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Abstract

For autonomous agents to coexist with the real world, it is essential to anticipate the dynamics
and interactions in their surroundings. Autonomous agents can use models of the human
brain to learn about responding to the actions of other participants in the environment
and proactively coordinates with the dynamics. Modeling brain learning procedures is
challenging for multiple reasons, such as stochasticity, multi-modality, and unobservant
intents. A neglected problem has long been understanding and processing environmental
perception data from the multisensorial information referring to the cognitive psychology
level of the human brain process. The key to solving this problem is to construct a computing
model with selective attention and self-learning ability for autonomous driving, which is
supposed to possess the mechanism of memorizing, inferring, and experiential updating,
enabling it to cope with the changes in an external world. Therefore, a practical self-
driving approach should be open to more than just the traditional computing structure of
perception, planning, decision-making, and control. It is necessary to explore a probabilistic
framework that goes along with human brain attention, reasoning, learning, and decision-
making mechanism concerning interactive behavior and build an intelligent system inspired
by biological intelligence.

This thesis presents a multi-modal self-awareness module for autonomous driving systems.
The techniques proposed in this research are evaluated on their ability to model proper driving
behavior in dynamic environments, which is vital in autonomous driving for both action
planning and safe navigation. First, this thesis adapts generative incremental learning to
the problem of imitation learning. It extends the imitation learning framework to work
in the multi-agent setting where observations gathered from multiple agents are used to
inform the training process of a learning agent, which tracks a dynamic target. Since
driving has associated rules, the second part of this thesis introduces a method to provide
optimal knowledge to the imitation learning agent through an active inference approach.
Active inference is the selective information method gathering during prediction to increase a
predictive machine learning model’s prediction performance. Finally, to address the inference
complexity and solve the exploration-exploitation dilemma in unobserved environments, an
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exploring action-oriented model is introduced by pulling together imitation learning and
active inference methods inspired by the brain learning procedure.
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Chapter 1

Introduction

1.1 Motivation

Intelligent transportation systems (ITSs) are a significant element of smart cities. In recent
years, autonomous vehicles (AVs) have attracted much attention due to their potential to
revolutionize mobility and safety in transportation. AVs will share urban roads with human
traffic participants in smart cities [131]. Thus, to drive safely and efficiently without human
intervention in a complex environment, AVs must evaluate their driving intelligence while
interacting with their surroundings and correctly estimate the behavioral intention of other
participants (i.e., AVs or human drivers).

The main research methods on intention estimation and behavior prediction are composed
of machine learning (ML) based on classical probability (model-driven) and deep learning
(data-driven) [88, 148]. Traditional ML algorithms generally respect the evolution process
of agents’ interactive behavior as the property of the Markov decision process (MDP) (i.e.,
hidden Markov Model) to infer intent [85]. A drawback of traditional ML methods is that
due to the high non-linearity of participated agents’ behavior intention and their interaction,
achieving satisfactory accuracy in performance estimation and predicting the agent behavior
is challenging. Moreover, deep learning methods based on data-driven models, such as long
short-term memory network, needs a large amount of data to support. If the data quantity is
insufficient, it will cause over-fitting, and this method cannot explain the causal relationship
between the change of data and the automated driving scene [97]. The real-world scenario is
challenging to complete by using the method of artificial statistics received. Furthermore,
autonomous driving systems (ADSs) require strong logic and interpret-ability [46]. Therefore,
exploring a new computing framework for autonomous driving vehicles is vital.

To achieve a full ADS to accomplish a mission efficiently and, more importantly, shape an
adaptive model to a dynamic environment, the AV must be able to learn continuously, modify
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its beliefs and make predictions. The cognitive process of brain learning is supposed to be
well-referred to the AV’s surroundings and situation understanding. The intelligent agent (IA)
can perceive its external world and itself using a set of sensors. Accordingly, multi-sensorial
information can be divided into exteroceptive and proprioceptive data. Proprioceptive
sensors measure the internal agent’s parameters, whereas exteroceptive sensors observe the
agent’s environment. It helps the AV possess the abilities of self-learning and self-referring
in different environments to build generative models (GMs) which can understand and
explain the AV situation and the external world. Hence, AV can expand its knowledge
during continuous learning and evolution and capture novel knowledge to adapt to driving
scenarios of different characteristics. Therefore, the multi-sensorial framework equips the
AV to incrementally learn self-awareness (SA) models from the perception of itself and the
surrounding environment [119].

SA is a broad derived concept from cognitive science (CS) and psychology that describes
the property of a system, which has knowledge of its situation using its senses and internal
models. Internal and external perception give different forms to the gained knowledge, which
is essential for anticipating and adapting to unseen situations. Computational SA methods
comprise a promising field that enables an IA to detect non-stationary conditions, learn
internal models of its environment, and autonomously adapt its performance and the learning
process to the contextual tasks [44].

To this end, we must consider three criteria to achieve high autonomy for vehicles. First,
ADS must take human error out of driving actions and respond safely to changing scenarios
to improve the safety and efficiency of driving experiences. Second, ADS must be able to
understand pre-actions and recognize the driving intentions contained in the behavior. Third,
an ADS must be capable of abstracting situational information in a dynamic environment
from multi-sensorial information. Therefore, the realization of a full ADS requires solving
the following two scientific problems:

• How to make a multi-modal self-awareness model for AVs to understand and assess
situations while interacting with the external world, such that AVs can possess the
mechanism of memorizing, reasoning, and experiential updating as an expert driver to
cope with dynamic changes.

• How to develop an evolutionary and incremental learning system for ADS, where the
learning process is similar to the human brain learning procedure and can extend the
generalized knowledge learned to unseen scenes.

The key to solving the discussed issues lies in how to introduce the human cognitive model
into the framework of an ADS. It is necessary for AVs to constantly interact with their
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surroundings and alter their behavior based on changes in the environment. The realization
of this process is inextricably linked to the environmental perception of the vehicles, gaining
knowledge about their current situation, and making decisions based on this understanding.
A widely studied proposition for understanding how the balance between perception and
decision-making is maintained is active inference (AIn) [51, 59]. AIn provides a theoretical
and practical explanation of how IAs use perception and action to infer hidden states,
minimize prediction error and thus reduce their surprise and uncertainty concerning these
hidden states. It stipulates a feedback loop between the agent and its interactions with the
environment [26]. Explicitly, the agent’s actions shape the environment and shift the agent’s
perception, that influencing future behavior. AIn employs two complementary free energy
(FE) functions to measure the surprise, namely, variational FE (VFE) and expected FE (EFE).
VFE calculates the fit between the agent’s GM and observable outcomes sampled from a
generative process (i.e., the environment). Here, the generative process refers to the structure
of the environment that generated the agent’s observations, and the GM embodies the agent’s
expectations about the causes of those observations. Conversely, the EFE evaluates possible
action trajectories in terms of their ability to reach preferred outcomes via the maximization
of extrinsic and intrinsic values. This equips the agent with a formal way to assess different
hypotheses about the types of behavior that can be pursued.

Based on this core concept, the AIn framework emerged, presenting a biologically
plausible algorithmic approach to agent-based learning and planning. While the fundamental
mathematical formulation of AIn is similar to other agent-based decision processes such as
Bayesian brain [48] and reinforcement learning (RL) [138], inherent to AIn’s formalization is
a unique approach to the exploration versus exploitation trade-off, which is an ongoing topic
of research in many areas of ML [13]. This, along with its basis in biological plausibility [49,
35], makes AIn an attractive lens to approach autonomous systems (ASs) research. Over
the past few years, AIn has solidified itself as a unique mechanism by which to implement
IAs to solve complex tasks in complex dynamic environments [125, 50, 95]. In addition, the
framework comes equipped with naturally-derived state and parameter exploration schemes.
This is in contrast to other ML methods, which require the explicit addition of such schemes
to achieve exploratory behavior. Despite much work being done to analyze and develop
the field articulately, many areas remain to explore to advance our understanding of its
viability and capacity as an ML paradigm. Particularly, theoretical and investigative analysis
is needed to ascertain how it compares to other algorithms, mainly when operating under
model uncertainty.

In addition, the AIn algorithm presents a framework with great potential for expansion
concerning its integration with other ML techniques and expanding upon the core ideas behind
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its use of belief propagation and inference. The framework naturally lends itself to effectively
representing scenarios of living entities navigating an environment representative of the
real-world features. In this regard, the possibilities are endless, and significant opportunities
exist to explore the application of the AIn framework to such real-world models.

The presented dissertation aims to investigate some of these opportunities and flesh out
our understanding of the AIn algorithm. In particular, the proposed work analyzes how AIn
integrates with other learning techniques and employs potential probabilistic models, such as
Bayesian methods, for extending the agent’s knowledge in a manner that remains congruent
with the core concepts of inference and belief propagation.

1.2 Summary of Contributions

Firstly, the thesis starts with a general overview to put AV in its historical context to under-
stand the interests that led to its advent at the design and utilization phases. It enlightens
the required knowledge of the state-of-art techniques, which are fundamental to this work.
That includes the dynamic representation of the Probabilistic Graphical Models (PGMs).
Moreover, a background of concepts and utilizing different learning approaches is provided.
It reviews the learning limitation regarding interacting with other participants in a dynamic
environment and highlights how the thesis can overcome the constraints by proposing a
logical and coherent framework.

Secondly, this thesis presents the benefits of imitation learning (IL) in learning incremen-
tally. This section proposes an adaptive PGM to enable the IA to interact with its surrounding
by imitating a set of expert demonstrations, where imitation is not presented only as the
implicit repeating but as a process of inference intention through observational learning. Two
system models are described to consider agent-tracking scenarios in two cases of interaction
with static and dynamic agents, which copes with the core issues of IL in unseen situations.

Thirdly, the thesis provides an AIn framework for incremental imitative learning in ADS
that the agent expands its beliefs through experiencing novelty. The proposed generative
hierarchical model focuses on representing and minimizing the distinction between the
agent’s beliefs and the evidence in the external world. I will discuss the connection between
Bayesian inference and the transition model on a more conceptual level. The arguments are
based mainly on hypotheses regarding perception and acting, as described by inference and
optimal action selection. Moreover, another perspective highlights the potential of FE theory
at the multi-level of a generalized Dynamic Bayesian Network (GDBN) for the formalization
of an action-oriented model as a central process for adaptive behavior under uncertainty.
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Finally, the thesis introduces a SA architecture empowered by AIn to improve ADS. A
self-aware AS constantly deals with continuous and potentially overwhelming signals from
the agent’s sensors and their interaction with the dynamic environment. Therefore, learning
about interacting with the surroundings dynamically and considering the experienced errors
is essential to build a predictive model capturing the novel world’s regularities through
exploratory actions.

To summarize, the aim of the presented work in this dissertation is to discuss the following
research questions:

1. How do incremental learning models be integrated with generative models in ways
that offer computational efficiency in autonomous systems?

• The dynamic interaction between the participants in a non-stationary environment
is encoded in a coupled GDBN (C-GDBN) that can be used to facilitate the infer-
ence and decision-making processes. It advances a probabilistic computational
account of action, observation, and imitation abilities grounded in the active
inference framework.

2. To what extent, and in what manner, do the novelty terms affect agent behavior in a
complex dynamic environment?

• A probabilistic framework is presented to solve the exploration-exploitation
dilemma by foreseeing actions that minimize the prediction errors and establish
a solid foundation for further research on the representation and learning of
concepts in a cognitive environment by an autonomous agent.

3. Can the belief propagation mechanism of Bayesian inference be applied to novelty
to create a self-aware incremental learning structure that encourages more adaptive
behavior?

• An online evaluation of joint state predictions is applied to update the agent’s
belief during the back-projection of detected errors at the multi-level of a C-
GDBN. We employ a Bayesian sequential decision-making model to distinguish
exploration and exploitation processes, which train the A to generate the preferred
performance or explore a new course of actions based on its sensory observations
and new information provided by the perception of the surrounding.
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1.3 Outline of Thesis

• Chapter 1 presents the introduction, highlights the motivations of the presented
research work, and discusses the main contributions of this dissertation.

• Chapter 2 provides an overview of autonomous vehicles and the levels of autonomy.
Moreover, it highlights the weakness and strengths of learning techniques regarding
interacting with dynamic surroundings.

• Chapter 3 describes an online imitation learning framework for autonomous tracking
that employs reinforcement learning.

• Chapter 4 proposes an active inference framework to learn SA module representation
of autonomous driving scenarios.

• Chapter 5 design an exploratory action-oriented model to develop a SA architecture
for dynamic interaction with the world.

• Chapter 6 concludes the presented research work and discusses some open questions
for future work.
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Background

2.1 Intelligent Transportation System

ITS refers to a broad range of technologies applied to transportation [90, 117]. ITS combines
high technology and improvements in information systems, communication, sensors, con-
troller and advanced mathematical methods provides innovative services related to various
modes of transportation (i.e., on the land, on the air, and in the water) and enables users to
have a better knowledge of their driving surrounding while using transportation resources
in a safe, informed, and coordinated manner [86, 137]. ITS plays a vital role in developing
smart cities that are being developed with higher accuracy. AV technology is projected to
decrease road incidents, improve travel costs and congestion, and alleviate climate change.

2.1.1 Autonomous Driving

One of the most significant contributions towards the ITS has been the development of
autonomous driving (AD). The definition of an autonomous driver is driving a vehicle from
one place to another place without a human controller. Avs perceive the environment through
senses using various sensors, and then this information is utilized to drive without the need
for any human intervention [105]

Since before the twenty-first century, there has been much enthusiasm for autonomous
cars. Researchers and industry leaders have been competing to develop the first fully
autonomous vehicle that is robust, reliable, and safe for the real world, including high-
speed driving environments. For an AV to navigate effectively, technologies from multiple
disciplines need to combine. These disciplines broadly include computer science, electrical
engineering, and mechanical engineering [133]. Linriccan Wonder of the 1920s was the first
radio-controlled car. In 1939, electric cars powered by embedded circuits were showcased.
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The advent of a robotic van happened by Mercedes-Benz in 1980 that used vision-guided
systems, which was the starting point for high technologies such as lane keep assist and lane
departure warning.

Significant contributors to early AV research can be attributed to AV tests and competi-
tions held worldwide. These competitions provided opportunities for industry and researchers
to assess the capabilities and boundaries of AVs in various driving environments. However,
more importantly, they identified major difficulties and shortcomings in AVs, some of which
still need to be solved.

One of the first long-distance AV road tests, No Hands Across America, was introduced
in 1995 [15, 115]. This event pushed the boundaries of AV technology requiring the AV to
steer across the United States while the human drivers controlled the vehicle’s acceleration
and braking. Around the same time, an AV drove from Germany to Denmark in the Munich
to Odense UBM Test [15, 92]. In 1998, an AV journeyed through Italy’s rolling hills, and
unpredictable weather conditions in the ARGO Project [14, 15, 23]. In each of these tests,
the AVs drove autonomously for 90–98% of the journey using primitive lane departure
warning systems, lane-keeping systems, and inter-distance regulation systems [14].

Moreover, vehicle developers noted through these tests that many areas of AV technol-
ogy require significant improvement. These areas included mostly perception techniques,
driving in complex, urban scenarios, and improving erroneous obstacle and road marking
detection [11, 14, 15].

Significant developments were made in the early 2000s when the lane departure warning
system, adaptive cruise control, self-parking assistance, auto-pilot, and traffic sign recognition
were developed for AVs [145, 149, 78]. In 2003 a competition by the Defense Advanced
Research Projects Agency (DARPA) was initiated, which required vehicles to drive without
the aid of road markings through an off-road desert course [123]. In the first DARPA
Grand Challenge (in 2004), no vehicle could complete the course, but in the following
challenge (in 2005), five vehicles completed their mission [27]. After the DARPA Grand
Challenges, AV research steadily increased, and researchers began to address the challenges
of driving in complex environments. Although the DARPA Challenges tested the AVs in
almost complicated scenarios, these challenges still lacked certain aspects of a real-world
urban driving scene, such as roadway obstacles.

Since the DARPA challenge, several automated driving competitions and trials have
been held. Relevant examples included the VisLab Intercontinental Autonomous Chal-
lenge [24] and the Hyundai Autonomous Challenge [30] in 2010; the Intelligent Vehicle
Future Challenge [146] from 2009 to 2013; the Proud-Public Road Urban Driverless Car Test,
in 2013 [25]; the Grand Cooperative Driving Challenge (GCDC) [45], in 2011 and 2016; the
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Autonomous Vehicle Competition, from 2009 to 2018; and the European Land-Robot Trial
(ELROB) [129], which since 2006 is held yearly.

Although each of these challenges developed promising advances in AV technology in
academia and industry worldwide, industrial leaders acknowledge that AVs are not yet robust
enough (fully autonomous) to drive without human supervision. To gauge AVs’ autonomy
level (described in the following section), the Society of Automotive Engineers International
published a classification system that the level of autonomy may range from level zero to
five based on the human driver intervention and attentiveness required by them.

2.1.2 Levels of Autonomy

There is an expectation that urban transportation will include a mix of manual, semi-automatic,
and full AVs by 2025 [111]. To discuss the possible application of driving automation, the
society of automotive engineers (SAE) [72] defined six levels of automation as followings:

• Level 0 has no autonomy. The human driver performs all driving tasks, even when
augmented by warning systems or intervention mechanisms.

• Level 1 is controlled by the human driver, but the driving assistance system executes
some minor driving modes.

• Level 2 is combined with the automated functions, i.e., acceleration/declaration and
steering, using the observed information about the vehicle’s surroundings. However,
the human driver remains engaged with the dynamic driving tasks.

• Level 3 is not required the human driver to monitor the environment. However, there is
the expectation that the human driver responds appropriately to a request to intervene.

• Level 4 can perform all driving functions by an ADS under certain conditions, even
if the human driver does not respond appropriately to an intervention request. If the
human driver fails to take control of the vehicle, the ADS steers the vehicle to the side
of the road in a controlled manner to stop it.

• Level 5 has full autonomy. AV can perform all dynamic driving tasks in any condition.
The human driver still has the option to control the vehicle.

Based on the above discussion, only level 4 and level 5, which are high and full automation,
involve complete automation of the driving task and exclude human intervention during
automation. Outside these areas, the human driver is still required. Only level 5 automation
would consist of driverless operation anywhere. See Table.2.1, which outlines key features
of partially-automated and fully autonomous vehicles.
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Table 2.1 Brief overview of level of automation in vehicles.

Level Name
Human centered/

Autonomous
Steering

and speed

Monitoring
of driving

environmnet

Fallback
performance

of driving tasks

Saystem
capability

0
No

automation

Human driver is in
charge of all driving

tasks

Human
driver

Human
driver

Human
driver

No system-driven
capability

1
Driver

assistance

Human driver is in
charge of all driving

tasks

Human
driver

and ADS

Human
driver

Human
driver

Some minor
driving modes

2
Partial

automation

Human driver is in
charge of all driving

tasks
ADS

Human
driver

Human
driver

System driven
steering and
acceleration/
deceleration

3
Conditional
automation

System assists human
driver in some

non-critical
driving tasks

ADS ADS
Human
driver

Human driver
expected to respond

when need arises

4
High

automation

Human driver is in
charge of a few of

driving tasks
ADS ADS

Human driver
and ADS

Human driver only
need to intervene

if unavoidable

5
Full

automation
AS is in full charge of

all driving task ADS ADS ADS All driving modes

2.2 Self-Awareness in Autonomous Vehicle

A full AS requires sophisticated self-assessment capabilities to be fail-operational in different
scenarios. Therefore, making decisions and potentially taking actions without direct human
intervention requires some knowledge about the system and its environment. Self-awareness
(SA) is a crucial ability for a system to effective management and adapt to changing circum-
stances.

SA in a computing model refers to a paradigm for a system that collects information
to maintain knowledge about its own internal states, possible actions, and the result of
these actions on the system and its surrounding. This paradigm is appropriate for advanced
intelligent decision-making in a dynamic environment under uncertainty, which facilitates
explainable autonomy and self-adaptation [84].

Over the years, SA has been the objective in the fields of psychology and CS [6, 5]. More
recently, the concept of SA has been transferred to artificial agents aiming at designing IAs
and analyzing their behavior to enrich the capability of autonomy in different fields, including
ML and robotics [144, 120]. SA is a promising ability that allows an autonomous agent (i.e.,
AV) to learn the internal model of its surroundings through non-stationary conditions to adapt
its behavior and structure to contextual tasks autonomously.
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An autonomous agent perceives the environment using the multi-sensorial information
from the exteroceptive and proprioceptive sensors to focus on perceptions of both external
and internal models, which is essential to anticipate and adapt to unknown situations. Pro-
prioceptive sensors measure the internal agent’s parameters, whereas exteroceptive sensors
observe the agent’s environment. An autonomous agent equipped with a SA representation
can be introspective at various levels of hierarchy using obtained joint and dynamic sensory
data analysis. From the agent’s perspective, introspection is associated with estimating and
representing dynamic causal relationships based on observed sensory information [119].
Such representation enables the agent to model the dynamic interaction between itself (i.e.,
proprioceptive information) and its surroundings (i.e., exteroceptive information).

Therefore, a SA autonomous system requires initialization, model creation, inference,
anomaly detection, and the decision-making policy as the main capabilities [119]. Initializa-
tion refers to the early knowledge of an IA about its surroundings. To create the learning
model, the agent encodes the gained experiences to facilitate predicting the future states
and the posterior comparison with evidence. In a predictive model, inference shows how
the agent predicts its own future states and surroundings depending on its current state. In
order to detect abnormalities, the agent recognizes new observations that the previously
observed situations cannot explain. Consequently, a dynamic decision-making policy must
be employed to regulate the agent’s actions.

In the case of AVs, SA capabilities have yet to be sufficiently studied. This study aims to
capitalize on these core capabilities to achieve reasonable autonomy for operating in dynamic,
interactive, and uncertain environments. The following section highlights the state-of-arts
methods used in this dissertation to develop an autonomous self-awareness system for AVs
by adapting the inferences and learning incrementally from the experiences.

2.3 Dynamic Representations for Autonomous Driving

2.3.1 Generative Model

One of the strong candidates towards developing algorithms that can analyze and understand
data are generative models (GMs) [62]. A GM is a probabilistic description of generating
predictions about observations [19]. Generative models demonstrate how a set of observed
data could have arisen from a set of underlying causes. Such models have been commonly
employed in brain learning approaches to make inferences about the causes of various
conditions or solve a complex inference problem, where it must select the best hypothesis
about the external world based on the sensory data.
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Here, we are concerned with GMs explaining how the Bayesian brain works. Bayesian
inference relies on the GM to formalize beliefs about how outcomes are caused. GMs are
capable of both generating synthesized data and providing a distance metric to measure the
deviation of the predicted data from the observed one. These statics models aim to learn the
joint distribution over a set of random variables from which data samples can be generated
from that distribution. A generative process describes transitions among states in the agent’s
environment that generate observed outcomes. These states are referred to as hidden because
they cannot be observed directly. Their transitions depend on action, which depends on
posterior beliefs about the next state. In turn, these beliefs are formed using a GM of how
observations are generated. The GM describes the agent’s beliefs about its surroundings,
where expectations encode beliefs about hidden states and policies [21, 4]

In order to achieve safe and high-quality decision-making and motion planning, au-
tonomous agents should be able to generate accurate probabilistic predictions from an
uncertain environment. Probabilistic Graphical Models (PGMs) are a specific class of GMs
providing stochastic behavior modeling of interacting variables whose relationships are
represented in a graphical structure, which is explained in the followings.

2.3.2 Learning Low-Dimensional Representations

Learning low-dimensional representations reduces the dimensionality of the observation
space while maintaining the characteristics of the data. Low-dimensional representations
can also help reveal latent structures, allowing for deeper insights into the observations.
Therefore, GMs are proposed that allow learning low-dimensional representations of the
observations, providing means for analyzing the observed data.

Besides the size reduction of the data to increase the efficiency of the post-processing
steps, low-dimensional representations can also be used to learn the structure of the data. In
many applications, features have a specific meaning and can, therefore, be interpreted by
experts. If an IA is able to learn the features present in the data in compliance with its prior
assumptions, it can obtain a deeper understanding of the observations [18, 66].

This thesis proposes an autonomous learning framework to improve post-processing steps
and allow for accurate data analysis. The obtained observations via the IA (i.e., AV) is a
random variable that can be defined into the state representation to encode into probability
distributions. This model the interactions and causal effects between the random variables.
The following subsections investigate statistical methods for low-dimensional data acquisition
and Bayesian models to identify the latent structure of the data. The latent state space (i.e.,
extracted features) can be represented as a dynamic probabilistic model by utilizing the
well-renowned Bayes’ theorem.
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2.3.3 Probabilistic Graphical Model

A probabilistic graphical model (PGM) defines a family of represented probability distribu-
tions in terms of a directed or indirect graph. The graph’s nodes represent random variables,
and its structure translates into statistical dependencies among them that drive the compu-
tation of joint, conditional, and marginal probabilities. [75]. In applications, most random
variables are chosen to express the variability of an observed quantity, such as the expression
of a specific state measured under a particular condition. Some random variables, however,
may specify unobserved quantities that are believed to influence the observable outcomes of
a given experiment, such as which cellular processes were active when measurements were
taken. The relationship of the graph specifies the hypotheses about how observable and latent
quantities influence one another. Moreover, random variables are explained by constants
underlying their distributions. These constants are referred to as frequentist parameters and
hyper-parameters in the Bayesian paradigm [1].

