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Abstract _ 

This paper presents and discusses a nonparametric test for detecting serial dependence. We 
consider a Cram~r-v.Mises statistic based on the difference between the joint sample distribution 
and the product of the marginals. Exact critical values can be approximated from the asymptotic 
null distribution or by resampling, randomly permuting the original series. The approximation 
based on resampling is more accurate and the corresponding test enjoys, like other bootstrap 
based procedures, excellent level accuracy, with level error of order 1'"312. A Monte Carlo 
experiment illustrates the test performance with small and moderate sample sizes. The paper also 
includes an application, testing the random walk hypothesis of exchange rate returns for several 

currencies. 
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1. INTRODUCTION 

Testing independence of a sequence of random variables is well motivated in 

statistics. Inference on probability models is frequently based on the 

assumption that the observations form a random sample. In time series, it is 

not always obvious whether a pattern is present in the data, and testing 

independence is often the first step in model building. 

Traditionally, serial dependence has been tested by means of the sample 

correlation coefficient, or, in Gaussian cases, the Lagrange Multiplier 

principle. There are also a number of nonparametric tests based on ranks like 

the runs test, turning point test, and Spearman-Wald-Wolfowitz serial rank 

correlation coefficient test. These procedures have been applied to time 

series problems by Knoke (1977), Bartels (1982), Dufour (1981), Hallin et al 

(1985), Hallin and Puri (1988), and Hallin and Melard (1988), to mention only 

a few. 

The above mentioned test procedures are designed for specific alternative 

hypotheses, and they work, well under commonly used dependence structures, like 

ARMA models. However, the usual serial correlation or serial rank-based 

procedures fail to detect subtle nonlinear underlying dependence structures. 

A number of independence tests have been constructed based on the fact that 

the null hypothesis holds, if and only if, the joint distribution equals the 

product of the marginals. In these procedures, the test statistic is a 

distance between the estimated joint distribution (or joint density) and the 

product of the estimated marginal distributions (or marginal densities). 

Hoeffding (1948) and Blum et al (1961) proposed to estimate the joint and 

marginal distributions by the empirical distribution function, and introduced 

statistics based on the Land L distances. Rosenblatt (1975) (see also
2 00 

Nadaraya 1989, Chap. 3.5) and Robinson (1991) used smooth kernel estimates of 

the aensities. Rosenblatt's statistic is based on the L distance and has a X2 
2 

limiting null distribution; Robinson's is based on the Kublack-Leibler 

information criterion and achieves a normal asymptotic null distribution. Only 

Robinson proved consistency in a time series context. Recently Chan and Tran 

(1992) have proposed to estimate the joint and marginal densities by the 

histogram, and have introduced a statistic based on the L distance. They did 
1 
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not obtain the asymptotic null distribution, but they proved consistency under 

general alternatives. The critical values were obtained by resampling, 

randomly permuting the original series. Procedures based on the kernel and 

histogram methods share the disadvantage of depending on the choice of a 

smoothing number. Statistics based on the empirical distribution function, or 

the empirical characteristic function, avoid estimation by smoothing 

procedures, but the limiting null distribution is not standard. Brock et. al 

(1987) developed a test based on concepts that arise in the theory of chaotic 

processes. The consistency of this test depends on the choice of a kernel and 

smoothing number (see discussion in Robinson (1991)). Pinkse (1993) has 

proposed a statistic based on the squared difference of the empirical 

characteristic function and the product of the marginals, weighted by a 

suitable kernel function. This procedure depends also on the choice of a 

kernel and the statistic achieves a limiting X2 distribution under the null 

hypothesis. 

This paper proposes and discusses a serial independence test based on the 

empirical distribution function. We apply the Hoeffding-Blum-Kiefer-Rosenblatt 

(HBKR) statistic (Hoeffding (1948) and Blum, Kiefer and Rosenblatt (1961)) to 

test serial dependence. Skaug and Tj0stheim (1992) have shown that the 

asymptotic null distribution of this statistic, when testing first order 

dependence (one lag), is the same as that of the HBKR empirical process used 

for testing independence of two random vectors, which was tabulated by Blum, 

Kiefer and Rosenblatt (1961). We derive the asymptotic distribution in the 

higher dimensional case (more than one lag), which differs from HBKR in a non 

obvious way. We propose to approximate the exact critical points by means of a 

resampling technique based on random permutations. The test is consistent 

under a wide range of dependence structures. Like other bootstrap based tests, 
-3/2it enjoys exceptional level accuracy, with level error of order T ,rather 

than T-1 • the error of the asymptotic test. where T is the sample size. The 

test uses critical points which differ also from the critical points of the 
-3/2exact test by a magnitude of order T under the null. while the asymptotic 

critical points differ by an order T-1 . Reported simulations support that the 

test enjoys good power and level properties in small and moderate samples. 

