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1 Introduction 

Classifier systems (Css) provide a rich framework for learning and induction, and they 
have been successfully applied in the artificial intelligence literature for some time, John 
Holland is the creator of the research area often called genetic learning, the branch of 
machi ne learning centered around the idea of artificial adaptation. Genetic learning 
essentially encompasses the theory of genetic algorithms (GAs, introduced in [Holland 
1975]) and CSs. Although early CS-like ideas can be traced back to [Holland 1975], the 
system proposed by Holland and Reitman [1978] is usually credited as the first CS. The 
original approach has since evolved towards what could be called the standard model 
(described in detail in [Holland 1985,1986a,1989]). A comprehensive account is provided 
ill IHolland et al. 1986]. 

Throughout the last decade, the basic ideas have been notably enhanced in various 
directions. First, empirical data abound today; many implementations have been shown to 
learn to solve problems of varying nature and difficulty, and useful insights on the internal 
dynamics are available. Second, mathematical frameworks allowing the study of analytical 
properties have been put forward, [Holland 1986b], IArthur 1990]. Third, CSs have been 
shown to provide a successful framework for the emergence of structure, [Riolo 
1989ab.199l]. A knowledge structure is said to emerge when the system is not told 
explicitly how to build it. Emergent computation mimics in a deep and more realistic way 
the learning process: since it let us proceed without compromising a few extra degrees of 
freedom. it probably give us a better chance to understand complex phenomena, see 
IForrest 19901, ILane 1992]. Finally, the main framework has also diversified 
substantially: certain peculiarities and difficulties in the standard model have often given 
place to a nurpber of alternatives and extensions thereof. 

I Thi~ article is based on the author's Ph. D. dissertation. Support for this research has been pr<wided in part 
by grant NSF/DMS-g911~-():! (U.s.A.), by the Economics Research Program at the Santa Fe Institute. 
Santa Fe, NM. and by grant DGICYT PB9:!-0246 (Spain). 
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In this paper, we first briefly review the the standard CS model (section 2), then 
summarize some extensions (section 3). Finally, section 4 sketches a simple CS called 
PASS (Predictive Adaptive Sequential System, (MuruzabaI1992,1993]) capable of 
carrying out certain type of quantitative data analysis. 

2 The basic model 

A classifier system (CS) models the interaction between a learner and an environment 
where the learner is inmersed. The learner consists of performance and learning systems. 
The performance system takes care of maintaining a dialogue with the environment; the 
learning system oversees the performance system and introduces suitable modifications 
leading to better performance. The nucleus of the performance system is a collection of 
production rules called classifiers. These classifiers process the information perceived from 
the environment and encode current beliefs. The performance system is also endowed with 
a global memory buffer called the message list. The message list may contain previously 
observed events or the learner's preferences (desires) at a given point. The combination of 
message list and environmental input guides the system's actions as determined by the 
current population of classifiers. 

CS syntax involves messages and schemata. Messages are strings in the n-dimensional 
boolean hypercube. Schemata are subsets of this space formed by specifying a number of 
common coordinates. Environmental input is represented as the sum of one nonnegative 
scalar called reinforcement R and one message mE; the message list contains a fixed, 
prespecified number of messages. Both the scalar and all the previous messages change 
every time step. 

Classifiers are typically defined as structures (i },i2,0,S), where i1, band 0 are 
schemata and S is a nonnegative scalar called strength. The information contained in a 
given classifier is interpreted in general as follows: If the environmental message mE 
matches i I and some message mL in the message list (or perhaps mE again) matches i2, 
then propose to output a message mo=o(mE,mL> with strength-dependent intensity. The 
output message can be either posted in the message list for the next time step or induce a 
specific action to be carried out by the system or both. In turn, this action may influence the 
next environmental input, which closes the interaction cycle. Whether a particular message 
is actually activated (and the action effected) depends on competing proposals. The 
competition process is randomized and influenced by strength and other features of the 
overall situation (see 3.2). 