Bayesian Network (BN) is a popular class of PGMs that is introduced by [113], where
the graph and the probability theories are combined with modeling a comprehensible rep-
resentation of the joint probability distribution. The BNs point out useful modularities in
the underlying problem and help accomplish decision-making tasks, especially in uncertain
domains.

2.3.4 Dynamic Bayesian Network

BNs do not model temporal relationships among variables. However, the temporal depen-
dencies of interactions that involve different interactive behaviors at different time scales are
consequential in AS. A Dynamic Bayesian Network (DBN) is an extended BN that is able to
model influences over time series or sequences [99, 64].

A DBN consists of a graph containing directed links between involved variables, not
allowing loop cycles between a given variable. DBN represents the motion of observed
agents in an environment and includes dependencies between involved random variables as
time evolves. It facilitates the representation of different inference levels related to agents’
dynamics and incorporates the variables’ uncertainties when predicting future instances.
Therefore, DBN allows encoding probabilistic dependencies and feedback between random
variables over different time slices, which provides inferences about the system.

One of the main advantages of DBNs is their hierarchical nature; a DBN allows us
to express causal relationships between high-level variables (capturing abstract semantic
information about the world) and low-level distributions (capturing rough sensory information
about the environment). DBNs model hierarchical relationships between different variables
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Fig. 2.1 General structure of Dynamic Bayesian Network.

with their respective evolution through time. At each time instant (DBN’s slice), causal
relationships between variables are encoded through inter-slice links. On the other hand,
causal relationships between variables in subsequent time instances are encoded through
temporal links.

Fig.2.1 shows a DBN representation that includes three hierarchical variable levels at each
time slice. In this work, the lowest level of inference corresponds to the agent’s observation
measurements (Zk). The medium inference level (X̃k) represents states that capture the
agent’s continuous information. The top level of the hierarchy (Sk) corresponds to the
super-states, which consist of the agent’s dynamic that can be considered as a set of discrete
sub-tasks performed one after the other. Each sub-task is described as a linear model that
defines the agent’s expected dynamics according to their state in the environment.

Each time slice of the proposed representation in Fig.2.1 involves three conditional
dependencies as follows. P(Zk|X̃k) explains the probability of obtaining an observation given
the agent’s state. P(X̃k+1|X̃k) represents the probability of obtaining a future state given its
current one, and P(X̃k|Sk) expresses the probability of having the agent’s state X̃k given the
super-state Sk. The proposed DBN model is a generative model where continuous states are
encoded inside discrete regions. DBN makes spectrum inferences at two levels, discrete and
continuous, through Bayesian Filtering.
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2.3.5 Bayesian Filtering

Bayesian theory is a branch of mathematical probability theory that is able to model the
uncertainty about the world by incorporating prior knowledge and observational evidence.
In Bayesian inference, states and parameters are identified as random variables, which can
be either deterministic or time-varying [32]. The causal and prior knowledge is used to
infer conditional probabilities at hierarchical levels based only on observations. Graphical
models (i.e., DBNs) allow the construction of hierarchical statistical models and illustrate
the Bayesian inference.

Bayesian filtering can be applied based on two assumptions. one is, states (x) are
following a first-order Markov process that can be expressed as P(xk|xk−1), and the other one
is that observations are independent of the state. The filtering process involves extracting
information about a quantity of interest at time k and using observed data up to and including
that time. Accordingly, the purpose of Bayesian filtering is to compute the marginal posterior
distribution of the state xk at each time instant k given the observation measurements up to
the time step k as P(xk|zk) [126]. The fundamental steps of Bayesian filtering are given in
the following steps.

• Initialization. The filtering procedure starts from the prior distribution P(xk).

• Prediction. The predictive posterior of xk, given the dynamic model. can be computed
by the Chapman-Kolmogorov equation as:

P(xk|zk−1) =
∫

P(xk|xk−1)P(xk−1|zk−1)dxk−1, (2.1)

• Update. Given the observation measurement at each time instant (zk) the posterior of
state xk can be updated using the Bayes’ rule as:

P(xk|zk) =
1
Zk

P(zk|xk)p(xk|zk−1), (2.2)

where Zk is the normalization constant given as:

Zk =
∫

P(zk|xk)P(xk|zk−1)dxk. (2.3)

The Kalman Filter (KF) [77] is a specific case of the Bayes filter employed where there is
uncertain information about a dynamic system. KF is a closed-form solution for the Bayesian
filtering model that comprises the prediction and update steps. A KF can be modeled with
state transition probability P(xk|xk−1) and a measurement probability P(zk|xk) using physical
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laws of motion to make inferences of the future beliefs where the dynamic system and
measurements are linear Gaussian. This assumption holds if the model’s noise follows the
multivariate normal distribution. On the other hand, Sequential Monte Carlo methods, in
particular the Particle Filter (PF), reproduce the work of the KF to compute the estimates
based on random and weighted samples (particles) to deal with non-linear and non-Gaussian
environments [108].

A combination of KF and PF can provide a probabilistic switching graphical model to
infer posterior probabilities on discrete and continuous states iteratively. The combined
approach is called Markov Jump Particle Filter (MJPF) [10]. MJPF consists of a PF working
at the discrete level, embedding in each particle a KF at the continuous state level. Conse-
quently, each particle has an attached KF, which depends on the superstate SK . Therefore,
MJPF can be linear/non-linear Gaussian/non-Gaussian.

2.4 Learn Action-Oriented Models

Converging neuroscience and ML approaches suggest decision-making models that efficiently
adapt to the environment by exploiting the probabilistic model of their world [41, 22, 37].
These models encode statistical representations of the states and contingencies in an environ-
ment and agent-environment interactions where decisions are based on prospective evaluation
of potential action outcomes. For instance, probabilistic models can perform perceptual
inference, implement anticipatory control, overcome sensory noise, and generalize prior
knowledge to new circumstances. Despite the advantages of encoding a probabilistic model,
dynamic environments are extremely complex and infeasible to model them. Therefore, it is
essential to equip the decision-making models with action control to enable adaptive behavior
rather than accurately presenting the surrounding. We refer to such models as action-oriented,
which do not need to model their environment [7] exhaustively. By reducing the need for
models to be isomorphic with their environment, an action-oriented approach can increase
the tractability of the model learning process [140, 124, 139, 89]. Learning from experiences
still is a challenge within an action-oriented approach. In the followings, we explore the
learning approaches for adaptive behavior in dynamic environments.

2.4.1 Reinforcement Learning

Reinforcement learning (RL) [138] is one of the ML techniques that study learning from
experience and improve its performance at a specified task. The agent experiences the
environment’s states by performing an action. The action changes the environment’s state.
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Also, the state transitions are evaluated via a reinforcement signal defined as a reward. The
RL environment is generally treated as MDP [12], which can be represented as (S,A,P,R,γ),
where S denotes the state space, A denotes the action space. P(s′|s,a) represents the transition
probability from s to s′ given action a, where s,s ∈ S and a ∈ A. R is the reward function,
and γ ∈ [0,1] is the discount factor. An abstraction of the reward signal is the value function
which represents the benefit of being in a specific state. It can learn the optimal behavior
over time by systematic trial and error. The RL algorithm aims to discover the action policy
that maximizes the long-term reward value by interacting with the environment.

Typically, the learning agent is not explicitly supervised on how to act by an optimal
expert, but it must learn the best action that brings the highest reward value in the trial and
error procedure, the so-called exploration phase. As the learning agent gathers knowledge to
distinguish a good performance from a wrong one, it can exploit the gained knowledge to
make a decision. The challenge of RL is to design the best trade-off between exploration and
exploitation, that is, the capability of an agent to use its knowledge to obtain high rewards
and, by contrast, being capable of exploring new possibilities in such a way as not to remain
stuck in a local optimum.

2.4.2 Imitation Learning

In recent years, the demand for IA capable of mimicking human behavior has grown substan-
tially. In recent years, advances in AS have led to a wide range of potential applications that
require an agent that can make intelligent decisions and perform realistic motor actions in
various situations. Many future directions in AVs rely on the ability of the agent to behave
as an expert would when presented with the same situation. Previous researches show that
employing prior knowledge provided by an expert is more effective and efficient than learning
from scratch [3, 128, 17]. One of the intuitive ways of transferring expert knowledge is
to provide optimal demonstrations for the desired behavior that the learning agent (L) is
required to accomplish [118]. Imitation learning (IL) refers to the occurrence of skills or
behaviors by observing an expert demonstrating a given task. IL is essential to machine
intelligence with inspiration and basis stemming from neuroscience. It has from an early
point been viewed as a critical part of the future of IA [128].

Similar to standard supervised learning, where examples represent pairs of features and
labels, in IL, the examples demonstrate pairs of states and actions where the state represents
the agent’s current situation and the status of a target object if one exists. A typical IL
workflow starts by acquiring sample demonstrations from an expert agent (E), which are
then encoded as state-action pairs. These examples then train a policy (πE) that follows a
certain distribution. A dataset (D) is acquired from the (E)’s actions and implicitly its policy
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to train the learner policy (πL) as:

π
E →D → π

L, (2.4)

IL aims at minimizing the distinction between the expert agent and the learning agent state
distribution in order to build the learner’s policy as follows:

π
L = argmin

q,p
∆(q(s), p(s)), (2.5)

where q(s) is the distribution of the states induced by the experts’ policy and p(s) is the
distribution of states induced by the learner, and ∆(q, p) measure the distinction between q
and p.

However, more than learning a direct mapping between state and action is needed
to achieve the required behavior. This can happen due to several issues, such as errors
in acquiring the demonstrations or insufficient demonstrations [71]. Moreover, the task
performed by the learner may vary slightly from the demonstrated task due to changes in
the environment, obstacles, or targets. Therefore, IL frequently involves another step that
requires the learner to perform the learned action and modify the learned policy according
to its task performance. This self-improvement can be achieved concerning a quantifiable
reward or learned from examples. Many of these approaches fall under the broad umbrella of
RL.

Moreover, a learner could very well arrive at a suitable solution that achieves a particular
quantifiable goal but differs significantly from how an expert would approach the task. This
is necessary for many AS domains that the learner’s performance is only as good as an expert
observer’s perception of it. Therefore, teaching a learner the desired behavior from a set of
collected instances is favorable. However, more than the imitation of the expert’s motion is
often required due to variations in the task, such as the positions of objects or inadequate
demonstrations. Therefore, IL techniques need to learn a policy from the demonstrations that
can generalize to unseen scenarios. As such, the agent learns to perform the task rather than
deterministically repeating the expert’s behavior.

2.4.3 Active Inference

In the recent past, a paradigm shift in computational and CS toward the Bayesian brain
approach is considered, which conceptualizes the brain as a prediction and inference machine,
actively trying to predict, experiment with, and understand its surroundings [112, 132]. Active
inference (AIn) is a unified mathematical framework for modeling perception, learning, and
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decision making [36, 60]. AIn considers the interactions between these processes as an
interdependent inference. IA infers the probabilities of external states and the environmental
consequences by involving the prior beliefs with the sensorial observation. The inferences
underlying decision-making is active because the agent infers the actions most likely to
generate preferred sensory input. IAs also infer the actions most likely to reduce uncertainty
and facilitate learning. This leads the decision-making procedure to the expected actions
that optimize a trade-off between maximizing reward and information gain. Hence, AIn
predicts match behavior and perception with empirical observations [134, 135]. Therefore,
AIn consists of three crucial components:

• A generative model of the agent’s environment,

Optimal predictions are based on sensorial evidence that is evaluated concerning a GM
of the observed outcomes. Hence, the behavior can be framed in terms of presenting
the predictions prescribed by prior preferences [55].

• Fit the model to sampled observations to reduce surprise,

The GM contains beliefs about future states and policies, where the most likely policies
lead to preferred outcomes. The AIn framework assumes that perception and learning
can be understood through computing a quantity known as VFE [68] to minimize the
divergence between the prior and posterior. The previous beliefs refinement considers
an explicit representation of past and future states conditioned on the learning policies
that lead to updating the Bayesian beliefs and the context of learning. Therefore, beliefs
inform the agent about the future (i.e., prediction) and the past (i.e., prior knowledge).

• Select an action that minimizes uncertainty,

Action selection, planning, and decision-making can be understood as minimizing
EFE, which quantifies the VFE of various actions based on expected future outcomes.
Minimizing FE concerning expectations of hidden states and parameters ensures that
they encode posterior beliefs, given observed outcomes [54]. This enables action to
realize preferred outcomes based on the assumption that both action and perception try
to maximize the GM’s evidence or likelihood, as FE scored.

2.4.4 Incremental Learning

One of the significant challenges of learning approaches in a dynamic world is learning new
situations and expanding the agent’s knowledge incrementally, where new situations are
observed over time. Therefore, algorithms that can process and understand new concepts
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from such data are required. This leads to the concept of incremental learning, allowing the
agent to acquire new knowledge while preserving the previous ones [147, 31].

Incremental learning is an essential capability for brain-like intelligence as biological
systems are able to learn through their lifetimes and accumulate knowledge over time con-
tinuously. It is an ML paradigm where the objectives of ML research are transforming
prior knowledge to the currently received data to facilitate learning from new observations,
accumulating experience over time to support decision-making, and achieving global gener-
alization through learning to accomplish tasks. During the incremental learning situation,
raw data from the environment with which the IA interacts become incrementally available
over an indefinitely long learning lifetime. Therefore, the learning process fundamentally
differs from the traditional static learning process, where representative data distribution
is available during training to develop the decision boundaries. IA should be equipped to
automatically modify its knowledge to learn new data distributions. Therefore the learning
approach should meet the following criteria as an incremental learning approach.

• The IA is able to learn, modify and update its beliefs,

• The learning model preserve previously acquired knowledge,

• The model is generative; it is able to generate new data or merge the existing ones as
needed,

• The GM is dynamic; it adapts to the changing environment.

2.4.5 General Comparison

AD requires the resolution of perception and motion planning issues in the presence of
dynamic objects interacting with the environment. Some learning approaches are introduced
and discussed in the previous sections, which are compared in the following.

The complex interactions between multiple agents are significant challenges due to the
difficulty of predicting their future motions. Most model-based AD approaches necessitate
manually designing the driving policy model [109, 65] or they are equipped with safety
assessments to assist the human driver [110, 142]. While designing a decision and planning
system for AVs is complex, an alternative is to learn the driving policy from an expert agent
using IL. The existing works of the IL approach for driving can handle simple driving tasks
such as lane following [107, 33]. However, if the agent is dealing with a new environment or
a more complicated task (such as line-changing), it is required that the human driver has to
take control, or the system fails ultimately [20, 127]. More particular, a typical IL procedure
is direct learning, where the main goal is to learn a mapping from states to actions that
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Table 2.2 Comparison with existing methods from literature.

functionalities [20] [33] [43] [61] [82] [107] [110] [127] [130] [141] [142]
Indirect learning ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✓

No expert intervention ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✓ ✓ ✗ ✗
Self-improvement ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Adapt to dynamic environment/behavior ✓ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Incremental learning ✓ ✗ ✓ ✗ ✓ ✗ ✗ ✗ ✗ ✗ ✓

Calculate future EFE/reward ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

mimic the demonstrator explicitly [141, 43]. Direct learning methods are categorized into
classification methods when the learner’s actions can be classified into discrete classes [87, 2],
and regression methods which are used to learn actions in a continuous space [122]. Direct
learning often is not adequate to reproduce proper behavior due to issues such as insufficient
demonstrations and performing a different task due to environmental changes. Besides,
indirect learning can complement direct approaches by refining the policies based on sub-
optimal expert demonstrations [61].

The critical drawbacks of IL are that the policy never exceeds the suboptimal expert
performance and that the learning policy is vulnerable to distributional shift [104]. Therefore,
IL frequently involves another step that requires the learning agent refinement of the estimated
policy based on its current situation. This self-improvement can be achieved by a quantifiable
reward or learned from instances. Many of these approaches come under the RL methods.
RL allows encoding desired behavior — such as reaching the target and avoiding collisions —
and relies not only on perfect expert demonstrations. In addition, RL maximizes the overall
expected return on an entire trajectory, while IL treats every observation independently [82],
which conceptually makes RL superior to IL. RL does not have prior knowledge from an
expert. Therefore the learning agent has no clue to realize desired behaviors in sparse-
reward settings [130]. Even when RL succeeds in reward maximization, the policy does not
necessarily achieve behaviors that the reward designer has expected. In addition, learning
through trial and error requires reward functions designed specifically for each task. Defining
rewards for such problems is complex and still unknown in many cases.

Behavior learning, such as IL and RL, would be complex without representation or model
learning from the environment. To overcome the mentioned limitations, AS employs a GM
of the world and computes the mathematical amount of FE to explain perception, action, and
model learning in a Bayesian probabilistic way [53, 58], that can handle behavior learning
and model learning at the same time in a dynamic environment. Table. 2.2 demonstrates a
comparison of the main functionalities of autonomous driving.





Chapter 3

Incremental Learning using Imitation
Learning

3.1 Introduction

IL has been recognized as a promising technique to teach autonomous agents advanced skills.
It is based on the idea that IA learns new behaviors by observing and imitating other agents’
movements. Observation, representation, and reproduction are three crucial steps in the
imitation procedures. The standard programming approaches by expert demonstrations have
usually been focused on reproducing the demonstrated behavior [17]. We aim to enable the
IA to interact and imitate, where imitation is not presented only as the implicit repeating
but as a process of inference intention where the agent learns from its observations. This
imitative behavior is a significant prerequisite for having IA capable of advanced interaction
with the world and adapting and learning from it. Considering SA and CS hypotheses,
corroborated by several empirical findings, postulate that the understanding of the external
world is achieved by employing the agent’s internal model [121].

The imitator agent must be able to describe an action’s intention from its observation.
Recognizing the intention of an acting agent could be computationally interpreted as a
matching problem between the expectation and the observation. [39] describes descriptive
and generative approaches for classifying an observation. In the former, low-level features are
extracted from the learning agent’s observation and then differentiated from the pre-existing
knowledge to generate the corresponding action to the current representation. In the latter,
generative approaches using a set of latent variables encode the causes capable of producing
the observed data. Billard et al., in [17], define two typologies of skill representation:
trajectory-level encoding, which is represented as a non-linear mapping between sensory and
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motor data, and symbolic-level encoding where tasks are described symbolically using ML
methods. ML techniques facilitate representing hierarchies of behaviors and sequences of
states.

In this section, we propose an adaptive PGM which copes with the core issues of
IL (i.e., observation, representation, and reproduction of skills). The presented model is
based on learning a Generalized Dynamic Bayesian Network (GDBN), which is able to
characterize structured behaviors at different levels of abstraction hierarchically, and also
grows by learning new skills (i.e., new observations) or modifying the prior representation
incrementally.

3.2 Model I - Single Dynamic Agent

Motivated by the previous discussion, we propose a framework for autonomous tracking in
a continuous environment that combines IL with RL. IL is a pre-training step to encode an
expert demonstration in a GDBN that describes desired behaviors. This work employs the
discrete information of a probabilistic expert model enabling the learning agent to improve
its actions by minimizing the imitation cost that allows for avoiding abnormal states in the
future. The proposed approach includes two main phases: offline and online learning. In the
former, we learn a reference model encoding the dynamical behaviors of an expert agent (E)
moving to a fixed goal G. In the latter, an incremental IL model is learned where a learning
agent (L) attempts to learn sub-optimal behavior by observing E demonstrations and updates
its knowledge while transiting in a continuous environment to reach G.

3.2.1 Learn a Generalized Dynamic Bayesian Network

The offline learning process aims to learn a GDBN based on E behavior which can be
used as a reference model by L. The proposed GDBN represents the E’s dynamics in the
environment and models hierarchical relationships between different variables with their
respective evolution through time graphically.

The GDBN model consists of three levels:

• Bottom level. It depicts the E’s observations represented by ZE
k .

• Middle level. It encodes the continuous information where the generalized states (GSs)
are expressed as:

X̃ = {X̃k}k=1,...,k, (3.1)

where X̃k = [Xk, Ẋk]
⊺, Ẋk ∼ Xk−Xk−1

∆k and ∆k is the sampling time.
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• Top level. It represents the E’s discrete states (SE
k ) that explains the dynamical transition

behaviors reflected into a discrete semantic space.
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Fig. 3.1 Learning DBN using expert demonstrations. Inter-slice links are depicted in orange,
and temporal links are colored in yellow.

As the graphical representation depicted in Fig. 3.1 shows, Vertical arrows describe causalities
between continuous and discrete inference and observed measurements. Horizontal arrows
represent temporal causalities between hidden variables.

We assume the observed signalZk is a linear combination of the latent GS X̃k that
represents the direct cause of the observation and a multivariate Gaussian noise. The
observation model that maps X̃K

k to ZK
k is defined as:

ZE
k = HX̃E

k + vk, (3.2)

where H(.) is the matrix that maps hidden generalized state to the observed data and vk is the
measurement noise which is assumed to be zero mean Gaussian noise with covariance Rk

such that vk ∼N (0,R).
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We assume that the dynamics of GSs evolve according to a static equilibrium assumption
described as:

X̃E
k = AX̃E

k−1 +wk, (3.3)

where A ∈ Rd×d is the dynamic matrix. AX̃k takes the state-space information from X̃k and
makes null its time derivatives. The variable wk is a zero-mean Gaussian distribution repre-
senting the process noise f the dynamical modeling. This implies a null acceleration, and the
corresponding dynamic model follows static equilibrium called Null Force Filter (NFF) [74].
An NFF can be interpreted as an unmotivated KF. NFF uses the innovations obtained by
observing a sequence ZE

k to estimate the next state that describes the agent’s motion in the
GS space. The innovations can be seen as generalized errors (GEs) which are the mismatches
between observations and predictions as:

ε̃k = H−1(ZE
k −HX̃E

k
)
. (3.4)

The GEs that capture the real dynamics of the signal are clustered in an unsupervised manner
using the Growing Neural Gas with utility measurement (GNG-U) [73]. GNG-U outputs
a set SE of discrete variables (i.e., clusters) representing the discrete level of the GDBN
structure and forming the so-called Vocabulary such that:

SE = {s1,s2, . . . ,sM}, (3.5)

Each discrete variable sm ∈ SE is assumed to follow a multivariate Gaussian distribution,
such that sm ∼N (ξ̃m, Σ̃m), where ξ̃m = [ξm, ξ̇m]

⊺ is the GS centroid of the m-th cluster and
Σm is its covariance matrix. The discrete level of the proposed GDBN represents the activated
cluster (sk ∈ SE) at each time instant k. This work assumes that L employs the discrete
information in SE as flash-back memory (D) that guides the RL procedure during the online
learning phase. Moreover, The probabilistic law that regulates transition among different local
forces captured by different clusters can be estimated in different ways (e.g., frequentist or
geometrical) and encoded in a Transition Matrix (Π) that estimates the transition probabilities
P(sk|sk−1).

Π =


P(s1|s1), P(s1|s2), . . . , P(s1|sM)

P(s2|s1), P(s2|s2), . . . , P(s2|sM)
...

... . . . ...
P(sM|s1), P(sM|s2), . . . , P(sM|sM)

 (3.6)
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3.2.2 Imitation Policy

In the online learning phase, we propose an incremental IL model that allows L to learn how
to improve the decision-making procedure to reach G by minimizing imitation loss. The
learned reference model from E can be employed to predict the expectation in each state
and also provide the learning policies to teach the best set of actions (A ) that L requires to
accomplish its task. Therefore, D leads the active states during new experiences that describe
how the agent can act in the environment to change sensory signals in order to match internal
predictions of learned GDBN and thus to imitate efficiently by decreasing the abnormalities.

This work suggests training L through the inclusion of D representing E’s behaviors,
which postulate that L optimizes its movements based on D’s predictions over time. RL can
formalize the underlying decision-making as an MDP, a model of a discrete-time process
wherein an agent’s actions may stochastically influence its environment. The proposed
approach endows L with the capability of estimating the imitation cost, whereby minimizing
the imitation cost (i.e., maximizing rewards in RL) ensures an equilibrium between L and its
surrounding. Accordingly, let define L’s state and action at a given time instant k as sL

k , aL
k ,

respectively.
We hypothesize that L uses a probabilistic discrete representation SE that encodes relevant

information about the observed E’s behaviors (i.e., D) instead of exploiting explicitly from E,
which rejects the idea of a buffer that replays previously observed E’s states X̃E . The main
focus of the online learning phase lies on modeling a dynamic multiple reward function by
considering the divergence between L and D at each time instant k to regulate the L’s actions
in the incremental learning stage.

