on the right-hand side decrease. This in turn implies that starting with (M) holding

with equality increasing ε > 0 leads to a decrease in the RHS while the LHS increases, which

contradicts optimality. This therefore shows that the optimal w∗
1 decreases in ε.

Now using the fact that w∗
1 increases in ε implies, by (A.6) and (A.8), that the optimal

w∗
2 decreases and w∗

3 increases in ε, respectively. This proves the claim in the statement of

Proposition for states s = 2 and s′ = 3. The comparative static result for any pair of outputs

follows using the equation (M) and analogous reasoning.

26


	Introduction
	Model
	Observable Actions
	First-Best Contract with CARA Utility

	Unobservable Actions
	Two Actions and Finite Number of Outputs
	Two Actions and Two Outputs
	Comparative Statics: Two actions and Three output levels and CARA utility

	Conclusions
	Appendix

