Universidad

ucdm | CarloslIl -Archivo
de Madrid

This is a postprint version of the following published document:

Leotta, Maurizio; Garcia, Boni; Ricca, Filippo; Whitehead,
Jim. (2023). Challenges of End-to-End Testing with Selenium
WebDriver and How to Face Them: A Survey. 2023 IEEE 16th
International Conference on Software Testing, Verification and
Validation, 16-20 April 2023, Dublin, Ireland: Proceedings,
Piscataway, NJ: IEEE. Pp.: 339-350.

DOI: https://doi.org/10.1109/ICSTS57152.2023.00039

©2023 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component
of this work in other works.

https://doi.org/10.1109/ICST57152.2023.00039
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/

Challenges of End-to-End Testing with Selenium
WebDriver and How to Face Them: A Survey

Maurizio Leotta', Boni Garcia®3, Filippo Ricca®, Jim Whitehead*~

! Dipartimento di Informatica, Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Universita di Genova, Italy
2 Universidad Carlos III de Madrid, Madrid, Spain
3 Open Source Program Office, Sauce Labs Inc., San Francisco, CA, USA
4 Baskin School of Engineering, University of California, Santa Cruz, CA, USA
5 AI Research, Development, and Experimentation (AIX) Team, Sauce Labs Inc., San Francisco, CA, USA
maurizio.leotta@unige.it; boni.garcia@uc3m.es; filippo.ricca@unige.it; ejw @ucsc.edu

Abstract—Modern web applications are complex and used for
tasks of primary importance, so their quality must be guaranteed
at the highest levels. For this reason, testing techniques (e.g.,
end-to-end) are required to validate the overall behavior of
web applications. One of the most popular tools for testing
web applications is Selenium WebDriver. Selenium WebDriver
automates the browser to mimic real user actions on the web.

While Selenium has made testing easier for many Teams
worldwide, it still has its share of challenges. To better understand
the challenges and the corresponding solutions adopted we decided
to undertake a personal opinion survey from the industry (in total
with 78 highly skilled participants) with a focus on the Selenium
ecosystem.

The results allow understanding which challenges are consid-
ered more relevant by professionals in their daily practice and
which are the techniques, approaches, and tools they adopt to
face them. Therefore, this study is useful to (1) practitioners
interested in understanding how to solve the problems they face
every day and (2) researchers interested in proposing innovative
solutions to problems having a solid industrial impact.

Index Terms—End-to-End Testing, Web Testing, Selenium
WebDriver, Personal Opinion Survey, Challenges.

I. INTRODUCTION

End-to-end (E2E) testing of web applications, a type of black
box testing based on the concept of test scenario, turned out to
be a lot effective for improving the quality of the applications
under test. For this reason, many software companies around
the world have adopted it. Nowadays, Selenium WebDriver [1]
is considered the de-facto library for developing E2E tests
for web applications. Selenium [2] is an umbrella project to
provide browser automation features to impersonate users who
interact with browsers such as Chrome, Firefox, and Edge
automatically. A recent study in the context of software testing
by Cerioli et al. [3] appoints Selenium as one of the most used
and valuable testing library today.

Selenium is one of the best tools for automating E2E
test cases, but like anything good, it has some drawbacks
too. Without a doubt, Selenium makes the testing phase
more straightforward, but there are some challenges software
developers and testers face while using it [4]. Among these,
one particularly insidious and treated in the academic field

is flakiness [5], a condition in which test cases fail for no
apparent reason in a non-deterministic way.

This paper presents the results of an online survey carried
out with professionals to understand better and characterize
the most relevant challenges in E2E testing with Selenium
WebDriver. A total of 78 experienced participants from 28
countries and four different continents completed this survey
in 2022. The results reveal the main challenges developers face
and how practitioners try to solve the problems (e.g., flakiness
and fragile tests) that arise daily using Selenium.

The paper is organized as follows: Sect. II provides the
essential background about E2E testing and presents the
challenges considered in this survey. Sect. III describes the
design and the procedure of the personal opinion survey we
conducted. Sect. IV presents the results and lists the possible
threats to validity. Finally, Sect. V reports the related literature
while Sect. VI concludes the paper.

II. CHALLENGES

This section briefly introduces the 13 challenges we investi-
gated with our personal opinion survey. The 13 challenges were
selected using a multi-step approach: (1) gray literature analysis
and (2) thoughtful selection. So as a first step, we searched
on the web for various articles (gray literature including many
blogs, tutorials, etc.) to try to understand what are, according
to the practitioners, the most challenging aspects in E2E web
testing with a particular focus on tests implemented using
Selenium. In particular, we performed a search on Google
using the following query "challenges problems limitations
E2E web testing Selenium WebDriver". We analyzed the first
30 articles and noted down the challenges they describe.

As a second step, we refined challenges by removing those
that have a too technical focus (e.g., handling pop-up windows,
handling captcha images, implementing data-driven testing)
or can be considered out of the scope of this study (e.g., no
support to desktop and mobile applications testing, defining
naming conventions in the test code). This step is essential
since we have to limit the challenges to analyze in order to
maintain the questionnaire reasonably short. Finally, we double-
checked and refined/rephrased the challenges list relying on

our experience in the E2E arena, which is witnessed by 100+
published articles in the field, including one of the first works
on web testing (ICSE 2001 [6]), a book [7], and also the
professional activity of two of us. To get additional feedback
from Selenium experts, we shared the found challenges with
the Selenium TLC (Technical Leadership Committee), which
is the board responsible for the high-level technical guidance
of the project. Thus, we are confident that the majority of the
most relevant challenges were included in the final list: this
has also been confirmed by the survey participants since none
of them suggested including other challenges in our analysis.
In the following, we briefly introduce each challenge without
providing possible solutions to solve or at least mitigate them,
which will instead be described together with the survey results.
Slowness. E2E web test scripts are often considered slow to
run, i.e., they take a long time to complete [4]. This is certainly
true compared to other automated tests, such as the popular
unit tests. Since E2E tests act through the web app interface
rendered through a browser and validate all the layers from
which a web app is composed, it makes the execution of E2E
tests slower compared, for example, with unit tests taking care
of validating only a method of a particular class.
Brittleness. E2E web test scripts are often considered brittle [8],
i.e., fragile when web app evolution occurs. Specifically, test
scripts may become broken when a web application evolves to
accommodate requirement changes, bug fixes, or functionality
extensions. When this issue occurs, test scripts typically cannot
locate some links, input fields, and submission buttons, and
software testers must repair them. This task is tedious and
expensive since it has to be performed manually by testers.
Flakiness. E2E web test scripts are often considered flaky,
i.e., they can break randomly without an apparent reason. The
fact that a test can non-deterministically pass or fail when
executed on the same version of the web application, without
any change in both the app and the test code, can waste a lot of
time for the testers trying to debug a non-existent fault in the
code [9]. For this reason, flaky tests are considered insidious
and dangerous [10].
Maintainability. Maintaining E2E test scripts (i.e., the activi-
ties required to keep them operative after they are deployed)
is often considered troublesome. Depending on the kind of
maintenance task performed on the web application, a tester
has to execute a series of test script repair activities that
can be categorized into two types: logical and structural [8].
Logical changes involve the modification of the web application
functionality. The tester has to modify one or more steps of
the broken test scripts to repair the test scripts. An example of
a change request needing a logical repair activity is enforcing
security through stronger authentication and thus adding a new
web page containing an additional question displayed to the
user when she clicks on the login button. Structural changes
involve the modification of the web page layout/structure only.
For instance, the login button’s string on a web page may
change from "Login" to "Authenticate." Often, the impact of
a structural change could be considered smaller than that of
a logical change. This is because a structural change requires

"simply" modifying localization lines to repair the test scripts.
The problem is that, in real cases, even a simple layout
change (a kind of structural change) in the web application can
potentially impact hundreds of localization lines [11] across
many test scripts, making the maintenance time-consuming.
Asynchronous. E2E test scripts must manage asynchronous
interactions, which are often considered problematic to handle.
Asynchronous content (e.g., AJAX) allows the web page to
retrieve small amounts of data from the server without reloading
the entire page. When the test script has to interact with content
modified by this asynchronous mechanism, it needs to wait till
the asynchronous content has been updated (i.e., the response
has been received from the server and the page updated
accordingly). The main challenge in handling Asynchronous
calls is knowing the waiting time for the web page content
modified by such calls [7].