The rest of the paper is organized as follows. Section 2 presents the 

statistics. Section 3 discusses asymptotic properties under the null and fixed 

alternatives. Section 4 presents and Just1fies a resampled version of the 
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· test. Section 5 summarizes a simulation study and an empirical application of 

the test procedure to testing serial independence using daily. monthly. and 

quarterly data on pound. yen. and deutschmark exchange rates changes. 

2. THE TEST STATISTIC. 

Let {X • X •...• X } be T+p observations of the real valued strictly
1 2 T+p 

stationary process {X }. Define Zt= (X • X +i •...• X + ). Assume that Zt has at t t t p�
continuous distribution. We test serial p-dependence by testing� 

H: S(~) = o for all ~ = (~ •••.• ~ )e IRP+l • 
0 1 p+i 

versus 

H: S(~) ~ 0 for some ~ = (~ •...• ~ )e IRP+l • 
1 1 p+i 

where 

(2.1) 

and 

F(~)= Pr{X :s ~. X:S ~ •.. .• X :s ~ }. F (~i)= Pr{X :s ~i). 
1 1 2 2 p+i p+i 1 1 

The null hypothesis states that X and X are independent for all t~ u. andt u 
t< u:s t+p, t~ 1. 

Note that. 

i p+i
S(~) = E{nP+ HXj:s ~j)} - E{1(Xj :S ~j)}'j=i nj =i 

where l(A) is the indicator function of the event A. Then. the sample analog 

of S(~) is 

(2.2) 

Since ST(~) takes small values under Ho and larger values under Hi' it forms a 
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basis for testing H . We consider the statistic o 

B = 't"'t
T 

S (Zt) 
2

• (2.3)
T L =1 T 

constructed in the spirit of the Cramer-v.Mises statistic. An alternative 

Kolmogorov-Smirnov type statistic is. 

A =T1/2 sup \ST(tt) I. 
T 

tt 

These statistics were introduced by Hoeffding (1948) and Blum et al (1961) 

for testing independence of several random variables. 

The statistic B
T 

is computationally more attractive than AT' In order to 

compute B • we need to evaluate S (.) at the T data points Z •....• Z • while 
T T 1 T 

p+1computation of A requires evaluation of S (.) at T points. Note also that.
T T 

unlike kernel based procedures. B needs not choose any smoothing number. 
T 

3. ASYMPTOTIC PROPERTIES OF B ,
T

Let F-1 
(.) be the inverse function of the marginal distribution F (.).

1 1
-1 

tti = F (W ). i= 1•...• p+l. WiE [0. 1]. tt= (tt. tt ••••• tt ) and 
1 i 1 2 p+1

P+1 p+1
W = (W ••••• W ) E [ O. 1 ] • I . As usual. it is convenient to write 

1 p+1 
S

T
(tt) and Sett) in terms of F-

1
1
(.). that is 

-1 T p+1 -1 P+1{ -1 T -1}S (tt)= S (W)= T Lt n l(X j S F (w ))- n T Lt l(X j S F (w ))
T T =1 j =1 t + -1 1 j j =1 =1 t + -1 1 j 

and 

1
sett) = Sew) = E{nP+ l(X S F-1 (w ))} - nP+

1 E{l(X S F-1 (w ))}.
j=1 j 1 j j=l j 1 j 

Under Ho. 

(3.1) 

where 

4 . 
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(3.2) 

P+1Let us define w'= (w· ••••• w· ) Eland W'= F1(~i'). Routine1 p+1 i 
calculations show that 

E(Rt(w»= O. 

Then. 

s(w. w·) = T-1 LTt LT E(Rt(w) R (w'» 
=1 S=l S 

LP 1= - E(R (w) R (w· »
S=l-p P p+s 

t"p-1 (3.3)= L S=l-p r s. 