The amount of reinforcement R entering the system guides the system's learning 
mechanisms in two ways. First, relatively large R is provided when the system's actions 
lead to certain target states. Classifiers directly responsible for those successful actions 
typically increase their strength, while classifiers that either do not participate in the 
decision-making process or lead to scant R typically decrease their strength. Since 
decisions are based on strength, successful classifiers are thus more and more likely to be 
used in similar future situations. 

Second, new classifiers are injected by the system's discovery mechanisms. These 
usually replace low-strength classifiers with new classifiers obtained from the strongest 
available so far. This search process is usually randomized and based on loose inductive 
biases acting nearly always at the syntactic level. The GA is expected to be useful and many 
CSs include it. but results have not been very promising and many additional mechanisms 
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have been devised (see 3.1). 

Since classifiers are relatively primitive epistomological units, it is crucial to notice that 
much can be accomplished by combining classifiers into structures. Most often structure is 
expected to emerge on its own, although sometimes a bit of structure is built into the CS 
from the start, see ego [Shu and Schaeffer 1991]. The power of the CS approach as general 
knowledge representation tool in a nonlearning context is shown ego in [Forrest 1991]. Let 
us discuss two major types of emergent cooperation among classifiers in a learning context. 

Classifiers (i 1,i2,0) and (j 1,h,p) are chained (or coupled) if they may fire in turn. For 
example, 0 may cause the environment to yield a message satisfyingj 1, or the message mt) 
may satisfyh, or both. A successful chain of classifiers may recognize a situation and 
begin a series of actions leading systematically to large R. For these chains to emerge, the 
system must discover first, then maintain the needed classifiers. The bucket-brigade 
algorithm (BBA) is introduced to help these structures consolidate once they are 
discovered. The basic idea is that active classifiers must pay a fraction of their strength to 
those classifiers that in the previous time step either posted a message used by the classifier 
or just induced some action. The BBA creates in effect a flow of strength from the last 
classifier in the chain (whose strength is nurtured by incoming R) back to those classifiers 
implementing necessary though preliminary steps in the sequence of actions, with the result 
that all classifiers in the chain may reach similar levels of strength. Details on the BBA are 
provided later. 

Default hierarchies constitute a second important type of emergent cooperation. In a 
simple example, (i 1,i2'0) and (j 1,j2,p) implement a default hierarchy if (i) conditions (j l,h) 
are more specific (demanding) than (i I ,h), and (ii) the action induced by 0 is correct except 
when the second classifier is relevant also, in which case the correct action is given by p. 
Thus, when conditions (j 1,h) are satisfied, both classifiers are eligible for activation, so the 
system must favor the second (which will be reinforced) to protect the first from making a 
mistake (and losing strength). On the other hand, the first will be reinforced when (i l,h) -­
but not (j l,h)·- are satisfied. This kind of structure seems to be achieved by letting the 
competition process depend more heavily on the !)pecificiry of classifiers, the ratio of 
specified to total number of coordinates: other things being equal, those classifiers that fit 
more closely the present context are preferred over more general alternatives. Default 
hierarchies can have arbitrary length and are relatively economical knowledge 
representation tools in some cases, see [Holland et al. 1986]. 

Both chains and default hierarchies have been observed in practice, although not 
overwhelmingly. Indeed, theirformation and stability appear to be sensitive to certain 
system parameters, the effect of some of these parameters being only partially understood 
IRiolo 1987ab, 1989ab]. Even under the best conditions, the required time for the 
emerging structure to assemble solidly may be too large; therefore, certain ad-hoc 
mechanisms have been proposed to speed-up the process. A summary of results about 
emergence in CSs is provided in [Lane 1992], which also resumes the work of Riolo's 
[1991] lookahead CS not discussed here (see also [Holland 1990]). Other work on 
emergence in CS is provided by [Forrest and Miller 1990]. 