Two policies are considered, the action-based and the state-based, to evaluate L’s perfor-
mance using the activated cluster (s̊) from D, where s̊ is the closest E’s cluster to the current
L’s state (sL

k ) calculated by Euclidean distance.
Action-based policy (ρa), is employed to minimize the divergence between the performed

action by L and the mean action of the activated cluster s̊ from the expert demonstrations,
such that:

ρa,k = dM

(
ga(s̊k−1), aL

k−1
)
, (3.7)

where dM (X,x) is the Mahalanobis distance [93] between a distribution X and a point x, ga(·)
is a function that extracts the action-distribution from a GS-distribution, such that ga(s̊k−1)∼
N (ξ̃k−1, ˜Σa

k−1) and Σa
k−1 is the action’s covariance information. s̊k−1 ∼N (ξ̃k−1, ˜Σa

k−1),
which can be obtained according to:

s̊k−1 = argmin
sm

∥sk−1− ξ̃m∥2. (3.8)
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State-based policy (ρs), is employed to minimize the distinction between the current L’s
state sL

k , which is reached by the last performed action aL
k−1, and the predicted state from

the activated cluster after performing the expected action (s̊k|k−1). The discrete probability
P(sk|sk−1) from D is employed to estimate s̊k|k−1. The term s̊k−1, required in P(s̊k|s̊k−1), is
calculated based on (3.8). The state-based policy can be written as:

ρs,k = dM

(
gs(s̊k|k−1), sL

k
)
, (3.9)

where gs(·) is a function that extracts the state-distribution from a GS-distribution, such
that gs(s̊)∼N (ξ̃k, Σ̃s

k). Σs
k is the state’s covariance information. The policies indicate the

imitation loss regarding aL and sL at each time instant k in a continuous range [0,1] that
describes the loss value. Global imitation loss (Gk) takes into account the mean value of both
policies as:

Gk = E(ρa,k,ρs,k). (3.10)

Hence, minimizing the global imitation loss cause maximizing the learning rate and gaining
a high reward.

3.2.3 Action Selection and Update the Model

The learning model uses ε-greedy ∈ [0,1] as a control input to shorten exploratory behavior
over the training episodes. In terms of a high amount of ε , the learning agent motivates
to select a random action to explore new states that can be exploited in the future. In the
exploiting case, the agent selects the associated action to the maximum value. Thus, the
action selection process depends on the ε value whether to explore or exploit, and it is defined
as:

ak ∼


argmax

ak

Q(A ,sk), if ε < θ (exploitation),

random from A , if ε ≥ θ (exploration),
(3.11)

where A = {a1,a2, . . . ,a8} is a set of eight cardinal and ordinal directions1 and θ is a defined
threshold.

L records the experienced states (s+k ) along with the performed actions (ak ∈ A ) in a
incremental function Q(s,a) and the new states are saved in set SQ that grows incrementally

1The 8 directions are North, South, East, West, North-West, North-East, South-East, South-West.
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as experiences are observed over time:

Q =


P(aL

1 |sL
1 ) . . . P(aL

1 |s+) . . .

P(aL
2 |sL

1 ) . . . P(aL
2 |s+) . . .

... . . . ...
...

P(aL
N|sL

1 ) . . .P(a
L
N|s+) . . .

 , (3.12)

where ∑
N=8
n=1 P(aL

n |s+m) = 1 such that s+m are the new explored states. In order to weigh up the
trained model than D, L clusters all the recorded pairs [s+k ,ak] by employing GNG. The latter
outputs a set of clusters representing the new states (Ŝ) and the corresponding mean actions
(ȧ), which are added to the updated Q-table (Q∗) defined as:

Q∗ =


P(ȧ1|Ŝ1) (ȧ1|Ŝ2) . . . P(ȧ1|ŜM)

P(ȧ2|Ŝ1) (ȧ2|Ŝ2) . . . P(ȧ2|ŜM)
...

... . . . ...
P(ȧN |Ŝ1) (ȧN |Ŝ2) . . .P(ȧN |ŜM)

 . (3.13)

L adapts the action selection procedure by updating the Q-table defined in (3.12) based on
the imitation cost policies at each time instant k. Since the provided Q is a probabilistic table,
updating the Q value can be written in a probabilistic form as follows:

Q = (1 − η)P(ak−1|sk−1) + η

[
(1 − Gk) + γ max

ak
P(ak|sk)

]
, (3.14)

where η is the learning rate that controls how quickly the learning agent adopts to the
explorations imposed by the environment, (1−Gk) is the normalized reward measurement
with a range in [0,1], and γ is a discount factor.

3.3 Simulation and Performance Evaluation - Model I

3.3.1 Experimental Setup

The proposed framework is validated using a simulated dataset consisting of sensorial
information collected by E where it attempts to reach G from different starting points. E
moves based on the velocity field model proposed in [29], such that:

G⃗(r) =
(
β −λe

−r2
ψ

)
r̂, (3.15)
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where r is the distance to G, λ ≤ β and r̂ is a unit vector pointing at G. The E positional in-
formation and the corresponding velocities are obtained from the odometry module. Sensory
data representing positional information from these experiments are used to learn the expert
trajectories encoded in D that L uses to imitate E.

Fixed goal

Expert trajectories
Start points

Fig. 3.2 Examples of teacher’s actions.

3.3.2 Offline Learning Phase

This section shows the process of learning the flash-back memory (D) from E’s behavior.
Initially, the learned DBN from D is modeled based on the observed expert’s actions (see
Fig. 3.2). The NFF is used as an initial filter employed on the collocated data during tracking
G. NFF outputs the GEs defined in (3.4), which can be clustered using GNG that outputs a
set of discrete clusters representing the discrete regions of the trajectories generated by E.
Fig. 3.3-(a)-(b)-(c)-(d) illustrate the clusters and the corresponding transition matrix, which
L looks at them as a sub-optimal reference information.

3.3.3 Online Learning Phase

During the online learning phase, L modifies its actions based on the learned clusters during
the offline phase. Q-table records the L’s observations and the corresponding actions as
defined in (3.12). The experiments are done in a simulated environment. For having a
fair comparative evaluation, all the experiments are considered with fixed steps. We run
each algorithm over 4k episodes by different start positions to learn how to track G through
learning the imitation policies. All experiments used the same Stop condition, which is met
when:



3.3 Simulation and Performance Evaluation - Model I 31

(a) (b)

(c) (d)

Fig. 3.3 Learning reference model (flash-back memory). a) clustering of GEs, b) mean
velocity of each cluster, c) clusters’ relationship, and d) generated transition matrix.

• a minimum distance to the target is accomplished (success),

• a maximum navigation time in the environment is reached (lost),

• the agent goes out of boundary (outside).

We evaluate the performance of the proposed method and compare it with three learning algo-
rithms, namely, the general cumulative reward-based Q-learning [143], inverse reinforcement
learning (IRL) [101], and self-learning (SL) in the RL context (distance-based evaluation).

3.3.4 Performance Evaluation

The action selection procedure has a big impact on the L’s effort to reach the targeted G. A
good policy requires fewer actions and, in parallel, less time to finish the mission. Fig. 3.4
shows the number of actions taken by L for each episode using different methods. It describes
that the presented online incremental IL model (OIL) makes fewer actions than other methods.
This can be explained by the evaluation of L’s movement using D can improve the actions
that lead the agent to the desired next state. L adopting the proposed method has higher
successful trajectories than SL, Q-learning, and IRL, as depicted in Fig. 3.5. Our approach
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Fig. 3.4 The number of performed actions by the agent during each episode.
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Fig. 3.5 The success rate to reach the target G in each episode.

uses a threshold ρ to initialize learning of new explored sL in Q-table (see (3.12)). Since
ρ has a great impact on the Q-function’s complexity, we train L with different ρ values,
depending on the distance between the current state sL

t and the set of recorded states (SQ) in
Q-table. By considering the success rate and the required execution time obtained by each ρ

value, we select the suitable value as shown in Table 3.1. ρ = 1 and ρ = 3 have almost the
same success rate but the required time by ρ = 3 is more optimal than ρ = 1.

Table 3.1 Training the learning model with different ρ values. The selected threshold is
ρ = 3.

ρ 1 1.5 2 2.5 3 3.5 4 4.5 5
success (%) 96.74 95.99 96.11 96.04 96.52 94.87 93.01 91.56 88.93

time (s) 110.49 93.71 102.02 99.89 90.24 97.83 100.04 109.33 114.26

Moreover, Fig. 3.6 demonstrates how modifying the action selection procedure can reduce
the exploration and minimize the imitation cost resulting in a high learning rate during the
training phase.
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Fig. 3.6 Presenting the exploration and learning rates after each training quarter and their
impact on the imitation cost.

3.3.5 Learning Cost Evaluation

Two main factors affect G (see (3.10)), the action difference at time k (see (3.7)) and the state
divergence after performing ak by L (see (3.9)). Fig. 4.29 illustrates the imitation loss in both
policies ρa where L is under control of action selection at each time instant k, and policy ρs

which by improving aL
k leads to minimizing the divergence between prediction and evidence.

Further, Fig. 4.29 shows that G drops down capably in less than 2k training episodes, and
after 3k episodes, its value tends to stable below 0.1, reaching about 0.039. Therefore, L
learns to maximize the likelihood with D. Fig. 3.8-(a)-(b) presents the performance of the
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Fig. 3.7 Imitation loss measurements individually and global.

proposed method during training and testing, respectively, in terms of success, lost, and going
outside (explained in 3.3.3). Also, Fig. 3.8-(a)-(b) provides a comparison with other learning
methods. It is demonstrated that the proposed method (OIL) outperforms others in both the
training and testing stages, which is attributed to the effectiveness of motion prediction while
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dealing with abnormalities that improve the success rate. Additionally, during testing, results
showed that by 4k training episodes, L could move in a continuous environment to effectively
reach G whereas other methods still have a high failure rate.

success

lost

outside

(a)

success

lost

outside

(b)

Fig. 3.8 Results after 4k training episodes. a) Training results, and b) Testing results. In both
stages, OIL has higher success than other methods.

As discussed in subsection 3.2.3, L clusters all observed states and the corresponding
performed actions. The recorded pairs are clustered to calculate the mean action value of the
corresponding clusters for having comparable data with D and avoid looking in too many
states in Q-table. Fig. 3.9-(a)-(b) depict the Q∗ clusters (see (3.13)) and the corresponding
updated transition matrix.

Fixed goal
Learner positions
Learner actions

(a) (b)

Fig. 3.9 Discrete state-action representation from global imitation policy G (a), and the novel
generated transition matrix (b).

Comparing sub-figures (Fig. 3.3-(d) and Fig. 3.9-(b)) show that L has an expanded Π

than D after exploring and learning new states, allowing L to predict better performance and
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select desired actions. Under probabilistic inference, such an incremental learning process
endows L with the capability of avoiding abnormal states. Meanwhile, to evaluate the effect
of each imitation strategy (ρa and ρs), L is trained with each policy individually. Fig. 3.10-
(a)-(b) demonstrate the learned clusters through each policy. Comparing Fig. 3.9-(a) with
Fig. 3.10-(a)-(b) shows how applying global policy (G ) generates the most efficient training.

Fixed goal
Learner positions
Learner actions

(a)

Fixed goal
Learner positions
Learner actions

(b)

Fig. 3.10 Discrete state-action representation from the action-based policy ρa (a), and the
state-based policy ρs (b).

In the testing stage, three Q∗-tables obtained from G , ρa and ρs are employed with
ε-greedy = 0 to generate 300 trajectories (from new start positions rather than training stage)
that are compared with the E’s behavior. We use two distance measurements to compare
trajectories from testing the provided Q∗-tables with the E’s behaviors: Spatio-Temporal
Euclidean Distance (STED) [100] and Symmetrized Segment-Path Distance (SSPD) [16].
STED uses temporal information by comparing trajectories point to point. SSPD is a shape-
based distance that compares trajectories as a whole. Table 3.2 shows the mean value
of distance measurements between test trajectories (over 300 starting points) of different
imitation policies and E’s behaviors. Furthermore, Table 3.2 presents the quantitative results
from testing the trained models by G , ρa and ρs in terms of success, lost, and going outside
(explained in 3.3.3).

Table 3.2 Testing results after 4k training episodes.

imitation policy success (%) lost (%) outside (%) STED SSPD
trained by G 97.22 1.05 1.73 0.551 0.164
trained by ρa 90.76 4.23 5.01 1.105 0.362
trained by ρs 89.01 4.96 6.03 1.359 0.411
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3.4 Model II - Multi-Agent Dynamic Interaction

The integration of both modalities, RL and IL, enable the learning of complex skills from
raw sensory observation[96]. This section proposes a framework integrating RL and IL
for tracking a dynamic target. Moreover, it allows adapting to perturbation in a dynamic
environment. IL is used as a pre-training step to encode the expert demonstrations in a
coupled GDBN (C-GDBN) for a specific task (i.e., reaching a dynamic target). The C-GDBN
is a probabilistic graphical model explaining the dynamic interactions among multiple
environmental agents. Accordingly, the sub-optimal demonstrations can be explained by a
set of configurations between the expert agent (E) and a dynamic target (T). Therefore, the
model is able to explain the interaction between IA and its surroundings.

3.4.1 Learn a Coupled Generalized Dynamic Bayesian Network

This section presents a dynamic interaction model based on the E behavior during an offline
learning phase. The aim of the offline learning phase is to learn a reference model (RM)
that the learning agent (L) can use for initializing the online learning model. Initialization is
conducted by mapping the reference C-GDBN structure onto the L moving reference system
as a reference model.

The RM consists of a C- DBN [9] representing the interaction of two dynamic entities,
E and T. The model is described by means of a set of observation and state variables that
describe the state of the two interacting agents at a given time instant k. It is assumed that the
moving agents’ (E and T) observations are represented by variables ZE

k and ZT
k , respectively

( 1⃝ in Fig. 3.11).
At a higher level, hidden continuous GSs [56] can be formed describing the agents’

instantaneous dynamics up to a chosen n-th order temporal derivative. Thus, a joint GS (X̃k)
( 2⃝ in Fig. 3.11) incorporating the dynamics of multiple agents (i.e., E and T) at each time
instant k can be defined as follows:

X̃k = [X̃E
k X̃T

k ]
⊺
, (3.16)

where X̃E
k and X̃T

k denote the GSs of E and T, respectively. Here, a GS related to agent i
(i.e., X̃i

k) is defined as a vector composed of the agent’s state and its first-order temporal
derivative, such that X̃i

k = [x ẋ]⊺ where x ∈ Rd , ẋ ∈ Rd , i ∈ {E,T} and d stands for the
dimensionality of the state vector. Each observed sensor variable Zi

k is assumed to be related
to the corresponding agent’s hidden state variable X̃i

k by a linear relationship according to
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Fig. 3.11 An overview of learning a Dynamic Interaction Model. The arrows in c-GDBN
represent the conditional probabilities between involved variables. Vertical arrows facilitated
the causalities description between continuous and discrete levels of inference and observed
measurements. Horizontal arrows explain temporal causalities between hidden variables. In
particular, the orange arrow encodes the interaction of couples of agents, and the blue arrows
represent the influence at a continuous level.

the following observation model:

Zi
k = HX̃i

k + vk, (3.17)

where H = [Id 0d,d] is the observation matrix that maps hidden GSs (X̃i
k) to measurements

(Zi
k) and vk is the measurement noise which is assumed to be zero-mean Gaussian with

covariance R, such that, vk ∼N (0,R).
To learn the dynamic interaction models, we first assumed that there is no external

force influencing the evolution of GSs of the observed agents under the static equilibrium
assumption described by the following model:

X̃i
k = AX̃i

k−1 +wk, (3.18)

where A ∈ Rd×d is the dynamic matrix and wk is the process noise which is assumed to be a
zero-mean Gaussian with covariance Q, such that wk ∼N (0,Q).
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This implies a null acceleration, and the learning approach consists of observing devia-
tions from such hypothesized equilibrium through an active approach (i.e., NFF). An NFF
can be interpreted as a generalized KF, which uses the innovations obtained by observing an
input data sequence Zi

k to estimate a new expert demonstration that describes interactions
between observed agents in the GS space.

The innovations can be seen as mismatches between observations (obtained by observing
interaction) and predictions (based on the assumption that the observations should be quasi-
static) defined as follows:

υ̇ = H−1(Zi
k−HX̃i

k
)
, (3.19)

the couples (X̃i, υ̇) obtained by NFF along the interaction time series are defined as GEs.
Those GEs can be clustered using an unsupervised method. We employ the Growing Neural
Gas with utility measurement (GNG-U) [73], which outputs a set Si of (switching) discrete
variables (i.e., clusters) representing the discrete level of the C-GDBN ( 5⃝ in Fig. 3.11). Each
cluster describes in which region of the GS space, with which difference in the dynamic
motion (w.r.t the hypothesized absence of external forces), and at what time a specific
interaction has occurred.

The joint vocabularies of switching variables from agents’ GEs, E and T, describe a
specific type of interaction among the agents at multiple levels (i.e., discrete and continuous
levels). Each discrete state represents a region where quasi-linear models are valid to present
the interactive dynamical system over time. Vocabularies are defined as:

Si = {si
1,s

i
2, . . . ,s

i
Li
}, (3.20)

where Li is the total number of clusters associated with agent i and si
l ∈ Si is a specific cluster

describing agent’s motion.
Since each superstate si is supposed to follow a multivariate Gaussian distribution, it

can be represented by its sufficient statistics, specifically, the covariance matrix Σ̃si
k

and the

generalized mean values µ̃
si
= [µsi

Pos µsi

V ], where µsi

Pos and µsi

V represent the mean value of
the states (on position) and the mean value of the corresponding derivatives (on velocity),
respectively.

In a time instant k, each agent i is represented by an active superstate si
k ∈ Si. Joint active

superstates from different agents occurring simultaneously form an interaction configuration
defined as Dk = [sE

k ,s
T
k ]

⊺. Consequently, an additional vocabulary of dictionary configurations
can be defined and included in the C-GDBN at a higher hierarchical level, such that:

D = {D1,D2, · · · ,DM}, (3.21)
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where M is the total number of configurations and Dm ∈ D encodes a given identified
configuration composed of the position and velocity features of both agents and defined as:

Dm =
[
(µPos,µV )

E,(µPos,µV )
T]. (3.22)

The inter-slice links at multiple levels among consecutive time instants are also learned
to define the DBN completely. It has to be noted that the learned switching variables are
associated with corresponding dynamic models at the GS continuous level. As the NFF
clusters similar innovations into compact regions of the state space, in each region, it is
possible to estimate the interaction force for a given agent by modifying the dynamic model
of (3.17). Regarding linearity and Gaussianity of the NFF dynamic model, the dynamic
model of each agent inside a cluster si is estimated based on the quasi-constant velocity that
depends on the state and derivative mean values of GEs clustered in each si, such that:

X̃i
k = AX̃i

k−1 +Bµ
si

k
V +wk, (3.23)

where B ∈ Rd×d is a control model matrix that maps the agent’s velocity estimation into the

following states. The variable µ
si

k
V is a control vector encoding the agent’s motion when it is

found in a region si
k that can be formulated as:

µ
si

k
V = [ẋsi

k
, ẏsi

k
], (3.24)

where ẋsi
k

and ẏsi
k

are the velocity components of agent i associated with si
k. The transition

model defined in (3.23) corresponds to cluster-dependent motivated dynamics whose effects

are encoded in µ
si

k
V and switched according to the activated configuration. The probabilistic

law that regulates switching among different local forces captured by different interaction
configurations can be estimated in different ways (e.g., frequentist or geometrical) and
encoded in a Transition Matrix (Π). Learning the Π involves estimating the transition
probabilities P(Dk+1|Dk) of switching from a current configuration (Dk) to another one
(Dk+1) and it is defined as:

Π =


P(D1|D1), P(D1|D2), . . . , P(D1|DM)

P(D2|D1), P(D2|D2), . . . , P(D2|DM)
...

... . . . ...
P(DM|D1), P(DM|D2), . . . , P(DM|DM)

 , (3.25)
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where ∑
M
m P(Dp|Dm) = 1 such that p,m ∈M.

3.4.2 Initialize the Learning Model

The learning model can be interpreted as an RM transformed in such a way that allows L
directly uses its own observations and generate state series describing its relative state with
respect to another interacting dynamic agent (i.e., T). It provides L with the capability to
imitate the expert motions by generating transformed sequences from the RM. L considers
C-GDBN nodes to initialize the learning model, which can be used to predict interaction
states under the perspective of a learning agent. Accordingly, L exploits the generative
C-GDBN in terms of pure IL to initialize a generalized DBN considering the interactive
behavior of the learning agent with its surroundings (see Fig. 3.12).
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Fig. 3.12 Initializing the the learning model model (right side) by exploiting the reference
model (left side). The reference model shows the C-GDBN from Fig. reffig1-system. The
learning model’s arrows represent conditional probabilities such as, vertical arrows introduce
causalities between both (discrete and continuous) levels of influence and observed measure-
ments. Horizontal arrows explain temporal causalities between hidden variables.

The continuous level (CL) of RM is employed to provide the generalized relative distance
between E and T, which consists of the relative distance and the velocity. The generalized
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relative distance can be seen as the difference of joint GSs describing the interaction at the
continuous level of the two agents in a specific configuration (Dm) and defined as:

X̃k =
[
X̃E

k − X̃T
k
]
=
[
(xT

k − xE
k ),(ẋ

T
k − ẋE

k )
]
. (3.26)

The relative distance vector is highlighted as the difference in absolute coordinates and
velocities of the two agents, that in the online learning phase, it will be calculated as the
relative distance between L and T.

The discrete level (DL) of the RM is employed to represent the learned set of configura-
tions Dm ∈D. During the online learning phase, L is assumed to take the role of E. Therefore,
all clusters related to E should correspond to the clusters describing L states in a certain
configuration.

By providing a biunivocal mapping between clusters of E and L, the transition prob-
abilities composing the Π model can characterize the temporal dependencies of discrete
series of interactions in the learning model among L and T for the experiences to be imitated.
Thus, the transition model can be directly mapped onto the online learning model from the
corresponding Π of the RM (i.e., ΠL = ΠE). Moreover, the observation (Zk) that represent
the generalized relative distance between L and T can be mapped onto the RM according to:

Zk =
[
ZE

k −ZT
k
]

(3.27)

To this end, a configuration Dm ∈ D at the DL of the learning model is represented by a joint
superstate of each agent at time instant k, i.e., Dk =

[
sL

k ,s
T
k

]
. Thus, the model can predict the

expected future configurations based on the dynamic transition rules encoded in the transition
matrix ΠL. Therefore, the Q function is initialized as:

Q =


P(a1|D1) P(a1|D2) . . . P(a1|DM)

P(a2|D1) P(a2|D2) . . . P(a2|DM)
...

... . . . ...
P(aN|D1) P(aN|D2) . . .P(aN|DM)

 , (3.28)

where where ∑
N
n P(an|Dm) = 1 such that m ∈ M, n ∈ N, and a ∈ A in a set C . Q is an

incremental function that will be modified and developed by novel experiences during the
online learning phase.
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3.4.3 Online Abnormality Measurement

The objective online learning stage is to learn imitation policies by minimizing the abnor-
malities during tracking a dynamic target. The proposed incremental learning model takes
advantage of the RL context to learn multiple imitation policies and regulate the L’s move-
ments to accomplish its task. The model estimates the activated configuration (Ḋk) at each
time instant to evaluate the L’s behavior by calculating the abnormalities at both continuous
and discrete levels of the GDBN. Ḋk is the closest learned configuration to the current L’s
configuration (DL

k ) measured by Euclidean distance. The learning model uses the likelihood
estimation between the active configuration and the current observation from the learning
agent to estimate the novelty of the current configuration DL. The determined prior by the
hidden states and actions at the previous time instant can affect the L’s decision-making.