Time-consuming. The development of E2E web test scripts
is a complex and time-consuming task [4]. This is due to the
fact that to simulate user interaction with the web application,
E2E tests must follow paths in the navigation graph of the web
application. So, for each step of the tests, it is necessary to
understand which web page it occurs, which web elements to
interact with, write appropriate commands to interact with them,
and so on. Since the code in Selenium WebDriver is written
using classic programming languages such as Java or Python,
this task can be very demanding, especially if not performed
following the best practices (such as relying on specific design
patterns for structuring the source code or adopting automated,
robust locators generators).

Cross-browser. Cross-browser testing consists in reusing the
same test logic for verifying web applications using different
combinations of web browsers. [12]. Even if all web browsers
nowadays support the common web standards developed by the
World Wide Web Consortium (W3C), browsers can still render
web pages differently. These differences in both rendering
and functionality can be due to different factors, such as
(1) different default settings of the browser/operating system
(e.g., the default font used by a browser); (2) different user-
defined settings, e.g., the screen resolution; and (3) different
engines used to process web programming languages.
Failure analysis. Failure analysis (also known as troubleshoot-
ing) is the process of analyzing a failed test to understand
the reason for its failure. In the context of E2E test scripts,
the reasons for a failure can be many, such as problems in
the functionality implementation, variations/anomalies in the
web pages structure, communication problems between the
layers that compose the web application, problems in any of
the layers, and many others [4]. Furthermore, the failure of a
test script could be caused either by the last step performed
by the test (a more straightforward case to analyze) or by a
previous step (more challenging to analyze). For these reasons,
understanding the root cause of a failing E2E test script can
be very complicated and challenging.

Infrastructure. The browser infrastructure required by Sele-
nium scripts (e.g., browsers, drivers) is costly to set up and
maintain. A test suite using the Selenium WebDriver requires

an intermediate component called driver in the Selenium jargon
to control the browser and interact with the web application.
Each browser vendor provides a specific driver for each
browser’s version (e.g., for Chrome version 107, ChromeDriver
107.0.5304.62 must be used). Thus, to run and keep a test
suite updated over time, it is necessary to download the driver
corresponding to the browser version and keep the versions
browser-driver aligned during the natural evolution of the
browsers since modern browsers automatically upgrade to the
next stable version [13] [14]. Developers usually perform this
alignment task manually, which becomes even more tiring (and
expensive) if the developed test suite is multi-browser.
Scalability. Managing a large Selenium suite can be complex,
particularly when this is executed in parallel. A test suite
for a large web application often contains many test scripts,
especially if a high coverage of the functionalities is required.
Furthermore, each test script can be very complex and take
a non-trivial execution time to complete (in the order of
minutes or more). For this reason, parallel execution is often
employed [7], highlighting also the problem of dependencies
between test scripts.

Assertability. Selenium script assertions are mainly DOM-
based, and it is challenging to create other assertion types
(e.g., visual properties checking) [15]. Though many functional
checks can be made through assertions based on data present in
the DOM, this is by far more difficult (if possible) for different
kinds of checks. For example, in those predicates related to
the look-and-feel of the pages, the level of accessibility, or
complex assertions about videos, interactive maps, etc.
Documentation. Selenium is a complex library that can be
used in a multitude of contexts and to automate many kinds of
tasks for different types of applications. In certain cases, the
official documentation [16] could not be enough to make the
most of Selenium.

Support. As in the documentation case, Selenium users may
need support to solve specific problems when implementing
complex scripts. It is unclear whether official Selenium
support [17] (including user groups, chat rooms, Slack, etc.)
is enough to get the most out of Selenium.

III. STUDY DEFINITION, DESIGN, AND PROCEDURE

We are interested to understand how Selenium experts
perceive and face the 13 challenges described in Section II.
Thus, we can define the goal of the survey as follows: better
understand the challenges of end-to-end testing with Selenium
in order to address them effectively.

In this work, we mainly take the perspective of Industrial
practitioners interested in understanding more about the various
challenging aspects (and the corresponding solutions) of the
Selenium adoption and, more in general, the E2E web testing
practice. Moreover, we also take the perspective of Researchers
interested in understanding which are the challenges considered
most important by the practitioners in order to propose
innovative solutions for them, as well as Teachers to offer
Software Testing courses providing in-depth information on

how to solve the challenges considered most relevant by
practitioners.

A. Research Questions

Given the above goal, the survey aimed at addressing the

following research questions:

RQ1: What are the most relevant challenges as perceived by
Software Testers in Selenium-based E2E Web Testing?

RQ2: How is each challenge faced?

RQ3: Does the perceived importance of the challenges change
according to the size of the Company where the survey
participant works?

B. Target Population and Sample Identification

The target population is the set of individuals to whom
the survey applies. In our case, the population comprises
professionals with good knowledge and experience with
Selenium.

To build up a sample, according to [18], [19], we used
convenience and responded-driven sampling [20]. More in
detail we:

— invited the professionals attending the 2022 Selenium Con-
ference [21] to participate in our survey. The Selenium
Conference is a non-profit, volunteer-run event presented
by members of the Selenium Community. The goal of the
conference is to bring together Selenium developers and
enthusiasts.

— asked our industrial partners for contacts of experts in the field
of E2E web testing and individually invited the suggested
practitioners to participate in our survey.

— posted the request for participation on the official Twitter and
LinkedIn communication channels of the Selenium project.

Thus, the context consists of professionals with a potentially

relevant hands-on experience in E2E testing with Selenium.

In total, we received 78 complete responses to our survey.
Unfortunately, it is impossible to determine precisely how
many people have been reached by our invitation messages
and advertisements, so we cannot calculate the response rate.
The same problem is also present in other software engineering
surveys (e.g., in [22]).

C. Data Collection

Since the targeted population is distributed worldwide, we
decided to collect responses via an online questionnaire from
the end of July 2022 to September 2022. Using a web-based
tool simplifies and speeds up the questionnaire completion
with clear advantages regarding the number of responses
obtained [23]. The online questionnaire has been developed
and published using Google Forms [24].

D. Questionnaire Design

The questionnaire is organized into four sections: (1) survey
description, (2) personal information (optional personal contacts
+ four questions [A-D]), (3) questions on the 13 challenges,
and (4) a final open comment.

Each question in section (3) is subdivided into two parts.
First, we asked the participants to evaluate the perceived

relevance of the challenges using a five-point Likert scale
(1=Fully disagree, 2=Disagree, 3=Not sure, 4=Agree, 5=Fully
agree). This part was mandatory. Second, we asked the
participants to explain their experience in limiting/facing the
challenge. This part was optional.

To harvest more answers, we decided that the questionnaire
should take approximately 15 minutes to complete (long ques-
tionnaires get fewer answers than short questionnaires [25]),
and we designed it accordingly.

In the questionnaire, reported in Table I, we included a
question for each challenge described in Section II.

E. Survey Execution

The procedure followed to prepare, administer, and collect
the questionnaire data has five main steps:

1) Preparation and Design of the Questionnaire. We started
to define an initial version of the questionnaire agreed
upon among the authors of this work. This required several
iterations to ensure that we included all the relevant challenges
concerning the current state-of-the-practice in Selenium-based
E2E web testing. We are confident that we selected the most
relevant challenges as explained in Section II.

2) Pilot Study. A pilot study was performed before executing
the survey (i) to tune the questionnaire and (ii) to reduce
the ambiguities contained in the questions. An industrial
IT professional and a university professor completed a pre-
liminary questionnaire version and provided their judgment.
Following the suggestions of the two contacted experts, minor
changes to the questionnaire were made. After this pilot study,
we concluded that the survey was well-suited for Selenium
professionals and that the questions were clear enough.