For ease of reference, it is useful to briefly outline the work of the GA. Typically, the 
GA is invoked after the system has been running for a while and strength has had some 
time to be reallocated. The entire population of classifiers (encoded as strings concatenating 
the classifiers' various schemata) is then renewed according to the following schedule. 
Two parent classifiers are selected with probability proportion~1 to current strength and 

---""-----­
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either they are copied verbatim into the next population~ or they undergo genetic· 
manipulation (the latter occurring with certain probability). The standard manipulations are 
caned crossover and mutation. Crossover randomly exchanges some coordinates from the 
two parent classifiers (choosing one or more cutting points in the strings), while mutation 
simply flips coordinates (with very low probability). The process is continued until a new 
population is completed. The success of the GA depends primarily on the extent to which 
the building-block hypothesis holds, that is, to the extent that high-perfonnance strings 
(classifiers) are made up of "parts" that yield relatively good results no matter how the rest 
of the classifier is built; see [Mitchell et al. 1991] for additional discussion. 

We close this section by pointing out a few key features of the general architecture. 
First, CSs exhibit parallelism at many levels, [Forrest 1991]; in fact, a parallel version 
deploying one classifier per processor has been implemented, see [Robertson and Riolo 
1988]. Second, by ignoring the problem of effective activation at each step and looking at 
classifiers in a chain as pieces of code operating sequentially on some initial input to yield a 
desired output, chains can be conceived as subroutines perfonning standard operations (as 
ego binary sum or set intersection). Indeed, CSs are shown to be computationally complete 
in the sense that a set of classifiers can be constructed to compute any function from the set 
of all possible message lists onto itself, [Forrest 1991]. Third, CSs are inherently 
pragmatic, easily implementable systems: they operate on a simple trial-and-error basis and 
do not require any kind of prior infonnation about the task to be learned. Last, most 
qualitative aspects of the standard model have cognitive motivations, and, as shown below, 
a number of additional ideas inspired on cognitive processes can be incorporated easily. 
Hence, CSs may prove a useful tool in the computational analysis of cognitive phenomena. 

3 Further ideas 

Each of the following subsections deals with certain aspects of the work of CSs that 
have been subject to closer examination or criticism. The standard system is then analyzed 
and often modified or extended to cope with the perceived difficulty. The material below 
covers. in the author's opinion, some of the most suggestive pieces of research in CSs. 
Other ideas not presented here are discussed in [Holland 1987] and [Wilson and Goldberg 
1989]. 

3.1 Difficulties with the GA 

The first heuristic discovery mechanism considered in CSs is the genetic algorithm 
(GA). It was soon noticed, however, that the GA may not find the best conditions to 
operate within CSs. For one thing, CSs will need to search for many useful classifiers 
simultaneously. while the GA tends to converge to the best area of the search space. Also, 
heavily context-dependent strength might not provide a solid enough fitness function to 
guide the process. In fact, the computational theory of natural coadaptation described in 
[Holland 1962,1975] provides no direct guidance for the GA to discover coadapted 
classifiers in standard CSs, [Grefenstette 1987]. 

Among other remedies discussed in the literature, Smith (1983] presents a different 
type of CS, usually referred to as the P(ittsburgh) CS (the standard model is similarly 
associated with the Michigan school). In a nutshell, PCSs consider the entire strategy or 
population of classifiers as the main inferential unit. By stringing classifiers together, the 
GA is applied over strategies under the proviso that no classifier can be broken up by 
crossover. The level of fitness of each strategy is obtained thr<;mgh independent (possibly 
parallel) testing against the environment. 
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When cooperation between rules is fundamental for the success of the learning system, 
PCSs would seem to provide a more natural framework for the GA at the expense of 
increased computational cost. Hence, the primary problem in PCSs is to get the most out of 
its computational effort, that is, to detennine what infonnation (besides the basic 
perfonnance indicator) should be transferred from each individual evaluation to the fitness 
function in order to improve the learning rate. Grefenstette's idea [1987] is to exploit the 
BBA's work during evaluations by physically bringing together high-strength classifiers 
within the strategy so they fonn a cluster less likely to be disrupted by crossover. The basic 
assumption is that coadapted classifiers ultimately tend to have similar levels of strength, 
which is true in the case of chains of classifiers under certain BBA parameters. At the end 
of each evaluation, classifiers are thus always rearranged according to their resulting 
strenghts before the GA is called, and new strategies containing clusters from successful 
strategies are thus more easily found. Note that nothing is said about the discovery of 
individual classifiers; in [Grefenstette et al. 1990], the preference is made explicit that this 
rather be taken care of by heuristic operators other than the GA. 