(3.4) 

and for p> 1. t = 1•...• p-1. 

w· rrP + 
1 

j j=P+2-t wj 

(3.5) 

1/2Then. T STew) has zero asymptotic mean and the asymptotic covariance 
1/2 1/2between T STew) and T ST(w') is s(w. w')' 

oLet us introduce the p+1 dimensional Brownian bridge W (w).� 
p+1 [ ]P+1�

W = (w ..... w ) Ell!! O. 1 ; 1. e.1 p+1 
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o rf.+1W (W)= W(W) - W(l.l •...• l) w ' 
J=l j 

where W(.) is the standard Wiener random field on [P+1. The process 

Wt (w) = ~(w) - 1:'+1 ~(w( » rf.+1 W ' 
1=1 1 J=l. J l j 

where w(I)= (1.1 •..• 1.wi .1 •... 1) is a vector of :nes with w in the i-th 
1 

place. is a separable Gaussian process with E(W (w»= o. and for 

w· = (w~ •...• w· ). E(Wt(w) Wt(w'» =r. That is. when p= 1. the empirical 
1/2 p+1 0 t 

process T STew) has the same asymptotic mean and covariances as W (w). 

Furthermore. Skaug and Tj~stheim (1992) have proved that 

2B ---+d B • J Wt (w) dw. when p = 1. 
T [2 

Then. in the case p = 1. B has the same asymptotic distribution as the
T 

HBKR statistic for testing independence of two random variables. In this 

case. Blum et al (1961) have found the characteristic function and have 

tabulated the corresponding distribution. 

2When p~ 2. the asymptot~c covariances of T1
/ S (w) differ from those of� 

t • +1 T •�
W (w). Let W (w). w e [p • be a separable Gaussian process with E(W (w»= o. 
and for w'e [P+1. E(W·(w) W·(w·» =sew, w·). The following theorem. proved in 

the appendix. states the asymptotic null distribution of B in the general
T 

case. 

Theorem 1: Under H B ~ B lE J W·(w)2 dw. for any p ~ 1 •. 
O. T [p+1 

Let us define B as Pr{B> B }= a. Whenever B is available. an asymptotica a a 
test at the a-level of significance consists of rejecting H when the observed 

o 
value of B. for a given sample. is greater. than B .

T a 

The consistency of the test follows whenever a Glivenko-Cantelli theorem 

under the alternative hypothesis is available. The following theorem. proved 

in the appendix. states that the test is consistent when the observed sample 

is an ergodic sequence. 
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Theorem 2: Under H • assuming that {X • t~ I} is an ergodic sequence. then1 t 

tUn Pr{B > B } = 1 •. 
T a 

n-~ co 

Calculation of the critical values B does not seem an easy task. Cotterill a 
tand Csorgo (1985) have found the characteristic function of J W (w)2 dw. 

JP+1 

and have tabulated its distribution. for p> 1. The resampling procedure 

discussed in next section is easy to implement and enjoys better level 

accuracy than its asymptotic counterpart. 

4.� COMPUTING CRITICAL VALUES BY RANDOM PERMUTATION. 

An exact test based on the statistic B consists on rejecting H when the 
T� ,0 

observed statistic value exceeds B defined as. 
Ta 

Pr{B s B I H } = I-a. 
T Ta 0 

The resampling based estimate of B presented in this Section is more 
Ta 

accurate than the asymptotic critical value B . a 

Let {~.,. '.~ } be a random permutation of the integers {l •...• T+p}.
1 T+p ••• • 

So. we construct the sample:r = {Z •...• Z }. where Zt = {X , •••• X }, and 
1 T ~t ~t+p 

from this sample we calculate the statistic 

(4,1) 

where 

S• (a:) = T-1 ~T p+1 1(X sa:) _ p+1 {T-1 ~T 1(X s)} (4.2) 
T L.t=1 TIj=1 '" j TIj=1 L.t""1 '" a:j ."t+J-1 "t+J-1� 

We are, in fact. sampling from the distribution� 
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(4.3)� 

.. -1 T
where F1T(~j) = (T + p) Lt=l l(Xt s ~j) is an estimate of the marginal 

distribution F (~). based on the observed sample t: = {X. X. . . .• X }. That
1 1 2 T+p 

is. for each sample we can obtain (T+p)! different samples 
X+ {+ + } + I Ii = 2 i1 ·····2iT • where 2it= {X~l •..• X~l } and {~t.···.~t+p}. 

t t+p 
i=l •...• (T+p)! are all possible permutations with integers (1 •...• (T+p)!). 