3) On-line Deployment. Once the questionnaire was refined
after the pilot study, it was deployed online using Google
Forms, as explained before.

4) Monitoring. During the data capture phase, our research
group monitored the progress of the questionnaire submission.

5) Data Analysis. After questionnaires had been collected,
simple analyses were performed to answer the research
questions. Given the nature of this survey, which is mainly
descriptive (it describes some conditions or factors found in
a population in terms of its frequency and impact [26]), we
applied quite exclusively descriptive statistics and showed our
findings through charts. Anonymized raw data are available
at: https://sepl.dibris.unige.it’2022-SeleniumSurvey.php

IV. RESULTS

In this section, we first present some information about
the respondents’ background, in particular by analyzing the
answers to questions A-D (see Table I, 76 responses received).
Then, we analyze the results associated with the 13 questions
(one for each challenge) to answer the RQs of this study.

A. Respondents’ Background

To give an overview of the respondents’ background, we
summarized the answers to questions A-C in the first section
of the questionnaire using pie charts.

ID Question

A How many years have you been working in the field of Web Test Automation?
(optional)

B How would you rate your knowledge of Selenium WebDriver? (optional)

C Which is the size of your company? (optional)

D In which country are you currently working? (optional)

1

Slowness. Selenium scripts are slow to run, i.e., take a long time to complete.
Is this challenge relevant? [five-point Likert scale] (mandatory)
Explain your experience in limiting/facing this challenge [open text] (optional)

2 Brittleness. Selenium scripts are brittle, i.e., fragile when web apps evolution
occurs.

Is this challenge relevant? [five-point Likert scale] (mandatory)

Explain your experience in limiting/facing this challenge [open text] (optional)
3 Flakiness. Selenium scripts are flaky, i.e., can break randomly without a clear

reason.

Is this challenge relevant? [five-point Likert scale] (mandatory)

Explain your experience in limiting/facing this challenge [open text] (optional)
4 Maintainability. The maintenance of Selenium scripts (i.e., the activities

required to keep these scripts operative after they are deployed) is a

troublesome task.

Is this challenge relevant? [five-point Likert scale] (mandatory)

Explain your experience in limiting/facing this challenge [open text] (optional)
5 Asynchronous. Selenium scripts must manage asynchronous interactions,

which are problematic to handle.

Is this challenge relevant? [five-point Likert scale] (mandatory)

Explain your experience in limiting/facing this challenge [open text] (optional)
6 Time-consuming. The development of Selenium scripts is a difficult and

time-consuming task.

Is this challenge relevant? [five-point Likert scale] (mandatory)

Explain your experience in limiting/facing this challenge [open text] (optional)
7 Cross-browser. Cross-browser testing implemented with Selenium (i.e.,

reusing the same test logic for verifying web applications using different

browsers) is complex.

Is this challenge relevant? [five-point Likert scale] (mandatory)

Explain your experience in limiting/facing this challenge [open text] (optional)
8 Failure analysis. Failure analysis of Selenium scripts (also known as

troubleshooting) is difficult, since the underlying cause of a failed test might

be unclear.

Is this challenge relevant? [five-point Likert scale] (mandatory)

Explain your experience in limiting/facing this challenge [open text] (optional)
9 Infrastructure. The browser infrastructure required by Selenium scripts (e.g.,

browsers, drivers) is costly to set up and maintain.

Is this challenge relevant? [five-point Likert scale] (mandatory)

Explain your experience in limiting/facing this challenge [open text] (optional)
10 Scalability. Managing a large Selenium suite is complex (e.g. when using

parallel execution).

Is this challenge relevant? [five-point Likert scale] (mandatory)

Explain your experience in limiting/facing this challenge [open text] (optional)
11 Assertability. Selenium script assertions are mainly DOM-based and it is

challenging to create other assertion types (e.g., visual properties checking).

Is this challenge relevant? [five-point Likert scale] (mandatory)

Explain your experience in limiting/facing this challenge [open text] (optional)
12 Documentation. Selenium documentation is not clear, complete, and does

not cover all important topics.

Is this challenge relevant? [five-point Likert scale] (mandatory)

Explain your experience in limiting/facing this challenge [open text] (optional)
13 Support. Selenium user communities (e.g., user group, Slack) are not

welcoming, and do not answer my questions quickly and helpfully.

Is this challenge relevant? [five-point Likert scale] (mandatory)

Explain your experience in limiting/facing this challenge [open text] (optional)

TABLE I
QUESTIONNAIRE (PERSONAL INFO AND 13 CHALLENGES)

Fig. 1 summarizes the participants’ years of experience
focusing on the specific context of the web test automation.
We can observe that more than one-quarter of the participants
have a long experience in the field, exceeding ten years (red).
The majority (about 40%) of the participants still have relevant
experience between 5 and 10 years (yellow). Finally, another
quarter has between 1 and 4 years of experience (blue), and

How many years have you been working in
the field of Web Test Automation?

Fig. 1. Characteristics of the Survey Participants: Years of Experience

just a few participants have less than one year of experience
(green). We are satisfied with these results because we were
able to intercept many highly experienced professionals.

The subsequent pie chart, reported in Fig. 2, clearly confirms
that we have been able to select and invite participants
that perceive their knowledge of Selenium WebDriver as
relevant. Indeed, more than 47% of the participants rated their
Selenium experience as "Advanced" (red), while about 45% as
"Intermediate" (blue). The few remaining participants (about
8%) rate their knowledge as "Basic" (yellow).

How would you rate your knowledge of Selenium
WebDriver?

Intermediate

Advanced

Fig. 2. Characteristics of the Survey Participants: Selenium Knowledge

The last pie chart reported in Fig. 3 provides an overview
of the size of the companies where the participants work.

Most of the responses were obtained by practitioners working
in Large companies (i.e., 250+ employees), totaling about 55%
of the answers (blue). Then, the second larger group is the
one of the participants working in Medium-sized companies
(i.e., 50-249 employees), corresponding to about 28% of the
answers (red). Finally, only a small fraction of the participants

Which is the size of your company?
Micro (1-9) o

éma\l

9,2%

(10-49)

Large (>250,

Medium (50-249)

Fig. 3. Characteristics of the Survey Participants: Company Size

work in Small (i.e., 10-49 employees) and Micro companies
(i.e., 1-9 employees), respectively, about 9% (yellow) and 8%
(green) of all the participants.

Finally, we analyzed the geographic distribution of the
participants. The respondents to our survey are from 28 different
nationalities including United States, India, Spain, United
Kingdom, Italy, Germany, Finland, France, Belgium, Brazil
and many other.

B. Results for RQI - What are the most relevant challenges?

Fig. 4 provides the data to answer RQ1. In particular, it
reports the 13 challenges ordered by perceived importance. In
the second column, the average value (over 78 responses) of
the perceived importance is reported for each challenge, while
the third column reports the median values.

Looking at the figure, we can observe a full-point difference
between the challenge considered more important, i.e., the man-
agement of Asynchronous content by the web test scripts, and
the one considered less critical, the Selenium Documentation.
Such a difference is not huge but still significant on a five-point
scale. The average scores assigned to the various challenges
are in the interval [2.38-3.41], where the central value of the
scale is 3. So we can say that the various challenges do not
obtain a strongly polarized evaluation shared among all the
participants of our survey (how could it be, for example, a 4.5
or 1.5 point score).