The PCS approach has been implemented with success: Smith's LS-l [1983] learned to 
play poker, beating a conventional knowledge-based system. Grefenstette's system RUDI 
[1987,1988] solved a difficult navigation problem where ultimate success was strongly 
dependent on the emergence of (long) chains of classifiers. In this problem, RUDI was 
shown to outperfonn standard CSs under various strength-revision mechanisms. On the 
other hand, there is some evidence that suitably modified CSs can achieve similar success 
rates, [Booker 1989], sometimes requiring far less resources, [Riolo 1991]. A clear-cut 
conclusion does not seem possible yet, as the modifications proposed by Booker and Riolo 
increase the system's computational complexity substantially and no scale-up analysis is 
available. As far as aiding the GA is concerned, Booker follows the idea of restricting 
mating among classifiers known to be related, thus attempting to curb the fraction of 
fruitless crossovers, see also [Goldberg 1989]. Booker stresses also the importance of 
triggering the GA when it is actually needed, that is, when the system somehow finds itself 
with "insufficient resources". These ideas are made more precise in the context of the next 
section, otherwise devoted to competition/reinforcement issues. 

3.2 Competition and reinforcement 

In the standard BBA, the auction and strength revision processes are conducted as 
follows: (i) classifiers scan the message list and environmental input for a perfect match. 
Only classifiers whose conditions are matched participate in the auction. (ii) Each matched 

classifier places a bid B, which is usually taken as B=KSb(D), where K is a small constant 

(..... 1) and b is a nondecreasing function of specificity. Bids are further processed into 

effective bids B*=BaD~. where a and ~ are nonnegative constants. (iii) A fixed number 
of classifiers to be activated (say m) are selected without replacement with probability 
proportional to B*. (iv) The bids B of the m winners are subtracted from their strength; this 
strength is either paid to classifiers that posted the messages used by the winners or simply 
dumped out of the system. (v) The amount of reinforcement that enters the system next is 
distributed among winners. 

The basic strength revision equation is Si+l=Si-Bi+Pi+Ri, where Ri and Pi denote 
respectively the assigned share of reinforcement and payments from other classifiers (that 
used the classifier's output message at the previous time step). Classifiers that bid but are 
not selected do not have their strength modified in principle, although tax may be (and 
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usually is) applied to all classifiers in the system to bring down the strength of classifiers 
that bid rarely. 

Note that all strength transactions are local, so no extensive book-keeping is necessary. 
In the general case, however, the fact that selection depends in a complex way on the 
remaining classifiers in the population obscures analytical develoment, which seems 
possible only under some simplifications. For example, convergence results are provided 
by Arthur [1990] in the case of a fixed set of classifiers, no tax, random stationary 

reinforcement, m= 1, b(D)-I, Pi-O, Cl= 1 and fl=O; under these conditions, the system's 
asymptotic behavior (namely, classifiers are selected with probability proportional to their 
expected reward) is called probability matching (to be discussed in detail in 3.4). A more 
comprehensive mathematical framework is proposed in [Holland 1986b].lt is also worth 
noting that the BBA can be seen as a special case of Sutton's [1988] temporal difference 
learning algorithm. 