The online learning model evaluates the validity of the L’s current configuration using
the divergence between the observation and the expectation. L employs Kullback Leibler-
Divergence (DK L ) [83] between the measured relative distance by L at time instant k
(X̃L

k |DL
k ) and the corresponding relative distance to the active configuration (X̃ Ḋ

k |Ḋk) to
measure the abnormality at the CL of GDBN after each performed action (ak−1), as:

ρCL,k = DK L

(
X̃L

k ||X̃ Ḋ
k

)
=

∫
X̃L

k log
(

X̃L
k

X̃ Ḋ
k

)
dX̃k. (3.29)

3.4.4 Action Selection and Update the Model

The action selection is based on two parameters, namely, the normalized measured abnor-
mality G at time k, which the normalized ρCL,k (defined in 3.29), where ρCL measures the
likelihood between the current L configuration and reference one, and a threshold (t ∈ [0,1]),
which is based on a trial and error process. Therefore if G becomes very low, which means
that L follows the expectation, it can exploit the preferred action associated with the active
configuration (ak|Ḋk). On the other hand, if the G amount appears high, it is required to
generate a random action. L uses t to whether to exploit or explore an action as:

ak ∼


argmax

ak

Q(A , Ḋk), if Gk < t (exploitation),

random from A , if Gk ≥ t (exploration),
(3.30)

where A = {a1,a2, . . . ,a8} is a set of eight cardinal and ordinal directions2

2The 8 directions are North, South, East, West, North-West, North-East, South-East, South-West.
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L records the explored configuration (D+
k ) along with the performed actions (ak ∈A ) in

a incremental function Q(D,a) and the novel configurations are saved in a set DQ that grows
incrementally as experiences are observed over time:

Q =


P(a1|D1) . . . P(a1|D+) . . .

P(a2|D1) . . . P(a2|D+) . . .
... . . . ...

...
P(aN|D1) . . .P(aN|D+) . . .

 , (3.31)

where ∑
N=8
n=1 P(an|D+

m) = 1 such that D+
m are the new explored states. In order to weigh up the

trained model than RM, L clusters all the recorded pairs [D+
k ,ak] by employing GNG. The

latter outputs a set of clusters representing the new configurations (D̂) and the corresponded
mean actions (ȧ) which are added to the updated Q-table (Q∗) defined as:

Q∗ =


P(ȧ1|D̂1) (ȧ1|D̂2) . . . P(ȧ1|D̂M)

P(ȧ2|D̂1) (ȧ2|D̂2) . . . P(ȧ2|D̂M)
...

... . . . ...
P(ȧN |D̂1) (ȧN |D̂2) . . .P(ȧN |D̂M)

 . (3.32)

L adapts the action selection procedure by updating the Q-table defined in (3.31) based on
the abnormality measurement at each time instant k. Since the provided Q is a probabilistic
table, updating the Q value can be rewritten in a probabilistic form as follows:

Q = (1 − η)P(ak−1|Dk−1) + η

[
(1 − Gk) + γ max

ak
P(ak|Dk)

]
, (3.33)

where η is the learning rate that controls how quickly the learning agent adopts to the
explorations imposed by the environment, (1−Gk) is the normalized reward measurement
with a range in [0,1], and γ is a discount factor.

3.5 Simulation and Performance Evaluation - Model II

3.5.1 Experimental Setup

In this section, we provide numerical results to validate the proposed method. We consider a
table of trained data where L chases the target G in a 40×40 space (see Fig.3.13). In training
data, L’s motion is described by 8 different motion unit-vectors associated with the cardinal
and intercardinal directions. G motions consists in a horizontal dynamics along the x axis at a
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fixed height point yG. Accordingly, G can move in two senses: right or left inside the interval
[x(min)

G ,x(max)
G ]. G dynamics consists of a continuous motion in one sense until it reaches an

interval boundary. Then, it starts moving in the opposite sense covering only the defined
interval points. The speed of G movement is different than the expert experiments in the RM
to guarantee that L learns to reach the target in a new scenario. The following parameters are
employed for simulation purposes: yG = 15, x(min)

G =−15 and x(max)
G = 15.

The experiments are executed in a simulated environment through 500 episodes with
different start positions to train a learning-agent L. Each episode consists of 10 iterations,
i.e., L tries 5k iterations by 500 different start positions to learn the policies. We evaluate
the performance of the proposed framework and compare it with other learning algorithms
from the literature, namely, the general Q-learning [143] and double Q-network [67]. Results
related to the capabilities of detecting abnormalities and evaluating the current model are
explained in detail as follows.

Observed trajectory

Target

Expected target

Meeting point

Expected trajectory

Target movement

Expected target movement

Fig. 3.13 Example of matched trajectories.

3.5.2 Performance Evaluation

After the trial stage, L acquires knowledge about the contingencies, and the likelihood
mapping in the generative model is aligned adequately with the reference generative process
and the targeted goal (i.e., reaching a dynamic target). Crucially, we assume that the
correctness and accuracy of the action selection procedure guide the learning agent to the
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Fig. 3.14 Number of performed actions in each training episode.

Fig. 3.15 The gained success rate in each training episode.

expected observations. Fig. 3.14 illustrates that L movements are engaged coherently, which
causes less exploration in each trial epoch (e.g., each episode).

Additionally, Fig. 3.14 compares the number of executed actions during the training
using different learning methods, where it shows L performs fewer actions to accomplish its
task by using our method than others. Moreover, L adopting the proposed method has higher
successful trajectories than other methods, as depicted in Fig.3.15.

3.5.3 Learning Cost Evaluation

Evaluating the current model’s configurations during the online learning phase is employed
to detect abnormalities. Fig. 3.16 shows abnormality estimation based on the distinction
between the current observation and the RM’s prediction after performing an action through
DKL measurements (see 3.29). The result demonstrates that the high abnormality values
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Episode

Fig. 3.16 Abnormality measurement.

Fig. 3.17 Cumulative reward during the trial.

are present in the learning’s initial portion, and Once L learns the reward policies, the
measurements go down dramatically.

Modifying the actions selection procedure can minimize imitation costs, resulting in a
high learning rate during the training phase. Our goal is to find the best set of actions that
minimize imitation loss (maximizing the reward). Fig. 3.17 demonstrates the cumulative
reward during 5k training iterations. As the results show, the learner agent by employing the
proposed model, succeeds in imitating the expert demonstration rather than other learning
methods.

3.6 Conclusion

This chapter introduces two system models using Generalized Dynamic Bayesian Networks,
namely Model I, which is based on a single dynamic agent, and Model II, which considers
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multi-agent dynamic interaction. Model I proposed an incremental imitation learning model
where an intelligent agent tracks a stationary target. The imitator learns the interaction with
surroundings by observing an expert agent. This section develops a probabilistic model
where the learning agent does not require explicitly repeating the expert agent’s behaviors.
Therefore, the learner is not limited to recalling exact observations of the optimal behavior but
employs a probabilistic model as a flashback memory for guiding a reinforcement learning
approach that allows the learning agent to learn the previous experiences on its own.

Model II proposed an adaptive probabilistic model for imitation learning in a dynamic
environment. In this model, imitation learning is used as a pre-training step to encode the
expert demonstrations in a coupled Generalized Dynamic Bayesian Network for reaching a
non-stationary target which enables the learning agent to take uncertainty appropriately into
account. The presented method demonstrates learning from a dynamic interaction model to
minimize the cost of imitation during the online learning phase.

In both system models, experimental results show the capability to minimize the abnormal-
ities while learning the policies from the sub-optimal demonstrations. Those abnormalities
can be used as qualitative observation in order to learn from unseen situations.





Chapter 4

Active Inference for Incremental
Imitative Learning in Autonomous
Driving

4.1 Introduction

Autonomous driving (AD) requires the resolution of perception and motion planning issues in
the presence of dynamic objects interacting with the environment. The complex interactions
between multiple agents are significant challenges due to the difficulty of predicting their
future motions. Most model-based AD approaches necessitate designing the driving policy
model manually [109, 65]. While designing a decision and planning system for AD is
complex, an alternative is to learn the driving policy from an expert agent (E) using imitation
learning (IL) [71]. Existing IL approaches can handle simple driving tasks such as lane
following. However, if the agent is dealing with a new environment or a more complicated
task (e.g., lane-changing), it is required that the human driver has to take control, or the
system fails ultimately [20, 127].

Modifying a learning agent’s (L) actions to lead to the prior preference for future ob-
servation is an effective mechanism to adapt to environmental changes. Active Inference
(AIn) [57, 51] suggests a framework where the agent chooses actions that minimize the
expected surprise (abnormality) and improve the description of how the agent expects it-
self to behave. Surprise is the divergence between expectation and evidence, and it is an
information-theoretic quantity that can be approximated with variational Free Energy (FE)
[53] and can be treated as a negative value function (e.g., imitation loss) to optimize the
decision-making in autonomous systems. FE explains perception, action, and model learning
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in a Bayesian probabilistic way that provides an upper bound on the negative log-evidence or
surprise [47]. This chapter claims that AIn can be interpreted using reinforcement learning
(RL) algorithms by learning a preferred observation from an expert and realizing a theoretical
relation between them.

In this work, IL is used as a pre-training step to learn the dynamic interaction between
an expert and a moving object during a specific task in an unsupervised manner (e.g., an
expert overtakes a dynamic object). The dynamic interaction (or expert demonstration) can
be represented in coupled Generalized Dynamic Bayesian Networks (C-GDBNs) that express
both hierarchical and temporal relationships among high-level variables capturing semantic
information and low-level variables capturing rough sensory information. However, in IL, E
demonstrates only the optimal policy (allowing L to follow the optimal trajectory), and if L
deviates from that policy even slightly, it will be unable to recover since training and testing
are sampled from different distributions. Thus, it will suffer from the well-known problem
of distributional shift [40]. To overcome such an issue, we propose integrating AIn with IL,
allowing L to predict the E’s behavior and evaluate the encountered situation. If predictions
match observations, L selects the same actions performed by E (i.e., pure imitation learning).
Otherwise, if L deviates from the E’s predicted trajectory, it starts exploring new actions
allowing L to recover by moving toward the expert reference model. Thus, during the AIn
process, L aims to occupy unsurprising environmental states that minimize the FE (i.e.,
maximize rewards in reinforcement learning) by learning incrementally novel interactions.

The main contributions of this work can be summarized as follows:

• The dynamic interaction between the expert and a moving object is encoded in a C-
GDBN that can be used by L to facilitate the inference and decision-making processes.

• The L’s predictive and diagnostic capabilities allow identifying the encountered sit-
uation among normal (i.e., L is facing the same situation seen by E) or abnormal
(i.e., when L deviates from E’s trajectory) and thus guides the exploration-exploitation
dilemma. During abnormal situations (i.e., exploration), L learns a set of novel config-
urations and the associated exploratory actions incrementally, allowing it to come near
the reference model and follow the expected trajectory.

• The L’s interaction with the environment is determined by a set of actions that minimize
the FE measurement, which explains how L expects itself to behave without getting an
implicit reward signal from the environment.

• The proposed approach is validated on a real dataset of sensory information collected
from two autonomous vehicles. Results show that the proposed approach outperforms
conventional RL methods in different learning aspects.
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4.2 Model I - Active Inference integrated with Imitation
Learning

Learning from experiences is a fundamental capacity of IAs. ASs rely on sensory information
that provides data about the environment and internal situations delivered to their perception
systems for learning and inference mechanisms. Self-Aware modules can be learned to
enable an agent to understand and interact with the surroundings. This section involves two
main phases, the offline learning phase, and the online active learning phase. In the former
phase, we first provide a Situation model (SM) encoding the dynamic interaction between
E and a dynamic vehicle (O). Consequently, we provide L a First-Person model (FP-M),
where we assume that L tries to learn sub-optimal behavior by observing the E demonstration.
In the latter phase, we present an Active First-Person model (AFP-M) that L can use to
update its knowledge while interacting with another moving vehicle (V) in a continuous
dynamic environment. All of the mentioned models (i.e., SM, FP-M, and AFP-M) are
GDBN that employ graph-based representation to encode various multi-dimensional random
variables and represent causal relationships among them [136]. Due to the hierarchical
nature, GDBN can express the temporal relationship between high-level variables (capturing
abstract semantic information of the world) and low-level distributions (capturing rough
sensory information of the environment) with their respective evolution through time. State
variables describing the systems’ states at a specific time instant k can be categorized as either
hidden variables (discrete or continuous) representing the causes affecting the systems’ states
evolution or measured variables expressing noisy measurements [69]. Since the network size
increases over time, performing inference using the entire network would be intractable for
all but trivial time duration.

4.3 Offline Learning Phase

4.3.1 Situation Model

SM consists of a C-GDBN representing the interaction of two dynamic vehicles, an expert
(E), and a moving agent (O) (see Fig. 4.1). SM relies on multi-modal perception to learn
the dynamic evolution of knowledge sets in which an agent is designed to emulate having
conscious knowledge of its state and to project the interactive environment, which aims at
learning the mapping of different sensory perceptions into exteroceptive and proprioceptive
latent information. The SM observes the multi-modal sensorial information as sub-optimal
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experiences to predict the dynamic behaviors of the agent and interaction patterns within the
dynamic environment.
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Fig. 4.1 Learning a Situation model.

The agents’ observations representing the low level of the hierarchy are described by
variables Zi

k, where i ∈ {E,O}. At a higher level, the joint hidden continuous Generalized
States (GSs) incorporating the dynamics of the two agents at each time instant k can be defined
as: X̃k = [X̃E

k X̃O
k ]

⊺, where X̃E
k , X̃O

k denote the GSs of E and O, respectively. The GS related
to agent i is defined as a vector composed of the agent’s state and its first-order temporal
derivative, such that X̃i

k = [x ẋ]⊺ where x ∈ Rd , ẋ ∈ Rd and d stands for the dimensionality.
The observation model describing the relationship between Zi

k and X̃i
k is defined as:

Zi
k = HX̃i

k + vk, (4.1)

where H = [Id 0d,d] is the observation matrix that maps hidden GSs (X̃i
k) to measurements

(Zi
k) and vk is the measurement noise, such that, vk ∼N (0,R).

Initially, we assume that the evolution of X̃i
k follows a static equilibrium assumption

described by:
X̃i

k = AX̃i
k−1 +wk, (4.2)

where A ∈ Rd×d is the dynamic matrix and wk is the process noise, such that wk ∼N (0,Q).
A Null Force Filter (NFF) [74] is employed to predict X̃i

k according to (4.2). The innovations
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encoding the deviations between predictions and observations are calculated by the NFF as:

ε̃X̃t
= H−1(Zi

k−HX̃i
k
)
. (4.3)

ε̃X̃t
represents the generalized errors (GEs) that can be clustered in an unsupervised manner

using the Growing Neural Gas with utility measurement (GNG-U) [73]. Latter outputs a set
Si = {si

1,s
i
2, . . . ,s

i
Li
} of discrete variables (i.e., clusters) representing the so-called vocabulary

where Li is the total number of clusters.
The joint vocabulary (i.e., SE,SO) describes a specific type of interaction among the two

agents at multiple levels (i.e., discrete and continuous levels). Each discrete state represents
a region where quasi-linear models are valid to present the interactive dynamical system over
time. Since each cluster si ∈ Si is supposed to follow a multivariate Gaussian distribution,
it can be represented by its sufficient statistics, specifically, the covariance matrix Σ̃si

k
and

the generalized mean value µ̃
si
= [µsi

Pos µsi

V ], where µsi

Pos and µsi

V represent the mean value of
the states (on position) and the mean value of the corresponding derivatives (on velocity),
respectively.

An additional vocabulary encoding the dictionary configurations can be defined by
D = {D1,D2, · · · ,DM}, where Dm,k = [sE

k ,s
O
k ]

⊺ is an interaction configuration explaining the
jointly activated clusters occurring simultaneously in the agents’ vocabularies, M is the total
number of configurations and Dm,k ∈ D. Each Dm,k consists of the position and velocity
features of the two agents and is defined as:

Dm,k =
[
(µPos,µV )

E,(µPos,µV )
O]. (4.4)

Consequently, the dynamic model defined in (4.2) can be updated as follows:

X̃i
k = AX̃i

k−1 +Bµ
si

k
V +wk, (4.5)

where B ∈ Rd×d is a control model matrix, µ
si

k
V = [ẋsi

k
, ẏsi

k
] is a control vector encoding the

agent’s velocity (on x and y) associated with si
k. The dynamic transitions among the learned

configurations at the top level of the hierarchy are encoded in a Transition Matrix (Π) that
can be learned by estimating the transition probabilities P(Dk+1|Dk) is defined as:

Π =


P(D1|D1), P(D1|D2), . . . , P(D1|DM)

P(D2|D1), P(D2|D2), . . . , P(D2|DM)

...
...

. . .
...

P(DM|D1), P(DM|D2), . . . , P(DM|DM)

 , (4.6)
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where ∑
M
m P(Dp|Dm) = 1 such that p,m ∈M.

4.3.2 First-Person Model

The First-Person model (FP-M) can be seen as a SM transformed in such a way that allows L
to directly use its own observations and generate state series describing its relative state with
respect to another interacting moving agent V. It provides L with the capability to imitate the
expert motions by generating transformed sequences from SM. A mapping implies defining
all GDBN nodes of the created FP-M (DL and CL) and probabilistic dependency models
starting from the SM nodes and links. Therefore, FP-M can be considered as an initialization
generative switching model represented by a GDBN, which can be used to predict interaction
states under the perspective of a learning agent. FP-M depicted in Fig. 4.2 is initialized to
allow L to exploit the C-GDBN corresponding to SM that is considered as a pure IL from
expert demonstrations.
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Fig. 4.2 First-Person model.

At the bottom level of hierarchy, the observation (Zk) of L and V can be mapped onto
observations (Zi

k) of both agents,(E,O) according to the following equation:

Zk =
[
ZE

k −ZO
k
]
. (4.7)

At the CL (middle level), X̃ represents the generalized relative distance (consisting of relative
distance and relative velocity) between E and O (or between L and V in an ideal IL setting)
which are interacting in the environment. The generalized relative distance can be seen as
the difference of joint GSs describing the interaction at the CL of the two agents in a specific
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configuration (Dm) and defined as:

X̃k =
[
X̃E

k − X̃O
k
]
=
[
(xO− xE),(ẋO− ẋE)

]
. (4.8)

The relative positions of E and O in SM are illustrated in Fig. 4.3. The relative distance vector
is highlighted as the difference in absolute coordinates and velocities of the two objects. The
relative distance in FP-M is illustrated in Fig. 4.4 where the relative learner reference system
is depicted to highlight the information captured in FP-M.

SE
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x

SO
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y

x

expert agent:

velocity vector:

dynamic object:

state vector:

time

Dynamic continues environment

SE

outside lane

inside lane

seperation line

SO

SO

Fig. 4.3 Calculating the relative distance during the agents movements in a non stationary
environment.

At the top level of FP-M, the discrete variables represent the learned set of configurations
Dm ∈ D. In FP-M, L is assumed to take the role of E. Therefore, all clusters related to E
should correspond to the clusters describing L states in a certain configuration. By providing
a biunivocal mapping between clusters of E and L, the transition probabilities composing Π

can characterize the temporal dependencies of discrete series of interactions in FP-M among
L and V for the experiences to be imitated. Thus, the transition model can be directly mapped
onto FP-M from the corresponding Π of the situation model.

To this end, a configuration Dm ∈D at the discrete level of FP-M is represented by a joint
superstate of each agent at time instant k, i.e., Dk =

[
sL

k ,s
O
k

]
. Thus, the model can predict the

expected future configurations based on the dynamic transition rules encoded in the transition
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Fig. 4.4 The figure shows the learner agent movements in a continuous dynamic environment
by the estimated motion at each time k. The learner state (sL) at each k is the origin of the
measurements that the velocity vector (vL) leads it to the next state (sL

k+1). (a) shows a normal
situation that the learner’s interaction with the another dynamic object (sO) is similar with
the FP-M’s prediction. (b) shows an abnormal situation, where the prediction (X̃) and the
learner observation (ZL) are different due to the different object’s velocity (vO) which in-turn
brings changes in the behavior of agent.

matrix Π and predict GSs based on the following dynamic model:

X̃k = AX̃k−1 +Bµ
Dk
V +wk, (4.9)

which is characterized by the conditional probability P(X̃k|X̃k−1,Dk).

4.4 Online Active Learning Phase

During the online learning phase, L utilises a hybrid mechanism combining IL with AIn to
describe how it expects itself to behave in a dynamic environment and to learn the best set of
actions that it should perform.

4.4.1 Active First-Person model

In this phase, L moves in a dynamic environment and considers its interaction with V in
real-time. Therefore, L is endowed with an Active First-Person model (AFP-M) that extends
FP-M by adding the active states describing the L’s actions in the environment and its
influence on the received sensory signals.

L starts with the situation assessment to understand if the current situation has been
experienced by the expert agent. This is possible by predicting the relative distance that it
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is supposed to observe using FP-M and the actual relative distance measured by L’s extero-
ceptive sensor. When L realizes that current situation is similar to the one encountered by E,
then it acts by imitating the expert’s behaviour (i.e., selecting the same actions performed by
E).
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Fig. 4.5 Active First Person model. To run an online learning procedure, the model applies
the learner agent’s motions (a) to the FP-M at each time instant (orange links).

The active agent (i.e., L), maintains an internal generative model P(Z, X̃,D,a) of the
prevalent environment expressed in AFP-M (as depicted in Fig. 4.5) and aims to minimize
implicitly the difference between what it believes about the environmental states and what it
perceives. The AFP-M specifies the joint probability of observations (Z), their hidden causes
(X̃, D) and actions (a). Since the environment is modelled as a Markov Decision Process
(MDP), AFP-M can be factorized as:

P(Z, X̃,D,a) = P(D1)P(X̃1)

[ T

∏
k=2

P(Zk|X̃k)

P(X̃k|X̃k−1,Dk,ak−1)P(ak−1|Dk−1)

]
. (4.10)

The proposed AIn approach integrated with IL (AIL) involves four main steps: 1) Prediction
and Perception, 2) Action selection and 3) FE measurement and 4) Action update. The logic
of the AIn approach is reported in Algorithm 1.
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4.4.2 Prediction and Perception

L employs Particle Filter (PF) to predict the experienced configurations Dk by E and conse-
quently estimates the relative distance X̃k from V at each time step k. At the first iteration
(k = 1), L relays on prior probability distributions (P(X̃1), P(D1)) to predict the relative
distance (X̃1) from V and the expected configuration (D1). In the successive iterations (k > 1),
L relays on the interactive transition matrix Π to predict future configurations which guides
the prediction of the relative distance at the lower level. PF propagates a set of N particles
equally weighted using a specific row (π(Dk)) in Π as a proposal distribution, such that,
{Dk,n ∼ π(Dk),Wk,n =

1
N}. For each particle n representing the predicted configuration Dk,n,

the expected hidden states (X̃E
k,n, X̃O

k,n) of E and O can be estimated according to the following
dynamic equations:

X̃E
k,n = µ

E
Dk,n

+wk, (4.11)

X̃O
k,n = µ

O
Dk,n

+wk, (4.12)

where µE
Dk,n

, µO
Dk,n

are associated with clusters S̃E
k,n and S̃O

k,n, respectively, such that {S̃E
k,n, S̃

O
k,n}∈

Dk,n. Then, the relative distance from O can be approximated as follows:

X̃k,n = X̃O
k,n− X̃E

k,n. (4.13)

Thus, this approximation depends on the hypothesized configuration that explains implicitly
the conditional probability P(X̃k,n|X̃k−1,n,Dk,n). In this sense, L associates itself to a specific
configuration (Dk,n) and predicts the relative distance from the current dynamic object V
which it is dealing with. L receives observations (Zk) through its exteroceptive sensor and
realize actions to be done by its actuators. Once a new Zk is given - describing the relative
distance between the L and V - L can evaluate if the situation it is experiencing has already
faced by E in order to make a decision on selecting an action (i.e., the decision between
exploitation and exploration).

Diagnostic messages (λ (X̃k) and λ (Dk)) propagated from the bottom level towards higher
levels inside AFP-M allows defining an abnormality measurement to evaluate how much
current observation supports predictions as well as updating the belief in hidden variables.
The model computes the anomaly (Ω) by measuring the cosine similarity (cos(θ)) between
the observed relative distance (Z̃k = dL

z ) and the predicted relative distance (X̃k,n) associated
with each propagated particle as follows:

Ωk,n = cos(θ) =
Z̃k . X̃k,n

||Z̃k|| ||X̃k,n||
. (4.14)
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The lower the angle θ , the lower the abnormality value, so more similarity is achieved.
Particles gain weight according to their similarity with the observation. A high similarity
value (the lower angle) gains more weight (Wk,n) than particles with low similarity. Message
λ (Dk) is used to update particles’ weights and it is defined as:

λ (Dk) = λ (X̃k)P(X̃k|Dk), (4.15)

where λ (X̃k)=P(Zk|X̃k,n) is a multivariate Gaussian distribution such that λ (X̃k)∼N (Zk,vk)

and λ (Dk) is a discrete probability distribution. Consequently, particles’ weights can be
updated as follows:

Wk,n =Wk,n×λ (Dk). (4.16)

4.4.3 Action Selection

The updated particles’ weights allow L to decide whether to exploit actions by imitating
the E’s behaviour or to explore new actions that may yield lower FEs (higher rewards) in
the future. The decision between exploration and exploitation is based on two parameters,
namely, the exploration rate (ε) and a varying threshold (t). The former is defined as:

εk = 1−αk, (4.17)

where α is the largest weight among all the N particles measuring the likelihood between the
current L configuration and the reference configuration, such that:

αk = max
n

Wk,n, (4.18)

where 0 ≤ α ≤ 1. So, if αk is near 1, εk becomes very low which means that current
observation matches L’s expectation and so it can exploit the same actions performed by E.
However, in other cases it might appear that α is not too high (e.g., below 0.5). In this case,
it is required to evaluate the anomaly level associated with the particle index that has the
maximum weight and the defined t based on a trial-and-error process. Thus, action generation
process depends on the decision made by L whether to explore or exploit and it is defined as:

ak ∼


µ

Dβ

k
V = argmax

ak

Q(A ,Dβ

k ), if ε < t (exploitation),

random from A +, if ε ≥ t (exploration),
(4.19)
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where ak are the active states (i.e., actions) realizing the top level of AFP-M, A = {A E,A +},
where A E = {aE

1 ,a
E
2 , . . . ,a

E
Y} is a set of actions performed by E and encoded in SM that L

aims to imitate during exploitation and A + = {a1,a2, . . . ,a8} is a set of predefined actions
realizing 8 different directions1 used during exploration. In addition, Dβ

k is the most similar
reference configuration to the observed one and β is the particle’s index with the maximum
weight associated with (4.32) defined as:

β = argmax
n

(Wk,n), (4.20)

Moreover, during exploration, L saves the novel configurations D+
k (not seen by E) that

is experiencing along with the performed actions a+k ∈ A + in a set (C ). After finishing
a certain experience L clusters all the pairs [D+

k ,a
+
k ] saved in C by employing the GNG.