We speculate that the obtained results could be motivated
by the fact that the relevance of the various challenges may
vary depending on the context where each participant works
and the specific characteristics of the web applications she
usually tests. For example, a participant who in her daily
practice tests an application where asynchronous content is
scarce or even absent might find the Asynchronous challenge,
and probably in part also the Flakiness challenge, irrelevant
in her experience. Similarly, a participant who is involved in
the long-term testing of an industrial application where the
identifiers of the web elements are well defined and consistently
maintained across releases (e.g., a web application having
meaningful and stable IDs tag values in the HTML code), could

Average Median
Asynchronous 3,41 4
Brittleness Sl 3
Flakiness 3,27 4
Assertability 3,19 3
Scalability 3,05 3
Slowness 2,92 3
Failure analysis 2,92 3
Maintainability 2,79 3
Time-consuming 2,77 3
Infrastructure 2,69 2
Cross-browser 2,60 2
Support 2,44 2
Documentation 2,38 2

Fig. 4. Challenges ordered by perceived importance: Average and Median
values from the five-points Liker scale

perceive the challenges relating to Brittleness and (partially)
Maintenance to be insignificant in her working experience.

In conclusion, the three most relevant challenges are the
management of Asynchronous content, the Brittleness and the
Flakiness of the test scripts. On the contrary, the participants
appear to be quite satisfied with the Support and the Documen-
tation of the Selenium ecosystem (and so they do not perceive
them as challenging problems). In general, the results provide
a clear ranking among the 13 challenges.

The final open comment in the survey suggests the correct
selection of the 13 challenges as no participants added new
challenges to our initial set.

C. Results for RQ2 - How is each challenge faced?

Given the results described to answer RQ1, it becomes
interesting to analyze the distribution of the evaluations
provided by the participants to each challenge. Moreover,
we summarize the respondents’ comments concerning their
experience facing each specific challenge. Let’s analyze them
in the same order as given in Fig. 4.

The distributions of the answers to the first four challenges
are reported in Fig. 5. Starting from the top-left, we have Asyn-
chronous, Brittleness, Flakiness, and Assertability. Looking at
the answers distributions, we can observe that the ranking
scores derive from different assignments on the five-point
Likert scale. Indeed, in the case of Brittleness and Assertability,
we observe a maximum peak for the "Not Sure" choice and,
respectively, very low and quite low values for the negative
choices. So we can say that a large number of participants
(about 30%) do not have a strong opinion about these two
challenges (the ones voted "Not sure") or simply do not have
a direct experience with them. On the contrary, when such
challenges are experienced, the majority of the participants
agree with the fact that they must be considered relevant
problems (in both cases, the scores obtained by "Fully agree" is
more than twice the ones of "Fully disagree"). The distributions
of Asynchronous and Flakiness have a different shape instead.
They both show the maximum peak in the positive votes area.
Thus, in this case, many participants experienced them and
strongly agreed on the relevance of these two challenges.

Let us now analyze the participants’ textual comments on
these four challenges.

Concerning the management of Asynchronous content by
the web test scripts, many participants provided additional info
concerning their experience in facing this challenge. In general,
they state to rely on various kinds of waiting strategies to ensure
that the test script interacts with the web application only when
the asynchronous content is available. Most of the respondents
adopt the various waiting strategies available in Selenium, such
as the implicit, explicit, and fluent waits [4] targeting the web
element to interact with, and they are satisfied with them. The
remaining respondents implement custom waiting strategies that
include some kind of validations on the web page asynchronous
content before executing the next Selenium action. Also, in
our opinion adopting advanced waiting strategies is a crucial

point to manage Asynchronous content correctly, as recently
experienced in an industrial case study [27].

Several respondents report on different strategies to overcome
the Brittleness of the test scripts challenge, i.e., the fact that
they are fragile when a web app evolves. One common solution
is to avoid the problem by coordinating the test team with
the development team. Thus, it is possible to decide on a
localization strategy and insert meaningful anchors in the web
elements of interest during web app development (usually
through the ID tag value). This way, the localization remains
stable across the subsequent web app versions. Similarly, some
respondents also propose providing developers with direct
feedback on the E2E web tests. This direct feedback to the
front-end engineers makes it possible if a test breaks due
to the evolution of the app, to make them aware of the
problem they caused immediately. Others propose the usage
of the Page Object (PO) pattern [28], a quite popular web test
design pattern, which aims at improving the maintainability
of the test and reducing the duplication of code. A PO is
a class that represents the web page elements as a series
of objects and encapsulates the web page’s features into
methods. Adopting the PO pattern allows testers to follow
the separation of concerns design principle since the test
scenario is decoupled from the implementation. Indeed, all
the implementation details are moved into the POs, which
represent bridges between web pages and tests, with the latter
only containing the test logic. Thus, all the functionalities to
interact with a web page are offered in a single place, the
PO, and can be easily called and reused within any test script,
reducing the maintenance effort when a locator is broken.
The use of the PO pattern reduces the coupling between
web pages and tests, promoting reusability, readability, and
maintainability of the test suites [11]. For this reason, many
participants adopted it as a solution to other challenges, as
explained in the rest of this section. Other respondents find this
challenge very hard to solve, particularly when testing web

Asynchronous Brittleness

40% 40%

20% 20%

Responses
Responses

10% 10%

0% 0%
Fully Disagree Notsure Agree Fully
disagree disagree

Disagree Notsure Agree Fully

agree

Flakiness
40% 40%

Assertability

20% 20%

Responses
Responses

10% 10%

0% 0%
Agree Fully
disagree

Fully Disagree Not sure
disagree

Disagree Not sure

Agree Fully
agree

Fig. 5. Details of the answers distribution for the challenges ranked in the
top four positions.

apps that do not have meaningful IDs. This way, they report
that this often requires adopting complex XPath expressions
which prove to be extremely fragile during the evolution of
the web application. We fully agree with this statement, and
indeed we have already proposed multiple solutions to reduce
the Brittleness problem when XPath locators are used, such as
ROBULA [29], SIDEREAL [30], and SIMILO [31]. Respondents
also propose using multiple locators as a backup strategy: if
one fails to retrieve the target web element, the other(s) can be
employed. Also, in this case, we agree with such an idea since,
in the literature, some proposal to combine multiple locators
already exists, including MULTILOCATOR [32], self-healing
locators, or similar ideas available in some commercial tools
such as Katalon [33], Testim [34], and Screenster [35].
Concerning the Flakiness of the test scripts, i.e., the fact
that they can break randomly without an apparent reason,
respondents provided similar solutions as to the Asynchronous
challenge. For example, understanding well the various waiting
strategies available in Selenium and use them appropriately.
We agree that the two challenges are related, and the incorrect
management of the asynchronous content can cause flakiness in
the test scripts. In general, since it is difficult to be sure to have
developed flakiness-free test scripts, some respondents propose
to re-execute each test script a predefined number of times
before committing it in the master test suite. This should help
to increase the reliability of the developed test scripts. Again,
we agree with the practitioners’ solution: indeed, recently, we
proposed a tool, SLEEPREPLACER, that helps to optimize the
waiting strategies of the test scripts by improving the test
suite code and then validating such changes by re-executing
multiple times the test scripts to reduce flakiness [36]. Similarly,
in the presence of test scripts characterized by a high flakiness
level, some respondents propose to automatically re-execute
the failing test scripts to increase the likelihood of detecting
only actual failures (indeed, a test that fails due to flakiness is
likely to pass in one of the subsequent re-executions). Some
respondents suggest using the JavaScriptExecutor to execute
actions on web elements that proved to be a source of flakiness

in previous runs when using the standard Selenium commands.

Respondents find flakiness a complex challenge, especially
when working with a cloud service provider In that case,
potentially, every test creates even hundreds of HTTP requests
from the WebDriver client to the server. In such a scenario,
some of these requests probably fail. One solution reported is
to keep test cases short and atomic because the longer a test
case runs, the higher the risk of flakiness.

Concerning Assertability, i.e., the possibility of implementing
assertions in Selenium beyond the classical DOM-based ones,
the majority of the respondents suggest integrating Selenium
with other tools such as Percy [37], a visual testing tool able
to handles different tasks such as capturing and rendering
screenshots, as well as detecting and notifying visual changes
in the web pages. A similar approach is Sikuli [38], [39], a tool
that uses image recognition techniques to identify web elements
(and any other element on the screen) and can be used together
with Selenium WebDriver [8]. Some respondents find this a

limitation of Selenium since some other tools natively support
various types of assertions beyond the classical DOM-based
ones (e.g., Applitools Eyes [40], Nightwatch VRT [41], or the
Jest Framework [42]).