The above framework leaves unresolved many practical issues. What is the precise role 
of D or Cl and fl? How should reinforcement be distributed among winners? To what extent 
is it natural that correct classifiers not winning the competition be deprived of 
reinforcement? Are there faster ways to reallocate strength? How should the number of 
winners or the population size be chosen? Partial answers to these questions are put 
forward in the literature, although the viewpoints adopted often differ and colliding 
conclusions arise sometimes. 

The rest of this section reviews an alternative auction/reinforcement scheme considered 
in [Wilson 1985,1987] and [Booker 1989]. Let us start by focusing on the role of m, the 
number of winners. That not all matched classifiers should be allowed to fire is clear (after 
all. we can not move left and right at the same time). When no contradictions arise, the 
main purpose of limiting the number of winners (or, alternatively, the size of the message 
list) is to force the system to focus on a few (critical) aspects at a time. Since selection is 
random, every classifier is nevertheless given a chance to be deployed. Note that winners 
are the only classifiers responsible for the system's actions and are the only ones eligible to 
have their strengths revised. 

The alternative scheme proposed by Wilson and Booker differentiates these two 
functions. Their proposal is fonnulated within the particular context where (i) the system is 
expected to act at every step and (ii) no message list is used since all classifiers induce 

actions (however, it does not follow that Pi-O, as classifiers active at one time step may 
make payments to those classifiers active in the previous time step). This simpler 
architecture is often tenned a stimulus/response (SIR) CS; the system to be introduced later 
in section 4 constitutes a simple example of this kind of system, but it will be seen to adopt 
the standard BBA. The key issue in (SIR) CSs is obviously how to detennine the 
prescribed action. Instead of simply imposing m=l in the standard auction, a subset of 
m> I classifiers are still selected among a cluster of M»m excited classifiers (including 
classifiers matched exactly and, if these weren't enough, classifiers with best pania1 
matches). Then, a single winner is picked at random among those m. Further, 
reinforcement is extended to all excited classifiers and depends on whether their suggested 
actions agree with the system's action and on the amount of reinforcement that such an 
action brought in. 

Booker founds the role of the cluster and the derived reinforcement plan on ideas from 
stimulus sampling theory in psychology. The cluster is seen as a general pool of heuristics 
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trying to cope with a vast population of environmental stimuli. Whenevera reply is needed, 
the system in effect samples the cluster and the action is decided upon by sample majority. 
Therefore, the role of the set of m winners is to provide "an economical statistical summary 
of the cluster, not to hedonistically compete for rewards", [Booker 1989; p. 269]. 

Booker finds it useful to view the cluster as the basic inferential unit for various 
purposes. Indeed, he also proposes to administer the GA local(yon the basis of a new 
quantity called significance. Each classifier is assigned its own significance reservoir, 
which is updated just like strength except that transactions involve completely different 
units. In particular, all classifiers in the same cluster are distributed afixed amount of 
significance that is granted at each step. The share each classifier receives is proportional to 
its effectiveness, a notion similar to the effective bid that depends among other things on 
the strength and relevance (as measured by a partial matching score) of the remaining 
classifiers in the cluster. Therefore, only classifiers that are nowhere effective will tend to 
have low significance. In a simple implementation, Booker's focused sampling plan for the 
GA begins by triggering the GA precisely when a threshold level oflow significance is 
achieved in some cluster. It·then selects parents from the cluster, acting in the usual way 
ex~ept that nonsignificant classifiers get replaced by the offspring. The fact that deletion of 
classifiers is based on significance and not on strength seems to convey an improved idea 
of fitness, because now useful classifiers with medium or low strengths receiving only 
moderate reinforcement will tend to be significant and thus preserved in the system. 