Then. for fixed ~. both under H and under H • o 1 

E{S·(~)IF } = E{S·(~)It:} = ((T+p)!)-l t"(T+p)1 S+ (~)., O. (4.4)T OT T L,i=l iT 

+ • + +
where S (~) is obtained as S (~) but using the sample {Zi •...• Zi }. The 

IT T 1 T 

resampled estimate of B based on the observed sample t: is B • defined asTCX TCX 

1-cx = PdB• S BIt:} = ((T+p)! )-1 t"(T+p) I HB+ S B ) (4.5)T TCX L,i=l IT TCX' 

+ T + + 2
where B = Lt S (Zit)'

IT =1 IT 

The resampling test rejects Ho in favor of H1 if B is greater than BTCX ' In
T 

the same way. the exact p-values are approximated by 

PdB· > BIt:} = ((T+p)! )-1 t"(T+p) I HB+ > B ). (4.6)
T T "'i=l IT T 

Calculation of the critical values Band p-values is computationallyTCX 
demanding. and they are approximated by repeated resampling. using random 

permutation. That is. M random permutations of the integers (l •...• T+p). 

{~l •..• ~l }. i = 1•...• M are drawn and. for each permutation. we compute
• t t+p • 

B
i

• i = 1•...• M. in the same way as B but using samples 
..T. • • T 

Xi = {2 •...• 2 }. and 2 i = {X I •..• X I }. Then. for fixed~.i i1 T 1 ~t ~t+p 

and. for fixed b. 

8� 



Then ETa is approximated as accurately as desired by E~:), where 

(4.7) 

Similarly, the p-value is approximated by 

M-1 ~j 1 (B• > B ) = 1- a. 
=1 j T T 

This random permutation technique for approximating critical values is 

usually employed for implementing randomization tests; see ego Noreen (1989) 

and Edgington (1987). In a time series context, this technique has been used 

before by Chan and Tran (1990). 

The resampling testing procedure can be formally justified in the same way 

as any other bootstrap type test, see Hall and Hart (1990) or Hall (1992) 

Chap. 3. From Theorem 1, and applying results in Gotze (1985) on asymptotic 

expansions in functional limit theorems, under H ,o 

(4.8) 

where P (~, F ) is a function of the quantile ~ and the marginal distribution 
1 1 

function F of X. Then, under Ho' 
1 

B =B - T-1 P (B , F ) b(B )-1 + ° (T-2 
), (4.9)

Ta a 1 a 1 a p 

where b(.) is the density of B. 

•Noting that B, conditional on the sample ~, has the distribution that B 
T T 

would have if {Zt' t~ 1} were drawn from a population with distribution FOT in 

(4.3), the sample counterpart of (4.8) is 

(4.10) 

Since, under Ho' s~IF1T(~) - Fl(~)1 =0p(T-
1/2

), and P (·,.) is a smooth
1 

function, 
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By (4.8), 

(4.1U 

and 

(4.12) 

The asymptotic test has level error of order T- i
, while the error of the� 

-3/2�resampled test is of order T . Under H, the exact critical values Bareo Ta
2approximated by BTa with error of order T-3

/ , while the asymptotic critical 

values Ba approximate BTa with error of order T- i
• 

•Under the alternative hypothesis, BT is the statistic obtained with a 

sample drawn at random from the joint distribution F defined in (4.3). Then,
OT 

(4.10) is still valid under H. Under alternative hypotheses as in Theorem 2, 
1 

sUDIF (~) - F (~)I = 0 (1) by the Glivenko-Cantelli Theorem for ergodic
f1:: iT 1 • P • 

sequences (see Stute and Schumann (1980», and from (4.10), Pr{BT~ ~I~}= 

Pr{B ~ ~ }+ 0 (1). So, B = B + 0 (1). That is, the resampled critical point
T p Ta a p 

consistently estimates the asymptotic critical points under ergodicity. 

5. MONTE CARLO EXPERIMENT~ AND AN EMPIRICAL EXAMPLE USING EXCHAGE RATES DATA 

In these Monte Carlo experiments we compare the empirical power function of 

the test based on the statistic BT and the popular Ljung-Box Q 

statistic (Ljung and Box (1978», based on the squared correlation 

coefficients. Both tests are only computed for p = 1. 

The empirical power function is computed as the proportion of times that Ho 

is rejected in 5000 replications of the time series model. We consider 

tests where the critical values are approximated from the quantiles of the 

asymptotic null distribution of the corresponding statistic, and from the 

random permutation procedure presented in section 3. We only consider first 

order dependence alternatives (p = 1) in the following two models, 

(5.U 

10 . 