The latter outputs a set of clusters representing the new configurations (D++) that can be
appended incrementally to the probabilistic Q-table (Q) that is defined as:

Q =



P(aE
1 |D1) . . . P(aE

1 |DM) P(aE
1 |D++) . . .

P(aE
2 |D1) . . . P(aE

2 |DM) P(aE
2 |D++) . . .

... . . . ...
...

P(aE
Y|D1) . . . P(aE

Y|DM) P(aE
Y|D++) . . .

P(a++|D1) . . .P(a++|DM) P(a++|D++) . . .
...

...
...


, (4.21)

where ∑
Y
y P(aE

y |Dm)+∑e=1 P(a++
e |Dm) = 1 and ∑

Y
y P(aE

y |D++)+∑e=1 P(ae|D++) = 1 such
that m ∈M and y ∈ Y, a++ = µD++

V are the new explored actions that can be exploited in the
future. In addition, L updates the transition model defined in (4.6) by adding new rows and
columns which are related to the new configurations incrementally.

In the exploitation phase, if the current configuration is an observed one by E, the
learning agent takes the adapted expert action from prior knowledge by activating the most
similar reference configuration (Ḋk = Dβ

k ) to the current L configuration at the real-time
and consequently select the suitable action (i.e., representing the L’s motion) according to
P(ak|D

β

k ) encoded in Q. After that, by adapting the expected motion P(X̃k|Dk) at time k
through the active states P(ak|Dk, X̃k), the L agent transits to a new configuration realized
by P(Dk+1|ak,Dk). Thus, the conditional prior P(ak|Dk, X̃k) is maximized after having
been initialized according to demonstration to select the best action ak given the current
configuration and state.

1The 8 directions are North, South, East, West, North-West, North-East, South-East, South-West.
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Besides, in exploration phase, if the mismatch between predictions and observation
is too high, the model can not apply the direct imitation of E by taking a learned action
from SM. However, if L faces an anomaly, the learning model considers it as an unseen
situation. Hence, the newly explored configurations are added to the reference configurations
(incremental learning model). Moreover, the model corresponds a set of possible actions
with equal selection probabilities to the newly added configuration that L can take randomly
to move in the environment. The selection probabilities are modified through the online
learning phase. The presented learning procedure aims at converging at some optimal policy
to the lower probability of taking a random action over time as the agent becomes more
confident with its estimations. During exploration, L aims to take the best set of actions
that can approach it to the reference configurations (i.e., reference vocabulary realizing the
expert’s behaviour in dealing with a dynamic object in the environment).

AFP-M improves the L’s behavior during the training by minimizing the divergence
between SM and the AFP-M to decrease the loss cost of imitation, besides dealing with the
abnormalities to decline the collision probability or going out of boundaries. During the
active learning phase, the selection probabilities related to each movement are recorded by
P(ak|Dk) and updated at each time instance. L needs to exploit the expert demonstrations to
minimize the global FE by modifying the transition policies. It also needs to explore through
the new experiences to make better action selections in the future. L must modify its actions
several times to gain a reliable prediction with a low imitation loss cost and FE measurement
on a stochastic task while switching between exploration and exploitation dynamically.

4.4.4 Free Energy Measurement

The IA faces multiple tasks that need ample action space. Therefore it is challenging to
acquire an appropriate policy by a onefold reward strategy. We aims finding a reward function
R that could explain the expert policy from demonstrations. The proposed approach endows
the IA with the capability of estimating the imitation cost (i.e., reward) in terms of FE at
multiple levels. Minimizing the FE (i.e., maximizing rewards in RL context) ensures a
dynamic equilibrium between the L and its prevalent environment.

The FE measurements are based on the AFP-M hierarchy’s messages (messages passing
from top-to-down and bottom-to-up). The message (λ ) passing from lower nodes to upper
nodes has a diagnostic ability used to adjust the expectations (predictions by inter-slice links
π) given a sequence of observations. Comparing predictive and diagnostic messages allows
the detection whether new observations are similar to previously learned situations encoded
in FP-M. Suppose predictions from FP-M are not compliant with observations, then the



62 Active Inference for Incremental Imitative Learning in Autonomous Driving

Algorithm 1 Active Inference integrated with IL (AIL)
Input: Π, D = {µ̃O− µ̃E}, Q← Transition Matrix, Configurations, QTable
1: for k = 1 to K← Time evolution do
2: for n = 1 to N← Particles do
3: Prediction at the discrete level:
4: if k == 1← Initial iteration then
5: P(X̃1)∼N (µX̃1

,ΣX̃1
)← prior distribution

6: Sample X̃(n)
k ∼ P(X̃1)

7: P(D1) = U {1, |Dm|} ← uniform distribution
8: Sample Dk,n ∼ P(D0)

9: Wk,n =
1
N ← particle weight

10: else if k > 1 then
11: Dk,n ∼ TM(Dk−1,n)← proposal from transition matrix
12: Prediction at the continuous level:
13: X̃k,n = µE

Dk,n
+wk ← Expert’s Mean of cluster SE

k,n

14: X̃O
k,n = µO

Dk,n
+wk ← Object’s Mean of cluster SO

k,n

15: dk,n = X̃O
k,n− X̃k,n ← dk,n ∈ R1,4 ← distance vector

16: π(X̃k,n) = dk,n← Predictive msg
17: π(X̃k,n)∼N (µdk,n

,Σdk,n
)← Predictive msg

18: end if
19: Receiving the learner observation Zk
20: λ (X̃k,n) = p(Zk|X̃k,n)
21: λ (Dk) = DB

(
λ (X̃k), p(X̃k|Dk)

)
← unique for all particles

22: Anomaly indicator:
23: Ω = Dθ

(
π(X̃k,n),λ (X̃k,n)

)
24: Update:
25: Wk,n =Wk,n×λ (Dk)← updated weight
26: RIS resampling
27: Wk+1,n =

1
N

28: end for
29: Action selection:
30: β = argmax

n
Wk,n

31: α = max
n

Wk,n

32: The corresponded configuration to β presents the activated reference configuration (Ḋk)
33: Ḋk = Dβ

k .

34: ρ ← Threshold for adding new configuration
35: ε = 1−α ← exploration rate
36: if ε < ρ then

37: ak ∼ µ
Dβ

k
V = argmax

ak

Q(A ,Dβ

k )← exploitation

38: else
39: a+k ∼ random from A + ← exploration
40: save [D+,a+k ] in C

41: end if
42: Q∗ = FREE ENERGY MEASUREMENT

(
Q,ak,D̂k

)
43: end for
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model considers the current experience as an anomalous experience, and so it should be
adapted to by learning new situations and generating new semantic information.

The diagnostic messages evaluate the distinction between the expectation and evidence
at two abstraction levels. We theoretically extend the FE measurement by estimating both
the prior and posterior policy at continuous and discrete levels.

The goal is to allow L to maximize the likelihood by using the FE as a control metric.
Under the FE principle, L uses the likelihood estimation of the prior hidden states based on
the active reference configuration (Ḋ) and the observations. The determined prior by the
hidden states and actions at the previous time instant can change the L’s future policy.

FE measurement at the continuous level (FCL). AFP-M allows evaluating how much
the sensory measurements support predictions and thus evaluating if the selected actions
were good or wrong by relying on the FE. The FE at the CL can be computed by evaluating
the distinction between the predictive message π(X̃k) and the diagnostic message λ (X̃k)

after taking action ak−1 under both exploration and exploitation condition.
Thus, the performed action by the learning agent (aL

k−1) guides the system to calculate
the expected FE [54] at the continuous level (FCL) based on the Kullback Leibler-Divergence
(DK L ) [83] between π(X̃k) and λ (X̃k). Hence, the expected FE can be expressed as:

FCL = DK L

(
λ (X̃k)||π(X̃k)

)
=

∫
λ (X̃k) log

(
λ (X̃k)

π(X̃k)

)
dX̃k. (4.22)

Our goal is to find a policy such that the L’s behavior matches the reference demonstrations.
For this purpose, our objective is to minimize the divergence between what L is expecting
to observe after taking a certain action and what it is really observing. L believes that a
certain action allows it to imitate correctly the E’s behavior during exploitation or allows it
to approach towards the E’s reference vocabulary as soon as possible during exploration.

FE measurement at the discrete level (FDL). The FE measurement at the DL (FDL) is
computed by employing the Mahalanobis distance (DM ) [38] to calculate the distinction
between the action selected by L (aL

k ) and the E’s estimated action (aE
k ) from the activated

reference configuration µ Ḋ
V , defined as:

FDL = DM

(
aL

k ,a
E
k
)
, (4.23)

where aE
k = max Q(:, Ḋk).

Global FE (G ). If the L agent is in a observed configuration (exploitation case) G is
defined as:

G = FCL, (4.24)
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Algorithm 2 Free Energy measurement
1: function Free Energy measurement(Q,aL

k , Ḋk)
2: aE

k ∼ max Q(:, Ḋk)
3: SE

k ∼ Ḋk ← Activated expert cluster
4: µE

V,k, Σ̃
E
k ∼ SE

k ←Mean velocity and covariance of the expert cluster
5: V L ∼ aL

k ← velocity vector of learner
6: v̂k ∼ (V L

k −µE
V,k)

7: FDL = DM

(
aL

k ,a
E
k

)
=
√

v̂T
k (Σ

E
k )
−1v̂k ← The FE at current time (4.23)

8: Calculate FCL using (4.22)← The excepted future FE
9: if the L is exploring: then
10: G = E(FCL,FDL)← Global Free Energy
11: else
12: G = FCL ← Global Free Energy
13: end if
14: Update Q∗ using (4.26)
15: return Q∗

16: end function

Otherwise, if it experiences a new configuration or improves the action selection regarding
the recorded explored states, G be expressed as:

G = E(FCL,FDL), (4.25)

To sum up, by improving the action selection to minimize FDL at each time instant, L is
able to have a more similar prediction to the future expected observation after taking action,
which causes decreasing FCL as well. In the end, the model is able to decline the global FE
through the message passing between the multi-levels.

4.4.5 Action Update

AFP-M takes advantage of both discrete and continuous levels dynamically to decrease
global loss by improving the action selection through the online learning procedure. Our
objective is to minimize the long-term cost by taking down the global FE measurements
defined in (4.24) and (4.25). L adapts the action selection process by updating the Q-table
defined in (4.21) based on the global FE. Since the Q table used in this work is a probabilistic
table, it can be written in a probabilistic form as

Q∗ = (1 − η)P(ak−1|Dk−1) + η

[
(1 − G ) + γ max

ak
P(ak|Dk)

]
. (4.26)

where η is the learning rate that controls how quickly the learning agent adopts to the
explorations imposed by the environment, G is the normalized global FE measurement with
a range from 0 to 1, and γ is a discount factor as in the general case of RL algorithms.
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4.5 Simulation and Performance Evaluation - Model I

4.5.1 Experimental Data Set

The proposed framework is validated using a real dataset consisting of multisensorial infor-
mation collected from two autonomous vehicles, ’iCab 1’ and ’iCab 2’ [91] (see Fig. 4.6 and
Fig. 4.7). The vehicles positional information and the corresponding velocities are obtained
from the odometry module. This work considers three scenarios:

Fig. 4.6 Autonomous vehicles: iCab 1
and iCab 2.

Fig. 4.7 the yellow parts shows the exper-
imental zone.

• lane-keeping scenario (following behavior): iCab 2 follows another agent (iCab 1)
as shown in sub-Fig. 4.8-(a) and aims to keep a safe distance from iCab 1. The latter
plays the role of a dynamic obstacle in the environment with a higher speed than iCab
2.

• lane-changing scenario (overtaking behavior) - left side: iCab 2 overtakes iCab
1 (considered as a dynamic obstacle) to change the lane without collision. In this
scenario, iCab 2 has a higher speed than iCab 1, where iCab 2 overtakes from the left
side of iCab 1 as depicted in sub-Fig. 4.8-(b).

• lane-changing scenario (overtaking behavior) - right side: In this scenario iCab 2
has a higher speed than iCab 1 where iCab 2 overtakes from the right side of iCab 1 as
shown in sub-Fig. 4.8-(c).

Sensory data representing positional information from these experiments are used to learn
the dynamic interaction between iCab 1 (which plays the role of a dynamic object, i.e., O)
and iCab 2 (which plays the role of an expert, i.e., E) encoded in the SM that L will use to
imitate the E’s demonstrations.
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(a) (b) (c)

Fig. 4.8 icab interactions. In (a) iCab 2 follows iCab 1, (b) shows iCab 2 overtakes iCab 1
from the left side, and in (c), iCab 2 overtakes iCab 1 from the right side.

4.5.2 Offline Learning Phase

This section shows the process of learning the SM from collected data during different
scenarios. The NFF is used as an initial filter employed on the data collected in the lane-
keeping and lane-changing scenarios. NFF outputs the GEs defined in (4.3), which can be
clustered using GNG that outputs a set of discrete clusters representing the discrete regions
of the trajectories generated by E and O. The joint clusters define the set of configurations
(defined in (4.4)) that encode the dynamic interaction among the two agents. Fig. 4.9-(a)-(b)-
(c) illustrates the generated clusters in different scenarios and Fig. 4.9-(d)-(e)-(f) shows the
corresponding transition matrices.

4.5.3 Online Learning Phase

During the online active learning phase, the AFP-M relies on the FP-M, which has been
initialized using the situation model. Thus, the DL in the three models represents the learned
configurations during the offline phase. The total number of configurations is 60, then the
initial Q-table contains 60 configurations and it is defined as follows:

Q =

D1 D2 . . . D60

aE
1

aE
2
...

aE
60


1
60

1
60 . . . 1

60
1
60

1
60 . . . 1

60
...

... . . . ...
1
60

1
60 . . . 1

60

 (4.27)

The experiments are done in a simulated environment. For having a fair comparative
evaluation, all the experiments are considered with fixed steps. The algorithm is run over
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(a) (b) (c)

(d) (e) (f)

Fig. 4.9 Learning the situation model. a) Clustering of GEs in the lane-keeping scenarios,
b) Clustering of GEs in the lane-changing from the left side scenario, and c) Clustering of
GEs in the lane-changing from the right side scenario. Sub-figures (d), (e), and (f) are the
corresponding transition matrices to sub-figures (a), (b), and (c), respectively.

500 episodes from different start positions to train the learner L. For each iteration during
an episode, L is trained to learn how to behave with another moving agent V in a dynamic
environment. Each episode consists of 10 iterations, i.e., L tries 5k iterations by 500 different
start positions to learn the policies.

Moreover, the FE measurement at the CL helps the learner determine a safe distance
from the moving object. The safe distance allows the learner agent to continue lane-keeping
without collision probability. At each time instant k, the AS finds the minimum and the
mean value of FCL, which is calculated by the KL divergence defined in (4.22). After that, by
calculating the differential of the corresponding distance vector’s length to the values (|∆di|),
the measured safe distance determines a threshold for L, which is changed dynamically at
each time instant during the online learning phase until the completion of the trial. The
dynamic model uses the safe distance to record the estimations in two Q-tables for the safe
zone and the warning zone. In the safe zone, the higher transition probability relates to
lane-keeping. On the other side, in the warning zone, the higher transition probability leads
the agent to lane-changing to decline the collision probability. The estimations are separated
based on L situation during the online learning phase to facilitate and accelerate the making
decision during exploiting the learned tables.
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Fig. 4.10 The number of performed actions during the learning phase.

The performance of the proposed method is evaluated in different experiments and
compared it with four learning algorithms, namely, the general value-based Q-learning,
double Q-Network, IRL (when an optimal expert is available), and self-learning in RL
context (when optimal expert data is not available). Performance evaluation considers two
main issues, action selection, and imitation loss.

4.5.4 Action Selection

L predicts the configurations (Dm) visited by E by employing PF and then estimates the
relative distance from V to decide whether to imitate the E’s actions (i.e., exploitation) or to
explore new actions. Initially, PF propagates N = 10 particles equally weighted (W= 1

N = 1
10 )

by relaying on the Π (at the first time instant k = 1, PF generate samples from a uniform
distribution). Action selection realizes an essential process to reach the goal targeted by
the agent (e.g., following or overtaking the other agent). The number of performed actions
describes the effort made by the agent to accomplish a task. A good policy requires fewer
actions and less time to reach the goal, while a lousy policy requires more actions and time.

Fig. 4.10 shows the mean of actions taken by L for each episode during the online learning
phase using different methods. From the figure, we can observe that L adopting the proposed
approach (AIL) performs fewer actions compared to other methods. This can be explained by
the fact that initializing the FP-M using the SM can decrease the exploration rate. Moreover,
exploiting sub-optimal expert demonstrations at similar states plays a vital role in driving
in a shorter time than exploring the environment from scratch. The threshold ρ has a great
impact on the exploration rate, we train the L agent 11 times with different ρ values in the
range [0,1]. By considering the success rate obtained by each ρ value, we pick the best ρ

value providing the maximum success rate as shown in Fig. 4.11.
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Fig. 4.11 ρ is a threshold that plays the control role to separate the exploration and exploitation
mode. We trained the model with different ρ values to find the most suitable one by trial and
error. The green bar is the selected one.
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Fig. 4.12 Illustration of the exploitation and exploration rates after each training quarter and
their effect on the FE measurement.

In addition, updating particles’ weights to adjust the action selection procedure allows
L to avoid abnormalities and adapt to new experiences. Fig. 4.12 demonstrates how the
exploitation and exploration rates affect the FE measurement during the learning phase. Re-
fining the action selection can adapt to new experiences and minimize the FE measurements.

Balancing exploration and exploitation is one of the most challenging tasks in RL. The
imbalance between exploration and exploitation might adversely affect learning performance.
On the one hand, the domination of exploration would obstruct the agent to maximize short-
term reward, i.e., exploratory actions could lead an agent to collect a higher negative reward
in the short run. On the other hand, if a learning approach is dominated by exploitation,
an agent performs actions that could get it stuck in local minima or suboptimal solutions.
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Fig. 4.13 Exploration frequency. It shows after how many explored actions the learner goes
back to the exploitation mode (the average number for each episode).
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Fig. 4.14 This example illustrates when the learner agent is in the exploitation case (a) or
exploration case (b). Purple lines show the relative distance from the most probable configu-
rations, while the green line represents the relative distance from the activated configuration.
The learner exploits the activated configuration, leading to a lower divergence, and during
the exploration, The learner takes an exploratory action because the divergence between
the learner configuration and the activated one is more than ρ . (θ between blue and green
vectors).

Fig. 4.13 shows the frequency of the exploratory actions, L is trained to have an equal
opportunity to gain new knowledge from the environment’s dynamics and follow the expert
demonstrations to accomplish its mission (see Fig. 4.14-(a) - (b) ).

Improving the action selection skill leads L to perform more successful movements in
the dynamic environment, as shown in Fig. 4.15. When L enters the exploration stage in
a certain episode, it saves all the newly explored configurations along with the performed
actions. Then, L clusters those saved pairs (i.e., new configurations and actions) as discussed
in Section 4.4.3. The newly explored configurations and actions are clustered for two reasons:
to calculate the mean action value of the corresponding clusters in order to have comparable
data with the FP model and to avoid recording too many configurations in the Q-table.

In each step, the newly learned clusters are appended incrementally to the model, Fig. 4.16
and Fig. 4.17 describe the clustering process of the new configurations in two scenarios
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Exploited action

Explored action

Dynamic object

(a)

Exploited action

Explored action

Dynamic object

(b)

Exploited action

Explored action

Dynamic object

(c)

Fig. 4.15 This figure shows three trajectories in different time slots of online learning. In (a),
the learner experiences new actions by exploration. (b) shows by balancing the exploration
and exploitation, the learner improves the action selection, and (c) demonstrates the learner
can decrease the explored action and make suitable decisions concerning the dynamic object.

Configuration

Action

(a)

Cluster

Mean of actions

(b)

Fig. 4.16 Clustering the explored configurations in the lane-keeping scenario. (a) shows
all-new exploration by the learner through one step and (b) shows the clustered configurations
and the corresponding mean action value to them.

related to lane-keeping and lane-changing. New experiences are modified by the action
selection by exploiting new appended actions through the online learning phase and resolving
L’s uncertainty about the surrounding environment. Fig. 4.18 and Fig. 4.19 illustrate the
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Configuration

Action

(a)

Cluster

Mean of actions

(b)

Fig. 4.17 Clustering the explored configurations in the lane-changing scenario. (a) shows
all-new exploration by the learner through one step and (b) shows the clustered configurations
and the corresponding mean action value to them.

clusters of the reference FP-M (circles in gray) and the newly learned ones that are appended
to the reference model (circles in yellow) in two different examples when L aims to overtake
the dynamic object V.

The corresponding Π is updated by adding new rows and columns that represent the
newly learned configurations as shown in Fig. 4.20-(b) and Fig. 4.21-(b) and the transition
matrix Π of the reference FP-M are shown in Fig. 4.20-(a) and Fig. 4.21-(a). Comparing
sub-figures (a) and (b) in each Fig. 4.20 and Fig. 4.21 shows how the transition matrix of the
FP-M are expanded after L has explored and learned new situations allowing to predict the
environmental dynamics in the future better and consequently select effective actions. Such
an incremental learning process under AIn endows L with the capability of understanding
the best set of actions it should perform to avoid surprising states.

L adopting the proposed AIL method has higher successful movements than IRL, SL,
Q-learning, and DQN, as depicted in Fig. 4.22. Two factors directly affect the success of
the learner travel in each episode: the probability of going out of the boundary and the
collision probability. As we mentioned earlier, each episode includes ten steps (ten full
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New cluster

Cluster of FP model

Fig. 4.18 This figure shows the incremental learning of the model through the online learning
phase. The gray circles show the clusters that belong to the FP-M, and the yellow circles
present the newly added clusters to the AFP-M, which is learned through the exploration.

New cluster

Cluster of FP model

Fig. 4.19 This figure shows another example of the incremental learning of the model through
the online phase. The gray circles show the clusters that belong to the FP-M, and the
yellow circles present the newly added clusters to the AFP-M, which is learned through the
exploration.

paths). Obviously, with two factors decreasing at each step, the growth of the success steps
led to an increase in the successful travel in each episode. By way of explanation, during
the exploration, the model minimizes the FE measurement at the DL (FDL) at time k, which
causes the resemblance between predictions and evidence at the CL.

In total, by optimizing the global FE defined in (4.25) in the unseen situations, the learner
can manage to avoid a collision with another agent or going out of the boundary. Fig. 4.23
shows the collision probabilities in each episode. We observe that the collision probability
decreases as the number of episodes increases.
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(a) (b)

Fig. 4.20 This figure is based on Fig. 4.18. (a) describes the transition matrix related to the
FP-M in case of lane-changing from the right side that includes 12 cells, and (b) shows the
transition matrix with 21 cells after learning a new set of clusters (yellow circles in Fig. 4.18)
that explains how the number of clusters increases in each online learning step.

(a) (b)

Fig. 4.21 This figure is based on Fig. 4.19. (a) describes the transition matrix related to the
FP-M in case of lane-changing from the left side that includes 24 cells, and (b) shows the
transition matrix with 31 cells after learning a new set of clusters (yellow circles in Fig. 4.19)
that explains how the number of clusters increases in each online learning step.
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Fig. 4.22 Success rate to accomplish the task.
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Fig. 4.23 Analysis of the learning process: collision probability.
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Fig. 4.24 Analysis of the learning process: going out of boundary probability.