3.3 Long-term dynamics 

It has often be the case in practice that families of identical or nearly identical classifiers 
evolve as the result of the GA's continued work on some successful classifiers and their 
offspring. It is both suggestive and customary to borrow terms from the ecological world to 
describe the various roles in this context. Each of such families may be called a species. 
Species arc generated in the first place because there exists a source of payoff that supports 
them; this source of payoff may be called a niche. The environment provides directly a 
number of primary niches, all other niches are secondary. The amount of payoff that a given 
niche provides may be loosely called the capacity of the niche. The metaphor may go on: 
sharing payoff among winning classifiers corresponds to the idea of finite capacities; 
para...'iitic classifiers may emerge that don't belong to any species but enjoy payoff from one 
or more niches, etc. In terms of Booker's approach discussed in the previous section, a 
species can be equated to a (well-developed) cluster for a given niche. 

Since niches will typically come with widely different capacities, niches with larger 
capacities will tend to be found and exploited first. Unrestricted proliferation of the 
corresponding species may lead then to a loss of diversity that may not leave room for 
secondary niches to be discovered or might congest the message list precluding effective 
communication (recall that the same message may be posted many times). For this reason, 
some authors have suggested the adequacy of limiting the maximum size of a species, that is, 
the number of replicates that may coexist, [Compiani et al. 1989]. 

Additional insights are gained by studying evolution of strength within a given species 
under controlled conditions, [Compiani et al. 1990]. These authors use the standard BBA 

with parameters I(D).I, ~=O (thus excluding D from the process) and tax (at a rate not 

greater than 2%), and consider a species of lA identical copies of a successful classifier. Three 

patterns can be differentiated depending on m, lA and the effective bid parameter a. When 

lA=m= 15 and a=1, all classifiers in the species are of course activated and reinforced 
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simultaneously and their strengths do reach rapidly the common fixed-point (asympt'otic) 
level regardless of their starting values. This is called strength equalization. 

When IA= 10, m=2 and a-I, typically seven classifiers undergo complete decay to zero 
strength, while the other three classifiers "survive" and compete against each other. For each 
of them, the time elapsed between successive wins is a random variable, with the result of 
steady decay phases corresponding to longer periods of inactivity. On winning again, 
however, they recover enough strength so that they remain fully competitive (they "forget" 
the inactivity phase). Conversely, as long as they win repeatedly, their strength reaches the 
fixed-point level and it stays there until they lose the competition once. This is called strength 
equalization on the average or strength oscillation. 

Finally, when 1A=1O, m=5 and a-2, and the bid constant K is set to .5, classifiers 
behave basically like in the previous case, except now the consequences of longer periods of 

inactivity are amplified due to the bias introduced by raising K and a. These periods of 
starvation bring strength to a point where it becomes extremely hard for classifiers to win the 
competition, with the result that five classifiers are eventually driven out to zero strength. 
When this occurs, the situation is basically that of the first case, so the strengths ofthe five 
survivors are equalized. These results are interesting since they indicate that, at least under 
some BBA parameters, the size of the message list may effectively control the spread of 
species. They also suggest that strength oscillation may be an important issue when the set of 
competing classifiers is allowed to vary. 

3.4 Probabi1it~· matching and reliability 

Probability matching behavior (PMB) is a kind of suboptimal behavior (surprisingly 
exhibited by humans and other animals when exposed to an uncertain environment) to which 
much study has been devoted in the CS context, [Booker 1989], [Arthur 1990], [Goldberg 
1990]. Arthur argues that PMB is not acceptable in an economic environment: for example, 
if, in the context set up in section 3.2, there are N=I00 actions, the first one pays an average 
of 10 units and the rest pay an average of 10/11 units, then the action ten times better than the 
rest is activated only about 10% of the time. It would be better if the system could somehow 
distinguish a "clear" situation like this and choose more often or systematically the rule with 
hi ghest expected payoff, a behavior that can be termed decision-theoretic (OTB). Arthur 
[1990] proposes a basic modification to the standard BBA (namely, that bids are not 
subtracted from the winners' strength) that does lead to OTB. 

Goldberg [1990] argues that PMB might not always be an unreasonable choice. In 
essence, it is argued that what may make PMB a plausible guide for action from an 
evolutionary point of view is the possibility of brisk change in the environmental laws 
governing the short-term outcomes of our actions. PMB might then be adopted as a prudent 
alternative. 