The distributions of the answers to the challenges ranked
from position five to position eight are reported in Fig. 6. Also,
in this case, we can observe a case (Scalability) showing a
maximum peak in the positive votes. The other three challenges
instead have the maximum peak on the "Disagree" choice. The
votes assigned to the challenge Failure Analysis are quite
balanced around the average value.

Let us analyze the textual comments on these four challenges
provided by the participants.

Concerning Scalability, i.e., the execution of complex Sele-
nium test suites, for example, adopting parallelism, respondents
state that it is essential to start the development of the test suite
bearing in mind the need for parallel execution. Indeed, in
their experiences, it is far more difficult to refactor an existing
sequential complex test suite to support parallel test script
execution strategies, mainly due to the dependencies among
test scripts. We fully agree with the respondent. Removing
the dependencies among test scripts is a must for parallelizing
an existing test suite and is, in general, a complex task since
dependencies can even be hard to find. To this end, a tool to
discover them, named TEDD, has been recently proposed [43].
Some respondents report the problem of executing the test
scripts in parallel on the same web app instance since state
interferences are likely to happen. In our experience, it is better
to clone the instance of the web app (for example, using Docker)
to make the various parallel executions autonomous and avoid
any interference (see, for example, the tool STILE [44]).
This is also suggested by other participants who stated to
use containers. Another tool that eases Selenium scalability
is Selenium-Jupiter [14], a JUnit 5 extension that provides
seamless integration with Selenium WebDriver and Docker.
Selenium-Jupiter can be used to implement E2E tests by using

Scalability Slowness

40% 40%

20% 20%

Responses
Responses

10% 10%

0% 0%
Fully Disagree Notsure Agree Fully Disagree Notsure Agree Fully
disagree disagree agree

Failure analysis
40% 40%

Maintainability

20% 20%

Responses
Responses

10% 10%

0% 0%
Fully Disagree Notsure Agree Fully

disagree

Disagree Not sure
disagree agree

Agree Fully

Fig. 6. Details of the answers distribution for the challenges ranked from
position 5 to position 8.

multiple browsers in Docker containers. Many respondents
report that they have adopted Selenium Grid [45] for parallel
execution. Some participants recognize the scalability problem
and suggest a drastic solution: reducing the number of E2E
test scripts to run. This way, they prefer to take the risk of
lowering the test coverage rather than spending a relevant effort
for maintaining and executing large test suites.

Concerning Slowness of the Selenium test scripts, i.e., they
take a long time to complete, some respondents stated that this
problem is due to the fact that browsers themselves are the
bottleneck. Also, the usage of non-optimized waiting strategies
(e.g., thread sleep commands) is seen as a cause for the
perceived slowness of the Selenium test scripts. We agree
on that since using, for instance, fixed-time waiting strategies
(as commonly done by inexperienced web testers) can lead
to a relevant increment in the execution time [36]. Another
cause of the perceived slowness is that in many cases each
test script execution requires a new browser instance to be
started. This way, respondents report that they try to reuse the
same browser instance as much as possible across different
test script executions to reduce the set-up time. This can be a
relevant portion of the total execution time when test scripts
are relatively short, such as testing simple functionalities. Some
respondents suggest executing test scripts in headless mode. In
this case, the browser does not display the UL, so the potentially

heavy rendering process of the web pages is not executed.

Another solution proposed by the respondents involves the
minimization of the steps performed by Selenium, trying to
do equivalent actions through APIs: for example, the portions
of the test scripts navigation flow that are common to many
of them (and so not part of the testing process for such a
particular test script) such as login, logout, navigation, setting
up, cleaning up, etc. can be replaced by APIs calls (when
possible).

Concerning Failure analysis, i.e., the troubleshooting that
helps to pinpoint the underlying cause of a failed test scripts, the
respondents suggest using logging libraries such as Log4j [46],
ReportNG [47], and ReportPortal [48] that help in collecting
detailed information concerning the failure. Many respondents
find the common stack-trace messages not very informative
and sometimes confusing. Browser interaction is perceived to
lead to obscure error messages when something goes wrong.
Respondents find the problem exacerbated by running test
scripts on remote Grid/Cloud: they state that this, in their
experience, usually requires a lot of additional investigations
and efforts. The respondents also suggest tweaking the error
messages so that if a test script breaks, it is easier to understand
what happened and the cause of failure. Another proposed
solution includes taking screenshots or HTML dumps when
a problem occurs to inspect the page visually and better
understand the cause of the problem. Some respondents
suggest taking even video recordings of the failing test scripts
so that replicating the problem and the subsequent failure
analysis becomes more straightforward. Recently the tool
BrowserWatcher [49] has been proposed to monitor web
browsers such as Google Chrome, Mozilla Firefox, or Microsoft

Edge and perform advanced log gathering and analysis that
can also help in understanding the reasons for a failure.

Concerning Maintainability, i.e., the set of activities required
to keep the test scripts working after they are deployed, many
respondents state that the maintenance effort absolutely depends
on the design patterns and architecture of test scripts/suite, and
so highlight the importance of developing reusable atomic
components. Many of the respondents suggest using the Page
Object pattern [28]. We agree with such suggestions since
there is strong empirical evidence of the benefits deriving from
adopting the Page Object pattern [8], [50]. For this reason,
tools for the automatic generation of page objects have also
been proposed, e.g., APOGEN [51]. Another design pattern
that aims to improve reusability and maintainability is the
Screenplay pattern. Screenplay is a user-centered pattern that
uses actors, tasks, and goals to define tests in business terms
rather than interactions [52]. Other participants also pinpoint the
problems due to managing the continuously updated browsers’
drivers, Selenium versions, and ever-changing browser versions.
To mitigate this problem recently, the tool WebDriverManager
has been proposed [13] and evaluated [53].

The distribution of the answers to the challenges ranked from
position nine to position eleven is reported in Fig. 7. These
challenges obtained lower votes and so, as expected, show a
different shape in their distributions. In all cases, the maximum
peak is on the negative side of the five-point Likert scale.
Participants perceive Time-consuming and Cross-browser as
less relevant challenges in their experience, while Infrastructure
has a slightly contrasted evaluation with relatively high levels
on both the extremes of the scale.

Let us analyze the textual comments provided by the
participants on these three challenges.

Concerning Time-consuming challenge, i.e., that the develop-
ment of Selenium test scripts is a complex and time-consuming
task, the respondents suggest a solution similar to the one
proposed for the Maintainability challenge. Thus, relying on
helper methods that can be used for repeated actions helps

Infrastructure

Time-consuming

30% 30%

20%

Responses
Responses

10%

0%
Agree Fully Disagree Notsure Agree Fully
disagree agree

Fully Disagree Not sure
disagree

Cross-browser

20%

Responses

10%

0%
Fully Disagree Notsure Agree Fully
disagree agree

Fig. 7. Details of the answers distribution for the challenges ranked from
position 9 to position 11.

overcome this challenge. Also, adopting the Page Object pattern
can reduce the development effort in case of test suites targeting
a strong coverage of the web application under test [54] (and
so having reuse of the methods in the Page Objects). They
also highlight the efforts required to manually define robust
XPath locators (to this end, see the possible solutions for the
automatic generation of robust locators already presented for
the Brittleness challenge). Moreover, the respondents mentioned
the effort required to set up the test suite (for instance, using
WebDriverManager, like in the Maintainability challenge).

Concerning Infrastructure challenge, many respondents state
to use also, in this case, WebDriverManager to mitigate the
problems concerning the management of the infrastructure
configurations. Other respondents suggest relying on container-
based solutions and Docker to create ready-to-use and easily
reusable configurations. Another possible solution is to out-
source the infrastructure management and rely on the many
available cloud vendors [55]-[57] that provide ready-to-use
testing infrastructures on the cloud.