(5.2) 

The Q test is more powerful than any other when the dependence structure is 

linear. Then, the Q test is expected to work better than the empirical 

distribution function (£OF) test in the AR(i) model (5.1), while the £OF test 

is expected to perform better in the nonlinearMA(l) model (5.2). 

The empirical power function has been computed for T= 20, 50, 100 and 

different values of the parameter b in the two models. The critical values in 

the random permutation test are computed using 500 random permutations. The 

results for model (5.1) are in Table 1 and for model (5.2) are in Table 2. 

Both tables indicate that the random permutation test enjoys good level,even 

for the smallest sample size, and the power is not worse than the test based 

on asymptotic critical values. The resampled procedure is time consuming, 

since at each replication the generated sample has to be permuted 500 times. 

Of course, level accuracy is expected to increase as the number of random 

permutation increases. 

In model (5.1) the EDF and Q test behave similarly, both in their asymptotic 

and resampled versions, for any value of b and any significance level u. 

However, the EDF test overperforms the Q test in model (5.2), which exhibits a 

more subtle dependence structure. 

Table 3 summarizes an empirical application of the test, in the asymptotic 

and resampled versions, to testing serial independence of exchange rates 

changes using New York stock market data. The observations are 

X = log Pt - log P - , where Pt is the exchange rate in period t. The data aret t 1 
recorded, from January 1977 to April 1988, daily, monthly, and quarterly for 

three currencies against the US dollar: sterling pound, deutschmark, and 

Japanese yen. 

The effectiveness of several serial independence tests has been tried with 

this sort of data. Whistler (1990) found, using UK data recorded in a similar 

period, that based on parametric autoregressive conditional heteroskedasticity 

(ARCH) models, the independence hypothesis is rejected employing daily data 

but it cannot be rejected with monthly data. Based on the same data, Robinson 

(1991) rejected the independence null hypothesis in all cases, using his 

entropy based nonparametric test. With the same data, Pinkse (1993) also 
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rejected the null hypothesis in all cases using a nonparametric test based on 

the empirical characteristic function. 

With daily observations, our test always rejects the null hypothesis. 

However, the Q test only detects linear dependence in the deutschmark case. 

Using monthly observations, our statistic takes values above the asymptotic 

and resampled critical values at «= 0.05 level of significance in all cases. 

However, at the «= 0.01 level, the null hypothesis is not rejected by our test 

in any of its versions for all currencies except the yen. In the yen case, the 

observed value of the statistic is greater than the resampled critical value. 

This is not a surprise. Plotting the squared series, a structural change is 

clearly observed. There is more volatility in the first part of the sample. 

This may induce rejection of the null hypothesis. This argument also explains 

why, using quarterly data, the independence hypothesis cannot be rejected, 

with all tests, for the pound and deutschmark, but it is rejected for the yen. 

Using quarterly data for the yen, our test rejects clearly the null 

hypothesis, and the resampled p-value of the Q test is only 0.105. 

12� 
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APPENDIX� 

Proof of Theorem 1: 

In order to obtain the infinite dimensional asymptotic distribution of 

T STeW) in the general case. we first note that 

-1 T -1 P
T Lt Rt(w)= (p + 1) Lj Sj (W). (a. 1) 

~ ~ N 

where Rt (.) is defined in (3.2) and 

(a.2) 

N= T/(p+1). and assuming. without loss of generality. that N is an integer. 

Under H. the random vectors {Z t t j.t=l •...• N} are independent. for all j = o p + ­
O•..• p. Then. using Blum et al (1961) results. the infinite dimensional 

l'asymptotic distribution of each SjN(W) is that of Wj(W). j= O•..• P. where each 

W~(W) is distributed as W1'(w). Furthermore. using Theorem 3 in Csorgo (1979) 

p ~ 1. j= O•...• P. (a.3) 

and 

1/2
=O«N log logN) ), a.s. pi!:: 1. j=O, ... ,p, (a.4) 

t p+1where each {Wo (w). we 1 }. j= O•...• P is a sequence of separable Gaussian
IN l' 

processes distributed as Wj(W). j=O•...• p. Therefore. from (a.3). 