Moreover, Fig. 4.24 presents the probabilities of going out of the boundary that starts
with 62% and, during the learning, dramatically declines to 0%. Fig. 4.23 and Fig. 4.24
justifies the L behavior in Fig. 4.22.

The experimental results demonstrate that the proposed method enabled L to learn bet-
ter driving skills than other RL methods. Integrating IL with AIn gives L a prior driving
experience, accelerating the learning rate and improving the driving policy. The presented
quantitative results prove that the proposed method improves the IL using expert demon-
strations by taking advantage of sub-optimal reference data (exploitation) and dynamically
involving FE measurements at both DL and CL to minimize the distinction between the SM
and AFP-M.

Furthermore, qualitative results show the ability to manage critical situations. Fig. 4.25
shows some representative cases of different scenarios. L’s activated motion, the dynamic
candidate motions, and the expert driving action (the ground truth) are displayed with blue,
grey, and green arrows, respectively. The associated probabilities to the candidate motion
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(a) (b) (c)

Fig. 4.25 In three cases, the learner agent’s preference (blue arrow) is similar to the expert
behavior (green arrow) in the same situation. Also, the agent has learned to keep a safe
distance (gray dashed line) with another dynamic agent.

Table 4.1 This table shows the probability of actions selection by learner agent in Fig. 4.25
where it changes the lane to the left and right side, also where it keeps the lane. For each
case, a1, a7, and a4 is the selected action, respectively, with the highest probability.

probable actions a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11

selection
probability(%)

lane changing
- to left 64.843 21.021 8.008 2.374 2.152 1.042 0.184 0.133 0.122 0.087 0.034

lane changing
- to right 0.021 0.040 0.089 2.201 2.325 18.191 48.717 22.052 3.264 1.905 1.195

lane keeping 0.682 1.736 4.158 89.30 3.616 0.339 0.135 0.014 0.011 0.003 0.002

are depicted in Table. 4.1. In each case of decision (lane-keeping, change to the left, and
change to the right), the most likely motion to the expert is selected, which has the highest
probability than other candidates. Table. 4.1 shows the probability percentage of the activated
actions in all three cases.

4.5.5 Imitation Loss

Our goal is to find the best set of actions that minimize imitation loss in terms of FE
measurements. Fig. 4.26 shows that the normalized global FE (G ) drops capably in less
than 50 training episodes, and after 200 episodes, its value continues to decrease below 0.1.
Moreover, Fig. 4.28 shows the G performance considering different L’s preference, i.e., to
keep following the other dynamic agent V, overtake from the left side or overtake from the
right side.

Two main factors affect the global FE: the motion distinction at time k and the divergence
at time k + 1 after performing a specific action by the L agent. Fig. 4.29 illustrates the
imitation loss during the online active learning phase. We prove that our method can
minimize the motion distinction (FDL), which is under the control of action selection at each
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Fig. 4.26 Global Free Energy measurement G . The red circles show the FE measurement
through three slots of learning: (a) shows the beginning of training when the learner tries to
experience the new action, in (b) the FE is declined cause improving the action selection, and
at (c) learner could decrease the distinction with the expert configurations. Fig. 4.27 shows
the three trajectories based on the mentioned measurements.

Learner transition

Dynamic object

(a)

Learner transition

Dynamic object

(b)

Learner transition

Dynamic object

(c)

Fig. 4.27 This figure shows three trajectories based on the selected FE measurements in
Fig. 4.26. In (a), the learner can not balance exploration and exploitation yet. By decreasing
imitation loss and improving the explored actions, the learner finishes the travel by taking
fewer actions as demonstrated in (b), and (c) shows a successful travel with suitable actions
concerning the dynamic object’s situation.

instant. Further, improving the action selection process leads to minimizing the divergence
(FCL) between prediction and evidence. Therefore, by minimizing the imitation loss in both
cases, L learns to maximize the likelihood with the E behavior and overtakes the unobserved
situation. In addition, Fig. 4.30 shows that the proposed AIL is capable of achieving higher
imitation rates than other learning methods.

Fig. 4.31-(a)-(b) presents the performance of the proposed method (AIL) in terms of
success rate, collision rate, and out of boundary rate during training and testing, respectively.
Also, Fig. 4.31-(a)-(b) provides a comparison with other methods. It is shown that the
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Fig. 4.28 Free Energy measurement in three cases: lane-changing from left, lane-changing
from right, and lane-keeping.

Im
it

at
io

n
 lo

ss
 (

ac
ti

o
n

-b
as

e
d

)

Episode (a)

Im
it

at
io

n
 lo

ss
 (

st
at

e
-b

as
e

d
)

Episode (b)

Fig. 4.29 Analysis of the imitation process after 500 training episodes (5k path): (a). Motion
distinction. This figure shows the motion difference between the learner and the expert agent
through the online learning active learning phase at time k. (b) Divergence measurement.
This figure shows the divergence between the learner and expert agent state after taking
action at time k+1.

proposed method (AIL) performs best among all methods (during training and testing),
which is attributed to the effectiveness of the decision-making while dealing with dynamic
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Fig. 4.30 Imitation loss: comparing different learning techniques.

Table 4.2 Results after 500 training episodes. * In the SL method, there are no optimal expert
demonstrations.

AIL DQN Q-learning SL IRL
train

success % 97.21 92.12 86.51 60.00 92.10
collision% 0.93 3.89 9.98 21.08 2.57

out of boundary% 1.86 4.00 3.51 18.92 5.33
imitation rate 0.974 0.712 0.349 * 0.542
imitation loss 0.026 0.288 0.651 * 0.458

action loss 0.013 0.135 0.341 * 0.235
state loss 0.012 0.153 0.310 * 0.223

number of taken action(mean) 25 44 42 64 60
test

success% 97.96 82.01 76.13 70.50 78.92
collision% 0.70 6.33 15.30 19.83 9.54

out of boundary% 1.34 11.66 8.57 9.67 11.54

changes in the environment that improve the success rate by preventing going out of boundary
and avoiding collisions.

Besides, during testing, results showed that by 5k training episodes, the agent can change-
line to overtake the other dynamic agent in the environment effectively while other methods
still have high collision probabilities, as shown in Fig. 4.32. Correspondingly, Table. 4.2
summarises the performance metrics and presents the comparison with other methods.
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Fig. 4.31 (a) shows the training results after 5k iterations. AIL has less training loss (colli-
sion and going out of boundary) than other methods, and it causes more training success
percentage. (b) demonstrates the testing results through the 500 paths. The testing paths
have different start positions than the training, and the dynamic object moves with different
velocities during the training phase. It shows that the trained agent by AIL can achieve a
high success percentage in the new environment.
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Fig. 4.32 The result of overtaking loss from a dynamic object during changing-line.
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4.6 Model II - Employ modified MJPF to Active Inference

During the online learning phase, L utilizes a hybrid mechanism combining IL with AIn to
acquire efficient exploratory actions and adapt quickly to new tasks. Particularly, the Markov
Jump Particle Filter (MJPF) is implemented to perform joint predictions of configurations
and GSs during the online learning phase (see Fig. 4.33). The incremental learning procedure
involves five main steps: 1)prediction and perception, 2) action selection, 3)transition model
update, 4) FE measurement, and 5) action updates. The logic of the AIn approach is reported
in Algorithm 2.
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Fig. 4.33 Active First-Person model

4.6.1 Prediction and Perception

A Modified Markov Jump Particle Filter (M-MJPF) is employed that uses a combination
of Particle Filter (PF) and Kalman Filter (KF) to provide various probabilistic inference
modes, namely, predictive inference and diagnostic inference. In the former mode, pre-
dictive messages holding beliefs in hidden states at multiple levels are propagated in a
top-down manner. In the latter mode, diagnostic messages are fed back in the opposite
direction from bottom-to-up of the hierarchy to update beliefs in hidden variables given a
sequence of observations and calculate FE and GEs. First, PF propagates a set of N particles
equally weighted using a specific row (π(Dk)) in ΠD as a proposal distribution, such that,
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{Dk,n∼π(Dk),Wk,n=
1
N}. Then, for each particle n, a KF is employed to predict the GS as

pointed out in 4.9. The predicted GS depends on the prediction done at the higher level,
which can be written as a condition probability P(X̃k|X̃k−1,Dk,n). The posterior probability
associated with the predicted configuration is given as follows:

π(X̃k) = P(X̃k,Dk,n|Z̃k−1) = ∫
P(X̃k|X̃k−1,Dk,n)λ (X̃k−1)dX̃k−1, (4.28)

where λ (X̃k−1) = P(Z̃k−1|X̃k−1). Accordingly, a diagnostic message backward propagated
from bottom-to-up of the hierarchy once a new sensory signal Z̃k is measured can be exploited
to update the posterior P(X̃k,Dk,n|Z̃k) according to:

P(X̃k,Dk,n|Z̃k) = π(X̃k)λ (X̃k), (4.29)

where λ (X̃k)=P(Z̃k|X̃k). Likewise, the likelihood message λ (Dk) propagated towards the
top level can be used to change the belief in the hidden discrete states by updating the
particles’ weight according to:

Wk,n=Wk,n×λ (Dk), (4.30)

where λ (Dk)=λ (X̃k)P(X̃k|Dk) is a probability discrete distribution and P(X̃k|Dk)∼N (µ̃Dk ,ΣDk).
After updating the weights, PF uses the sequential importance resampling (SIR) to assign
new weights to be used in a successive instant.

4.6.2 Action Selection

The action selection process is based on the updated particles’ weights to decide whether to
exploit actions by imitating the learned configurations or to explore new actions that minimize
FE (maximize rewards) in the future. L decides between exploration and exploitation by
using two parameters, namely, the exploration rate (ε) and a varying threshold (t) which is
defined based on a trial-and-error process. The exploration rate is defined as:

εk = 1−αk, (4.31)
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where αk is the largest weight among all the N particles measuring the likelihood between
the current L configuration and the memorized configurations, such that:

αk = max
n

Wk,n, (4.32)

where 0 ≤ αk ≤ 1. So, if αk is near 1, εk becomes very low, which means that current
observation matches L’s expectation and so it can exploit the same actions performed by E.

Thus, the action selection process depends on the decision made by L whether to explore
or exploit according to:

ak ∼


µ

Dβ

k
V = argmax

ak

Q(A ,Dβ

k ), if ε < t (exploitation),

random from A +, if ε ≥ t (exploration),
(4.33)

where ak are the active states (i.e., actions) realizing the top level of the AFP-M, A =

{A E,A +,A †}, where A E = {aE
1 ,a

E
2 , . . . ,a

E
Y} is a set of actions performed by E and en-

coded in SM that L aims to imitate during the exploitation (a greedy policy). Moreover,
A + = {a1,a2, . . . ,a8} is a set of predefined actions realizing eight different directions2 used
during the exploration and A † is the set of new explored actions after performing clustering
(as we discuss later in this section). In addition, Dβ

k is the most similar learned configuration
to the observed one, and β is the particle’s index with the maximum weight associated with
(4.32) defined as:

β = argmaxn (Wk,n) (4.34)

4.6.3 Transition Model update

The dynamic transitions among the learned configurations at the top level of the hierarchy are
encoded in a transition matrix (Π) that can be learned by estimating the transition probabilities
P(Dk+1|Dk) as:

Π =

P(D1|D1), . . . , P(D1|DM)
... . . . ...

P(DM|D1), . . . , P(DM|DM)

 , (4.35)

where ∑
M
m P(Dp|Dm) = 1 such that p,m∈M. During exploration, L saves the newly explored

configurations D+
k along with the performed actions a+k ∈A + in a set C . After completing

a certain number of experiences that requires τe episodes, L clusters all the pairs [D+
k ,a

+
k ]

saved in C by employing the GNG that outputs a set D† = {D†
1,D

†
2, . . . ,D

†
M†} of M† clusters

2The eight directions are North, South, East, West, North-West, North-East, South-East, South-West.
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representing the new configurations (D†
m ∈ D†) and a set A † representing the corresponding

actions. The new configurations and actions in sets D† and A † can be appended incrementally
to a probabilistic table (Q) that can be exploited in the future.

In addition, L updates the transition model defined in (4.35) during exploration by adding
new rows and columns which are related to the novel configurations learned incrementally as
follows:

Π
∗ =

[
Π Π†

Π‡ Π††

]
, (4.36)

where Π† ∈ RM,M†
, Π‡ ∈ RM+M†,M , Π†† ∈ RM+M†,M+M†

encode the new probability tran-
sitions corresponded to the new configurations (i.e., the output of the GNG that takes in
input C ) appended to the updated transition matrix (Π∗). Moreover, during exploitation, L
modifies and update the transition matrix (Π) by decreasing the probability of transiting from
Dk−1 to Dk after selecting action ak−1 as:

Π(Dk−1,Dk) = Π(Dk−1,Dk)+ ε̃Dk , (4.37)

where ε̃Dk is the GE at the discrete level that plays the role of a dynamic force to evaluate the
L’s transitions, which is defined as:

ε̃Dk = λ (Dk)−π(Dk). (4.38)

4.6.4 Free Energy Measurement

L evaluates its accomplishments by comparing predictions with sensory input to the AFP-M
in terms of FE computation. We aim to find a policy where L’s behavior matches the reference
demonstrations. For this purpose, our objective is to minimize the divergence between what
L is expected to observe after taking a certain action and what is the actual observation under
both exploration and exploitation. Hence, the expected FE at the CL is calculated based on
the Bhattacharyya distance [76] to evaluate how much the observation supports predictions:

ϒX̃k
= DB

(
π(X̃k,λ (X̃k))

)
=− ln

(
BC

(
π(X̃k),λ (X̃k)

))
, (4.39)

where BC (.) =
∫ √

π(X̃k)λ (X̃k)dX̃k is the Bhattacharyya Coefficient.
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Algorithm 3 Active Inference
Input: TM, D, Q← Transition Matrix, Configurations, QTable
1: for k = 1 to K← Time evolution do
2: for n = 1 to N← Particles do
3: if k == 1← Initial iteration then
4: Initialization:
5: P(X̃0)∼N (µX̃0

,ΣX̃0
)← prior distribution

6: Sample X̃k ∼ P(X̃0)
7: P(D0) = U {1, |Dm|} ← uniform distribution with pmf= 1

|Dm |
8: Sample Dk ∼ P(D0)
9: Wk,n =

1
N ← particle weight

10: else
11: Dk,n ∼ TM(Dk−1,n)← proposal from transition matrix
12: Prediction at the continuous level:
13: X̃k = AX̃k−1 +Bµ̇Dk,n +wk ← predicted distance btw L and O
14: ΣX̃ = AΣX̃k−1

A⊺+ΣDk,n ← the predicted covariance
15: π(X̃k)∼N (µX̃k

,ΣX̃k
)← Predictive msg

16: end if
17: Receiving observation Z̃k (relative distance btw L and O)
18: λ (X̃k) = P(Z̃k|X̃k)
19: Yk = Z̃k−HX̃k ← Kalman Innovation
20: Ek = H−1Yk ← Generalized Errors
21: λ (Dk) = λ (X̃k)P(X̃k,n|Dk,n)
22: FE measurement:

23: ϒX̃k
=− ln

(
BC

(
π(X̃k),λ (X̃k)

))
24: Update:
25: Wk,n = Wk,n×λ (Dk)← updated weight
26: SIR resampling
27: Wk+1,n =

1
N

28: end for
29: [ak , C ] = ACTION SELECTION

(
Wk,n

)
◃ the effect of ak will be evaluated at k+1

30: Update Q using (4.40)← action update
31: end for
32: [D†,A †] = GNG

(
C
)

33: Q.append(D†)
34: Q.append(A †)
35: TM† = TM.append(D†) according to (4.37)

Algorithm 4 Action selection
1: function Action Selection(Wk,n)
2: β = argmax

n
Wk,n ← index of max

3: α = max
n

Wk,n(Dk,n)← value of max

4: The corresponded configuration to β presents the activated reference configuration
5: Dactive

k = Dk,β .

6: ρ ← Threshold for adding new configuration
7: ε = 1−α ← exploration rate
8: if ε < ρ then
9: ak ∼ µDk,β

V = argmax
ak

Q(A ,Dk,β )← exploitation

10: else
11: a+k ∼ random from A + ← exploration
12: save [D+,a+k ] in C

13: end if
14: return ak,C
15: end function
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L believes that a certain action allows it to imitate the E’s behavior during exploitation
correctly or allows it to approach towards the E’s reference vocabulary as soon as possible
during the exploration

4.6.5 Action Update

L aims to improve the action selection that minimizes the cumulative FE (C-FE). L adapts
the action selection process by updating Q based on the FE expressed in (4.39), also since Q
is a probabilistic table, it can be rewritten in probabilistic form as follows:

Q∗ = (1−η)P(ak−1|Dk−1)+η

[
(1−ϒ̄X̃k

)+ γ max
ak

P(ak|Dk)

]
. (4.40)

where η is the learning rate that controls how quickly the learning agent adopts to the
explorations imposed by the environment, ϒ̄X̃k

is the normalized FE measurement with a
range from 0 to 1, and γ is a discount factor as in the general case of RL algorithms.

Modifying and improving the beliefs under AIn allows L to motivate the exploratory
actions to seek to extend its knowledge and resolve uncertainty in a Bayesian hierarchical
structure. Furthermore, the evaluation relies on the dynamic forces computed using the GEs
that can be treated as self-information to reach equilibrium.

4.7 Simulation and Performance Evaluation - Model II

4.7.1 Experimental Data Set

The proposed framework is validated using a real dataset consisting of multisensorial in-
formation collected from two AVs, ’iCab 1’ and ’iCab 2’ [91]. The vehicle’s positional
information and the corresponding velocities are obtained from the odometry module to
consider the lane-changing scenario when iCab2 needs to change its home lane to overtake
iCab1 without collision.

4.7.2 Offline Learning Phase

This section shows the process of learning the SM from sensory data while the NFF is used as
an initial filter employed on the collected data. NFF outputs the GEs, which can be clustered
using GNG that outputs a set of discrete clusters representing the discrete regions of the
trajectories generated by E and O. The collected sensory data are processed as explained in
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Fig. 4.34 Learning the Situation model. a) iCab2 overtakes iCab 1 from the left side, b)
Clustering of GEs, c) corresponding Transition Matrix (Π).

4.3.1. The SM represents 24 joint clusters (D = D1,D2, ...,D24) that encode the dynamic
interaction between two participants in the environment (see Fig. 4.34).

Additionally, in the offline learning phase, Q is initialized from the FP-M (explained in
4.3.2). Thus it contains 24 learned configuration based on the observed interactions in SM
and their associated actions such as:

Q =

D1 D2 . . . D24

a1

a2
...

a24


1
24

1
24 . . . 1

24
1

24
1

24 . . . 1
24

...
... . . . ...

1
24

1
24 . . . 1

24

 .
(4.41)

4.7.3 Online Learning Phase

During the online learning phase, L develops Q during 5k training episodes in a simulated
environment, where the direction of the dynamic object (i.e., an obstacle (V) is changing.
We evaluate the performance of the proposed method and compare it with three learning
algorithms, conventional Q-learning, inverse reinforcement learning (IRL) when optimal
expert data is available, and self-learning (SL) in RL context without access to the expert
data.

The action selection procedure plays an essential role in decreasing the divergence be-
tween prediction and observation by balancing the exploratory and exploitative movements,
which is one of the most challenging tasks in RL. Modifying the action selection through
adapting novel experiences minimizes the exploration rate that causes lower FE in the future.
Fig. 4.35 demonstrates how increasing the exploitation rate (in order to decrease the explo-
ration) reduces FE. Furthermore, Fig.4.36 illustrates how using GNG to cluster the newly
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Fig. 4.35 The graph illustrates the exploitation and exploration rates after each training
quarter and their effects on the FE.

experienced configurations during the online learning phase decreases the FE measurement
satisfying and accelerates the convergence between the expectation and evidence rather than
applying the approach without employing GNG.
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Fig. 4.36 The figure shows how cumulative FE measurement converges properly by taking
advantage of GNG in the online phase.

Our goal is minimizing the imitation cost in terms of FE, Fig. 4.37 shows three trajectories
based on three different times while learning the model (i.e., after a quarter, after a half,
and after full training). In Fig. 4.37-(a), L can not balance the exploration and exploitation
yet. By improving the action selection policy and decreasing FE, L can finish the travel by
performing more optimized actions than previous episodes (Fig. 4.37-(b)), and Fig. 4.37-
(c) shows a successful mission with the suitable actions concerning the dynamic object’s
situation. Furthermore, Fig. 4.37 shows that L learns lane-changing to overtake the object
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Fig. 4.37 In (a), the learner experiences new actions by exploration. In (b), by balancing
the exploration and exploitation, the learner reduces the distinction between the observation
(i.e., the trajectory that it is following) and prediction (i.e., the trajectory that it is supposed
to follow), and (c) shows how the learner minimizes the divergence and performs suitable
actions concerning the dynamic object during training.

from both the right and left side through exploratory behavior, also Q and the corresponding
transition matrix are expanded incrementally (as discussed in 4.6.2).

While L is trained to have an opportunity to gain new experiences from the environment’s
dynamic, it follows the expected predictions to accomplish its task. L records newly explored
configurations along with the performed actions in the exploration stage. Then it clusters the
newly recorded pairs (as discussed in 4.6.2) to calculate the mean and the derivative of the
corresponding clusters in order to have probabilistic data in line with the FP-M. Fig. 4.38
describes the clustering stage during the online learning phase and shows the incremental
learning process. Fig. 4.38-(a)-(b)-(c)-(d) shows how the model evolves incrementally during
training by adding the novel learned configurations (or clusters) after applying GNG during
the online learning phase. Fig. 4.39-(a)-(b)-(c)-(d) demonstrates the mean action value of
each cluster, and Fig. 4.40-(a)-(b)-(c)-(d) illustrates the corresponding transition matrices
which are expanding during the training stage.

(a) (b) (c) (d)

Fig. 4.38 Clustering process of the explored configurations and actions during the online
phase. This figure shows the output of GNG (i.e., clusters) after each training quarter.
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(a) (b) (c) (d)

Fig. 4.39 The associating mean action to each cluster.

(a) (b) (c) (d)

Fig. 4.40 The sub-figures illustrate how in each training quarter the transition matrix evolves
by adding incrementally the new clustered configurations.

We prove the proposed approach can minimize the FE through the online learning phase
under the effect of action selection modification at each instant. Further, correcting the
actions and updating Π cause convergence between prediction and evidence that leads L
to maximize the reward amount (1−ϒ̄X̃k

), as pointed out in (??). L learns to maximize the
likelihood with E behavior and overtake the unobserved situation (i.e., lane-changing from
the right side of a dynamic object). Fig. 4.41 shows that the proposed method achieves a
higher cumulative reward in a shorter time than other learning methods. Results show that
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Fig. 4.41 Performance comparison in terms of cumulative reward.

with 5k training episodes, the agent can effectively overtake the other dynamic agent in the
environment, while this is still challenging for other methods.



4.8 Conclusion 91

4.8 Conclusion

This chapter introduced two system models for autonomous driving in a dynamic environment.
In Model I - Active Inference integrated with Imitation Learning, a framework is proposed
to integrate active inference with imitation learning (i.e., AIL) for autonomous vehicles.
The presented AIL framework is based on learning a situation model encoded in a coupled
Generalized Dynamic Bayesian Network explaining the dynamic interactions between two
moving vehicles (i.e., an expert agent and a dynamic object). The situation model is used
to initialize a First-Person model, which the learner agent can use to predict expert-object
dynamic interactions and evaluate the situation. During the online process, the learner agent
is equipped with an Active First-Person model consisting of the First-person model and
active states representing actions, thus enriching the learner agent with the capability to
predict expert dynamics and expected relative distance from a moving object in order to
perform efficient actions. The learner agent relies on an abnormality indicator that measures
how much observations support its expectations to decide whether to imitate the expert’s
behavior under normal situations or explore new actions in abnormal situations (i.e., unseen
by the expert). Under the active inference approach, we showed how the learner could learn
a new set of configurations and actions incrementally that allow the learner to optimize
internal predictions (about the surrounding environment) and action selection (to come near
the situation model) jointly, leading to free energy minimization. Experimental results have
shown that perceptual learning and inference are required to induce prior expectations about
how new experiences and abnormalities unfold. Action is being taken to resample the world
in order to meet these expectations. This places perception and action together to drive
solely based on the free energy measurement policies and conducts experiments regarding
general applicability to autonomous driving and generalization between different changes
in dynamic environments. In addition, results have indicated that the proposed approach
outperforms reinforcement learning methods such as Q-learning, double Q-learning, and
inverse reinforcement learning in terms of the number of selected actions, successful travel
rate, collision probability, going out of boundary probability, and imitation loss.