Goldberg [1990] studies mechanisms that allow CSs to switch from PMB to OTB 

depending on circumstances. Suppose 1(0).1 and tax is null. In [Goldberg 1989], the 

standard auction is modified in that (i) effective bids are computed as ~=B+"t, where "t is a 
N(O,v) variate, and (ii) winners are selected deterministically according to the highest 
effective bids. If the variances v are small, selection is conservative as higher bidders are 
more often selected; if they are large, bid differences are neutralized and selection becomes 
random. Somewhere in between, the system should implement PMB. By modifying v 
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dynamically, the system's desired flexibility may be obtained. The question is then centered 
on what constitutes a sensible basis for manipulating this variance. 

Under this version of the BBA, the fixed-point bid is an estimator of average payoff. 

Goldberg [1990] therefore proposes to monitor the evolution ofthe difference B-~, 

where ~ is the total amount of strength received from either the environment (R) or other 

classifiers (P). Specifically, each classifier maintains a reliability index pi(t), computed as a 

recent average of the observed differences (Bi-~i)1, that complements the job of strength 
by measuring the discrepancy between expected and actual payoff (a similar measure is 
introduced in [Booker 1989]). A variance-semitive bidding scheme can be adopted by 

dynamically setting V=Pi(t). When ~ is fixed, B converges to it, and hence pi(t) will 
eventually approach O. Thus, classifiers that consistently achieve payoff ~ have effective 

bids converging to ~. However, when there is inherent variability in~, Pi(t) will 
approach a positive limit and the effective bid will fail to converge. A (SIR) CS endowed 
with this kind of bidding is shown to be able to shift rapidly from PMB to DTB (and 
viceversa) according to changes in the environment, [Goldberg 1990]. 

3.5 Long-term memory 

Goldberg's CS ability to shift from one behavioral repertoire to another may also be 
seen as a weakness in that classifiers that implement the first repertoire may be completely 
swept out by those causing the second. In other words, the system may have to learn again 
the first set of classifiers should the conditions that promote the second persist long 
enough: CSs tend to be forgetful. It is convenient to distinguish between the kind of short­
term memory played out by the message list (and the step-to-step linkage among classifiers) 
and the kind of long-term memory that would be required to store populations of classifiers 
not presently needed (thus enabling the system to benefit from the obtained expertise). For 
the latter type to be useful, the system should also have some means of identifying 
situations where the current population should give place to (fractions of) previously stored 
populations. These issues are investigated in [Zhou 1990], where it is proposed to enhance 
the standard architecture as follows. 

Zhou's classifier system with memory (CSM) provides a model for cumulative learning 
that includes a long-term memory (LTM) buffer where versions ofthe rules that solve a 
given task are stored for subsequent use (rules stored in LTM are inactive unless recruited). 
Those versions summarize what has been learned at the end of a learningphase and are 
constructed by the generali:er algorithm. The work of the generalizer involves several 
processes: It first isolates a set of solution rules; this is achieved by rerunning the problem 
with the GA turned off so that the BBA can reallocate strength consistently and the strongest 
rules picked out. Next, it extracts common patterns by applying an intersection operator to 
the solution rules. The output of the intersection operator is further tested for correctness and 
redundant rules are eliminated. Fina))y, the resulting generalized rules are stored in a "chunk" 
in LTM. Chunks are organized in LTM into domains on the basis of both the nature of tasks 
and the generality of the condensed knowledge (see the original source for details). 

Once useful knowledge has been conveniently generalized and stored, the question is 
how to make use of it. CSM uses transformational analogical reasoning ideas, [Carbonell 
1983]: solution classifiers from previous similar tasks are recognized and transformed to 
apply to the present task. The recognition phase is primarily a~complished by the rnatcher 
algorithm, which is invoked at the beginning of a new learning. phase (or whenever the 
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.current rules in the CSM can not match incoming m~ssages at an appropriate rate). The 
matcher implements a partial-match scoring function that measures similarity of tasks by 
contrasting conditions in stored classifiers with messages in the message list. By aggregating 
individual scores, chunks in LTM are ranked according to relevance in the current situation. 
The initiali:er algorithm works on the basis of this information and selects the most 
promising chunks. Classifiers in these chunks are finally modified somewhat to fit better the 
present context. 