(a.S) 
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• -1/2 P tNote that W (w)= (p + 1) r W (w) is a separable Gaussian process with
T L j =0 j N 

-1/2 T •mean and covariances as T Lt=1 Rt(w). That is, E(W (w»= 0, and for 
, I P+1 • •we, E(W (w) W (w'» = sew, w'). From (a.4) 

I 1/2I T a.s. (a.6)s~!\ Lt-1 Rt (w) = O( (T log log T) )
I -

Then, (3.1), (a.S) and (a.6) show that 

(a.7) 

sup T 5 (w) = O( (T log log T) ) a. s. (a.8)I I 1/2 

IP~1 T 

From (a.7) and (a.8), and using same arguments as (4.S7) in Csorgo (1979), 

Applying the Lemma in Kiefer (1959) as in Blum et al (1961), 

B - S2(a;) d ..,p+1 F (a;j) = 0 (1). CJ 
T IRP+1 T " J=1 1 P 

Proof of Theorem 2: 

It suffices to prove that 

which is proved from 

(a.7) 

(a.8) 

Stute and Schumann (1980) theorem proves (a.7) and (a.8) follows from 
2{S(Z)t' t~ 1} ergodic. c 

. 14 
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TABLE I� 

Empirical power fundion of Br based on 5000 replications of the model Xt = bXt_1 + 1;, 'T = I, •••, T,� 
where I; - iid N(O,I), for T = 20, SO, lOO. 

a=O.05 

EDF EDF Q Q 
Permutation Test Asymptotic Test Permutation Test Asymptotic Test 

, 
T= 20 T= 50 T=I00 T= 20 T= 50 T=I00 T= 20 T= 50 T=I00 T=20 T= 50 T=I00 

b= 0 0.0566 0.0518 0.0512 0.0626 0.0532 0.0512 0.0520 0.0528 0.0524 0.0668 0.0558 0.0508 
b= 0.1 0.0786 0.1192 0.1555 0.0860 0.1224 0.1524 0.0502 0.0872 0.1320 0.0610 0.0902 0.1344 
b= 0.2 0.1424 0.2554 0.4526 0.1592 0.2628 0.4562 0.0798 0.2264 0.4550 0.0982 0.2330 0.4552 
b= 0.3 0.2230' 0.4902 0.7928 0.2400 0.4940 0.7940 0.1536 0.4810 0.8204 0.1874 0.4896 0.8214 
b= 0.4 0.3479 0.7300 0.9540 0.3708 0.7370 0.9544 0.2676 0.7364 0.9686 0.3044 0.7512 0.9678 
b= 0.5 0.4930 0.8978 0.9948 0.5136 0.9004 0.9950 0.4204 0.9056 0.9966 0.4676 0.9126 0.9972 
b= 0.6 0.6216 0.9686 0.9996 0.6380 0.9698 0.9996 0.5760 0.9776 1.ססoo ooסס.1 0.9802 0.6156   

b= 0.7 0.7470 0.9920 1.ססoo ooסס.1 0.9922 0.7658  ooסס.1 0.9950 0.7200  ooסס.1 0.9945 0.7518   

b= 0.8 0.8292 0.9976 1.ססoo ooסס.1 0.9982 0.8416  ooסס.1 0.9998 0.8106  ooסס.1 0.9998 0.8320   

b= 0.9 0.8950 0.9998 1.000 0.9042 0.9998 1.ססoo ooסס.1 0.9994 0.8862  ooסס.1 0.9994 0.9034   

a=O.OI 

EDF EDF Q Q 
Permutation Test Asymptotic Test Permutation Test Asymptotic Test 

T= 20 T= 50 T=I00 T= 20 T= 50 T=I00 T= 20 T= 50 T=I00 T= 20 T= 50 T=I00 

b= 0 0.0128 0.0128 0.0122 0.0112 0.0112 0.0090 0.0122 0.0126 0.0110 0.0124 0.0114 0.0092 
b= 0.1 0.0246 0.0459 0.0570 0.0220 0.0388 0.0494 0.0124 0.0248 0.0456 0.0120 0.0226 0.0393 
b= 0.2 0.0476 0.1166 0.2542 0.0466 0.1094 0.2392 0.0232 0.0890 0.2596 0.0244 0.0830 0.2368 
b= 0.3 0.0938 0.2932 0.5946 0.0902 0.2796 0.5754 0.0488 0.2780 0.6298 0.0502 0.2596 0.6192 
b= 0.4 0.1744 0.5212 0.8716 0.1740 0.5140 0.8670 0.1186 0.5330 0.9034 0.1228 0.5250 0.8986 
b= 0.5 0.2834 0.7592 0.9796 0.2880 0.7512 0.9788 0.2164 0.7836 0.9890 0.2252 0.7804 0.9886 
b= 0.6 0.4264 0.9074 0.9984 0.4260 0.9114 0.9984 0.3688 0.9320 0.9996 0.3714 0.9288 0.9998 
b= 0.7 0.5646 0.9762 0.9998 0.5704 0.9744 1.ססoo ooסס.1 0.9836 0.5298  ooסס.1 0.9838 0.5402   