Model II - Employ modified MJPF to Active Inference proposed a hybrid mechanism
integrating active inference with imitation learning to enhance autonomous driving skills.
Particularly, the Markov Jump Particle Filter is implemented to perform joint predictions
of configurations and Generalized States during the online learning phase. The proposed
approach allows a learning agent imitates suboptimal driving policy based on a probabilistic
situation model (encoded in a coupled Generalized Dynamic Bayesian Network) learned from
expert demonstrations, adapt to dynamic changes in the environment (i.e., unseen situations),
and perform safe movements without colliding with another dynamic object interacting in
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the environment. This section showed how the learner’s predictive capability allows deciding
whether to exploit the expert’s policy during normal situations (experienced by the expert)
or to explore new actions and update the dynamic model incrementally during abnormal
situations (newly discovered). It demonstrated that the learner’s objective is to take the best
set of actions during both the exploration and exploitation phases that minimize the free
energy (or maximize reward). Experimental results show the effectiveness of the proposed
method in imitating optimal expert’s driving policy and adapting to unseen situations to
accomplish a takeover task. In addition, results have indicated that the proposed approach
outperforms other reinforcement learning methods.



Chapter 5

Exploring Action-Oriented Models via
Active Inference for Autonomous Vehicles

5.1 Introduction

Autonomous driving systems (ADS) are generally partitioned into a hierarchical structure,
including perception, decision making, action planning, and vehicle control [28]. Perception
and navigation in a dynamic environment have been a long-standing challenge in AVs. In
addition to the complexity of the decision-making systems that might provoke errors causing
performance degradation and lead to severe situations (e.g., collisions) [63]. Performing
suitable actions according to the dynamic environmental changes around the AV significantly
impacts error minimization. Thus, action planning is still a challenging task responsible for
safety and efficiency. It should consider the feasibility constraints in a kinematic and dynamic
manner based on the information about the perceived environment and the reasonable
prediction of the other contributor’s behaviors. Moreover, it should be able to generate
optimal or semi-optimal maneuvers that provide suitable driving quality, such as exactitude
and consistency.

Satisfying the earlier requirements mandates an efficient theory capable of representing
causal relationships in the world and providing optimal behavior in highly uncertain environ-
ments. In addition, for an AV to reach a high level of autonomy, it must be equipped with SA.
Recent progress in signal processing and ML allows an intelligent learning agent to achieve
a SA model by observing multi-sensorial data from an accomplished task by an expert agent.

A SA autonomous system constantly deals with continuous and potentially overwhelming
signals from the agent’s sensors and their interaction with the dynamic surrounding. For
learning and adaptation, the IA must transform the sensory inputs into a reliable perception
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of the world. One of the ultimate goals of artificial intelligence is to construct autonomous
agents capable of human-level performance. Motivated by this, CS has debated how exactly
the brain carries out the learning activities. While previous researches propose perception
primarily as a bottom-up readout of sensory signals, emerging Bayesian models suggest,
instead, that perception is cognitively modulated and might be best viewed as a process
of prediction based on an integration of sensory inputs, prior experience, and contextual
cues [106, 98].

The brain executes the Bayes rule to perceive the world by continuously generating a
top-down cascade of encoded hypotheses about environmental states and processing bottom-
top projections of sensory inputs compared with the prior hypothesis’s top-down flow [70].
Any mismatch between top-down predictions and bottom-up sensory responses results in
prediction errors, prompting the system to refine its hypotheses. Thus, there is a strong link
between bottom-up perception and top-down prediction, allowing to continuously update
the priors to better predict the subsequent incoming sensory inputs and minimize errors. In
this view, experiences are necessary because they assess how good the model is and give a
hint to correct future predictions through the computation of prediction errors. As a result,
ascending projections do not capture the characteristics of a stimulus but rather how surprised
the brain is by it, given the strong link between surprise and model uncertainty [116].

Consequently, AIn has emerged as a novel theory explaining the idea that the brain is
essentially a prediction and inference machine that actively attempts to predict, experiment
with, and comprehend its surroundings [34, 114, 94]. Perception and action are strongly
linked in AIn in order to minimize the FE [52], both coming from the brain’s beliefs about
the world and being constrained by sensory inputs from the environment [8].

In this section, motivated by the above discussion and previous work [102], we introduce
a SA framework empowered by AIn to improve ADS. The proposed framework consists of
three main modules: a multi-modal perception module, a global learning module (world
model) and an active learning module. Thus, an AV (learning agent) equipped with SA
is capable of learning how to self-drive in a dynamic environment while interacting with
another moving agent (i.e., vehicle).

The multi-modal perception module allows the AV to perceive the external world as a
bundle of exteroceptive and proprioceptive sensations from multiple sensory modalities (e.g.,
positional information from GPS sensors, images from cameras, point clouds from Lidar,
etc.) and to be able to integrate information from different sensory inputs and match them
appropriately. In this work, the AV integrates proprioceptive stimuli (i.e., AV’s positions) with
exteroceptive stimuli (i.e., the relative distance between AV and another object), describing
the integration process using Bayesian inference. The AV relies on the global world module
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to encode the dynamics of the surrounding environment that is structured in a hierarchical
representation. The idea is to use hierarchical representations underlying multisensory
integration to explain best how sensory data are caused in multiple modalities.

The global learning module consists of a situation model (SM) representing the dynamic
driving behaviour of an expert agent interacting with another agent in the environment that
is learned from demonstrations and a First-person model (FP-M) enabling the third-agent
(i.e., AV) in first person view, so that AV can experience a certain driving task from the
expert’s real perspective. The situation and the First-person models are represented in
Coupled Generalized Dynamic Bayesian Networks (C-GDBNs). The former is composed of
two GDBNs representing the two agents interacting in the environment where their hidden
variables are stochastically coupled (variables are uncorrelated but have coupled means),
and each GDBN has its own private observation. Likewise, FP-M represents the stochastic
coupling of the interaction between AV and another agent and the AV’s behaviour using a
C-GDBN.

The active learning module connects the internal models that the AV holds with the
decision-making process by enriching the FP-M with active variables representing the set
of actions that the AV can perform and so creating the Active First-Person model (AFP-M).
This endows the AV with the capability to predict what will happen next in the surroundings
and evaluate the environmental situation to understand how it should behave in first person.
Hence, the AV can either follow an offline planned task by executing expert-like manoeuvres
during normal situations (i.e., situations experienced by the expert) or by planning at run-
time and learning incrementally to resolve uncertainty during unexpected situations (i.e.,
situations not experienced by the expert). To this purpose, we implement a hybrid mechanism
by pulling together imitation learning and active inference, inspired by the brain learning
procedure that typically integrates the agent’s prior knowledge and its actual observations.
The AV uses the mismatches between prediction and observations to jointly improve future
predictions and actions to minimize future FE (i.e., prediction errors).

The major contributions of this section are summarized as follows:

• It advances a probabilistic computational account of action, observation and imitation
abilities grounded in the framework of active inference. While our proposal is domain-
general, in this paper, we illustrate it using driving tasks (i.e., lane changing) in a
dynamic environment, where a naive learning agent infers and imitates the actions
executed by an expert agent.

• The proposed approach enables AV to follow an offline planned task by executing
expert-like overtaking manoeuvres in automated driving systems while still taking
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autonomous decisions at run-time and learning incrementally to adapt to unexpected
situations.

• A probabilistic framework is developed to solve the exploration-exploitation dilemma
by foreseeing actions that minimize the prediction errors and establish a solid founda-
tion for further research on the representation and learning of concepts in a cognitive
environment by an autonomous agent.

• An online evaluation of joint state predictions is applied to update the belief during
the back-projection of detected errors at continuous and discrete levels. We employ a
Bayesian sequential decision-making model (i.e., Particle filter, Kalman filter) to distin-
guish exploration and exploitation processes, which train AV to generate the preferred
performance or explore a new course of actions based on its sensory observations and
new information provided by the perception of the surrounding.

• Extensive simulations on various overtaking tasks illustrate that the performance of the
proposed approach outperforms that of RL. Furthermore, we discuss how clustering of
new experiences might affect the performance of the AV in generalizing what has been
learned so far to unseen situations.

5.2 System Model - Self-awareness Architecture for Au-
tonomous Driving

The proposed SA architecture depicted in Fig. 5.1 is composed of several modules forming the
perception-action cycle that links an AV to its environment. When facing a new situation, an
AV makes sense of the external world by creating and testing hypotheses about how the world
evolves. It makes predictions based on prior knowledge acquired from past experiences, takes
actions based on those hypotheses, perceives the consequences, and adjusts the hypotheses.
The different modules in the architecture can be seen as different areas of the biological
brain, each one handling particular functionalities. Some parts handle sensory perception,
such as seeing, while others handle planning and decision-making. All parts of the brain
work together, with messages following between them. As shown in Fig. 5.1, the hierarchical
message passing through the levels is not regarded as a straightforward action-feedback
mapping. It is represented by inferences and perceptions across different modalities of
proprioceptive and exteroceptive sensory signals. Learning this association allows the model
to predict the perceptual consequences of acting. Additionally, the model must use these
representations to reduce prediction errors and predict how sensory signals change under
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Fig. 5.1 A general schematic of the proposed Self-Awareness architecture for autonomous
driving.

specific actions. The following sections present a detailed description of the different modules
involved in the architecture.

5.2.1 Dynamic External World

We approach SA from a multi-sensory signal processing perspective in a non-stationary
environment. The environment is considered dynamic due to the changing through the agent
transitions and simultaneous other processes operating on it. The agent is equipped with
exteroceptive sensors to observe the environment and proprioceptive sensors to measure the
internal parameters. Accordingly, the agent continuously collects multisensorial data by
observing itself and its surroundings and processes the collected data to learn a contextual
dynamic representation.
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5.2.2 Multi-Modal Perception

A perception system is employed for learning the interaction between an agent and another
dynamic object based on multimodal perception using multi-sensorial information. Multi-
modality enables the model to leverage the presented sensors to identify causalities between
multisensory data perceived by the agent. Leveraging multiple sensors to perceive informa-
tion about the environment is thus crucial when building a model to perform predictions
about the agent’s dynamics to do motion planning. The perception of multimodal stimuli is
an important capability that provides multimodal information in various conditions to enrich
the scene library of autonomous driving models.
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Fig. 5.2 Exteroceptive and proprioceptive information are indexed as e and p, respectively.
The orange links describe causalities between both, continuous (X̃) and discrete (S) levels
of inference and observed measurements, and the blue links connect both exteroceptive and
proprioceptive DBN. This coupling facilitates to model interactions between multisensory
data to encode the agent’s contextual information.

Fig. 5.2 combines exteroceptive and proprioceptive perception to model a contextual
viewpoint for making inferences about future perceived information. Consequently, the
context comprises the internal and external perceptions of the agent at each time instant.
The main idea is to use such information to predict the following internal or external states.
Therefore, the movement of both agent and dynamic object is simulated at each instant by
interacting rules that depend on their positions and motions to generate coupled trajectory data.
The purpose of analyzing such multisensory data is to encode the coupled agents’ dynamic
interaction as probabilities into a C-GDBN model. The obtained dynamic interaction model
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is self-aware due to its ability to measure the abnormalities and incrementally learn newly
interacting behavior derived from an initial one that affects the agent’s decision-making.

5.2.3 Global World Model

The world model (WM) plays a simulator role in the brain, and such consideration leads us
to take inspiration from the mechanism whereby the brain learns to perform sensorimotor
behaviours [79]. In the presented architecture, we obtain the WM using GMs through the
interacting experiences from multimodal sensory information. The WM consists of two
models, the Situation model (SM) and the First-Person model (FP-M). The SM is an input
module that demonstrates the collected sub-optimal information of an expert AV (E) and its
interaction with a moving vehicle (O) in a continuous environment where E change-lane
frequently and overtake O without an accident. E motion features, O and their interaction
are incorporated in a graphical model (i.e., C-GDBN), and the intention of the vehicles can
be estimated through probabilistic reasoning. The second model (FP-M) is a transferred
generative model. Our focus is attempting to transfer E’s knowledge across the First-Person
point of view, where an intelligent vehicle (L) learns by interacting with its surroundings
via observing the expert behaviour and collecting prior knowledge to incorporate into the
environment.

Situation model

The SM is an interactive dynamic model encoding the interactions between two vehicles,
namely, E and O, as it is depicted in Fig.5.3. The proposed model assumes synchronized
sensory data from both agents’ locations. Accordingly, the movement of both agents is
simulated at each time instant by interacting rules that depend on their positions and motions.
From the E’s perspective, it is possible to consider its location measurements as proprioceptive
data, whereas the relative position of O represents the exteroceptive information.

The dynamic behaviour of how the two vehicles interact in the environment is described
by a generalized hierarchical state-space model in discrete-time comprised of the following
equations:

Dk = f(Dk−1)+wk, (5.1a)

X̃k = g(X̃k−1,Dk) = FX̃k−1 +BUDk +wk, (5.1b)

Zk = h(X̃k)+νk = HX̃k +νk. (5.1c)

In (5.1a), Dk is a latent discrete state evolving from the previous state Dk−1 by a non-linear
state evolution function f(·) representing the transition dynamic model and by a Gaussian
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Fig. 5.3 C-GDBN composed of two GDBNs for dynamic interaction. Arrows represent
conditional probabilities between the involved variables. Vertical arrows describe causalities
between continuous and discrete levels of inference and observed measurements. Horizontal
arrows explain temporal causalities between hidden variables. In particular, the red arrow
encodes the interaction of a couple of objects.

process noise wk ∼N (0,Q). The discrete state variables Dk = [SE
k ,S

O
k ] represent jointly

the discrete states of E and O where SE
k ∈ S E, SO

k ∈ S O, Dk ∈ D , where S E and S O

are learned according to the approach discussed in [102], while D = {D1,D2, . . . ,Dm} is
the set that represents the dictionary consisting of all the possible joint discrete states (i.e.,
configurations) and m is the total number of configurations. Observing the configuration’s
evolution (i.e., joint activated clusters of E and O) over time makes it possible to estimate the
transition matrix encoding the probability of switching from one configuration to another,
which is defined as:

Π =

P(D1|D1), . . . , P(D1|Dm)
... . . . ...

P(Dm|D1), . . . , P(Dm|Dm)

 (5.2)

where Π ∈ Rm,m, P(Di|D j) represents the transition probability from configuration i to
configuration j and ∑

m
k=1 P(Di|Dk) = 1 ∀i.

In (5.1b), the continuous latent state X̃k = [X̃E
k , X̃

O
k ] ∈ Rnx represent a joint belief state

where X̃E
k and X̃O

k denote the hidden generalized states (GSs) of E and O, respectively. The
GSs consist of the vehicles’ position and velocity where X̃i

k = [xi
k,y

i
k, ẋ

i
k, ẏ

i
k] and i ∈ {E,O}.

The continuous variables X̃k evolve from the previous state X̃k−1 by the linear state function
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g(·) and by a Gaussian noise wk. F ∈ Rnx,nx in (5.1b) is the state evolution matrix and
UDk = µ̇Dk is the control unit vector. In (5.1c), Zk ∈ Rnz is the generalized observation,
which is generated from the latent continuous states by a linear function h(·) corrupted by
Gaussian noise νk ∼N (0,R). Since the observation transformation is linear, there exists
the observation matrix H ∈ Rnz,nz mapping hidden continues states to observations.

First-Person Model

FP-M organizes a descriptive dynamic model that enables the third-person (i.e., the learner L)
in first-person. So L can experience a driving task from E’s real perspective, which facilitates
more precise imitative behaviour and allows L to respond quickly and appropriately during
the driving task while interacting with another moving vehicle V.

The FP-M is initialized by mapping the hierarchical levels of the SM into FP-M. As shown
in Fig. 5.4, the top level of the hierarchy (discrete level) in FP-M represents previously learned
configurations (D). So, L through FP-M can regenerate expected interactive manoeuvres
that can be used as a reference to evaluate its own interactions with V and infer how the
interaction with the external world should be performed.
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Fig. 5.4 First-Person model. It is composed of an uncoupled proprioceptive model (right
side) and the learned joint configuration (left side).

The hidden continuous states in the FP-M represent the dynamic interaction in terms of
generalized relative distance consisting of relative distance and relative velocity, which is
defined as:

Xk = [X̃E
k − X̃O

k ] = [(xE
k −xO

k ),(ẋ
E
k − ẋO

k )]. (5.3)

Likewise, the observations in FP-M depict the measured relative distance between the two
vehicles defined as Zk = [ZE

k −ZO
k ].



102 Exploring Action-Oriented Models via Active Inference for Autonomous Vehicles

5.3 Online Learning and Inference

Online learning phase provides Active First-Person model (AFP-M). AFP-M connects the
WM that L holds with the decision-making block by enriching the FP-M with active states
representing the L’s actions. Thus, AFP-M represents a generative model P(Z̃, X̃, D̃,a) of the
environment (represented graphically in Fig. 5.5) which is modelled as a partially observed
Markov decision process (POMDP).
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Fig. 5.5 Graphical representation of the Active First-Person model.

AFP-M encompasses joint probability distributions over observations, environmental
hidden states at multiple levels and actions performed by L, which is factorized as:

P(Z̃, X̃, D̃,a) = P(D̃0)P(X̃0)
K

∏
k=2

P(Z̃k|X̃k)

P(X̃k|X̃k−1, D̃k)P(D̃k|D̃k−1,ak−1)P(ak−1|D̃k−1). (5.4)

Three hypotheses are considered in a POMPD:

• L does not always have access to the true environmental states but might instead receive
observations which are generated according to P(Z̃k|X̃k) to infer the real states of the
environment.
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• L operates on beliefs about the hidden environmental states (D̃k,X̃k) that evolve ac-
cording to P(X̃k|X̃k−1, D̃k) and P(D̃k|D̃k−1,ak−1).

• L interacts with the external world by seeking to take actions that minimize abnormali-
ties and prediction errors.

5.3.1 Joint Prediction and Perception

Initially (at k = 1), L relies on prior probability distributions (P(D̃0), P(X̃0)) to predict
the environmental states according to D̃0 ∼ P(D̃0) and X̃0 ∼ P(X̃0), respectively, using
a hybrid Bayesian filter called the modified Markov jump particle filter (M-MJPF) [81]
consisting of particle filter (PF) and kalman filter (KF). In the successive time instants
(k > 1), L relies on the a priori acquired knowledge of the configurations’ evolution given by
P(D̃k|D̃k−1) which is encoded in (5.2). PF propagates N equally weighted particles drawn
from the importance density distribution π(D̃k) = P(D̃k|D̃k−1,ak−1) forming the so-called
set of particles

{
D̃(i)

k ,w(i)
k

}N
i=1. A bank of KFs is employed for the set of particles to predict

the corresponding continuous GSs
{

X̃(i)
k

}N
i=1 where the prediction of GSs is guided by the

upper level as pointed out in (5.1b) that can be expressed in probabilistic form as follows:

P(X̃(i)
k |X̃

(i)
k−1, D̃

(i)
k ). (5.5)

The posterior distribution associated with the predicted GSs is given by:

π(X̃(i)
k ) = P(X̃(i)

k , D̃(i)
k |Z̃k−1) =

∫
P(X̃(i)

k |X̃
(i)
k−1, D̃

(i)
k )λ (X̃(i)

k−1)dX̃(i)
k−1, (5.6)

where λ (X̃(i)
k−1) = P(Z̃k−1|X̃

(i)
k−1) is the diagnostic message propagated previously after ob-

serving Z̃k−1 at time k−1. Consequently, once a new observation Z̃k is received, multiple
diagnostic messages propagate in a bottom-up manner to update L’s belief in hidden environ-
mental states. Thus, updated belief in GSs is given by:

P(X̃(i)
k , D̃(i)

k |Z̃k) = π(X̃(i)
k )×λ (X̃(i)

k ). (5.7)

Whereas belief in discrete hidden states can be updated by updating the particles’ weights
according to:

w(i)
k = w(i)

k ×λ (D̃k), (5.8)
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where λ (D̃k) is a discrete probability distribution defined as:

λ (D̃k) =

[ 1
λ (D̃(1)

k )

1
∑

m
i=1 λ (D̃(i)

k )

,

1
λ (D̃(2)

k )

1
∑

m
i=1 λ (D̃(i)

k )

, . . . ,

1
λ (D̃(m)

k )

1
∑

m
i=1 λ (D̃(i)

k )

]
, (5.9)

such that,

λ (D̃(i)
k ) = λ (X̃(i)

k )P(X̃(i)
k |D̃

(i)
k ) = DB

(
λ (X̃(i)

k ),

P(X̃(i)
k |D̃

(i)
k )

)
=− ln

∫ √
λ (X̃(i)

k ),P(X̃(i)
k |D̃

(i)
k )dX̃(i)

k , (5.10)

where DB is the Battacharyya distance and P(X̃k|D̃k)∼N (µ D̃k
,ΣD̃k

).

5.3.2 Learn Action-Oriented Model

L’s choice of whether to explore or exploit is guided by its awareness of the interaction with
the surrounding environment, which is conditioned directly onto particle beliefs. L uses the
updated particles’ weights to evaluate the encountered situation among familiar with (i.e.,
already seen by E) or not familiar with (i.e., a novel situation not seen by E) as illustrated in
Fig. 5.6 and Fig. 5.7 respectively.
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Fig. 5.6 Observing a familiar configuration. The learning agent has proper knowledge about
its current interaction with the other dynamic object in the environment.

Thus, L selects an action ak according to:

ak =


argmax

ak∈A
P(ak|D

β

k ), if εk < ρ (exploitation),

q
(
ak−1, Ẽ X̃β

k

)
, if εk ≥ ρ (exploration).

(5.11)
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Fig. 5.7 Observing a novel configuration. The learning agent experiences a new interaction
with the dynamic object than the learned configurations.

In (5.11), if εk < ρ , this means that L is facing similar situation encountered by E and so it
will imitate E’s action selected from the active inference table Γ defined as:

Γ =

P(a1|D1), P(a2|D1), . . . , P(am|D1)
...

... . . . ...
P(a1|Dm), P(a2|Dm), . . . , P(am|Dm)

 (5.12)

where ∑
m
i=1 P(ai|Dk) = 1 ∀k, P(ai|D j) =

1
m is the probability of selecting action ai ∈ A

conditioned to be in configuration D j ∈D , A = {µ̇D1, µ̇D2, . . . , µ̇Dm} is the set of available
actions, εk is the exploration rate given by:

εk = 1−αk, (5.13)

where αk is the weight of the winning particle computed as:

αk = max
i
{w(i)

k }
N
i=1, (5.14)

such that 0 ≤ αk ≤ 1. In addition, β denotes the index of the particle with the maximum
weight given by:

β = argmax
i
{w(i)

k }
N
i=1. (5.15)

In (5.11), if εk ≥ ρ , this means that L is facing a novel situation not seen before by E and so
L will explore new actions by using the GEs as explained in the coming sections. Fig.5.8
shows a takeover situation example, including explored and exploited trajectories.
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Fig. 5.8 A schematic view of a takeover situation example that is used in our study consists
of a) exploratory behavior due to minimizing the divergence with the predicted trajectory and
b) associating exploratory clusters to the learning model. L clusters the newly discovered
configuration and the novel calculated action using the GNG method.

5.3.3 Abnormality Indicators and Generalized Errors

The predictive messages (i.e., π(D̃k), π(X̃(i)
k )) propagated top-down the hierarchy are com-

pared against sensory responses signalled via diagnostic messages (i.e., λ (X̃(i)
k ), λ (D̃k))

passing from bottom to up the hierarchy, resulting in multiple abnormality indicators and
GEs. Evaluating the abnormality measurement at a certain node allows evaluating to what
extent the current observations support the model’s predictions, while the GEs allow un-
derstanding of how we can suppress those abnormalities in the future. The multi-level
abnormality indicators are defined as:

ϒD̃k
= DK L

(
π(D̃k),λ (D̃k)

)
+DK L

(
λ (D̃k),π(D̃k)

)
, (5.16)

ϒ
X̃(i)

k
=−ln

(
BC (π(X̃(i)

k ),λ (X̃(i)
k ))

)
, (5.17)

where DKL is the Kullback–Leibler divergence and BC is the Bhattacharyya coefficient.
The GE associated with (5.16) and conditioned on transiting from D̃k−1 is defined as:

Ẽ D̃k
= [D̃k,P(Ė D̃k

)] = [D̃k,λ (D̃k)−π(D̃k)], (5.18)

where Ė D̃k
is an aleatory variable described by a discrete probability density function (pdf)

P(Ė D̃k
). While the GE projected on the GS space and associated with (5.17) can be expressed

as:
Ẽ

X̃(i)
k
= [X̃(i)

k ,P(Ė
X̃(i)

k
)] = [X̃(i)

k ,H−1Ẽ Z̃k
], (5.19)
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where Ė
X̃(i)

k
is an aleatory variable described by a continuous pdf P(Ė

X̃(i)
k
) and Ẽ Z̃k

∼
N (µ̃ Ẽ Z̃k

,ΣẼ Z̃k
) characterized by the following statistical properties:

µ̃ Ẽ Z̃k
= Z̃k−HX̃k, (5.20)

ΣẼ Z̃k
= HΣẼ Z̃k

H⊺+R, (5.21)

where µ̃ Ẽ Z̃k
is the Kalman innovation computed in the measurement space and ΣẼ Z̃k

is the

innovation covariance.