Concerning Cross-browser challenge, i.e., reusing the same
test logic for verifying web applications using different
browsers, respondents state that today their practice is to rely
on cloud-based solutions such as Saucelabs [55], LambdaT-
est [56], and BrowserStack [57]. According to the respondents,
in the last years, cloud solutions gradually replaced the need
to manage multiple in-house versions of the test suites tailored
for different browsers. They also found that the end of the IE
(Internet Explorer) browser support has reduced the need for
separate test script versions to test the same functionality. This
is also due to the fact that, in general, W3C standardization
helped to uniform browsers’ behavior (and so few differences
are required in the test scripts logic).

Finally, the distribution of the answers to the challenge
ranked in the last two positions is reported in Fig. 8. In both
cases, the distribution shapes are clearly skewed toward the
negative values. So they do not represent a relevant problem
for most respondents.

Let us analyze the textual comments provided by the
participants on these two final challenges.

Concerning Support challenge, i.e., the difficulty of finding
help in Selenium user communities such as user groups and
Slack, the respondents state that the Selenium community
is supporting, kind, and welcoming. The way, Selenium
contributors on Slack and Google groups are perceived to
do a great job of helping Selenium users. Respondents also

Support Documentation

40% 40%
30% 30%

20% 20%

Responses
Responses

10% 10%

0% 0%
Agree Fully
disagree

Fully Disagree Not sure
disagree

Disagree Not sure

Agree Fully
agree

Fig. 8. Details of the answers distribution for the challenges ranked in position
12 and 13.

appreciated the organization of the Selenium Conference [58],
which helps deepen the knowledge of various topics related to
the Selenium ecosystem.

Concerning Documentation challenge, i.e., the quality of
the Selenium documentation, respondents find it quite com-
prehensive and clear. A few respondents suggest providing
documentation in additional forms, such as video tutorials
or webinars, since this could help better understand complex
functionalities.

D. Results for RO3 - Company size and perceived relevance

To answer RQ3 we computed the ranking of the 13 chal-
lenges by perceived importance and partitioned for company
size where the respondents work. Fig. 9 shows the results. We
maintained the ranking ordering provided in Fig. 4 to answer
RQ1: thus, each inversion in the green-white-red color scale
indicates an inversion in the ranking w.r.t. the overall ranking
computed for RQ1. For example, see Infrastructure in Micro
companies or Assertability in Small companies.

We can observe that the overall ranking generally looks
similar across different company sizes: the challenges perceived
as the most important are still in the first positions when
partitioning for company size, and the same hold for the ones
in the last positions. However, there are some exceptions.

The column showing the answers of participants working
in Large companies is the one that looks more similar to the
overall results: the average value over all the 13 challenges
is 2.96, while the overall data used to answer RQ1 scored a
very close 2.90. In this case, we can see some exchanges in
the ranking position, but they are limited to relatively nearby
positions (e.g., Failure Analysis).

In the case of the Medium companies, we can see a similar
ranking. However, the values are generally lower (in this
case, the average is 2.64), indicating that the participants
assigned lower evaluations to all the challenges w.r.t. the overall
participants. In this case, we can observe some significant
changes in the ranking. For instance, Maintainability is the
challenge that scored the lowest value.

The participants working in Small companies are slightly
more positive, scoring an overall average value of 2.81. In

Micro Small | Medium | Large

(1-9) (10-49) | (50-249) | (250+)
Asynchronous 3,50 3,43 2,86 3,60
Brittleness 3,67 3,29 2,86 3,40
Flakiness 3,00 3,29 2,71 3,50
Assertability <R 2,57 2,90 <R
Scalability 3,00 2,86 2,71 3,17
Slowness 2,67 3,14 2,67 2,95
Failure analysis 3,50 3,14 2,90 2,71
Maintainability TR 2,57 2,29 2,90
Time-consuming 2,33 2,29 2,71 2,83
Infrastructure 3,67 2,43 2,43 2,62
Cross-browser 2,50 2,86 2,52 2,50
Support 2,50 2,43 2,38 2,52
Documentation 2,50 2,29 2,38 2,45

Fig. 9. Challenges ordered by perceived importance and partitioned by
respondent’s company size

this case, we observe multiple changes in the ranking as
highlighted by the alternate red and green values (see, for
instance, Assertability and Time-consuming).

Finally, the participants working in Micro companies are
the most positive (see the greener colors), scoring an average
value of 3.04. We can observe multiple and relevant changes
to the ranking order. For instance, Infrastructure becomes the
most relevant change together with Brittleness, while Slowness
is one of the challenges that obtained the lower score.

Providing a detailed interpretation of the obtained results is
complex since they can be due to many, possibly contrasting,
factors. For example, the respondents from Micro companies
could provide certain evaluations as they work (1) to ensure
the quality of a small web app created in their company, or
on the contrary, (2) as outsourced testers for bigger companies
and therefore they perceive the challenges of Medium/Large
companies. To keep the questionnaire short, we avoided asking
too detailed questions about the participant’s work situation.

To conclude, the interesting aspect is that by partitioning
the results provided by disjoint groups of participants, very
similar challenges’ rankings are obtained: this is very positive
in order to assess the generalizability of the results.

E. Threats to Validity

In our opinion the main threats to validity of this study are
the following:

— Sampling techniques. Making the survey available online can
result in having answers possibly by unqualified participants.
To mitigate this threat, we distributed the survey to selected
groups with a specific professional interest in Selenium.

— Challenges selection. Some important challenges may be
missing. To reduce these threats, as reported in Section II,
we systematically searched for the most relevant challenges
reported by practitioners on the web. We refined the list
according to our experience in the E2E field.

— Terminology. Some terms can have different interpretations
among practitioners. Therefore, each term used in the
questionnaire was carefully evaluated thanks to the judg-
ments/comments provided in the pilot study.

— Sample size and not uniform geographic distribution of the
data points. Our sample size is in line with the previously
performed software testing surveys [4], [59]. Clearly, having
more data points is desirable but not easy to achieve given the
specific scope of the survey and the selection due to the highly
desired knowledge level of the participants. Also, further
geographically distributed data points are highly desirable to
generalize our findings, but we have already covered many
countries.

— Self-exclusion. We cannot exclude that some participants could
have avoided answering because they considered participating
in a survey useless. Self-exclusion is a well-known problem
in Internet surveys, in particular when advertised online as
we did.

V. RELATED WORK

Concerning the related works focusing on analyzing and
proposing technical solutions to the various challenges, we

10

have already mentioned many of them in the results section.
Here, for space reasons, we limit our analysis to a few similar
works adopting the survey/content analysis empirical strategy
in the context of testing.

Garcia et al. [4] present a descriptive survey, with a total of
72 participants from 24 countries, aimed to understand how the
community uses Selenium and its ecosystem. By ecosystem,
they mean the various components, tools, and other interrelated
elements sharing the same technological background. Unlike
our work, they do not focus on the challenges and the possible
ways to face them. The number of participants is comparable
with ours.

Kanij et al. [59] describe a survey, with a total of 104
participants, on the importance of various factors that influence
effective testing, including testing-specific training, experience,
skills, and human qualities like dedication and general intelli-
gence. The survey responses strongly suggest that while testing
tools and training are important, human factors were similarly
considered highly important. This survey is very different from
ours since the scope is far broader. Also, in this case, the
number of participants is comparable.

Cerioli et al. [3] applied content analysis to about five million
job advertisements taken from a popular Web job search engine.
Among the various findings, it emerges that the most valuable
testing tools, frameworks, and libraries are Selenium, JUnit,
and Cucumber for both Testers and Coders. This strengthens
the importance of focusing our analysis on Selenium in the
context of E2E web testing.