In simulations, CSM outperformed the standard CS in two series of robot navigation 
tasks requiring the use of coupled sequences of classifiers; [Zhou 1990]. It was first shown 
to be able to benefit from the solution of simpler problems by transferring this knowledge to 
solve more difficult problems. Success was also obtained in reversal learning, which is 
concerned with learning behaviors under sudden changes. Two tasks were given 
alternatively, switching the destination points while keeping the starting point fixed. By 
retaining the knowledge obtained in the first two trials, CSM was able to perform near 
optimally from the third trial on; the standard CS did not show much improvement even after 
10 reversals, [Zhou 1990]. 

A practical limitation of CSM is introduced by the difficult problem ofdefining learning� 
phases precisely, as standard CSs never needed them (they are not usually essential in� 
human learning either). Stabilization of the (smoothed) learning curve (eg., a moving� 
average of recent performance) may provide a general principle for applications. A� 
different, hierarchical approach involving learning episodes is proposed in [Wilson 1989].� 

Endowing a CS with long-term memory is a profound and radical innovation. The 
traditional CS is rooted in the idea of recency: messages only last for one time-step unless 
reposted and strength is the only entity that reflects accumulated experience. From a cognitive 
or statistical point of view, this emphasis may be open to criticism. The system to be 
described in the next section incorporates mechanisms of an aggregative character that extend 
the basic architecture in a similar direction. Specifically, each classifier is granted the ability 
to remember a few cases where its output proved unappropriate. Thus, only individual 
learning episodes (controlling the amount of data to be stored by each classifier) are needed. 

4· Data analysis 

This section describes the basic ideas in PASS (Predictive Adaptive Sequential� 
System), a simple classifier system (CS) for automatic exploratory data analysis,� 
IMuruzabal 1992,1993]. PASS builds on the ideas expressed in [Packard 1989] and� 
extends the SIR CS BOOLE and related systems, cf. [Wilson 1987], [Bonelli et a1. 1990],� 
in four major aspects. These can be summarized as follows.� 

First, the problem of predicting the unknown label y associated with an incoming input� 
x is generalized from the dicotomous to the continuous case. Hence, classifiers in PASS� 
share the basic structure .� 

IF i THEN PREDICT p 

where i is a schema condition and p is a (discrete) predictive probability distribution over 
the range of y. The subspace of probability distributions explored by the system is 
constrained only at the syntactic level (namely, all p have convex, relatively small support). 

Second, classifiers that win the competition mix their individual predictions according 
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to strength to yield the system's overall prediction. Performance is measured on the basis· 
of the predictive probability assigned to the true response. The BBA acts as usual on the 
strength of winners. 

Third, a fixed number of exceptions are stored by each classifier in its exception list E. 
Exceptions are previously observed data pairs (x,y) such that x is in i but y does not belong 
to the support of p. When E is filled up, its contents are processed by various taylor-made 
procedures that may modify the classifier or create new ones. These procedures are based 
on simple heuristics and basic statistical measures of concentration. 

Lastly, PASS applies a GA with restricted mating where crossover applies only to the 
schemata of classifiers with similar predictions. This provides an alternative to the more 
usual policy described earlier in section 3.2. 

As discussed elsewhere, cf. [Muruzabal 1993], PASS has proven useful extracting 
regression knowledge in simulated streams. As a sequential belief-updating methodology, 
it can be compared to the bayesian approach, see [Muruzaball992], [Lane 1992]. Future 
work will investigate some of the research directions contained in this paper and possibly 
some other ideas in automatic nonparametric regression recently proposed in the machine 
learning literature. 
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