5.3.4 Incremental Active Learning and Inference

Active learning and active inference aim to reduce surprises (or abnormalities), either by
developing a reliable world model or actively engaging with the environment [103]. Active
learning allows an agent to build a predictive model capturing the novel world’s regularities
through model parameter exploration. In contrast, AIn allows using the WM to infer the
current context and consequently to infer what to do through the active states exploration.
These two types of exploration provide a balanced trade-off between adaptive behaviour that
aims to minimize abnormalities by fulfilling the learner’s preferences on the one hand and
acquiring information about the world on the other hand.

Active states exploration: When encountering surprising conditions, L can discover
new actions to avoid future abnormal situations. While L is exploring, its new actions evolve
from the previous actions and current GEs by a linear function q(·) as pointed out in (5.11),
which is calculated with the first-order Euler integration as follows:

q
(
ak−1, Ẽ X̃(β )

k

)
= ak−1 +∆kP(Ė

X̃(β )
k
), (5.22)

where ∆k is the step size, ak−1 is the previous performed action and P(Ė
X̃(β )

k
) is the GE’s pdf

defined in (5.19).
Model parameter exploration: Under abnormal conditions and during exploration,

L can cluster the novel situations and encode them incrementally in the WM by updating
the transition matrix and the active inference matrix, respectively. It is to note that during
abnormal situations, new configurations might appear representing novel relative distances
between L and the other dynamic object not experienced by E. Thus, clustering the observed
relative distance along with the new actions will lead to discovering new configurations and
learning how to behave by facing them in the future. Consequently, a set C consisting of
the relative distance-action pair can be performed during the abnormal period T (i.e., during
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exploration) as C = {Z̃k,ak}T
k which can be used as input to the Growing Neural Gas (GNG)

for unsupervised clustering. GNG outputs a set of new configurations defined as:

D
′
= {Dm+1,Dm+2, . . . ,Dm+n}= {D

′
1,D

′
2, . . . ,D

′
n}, (5.23)

where n is the total number of the newly acquired configurations and D
′
l ∼N (µ

D
′
l
,Σ

D
′
l
) such

that D
′
l ∈D

′
. Analysing the dynamic evolution of the new configurations allows estimating

the transition probability P(D̃k|D̃k−1) encoded in Π
′
, which is defined as:

Π
′
=

P(D
′
1|D

′
1), . . . , P(D

′
1|D

′
n)

... . . . ...
P(D

′
n|D

′
1), . . . , P(D

′
n|D

′
n)

 , (5.24)

where ∑
m
k=1 P(D

′
i|D

′
k) = 1 ∀i. Consequently, the updated global transition matrix Π

′′ ∈
R(m+n),(m+n) is expressed as:

Π
′′
=

[
Π 0m,n

0n,m Π
′

]
, (5.25)

where Π is the original transition matrix and Π
′
is the newly acquired one.

Likewise, the newly discovered action-configuration pairs characterized by P(a
′
k|D

′
1) are

encoded in Γ
′′

according to:

Γ
′
=

P(a
′
1|D

′
1), P(a

′
2|D

′
1), . . . , P(a

′
n|D

′
1)

...
... . . . ...

P(a
′
1|D

′
n), P(a

′
2|D

′
n), . . . , P(a

′
n|D

′
n)

 , (5.26)

and the AIn table can be adjusted as follows:

Γ
′′
=

[
Γ

1
n(Jm×n)

1
n(Jn×m) Γ

′

]
=

γ11 . . . γ1n
... . . . ...

γn1 . . . γnn

 (5.27)

where Jm×n = [ai j]m×n and Jn×m = [b ji]n×m are the unit matrices, such that, ai j = b ji = 1
∀i, j. It is to note that Γ

′′
’s row do not summing 1 due to the addition of the unit matrices and
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Γ
′
. Thus, normalization is needed, and it can be performed as:

Γ̂
′′
=

γ̂11 . . . γ̂1n
... . . . ...

γ̂n1 . . . γ̂nn

 , (5.28)

where γ̂ i j =
γ i j

∑
n
j=1 γ i j

∀i.

5.3.5 Action-Oriented Model Update

L relies on the abnormality indicators calculated at time k and defined in (5.16) and (5.17)
to evaluate the performed actions at time k−1. Under abnormal conditions, L learns how
to avoid those abnormalities in the future by seeking information about the surrounding
environment and how to engage inside it based on the two types of exploration discussed
previously.

In contrast, during exploitation and under abnormal conditions, L updates the existing
AIn table and transition matrix using the diagnostic messages (λ (D̃k), λ (ak−1)). The existing
transition matrix can be updated using the GE defined in (5.18) as follows:

π
∗(D̃k) = π(D̃k)+P(Ė D̃k

). (5.29)

The AIn table Γ can be adjusted according to:

π
∗(ak) = π(ak)+P(Ė ak), (5.30)

where π(ak) = P(·|D̃k) is a specific row in Γ and P(Ė ak) is the GE’s pdf related to the active
states that can be calculated as [80]:

E ak−1 = [ak−1,P(Ė ak−1)] = [ak−1,λ (ak−1)−π(ak−1)], (5.31)

where λ (ak−1) = λ (D̃k)×P(D̃k|ak−1).

5.4 Simulation and Performance Evaluation

5.4.1 Experimental Data Set

The expert data are collected during the experiments by considering two AVs interaction,
called icab 1 and icab 2 [91], see Fig.4.6. Each AV (i) is equipped with both exteroceptive
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and proprioceptive sensors. The employed dataset is gained from the odometry trajectories
and control parameters to analyze the interactions between AVs. The sensory modules
provide 4-dimensional information, including the positions of AV in (x,y) coordinates, and
the control parameters consider the AV’s velocity (ẋ, ẏ), as follows:

Zi
k = [xi

k,y
i
k, ẋ

i
k, ẏ

i
k] (5.32)

During the experiment, icab 2 overtakes from the left side of icab 1 while icab 1 is
maneuvering straight.

5.4.2 Offline Learning Phase

In this phase, the SM is provided by employing the collected data from two AVs (i.e., icab
1 and icab 2) interactions as explained in 5.2.3. The shaped SM presents 24 joint clusters
that encode the dynamic interaction between the two AVs. Fig. 5.9 shows the generated
transition matrix from the AVs trajectories. consequently, FP-M is initialized using 24 learned
configurations, including the position data and control parameters (explained in 5.2.3).

Fig. 5.9 The reference transition matrix based on two AVs movements, icab 1 and icab 2,
during the overtaking scenario.

5.4.3 Online Learning Phase

This section evaluates the proposed generalized hierarchical model by considering the
following research points:

• Does the model learn accurate representations for inference and prediction by mini-
mizing the generalized errors?

• Can these representations be used in the hierarchical model for generating proper
beliefs about the agent’s surroundings?
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• Does the hierarchical model infer imitative moves and exploratory actions properly to
minimize the FE measurements?

The performance of the presented approach in this section is compared with 2 benchmark
schemes, AIL, which is proposed in the previous section of this thesis, and the Q-learning
algorithm.

5.4.4 Action-Oriented Model

In Fig. 5.10, the learning agent experiences an unobserved trajectory, while trajectory
matching via minimizing the prediction error is performed in task space (explained in 5.3.3).
Therefore, L uses the exploratory policy (explained in 5.3.5) to solve IL tasks by minimizing
the divergence between the observed demonstrations and the expected one. Fig. 5.10 shows
the predicted expected trajectory in the red-shaped graph and performed trajectory by the
agent is represented by the blue graph. The figure demonstrates that the learned action-
oriented model adapts to changing variability in the environment.
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Fig. 5.10 Learner minimizes the distinction between observation and prediction. The action
selection procedure is modified by using the detected generalized errors.

Moreover, Fig. 5.11 illustrates the generated clusters and their associated mean actions,
which are from the new experiences. Later, L uses the learned model to infer actions from
the novel learned configurations. The newly added clusters to the model are demonstrated by
yellow circles, which are expanded the original transition model.

Fig. 5.9 shows the original transition matrix (Π) that is provided using the expert behavior
composing 24 clusters. During training, the learning agent’s Π is modified based on the
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Fig. 5.11 The explored trajectory and the corresponding actions are clustered by GNG.

(a) (b) (c) (d)

Fig. 5.12 Transition matrix evolution during learning new interactions.

learner’s movements and decisions when faced with a familiar or novel configuration. The
shown transition matrices in Fig 5.12 are based on the considered configurations depicted in
Fig. 5.11. Fig 5.12- (a) shows how Π is modified during exploitation from the original clusters
(gray clusters in Fig. 5.11), and Fig 5.12- (b) presents the generated transition matrix from the
newly explored configurations (yellow clusters in Fig. 5.11). After appending the explored
clusters to the main transition model (Fig 5.12- (c)), the learning model refines the learned
configuration using a defined threshold to avoid recording mostly similar demonstrations
(Fig 5.12- (d)). Table.5.1 explains how the original transition matrix is developed.

Fig.5.13 illustrates the evolution of beliefs about the probabilities of the task for each
performed action in the above experiments (see Fig.5.10). Fig.5.13-(a) shows the maximum

Table 5.1 The transition matrix is expanded during learning new observations.

Original Π Explored Π Merged Π Updated Π

24 clusters 6 clusters 30 clusters 28 clusters



5.4 Simulation and Performance Evaluation 113

particle weight for each experience during 38 configurations (38 performed actions). At
the beginning of the experiment, L the distinction between the agent’s performance and the
expectation is high. Then the assigned weights are low that it leads L to explore and gather
experiences that is to learn actively. As Fig.5.13-(b) demonstrates, L makes exploratory and
novelty-seeking choices at the start of the experiment. After 15 trials, by modifying the beliefs
about the interaction with surroundings, the learning agent could minimize the exploration
probability (see Fig.5.13-(c)). Therefore L is confident to behave imitatively which compels
it to choose exploitative actions. The presented panel in Fig.5.13-(b) illustrates whether L
performs exploratory or exploitative actions as indicated by the blue dots. Darker background
implies higher certainty about selecting an exploitative action. Moreover, as Fig.5.13-(d)
shows, imitative behavior causes decreasing mean error between the agent’s observation and
its prediction.
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Fig. 5.13 It illustrates belief updates during a simulated experiment by 38 configurations.
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The efficiency of the proposed approach is tested in the CARLA simulator [42], which is
a three-dimensional (3-D) simulator for AD. CARLA is used in this research to study the
performance of the learned model in a 3-D environment similar to the real world. Fig. 5.14
illustrates the AV travel environment. The red rectangles are the states where the experiments
are placed in different scenarios as follows:

• The agent is placed in the right lane following the other vehicle in the same lane, which
has a slower speed, it needs to overtake from the left side to avoid a collision,

• The agent is placed in the left lane following the other vehicle in the same lane, which
has a slower speed, it needs to overtake from the right side to avoid a collision.

Home-lane

Home-lane

Fig. 5.14 CARLA environment. The highlighted space shows the different home lanes of the
vehicle.

The results demonstrate the trained agent is able to travel in a different dynamic world
properly. Fig.5.15 illustrates some scenes of the experiment where the trained agent (blue
vehicle) changes its lane (left side) to avoid collision with the other participant (red vehicle),
and after passing the risky interactions, it comes back to its home lane.

Fig.5.16 shows the full path of overtaking from the left side. During overtaking, the
trained agent experiences 12 different interactions that must change its movement policy.
The panel in Fig.5.17 shows the agent’s action selection in each configuration (row). The
panel shows the different experiences, and the repeated configurations are erased from it.
At each time instant, the agent has 17 action possibilities (learned action from the online
learning phase) that each time it exploits the one with the maximum probability (blue cell).

The results prove that the agent learned new interaction (i.e., overtake from the right
side) than the expert experiences by exploratory behavior during the online learning phase.
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Fig. 5.15 CARLA frames from overtaking from the left side. The blue vehicle is the trained
agent that overtakes the red vehicle.
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Fig. 5.16 The vehicles’ trajectories during overtaking from the left side.
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Fig. 5.17 Action panel. Overtaking from the left side.

Fig.5.18 shows the trained agent is able to change its home lane to overtake from the right
side of the other vehicle successfully while the collected expert demonstrations were from
overtaking from the left side experiences.

Fig.5.19 and Fig.5.20 illustrate the full travel path and action plane during the overtaking
from the right side.

Table. 5.2 shows the results of 37 testing travels. Fig.5.21 and Fig.5.22 show an example
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Fig. 5.18 CARLA frames from overtaking from the right side. The blue vehicle overtakes
the red vehicle.
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Fig. 5.19 The vehicles’ trajectories during overtaking from the right side.
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Fig. 5.20 Action panel. Overtaking from the right side.

of failed travel because of a collision with the other vehicle or going out of the street
(boundary). Fig.5.23 and Fig.5.24 plot the corresponding full path to Fig.5.21 and Fig.5.22,
respectively.
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Table 5.2 Results of testing the learned AFP-M in the CARLA simulator.

Success Loss Collision Out of boundary
91.89% 8.10% 2.70% 5.40%

34 travels 3 travels 1 travel 2 travels

Fig. 5.21 CARLA frames from collision experience. The red vehicle collided with the blue
vehicle.

Fig. 5.22 Carla Frame from going out of boundary by the agent (blue vehicle).

5.4.5 Cost of Learning

Updating and correcting the beliefs about the agent’s surroundings minimize the FE measure-
ment via hierarchical processing in which prior expectations generate top-down predictions
of likely observations and where discrepancies between predictions and observations as-
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Fig. 5.23 The vehicles’ trajectories in the collision case.
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Fig. 5.24 The vehicles’ trajectories in going out of boundary case.

cend to hierarchically higher levels as prediction errors. In this section, the efficiency of 4
action-oriented models is studied in terms of cumulative FE measurement during 2k training
episodes as follows:

• Model A applies GNG to cluster novel experienced trajectories, and it employs GEs to
calculate the exploratory actions,

• Model B applies GNG to cluster novel experienced trajectories, and it uses predefined
actions during exploration (discussed in the previous chapter),

• Model C does not cluster the newly observed configurations, and it employs GEs to
calculate the exploratory actions,

• Model D does not cluster the newly observed configurations, and it uses predefined
actions during exploration.

Fig.5.25-(a) demonstrates the results of Model A, which is the proposed method in this
chapter. Comparing Fig.5.25-(a) with the provided results from other models (see Fig.5.25-(b)
and Fig.5.26-(a)-(b)) shows clustering the novel configuration and calculating the associated
actions using the GEs has a big impact on minimizing the FE measurement during the online
learning phase.
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Fig. 5.25 Calculated cumulative free energy from Model A (a) and Model B (b).

Moreover, Fig.5.27 evaluates the performance of the proposed model in terms of reward
(in RL context) than the Q-learning algorithm and AIL, which is introduced in the previous
chapter (action-oriented Model B).

5.5 Conclusion

This chapter introduced a hierarchical self-awareness autonomous driving system that ad-
vances a probabilistic computational account of action, observation, and imitation abilities
grounded in an active inference framework. The autonomous system deals with continu-
ous and potentially overwhelming signals from the vehicle’s sensors and their interaction
with the dynamic surroundings. For learning and adaptation, the agent must transform the
sensory inputs into a reliable perception of the world. The proposed model is composed
of several modules forming the perception-action cycle that links the autonomous vehicle
to its environment. With inspiration from the biological brain, the different modules are
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Fig. 5.26 Calculated cumulative free energy from Model C (a) and Model D (b).
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Fig. 5.27 Cumulative reward during 2k training episodes

linked together via message passing, where each module handles specific functionalities.
The hierarchical message passing is represented by inferences and perceptions across dif-
ferent modalities of multisensorial information (i.e., exteroceptive and proprioceptive data).
Learning this association allows the learning model to predict the perceptual consequences
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of acting. These representations are employed to minimize prediction errors and accurately
predict how sensory signals will change in response to specific actions.

The experimental evaluations show modifying and updating the belief during the online
learning phase via the back-projection of detected errors at the multilevel of hierarchy
solves the exploration-exploitation dilemma. The autonomous agent generates a preferred
movement or an exploratory action based on prior knowledge acquired from past experiences.
The hierarchical generalized model learns incrementally from new information provided by
the perception of the surroundings to adapt to unexpected situations.





Chapter 6

Conclusion and Future Works

6.1 Conclusion

Artificial intelligence is profoundly changing the world. The autonomous vehicle is a
typical complex artificial intelligence system that will become close companions of humans
in the future. It is an important and promising direction to explore brain-inspired self-
driving technology for the new generation of intelligent transportation systems. Process and
understanding multi-sensorial information concerning the cognitive psychological level of
the human driving process can significantly improve the cognition ability, decision-making
ability, and adaptability to complex situations of self-driving system. A self-driving system
based on cognitive construction enables autonomous vehicles to push themselves to higher
levels of intelligence through intuitive reasoning and practical learning. Thus autonomous
vehicles need a high level of self-awareness to reach full autonomy.

This work shows that self-awareness endows autonomous agents with the capability of
maintaining a dynamic equilibrium with the non-stationary world by learning incrementally
from new experiences. The agent captures knowledge about itself and structural regularities
from its external milieu variations through sensory signals and encoding them in its internal
hierarchical Generative models. Furthermore, self-awareness provides various probabilistic
inference modes within the Generalized Bayesian Filtering involving predictive top-down
messages propagating the belief in hidden variables from high levels of hierarchy towards
the lower levels. In turn, bottom-up messages from lower levels report the evidence for
expectations of beliefs generating predictions. Comparing predictive (top-down) messages
with the sensory responses signaled via diagnostic (bottom-up) messages results in multi-
level abnormality indicators and Generalized Errors. Those errors are then fed back from
the bottom to up the hierarchy to update beliefs, incrementally encode new concepts, and
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finesse plans. Thus, improving future predictions and future actions while minimizing the
free energy.

Based on a review of the development of current self-driving technology and the chal-
lenges it faces, this study deeply discussed some scientific issues of the self-driving approach
based on cognitive construction, as well as the methods, probabilistic computing models, and
technical routes to solve these problems. Furthermore, this study expounds on the important
role of adapting exploratory behavior mechanisms in realizing robust brain learning in a
non-stationary environment. Furthermore, the intuitive reasoning self-driving method based
on reinforcement learning, imitation learning, and active inference is also discussed in this
study.

Chapter 3 proposed two system models using Generalized Dynamic Bayesian Networks,
namely Model I, which is based on a single dynamic agent, and Model II, which considers
multi-agent dynamic interaction. Model I proposed an incremental imitation learning model
where an intelligent agent tracks a stationary target. The imitator learns the interaction with
surroundings by observing an expert agent. This section develops a probabilistic model
where the learning agent does not require explicitly repeating the expert agent’s behaviors.
Therefore, the learner is not limited to recalling exact observations of the optimal behavior
but employs a probabilistic model as a flashback memory for guiding a reinforcement
learning approach that allows the learning agent to learn the previous experiences on its
own. Model II proposed an adaptive probabilistic model for imitation learning in a dynamic
environment. In this model, imitation learning is used as a pre-training step to encode the
expert demonstrations in a coupled Generalized Dynamic Bayesian Network for reaching a
non-stationary target which enables the learning agent to take uncertainty appropriately into
account. The presented method demonstrates learning from a dynamic interaction model
to minimize the cost of imitation during the online learning phase. In both system models,
experimental results show the capability to minimize the abnormalities while learning the
policies from the sub-optimal demonstrations. Those abnormalities can be used as qualitative
observation in order to learn from unseen situations.

Chapter 4 proposed two system models for autonomous driving in a dynamic environ-
ment. In Model I - Active Inference integrated with Imitation Learning, a framework is
proposed to integrate active inference with imitation learning (i.e., AIL) for autonomous
vehicles. The presented AIL framework is based on learning a situation model encoded
in a coupled Generalized Dynamic Bayesian Network explaining the dynamic interactions
between two moving vehicles (i.e., an expert agent and a dynamic object). The situation
model is used to initialize a First-Person model, which the learner agent can use to predict
expert-object dynamic interactions and evaluate the situation. During the online process, the
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learner agent is equipped with an Active First-Person model consisting of the First-person
model and active states representing actions, thus enriching the learner agent with the ca-
pability to predict expert dynamics and expected relative distance from a moving object in
order to perform efficient actions. The learner agent relies on an abnormality indicator that
measures how much observations support its expectations to decide whether to imitate the
expert’s behavior under normal situations or explore new actions in abnormal situations (i.e.,
unseen by the expert). Under the active inference approach, we showed how the learner could
learn a new set of configurations and actions incrementally that allow the learner to optimize
internal predictions (about the surrounding environment) and action selection (to come near
the situation model) jointly, leading to free energy minimization. Experimental results have
shown that perceptual learning and inference are required to induce prior expectations about
how new experiences and abnormalities unfold. Action is being taken to resample the world
in order to meet these expectations. This places perception and action together to drive
solely based on the free energy measurement policies and conducts experiments regarding
general applicability to autonomous driving and generalization between different changes
in dynamic environments. In addition, results have indicated that the proposed approach
outperforms reinforcement learning methods such as Q-learning, double Q-learning, and
inverse reinforcement learning in terms of the number of selected actions, successful travel
rate, collision probability, going out of boundary probability, and imitation loss. Model
II - Employ modified MJPF to Active Inference proposed a hybrid mechanism integrating
active inference with imitation learning to enhance autonomous driving skills. Particularly,
the modified Markov Jump Particle Filter is implemented to perform joint predictions of
configurations and Generalized States during the online learning phase. The proposed ap-
proach allows a learning agent imitates suboptimal driving policy based on a probabilistic
situation model (encoded in a coupled Generalized Dynamic Bayesian Network) learned
from expert demonstrations, adapt to dynamic changes in the environment (i.e., unseen
situations), and perform safe movements without colliding with another dynamic object
interacting in the environment. This section showed how the learner’s predictive capability
allows deciding whether to exploit the expert’s policy during normal situations (experienced
by the expert) or to explore new actions and update the dynamic model incrementally during
abnormal situations (newly discovered). It demonstrated that the learner’s objective is to
take the best set of actions during both the exploration and exploitation phases that minimize
the free energy (or maximize reward). Experimental results show the effectiveness of the
proposed method in imitating optimal expert driving policy and adapting to unseen situations
to accomplish a takeover task. In addition, results have indicated that the proposed approach
outperforms other reinforcement learning methods.
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Chapter 5 proposed a hierarchical self-awareness autonomous driving system that ad-
vances a probabilistic computational account of action, observation, and imitation abilities
grounded in an active inference framework. The autonomous system deals with continuous
and potentially overwhelming signals from the vehicle’s sensors and their interaction with
the dynamic surroundings. For learning and adaptation, the agent must transform the sensory
inputs into a reliable perception of the world. The proposed model is composed of several
modules forming the perception-action cycle that links the autonomous vehicle to its environ-
ment. With inspiration from the biological brain, the different modules are linked together
via message passing, where each module handles specific functionalities. The hierarchical
message passing is represented by inferences and perceptions across different modalities
of multisensorial information (i.e., exteroceptive and proprioceptive data). Learning this
association allows the learning model to predict the perceptual consequences of acting. These
representations are employed to minimize prediction errors and accurately predict how sen-
sory signals will change in response to specific actions. The experimental evaluations show
modifying and updating the belief during the online learning phase via the back-projection
of detected errors at the multilevel hierarchy solves the exploration-exploitation dilemma.
The autonomous agent generates a preferred movement or an exploratory action based on
prior knowledge acquired from past experiences. The hierarchical generalized model learns
incrementally from new information provided by the perception of the surroundings to adapt
to unexpected situations.

6.2 Future Works

This thesis has drawn upon concepts from self-awareness, imitation learning, dynamic
interaction models, and active inference in autonomous driving systems. Each of these
subjects contains a set of existing and emerging methods. Many opportunities exist for
extending the ideas presented in this work. Some areas of further study are highlighted
below.

• Develop sensorial input

Additional contextual data must be collected to provide compelling and plausible
predictions in a real urban environment. Information about the traffic lights and
road signs is essential for inferring possible future maneuvers. These cues will be
investigated and will create convenient representations in future work. An interesting
perspective would be to employ other driving-related sensorial information, such as
optical flow or images, as well as their combination.
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• Scenario generation

Adopt the obtained error model from interactions between participants for coping with
a new driving activity. Adaptability can involve recognizing that a policy or strategy
learned in one context can be applied to other situations.

• Multi-agent generative learning

Provide an incremental learning model based on parameter sharing to learn from
demonstrations experienced by multiple learning agents. The gathered knowledge
from multiple demonstration trajectories will batch together to inform the learning
participants.

• Interact with a third agent

Consider unpredictable obstacles (i.e., other vehicles in the urban environment) during
driving scenarios, such as changing the home lane in a crowded environment.
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