VI. CONCLUSION AND FUTURE WORK

In this paper, we presented the results of a personal opinion
survey with 78 highly skilled participants from the industry,
analyzing the most relevant challenges in E2E testing focusing
on Selenium. The results allow understanding: (a) which are
the main challenges developers face and (b) how practitioners
solve the problems (e.g., flakiness and fragile tests) that arise
every day using Selenium. In our opinion, this second point
can be beneficial for the reader, that can find in this paper
a summary of the most important solutions (as suggested by
the 78 participants) adopted in the industry to overcome the
various challenges, plus some suggestions deriving from our
academic and industrial experience.

In future work, we plan to extend this personal opinion survey
in several directions, including more participants and extending
the survey to other countries. Moreover, we plan to deepen
the most relevant solutions to the various challenges through
interviews with industry practitioners and having specific skills
(such as experts in test parallelization, test development, or
cross-browser testing).

Acknowledgement. This work was partially supported in
part by the Ministerio de Ciencia e Innovacion-Agencia Estatal
de Investigacion (10.13039/501100011033) through the H20
Learn project under Grant PID2020-112584RB-C31, and in part
by the Madrid Regional Government through the e-Madrid-CM
Project under Grant S2018/TCS-4307.

[

—

[2
[3

= =

[4

=

[5]

[6

=

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]
[17]
(18]

(19]

[20]

REFERENCES

“Selenium WebDriver,”
webdriver/.

https://www.selenium.dev/documentation/

“Selenium,” https://www.selenium.dev/.

M. Cerioli, M. Leotta, and F. Ricca, “What 5 million job advertisements
tell us about testing: a preliminary empirical investigation,” in
Proceedings of 35th ACM/SIGAPP Symposium on Applied Computing
(SAC 2020). ACM, 2020, pp. 1586-1594. [Online]. Available:
https://doi.org/10.1145/3341105.3373961

B. Garcia, M. Gallego, F. Gortdzar, and M. Munoz-Organero, “A survey
of the selenium ecosystem,” Electronics, vol. 9, no. 7, 2020. [Online].
Available: https://www.mdpi.com/2079-9292/9/7/1067

M. Barboni, A. Bertolino, and G. D. Angelis, “What we talk about when
we talk about software test flakiness,” in International Conference on
the Quality of Information and Communications Technology. Springer,
2021, pp. 29-39.

F. Ricca and P. Tonella, “Analysis and testing of web applications,
in Proceedings of the 23rd International Conference on Software
Engineering. ICSE 2001, 2001, pp. 25-34.

B. Garcia, Hands-On Selenium WebDriver with Java: A Deep Dive Into
the Development of End-To-End Tests. O’Reilly Media, Incorporated,
2022.

M. Leotta, D. Clerissi, F. Ricca, and P. Tonella, “Approaches
and tools for automated end-to-end web testing,” Advances in
Computers, vol. 101, pp. 193-237, 2016. [Online]. Available:
https://doi.org/10.1016/bs.adcom.2015.11.007

W. Lam, K. Muslu, H. Sajnani, and S. Thummalapenta, “A study
on the lifecycle of flaky tests,” in Proceedings of the ACM/IEEE
42nd International Conference on Software Engineering, ser. ICSE *20.
New York, NY, USA: Association for Computing Machinery, 2020, p.
1471-1482. [Online]. Available: https://doi.org/10.1145/3377811.3381749

Q. Luo, F. Hariri, L. Eloussi, and D. Marinov, “An Empirical Analysis of
Flaky Tests,” in Proceedings of the 22Nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, ser. FSE’14. ACM,
2014, pp. 643-653.

M. Leotta, D. Clerissi, F. Ricca, and P. Tonella, “Capture-Replay vs.
Programmable Web Testing: An Empirical Assessment during Test Case
Evolution,” in Proceedings of 20th Working Conference on Reverse
Engineering (WCRE 2013). IEEE, 2013, pp. 272-281. [Online].
Available: https://doi.org/10.1109/WCRE.2013.6671302

A. Mesbah and M. R. Prasad, “Automated cross-browser compatibility
testing,” in Proceedings of the 33rd International Conference on Software
Engineering, 2011, pp. 561-570.

B. Garcia, M. Munoz-Organero, C. Alario-Hoyos, and C. D. Kloos,
“Automated driver management for selenium webdriver,” Empirical
Softw. Engg., vol. 26, no. 5, sep 2021. [Online]. Available:
https://doi.org/10.1007/s10664-021-09975-3

B. Garcia, C. Delgado Kloos, C. Alario-Hoyos, and M. Munoz-Organero,
“Selenium-jupiter: A junit 5 extension for selenium webdriver,” Journal
of Systems and Software, vol. 189, p. 111298, 2022. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0164121222000516

>

B. Garcia, F. Gortazar, L. Lopez-Fernandez, M. Gallego, and M. Paris,
“Webrtc testing: challenges and practical solutions,” IEEE Communica-
tions Standards Magazine, vol. 1, no. 2, pp. 36-42, 2017.

“Selenium Documentation,” https://www.selenium.dev/documentation/.
“Selenium Support,” https://www.selenium.dev/support/.

M. Q. Patton, Qualitative Evaluation and Research Methods. SAGE

Publications, inc, 1990.

B. Kitchenham and S. L. Pfleeger, “Principles of Survey Research (part
5): Populations and Samples,” ACM SigSoft Software Engineering Notes,
vol. 27, no. 5, pp. 17-20, 2002.

S. Baltes and P. Ralph, “Sampling in software engineering research: A
critical review and guidelines,” Empirical Softw. Engg., vol. 27, no. 4, jul
2022. [Online]. Available: https://doi.org/10.1007/s10664-021-10072-8

11

[21]

(22]

(23]

[24]
[25]
[26]

[27]

[28]

[29]

[30]

(31]

(32]

[33]
[34]
(35]
[36]

(371
[38]

[39]

[40]
[41]
[42]

“Selenium Conference 2022 - July 29-30, 2022, https://2022.
seleniumconf.in/.

T. C. Lethbridge, “A Survey of the Relevance of Computer
Science and Software Engineering Education,” in Proceedings of the
11th Conference on Software Engineering Education and Training,
ser. CSEET 1998. IEEE, 1998, pp. 56-66. [Online]. Available:
http://dl.acm.org/citation.cfm?id=522339.794252

A. Jedlitschka, M. Ciolkowski, C. Denger, B. Freimut, and A. Schlichting,
“Relevant information sources for successful technology transfer: A
survey using inspections as an example,” in Proceedings of Ist
International Symposium on Empirical Software Engineering and
Measurement, ser. ESEM 2007. IEEE Computer Society, 2007, pp.
31-40. [Online]. Available: http://dx.doi.org/10.1109/ESEM.2007.73

“Google Forms,” https://www.google.com/forms/.
StatPac, Inc., 1997.

B. A. Kitchenham and S. L. Pfleeger, “Personal opinion surveys,” in
Guide to Advanced Empirical Software Engineering, F. Shull, J. Singer,
and D. I. K. Sjoberg, Eds. Springer London, 2008, pp. 63-92.

D. Olianas, M. Leotta, F. Ricca, and L. Villa, “Reducing flakiness
in End-to-End test suites: An experience report,” in Proceedings of
14th International Conference on the Quality of Information and
Communications Technology (QUATIC 2021), ser. CCIS, A. C. R.
Paiva, A. R. Cavalli, P. Ventura Martins, and R. Pérez-Castillo,
Eds. Springer, 2021, vol. 1439, pp. 3-17. [Online]. Available:
https://doi.org/10.1007/978-3-030-85347-1_1

M. Fowler, “PageObject,” http://martinfowler.com/bliki/PageObject.html.

M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “ROBULA+: An
algorithm for generating robust XPath locators for web testing,” Journal
of Software: Evolution and Process (JSEP), vol. 28, no. 3, pp. 177-204,
2016. [Online]. Available: https://doi.org/10.1002/smr.1771

M. Leotta, F. Ricca, and P. Tonella, “SIDEREAL.: Statistical adaptive
generation of robust locators for Web testing,” Journal of Software:
Testing, Verification and Reliability (STVR), vol. 31, 2021. [Online].
Available: https://doi.org/10.1002/stvr.1767

M. Nass, E. Alégroth, R. Feldt, M. Leotta, and F. Ricca, “Similarity-
based web element localization for robust test automation,” ACM
Transactions on Software Engineering and Methodology (TOSEM).
[Online]. Available: https://doi.org/10.1145/3571855

M. Leotta, A. Stocco, F. Ricca, and P. Tonella, “Using multi-locators
to increase the robustness of web test cases,” in Proceedings of Sth
IEEE International Conference on Software Testing, Verification and
Validation (ICST 2015). 1EEE, 2015, pp. 1-10. [Online]. Available:
https://doi.org/10.1109/ICST.2015.7102611

“Katalon,” https://katalon.com/.

D. S. Walonick, Survival Statistics.

“Testim,” https://www.testim.io/test-automation-tool/.
“Screenster,” https://screenster.io/.

D. Olianas, M. Leotta, and F. Ricca, “SleepReplacer: A novel tool-based
approach for replacing thread sleeps in selenium webdriver test
code.” Software Quality Journal (SQJ), 2022. [Online]. Available:
https://doi.org/10.1007/s11219-022-09596-z

“Percy,” https://percy.io/.

T.-H. Chang, T. Yeh, and R. C. Miller, “Gui testing using computer
vision,” in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems, ser. CHI ’10. New York, NY, USA: Association

for Computing Machinery, 2010, p. 1535-1544. [Online]. Available:
https://doi.org/10.1145/1753326.1753555

T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: Using gui screenshots
for search and automation,” in Proceedings of the 22nd Annual ACM
Symposium on User Interface Software and Technology, ser. UIST *09.
New York, NY, USA: Association for Computing Machinery, 2009, p.
183-192. [Online]. Available: https://doi.org/10.1145/1622176.1622213

“Applitools Eyes,” https://applitools.com/platform/eyes/.
“Nightwatch VRT,” https://github.com/Crunch-io/nightwatch-vrt.
“Jest Framework,” https://jestjs.io/.

https://www.selenium.dev/documentation/webdriver/
https://www.selenium.dev/documentation/webdriver/
https://www.selenium.dev/
https://doi.org/10.1145/3341105.3373961
https://www.mdpi.com/2079-9292/9/7/1067
https://doi.org/10.1016/bs.adcom.2015.11.007
https://doi.org/10.1145/3377811.3381749
https://doi.org/10.1109/WCRE.2013.6671302
https://doi.org/10.1007/s10664-021-09975-3
https://www.sciencedirect.com/science/article/pii/S0164121222000516
https://www.selenium.dev/documentation/
https://www.selenium.dev/support/
https://doi.org/10.1007/s10664-021-10072-8
https://2022.seleniumconf.in/
https://2022.seleniumconf.in/
http://dl.acm.org/citation.cfm?id=522339.794252
http://dx.doi.org/10.1109/ESEM.2007.73
https://www.google.com/forms/
https://doi.org/10.1007/978-3-030-85347-1_1
http://martinfowler.com/bliki/PageObject.html
https://doi.org/10.1002/smr.1771
https://doi.org/10.1002/stvr.1767
https://doi.org/10.1145/3571855
https://doi.org/10.1109/ICST.2015.7102611
https://katalon.com/
https://www.testim.io/test-automation-tool/
https://screenster.io/
https://doi.org/10.1007/s11219-022-09596-z
https://percy.io/
https://doi.org/10.1145/1753326.1753555
https://doi.org/10.1145/1622176.1622213
https://applitools.com/platform/eyes/
https://github.com/Crunch-io/nightwatch-vrt
https://jestjs.io/

[43]

[44]

[45]
[46
[47]
[48
[49]
[50]

[51]

[52]

[53]

[54]

[55]
[56]
(571
[58]
[59]

M. Biagiola, A. Stocco, A. Mesbah, F. Ricca, and P. Tonella, “Web
test dependency detection,” in Proceedings of the 2019 27th ACM Joint
Meeting on European Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ser. ESEC/FSE 2019.
New York, NY, USA: Association for Computing Machinery, 2019, p.
154-164. [Online]. Available: https://doi.org/10.1145/3338906.3338948

D. Olianas, M. Leotta, F. Ricca, M. Biagiola, and P. Tonella, “STILE: a
tool for parallel execution of E2E webtest scripts,” in Proceedings of
14th IEEE International Conference on Software Testing, Verification
and Validation (ICST 2021). IEEE, 2021, pp. 460-465. [Online].
Available: https://doi.org/10.1109/ICST49551.2021.00060

“Selenium Grid,” https://www.selenium.dev/documentation/grid/.
“Log4j,” https://logging.apache.org/log4;j.

“ReportNG,” http://reportng.uncommons.org.

“ReportPortal,” https://reportportal.io/.

“BrowserWatcher,” https://github.com/bonigarcia/browserwatcher.

M. Leotta, D. Clerissi, F. Ricca, and C. Spadaro, “Improving
Test Suites Maintainability with the Page Object Pattern: An
Industrial Case Study,” in Proceedings of 6th International Conference
on Software Testing, Verification and Validation Workshops (ICST
2013 Workshops). 1EEE, 2013, pp. 108-113. [Online]. Available:
https://doi.org/10.1109/ICSTW.2013.19

A. Stocco, M. Leotta, F. Ricca, and P. Tonella, “APOGEN: Automatic
page object generator for web testing,” Software Quality Journal
(SQJ), vol. 25, no. 3, pp. 1007-1039, 2017. [Online]. Available:
https://doi.org/10.1007/s11219-016-9331-9

D. Yuniasri, T. Badriyah, and U. Sa’adah, “A comparative analysis
of quality page object and screenplay design pattern on web-based
automation testing,” in 2020 International Conference on Electrical,
Communication, and Computer Engineering (ICECCE), 2020, pp. 1-5.

M. Leotta, B. Garcia, and F. Ricca, “An empirical study to quantify
the setup and maintenance benefits of adopting WebDriverManager,”
in Proceedings of 15th International Conference on the Quality
of Information and Communications Technology (QUATIC 2022),
ser. CCIS, A. Vallecillo, J. Visser, and R. Pérez-Castillo, Eds.
Springer, 2022, vol. 1621, pp. 31-45. [Online]. Available: https:
//doi.org/10.1007/978-3-031-14179-9_3

M. Leotta, M. Biagiola, F. Ricca, M. Ceccato, and P. Tonella,
“A family of experiments to assess the impact of page object
pattern in web test suite development,” in Proceedings of 13th
IEEE International Conference on Software Testing, Verification and
Validation (ICST 2020). 1EEE, 2020, pp. 263-273. [Online]. Available:
https://doi.org/10.1109/ICST46399.2020.00035

“SauceLabs,” https://saucelabs.com/platform/cross-browser-testing.
“LambdaTest,” https://www.lambdatest.com/.

“BrowserStack,” https://www.browserstack.com/.

“Selenium Conference,” https://twitter.com/seleniumcontf.

T. Kanij, R. Merkel, and J. Grundy, “A preliminary survey of factors
affecting software testers,” in 2014 23rd Australian Software Engineering
Conference, 2014, pp. 180-189.

12

https://doi.org/10.1145/3338906.3338948
https://doi.org/10.1109/ICST49551.2021.00060
https://www.selenium.dev/documentation/grid/
https://logging.apache.org/log4j
http://reportng.uncommons.org
https://reportportal.io/
https://github.com/bonigarcia/browserwatcher
https://doi.org/10.1109/ICSTW.2013.19
https://doi.org/10.1007/s11219-016-9331-9
https://doi.org/10.1007/978-3-031-14179-9_3
https://doi.org/10.1007/978-3-031-14179-9_3
https://doi.org/10.1109/ICST46399.2020.00035
https://saucelabs.com/platform/cross-browser-testing
https://www.lambdatest.com/
https://www.browserstack.com/
https://twitter.com/seleniumconf