b= 0.8 0.6969 0.9932 1.ססoo ooסס.1 0.9936 0.7022  ooסס.1 0.9956 0.6566  OOסס.1 0.9948 0.6694   

b= 0.9 0.7990 0.9984 1.ססoo ooסס.1 0.9980 0.7998  ooסס.1 0.9988 0.7846  OOסס.1 0.9986 0.7876   



TABLE 2� 

Empirical power function of Br based on 5000 replications of the model Xt = 1Je2t•• + 1;, t= I,•••, T,� 
where I; - iid N(O,I) for T= 20, SO, lOO. 

a=0.05 

EDF EDF Q Q 
Permutation Test Asymptotic Test Permutation Test Asymptotic Test 

T= 20 T= 50 T=I00 T= 20 T= 50 T=I00 T= 20 T= 50 T=I00 T=20 T= 50 T= 100 

b= 0 0.0566 0.0518 0.0512 0.0626 0.0532 0.0512 0.0552 0.0528 0.0524 0.0668 0.0558 0.0508 
b= 0.1 0.0500 0.0608 0.0578 0.0568 0.062Q 0.0570 0.0544 0.0622 0.0596 0.0692 0.0660 0.0584 
b= 0.2 0.0554 0.0680 0.0954 0.0652 0.0698 0.0936 0.0660 0.0786 0.0822 0.0816 0.0822 0.0814 
b= 0.3 0.0602 0.0938 0.1736 0.0698 0.0958 0.1740 0.0844 0.0944 0.1056 0.1014 0.0974 0.1040 
b= 0.4 0.0728 0.1250 0.2472 0.0786 0.1290 0.2508 0.0982 0.1190 0.1288 0.1150 0.1222 0.1298 
b= 0.5 0.0820 0.1388 0.3326 0.0936 0.1378 0.3292 0.1020 0.1362 0.1388 0.1226 0.1406 0.1382 
b= 0.6 0.0806 0.1474 0.3772 0.0910 0.1508 0.3740 0.1116 0.1356 0.1460 0.1230 0.1364 0.1414 
b= 0.7 0.0926 0.1698 0.4052 0.1030 0.1762 0.4084 0.1202 0.1526 0.1600 0.1286 0.1490 0.1572 
b= 0.8 0.0872 0.1672 0.4414 0.0954 0.1726 0.4366 0.1018 0.1488 0.1654 0.1142 0.1424 0.1552 
b= 0.9 0.1008 0.1740 0.4410 0.1014 0.1780 0.4370 0.1290 0.1444 0.1556 0.1228 0.1368 0.1476 

a=O.OI 

EDF EDF Q Q 
Permutation Test Asymptotic Test Permutation Test Permutation Test 

T= 20 T= 50 T=I00 T= 20 T= 50 T=I00 T= 20 T= 50 T=I00 T= 20 T= 50 T= 100 

b= 0 0.0128 0.0128 0.0122 0.0112 0.0112 0.0090 0.0122 0.0126 0.0110 0.0124 0.0114 0.0092 
b= 0.1 0.0152 0.0160 0.0120 0.0138 0.0142 0.0102 0.0122 0.0174 0.0134 0.0116 0.0152 0.0114 
b= 0.2 0.0110 0.0174 0.0246 0.0108 0.0156 0.0206 0.0166 0.0218 0.0232 0.0164 0.0198 0.0188 
b= 0.3 0.0166 0.0236 0.0462 0.0172 0.0196 0.0400 0.0226 0.0352 0.0366 0.0250 0.0360 0.0320 
b= 0.4 0.0182 0.0348 0.0680 0.0182 0.0290 0.0552 0.0286 0.0416 0.0498 0.0280 0.0359 0.0452 
b= 0.5 0.0234 0.0400 0.0960 0.0226 0.0378 0.0782 0.0298 0.0556 0.0574 0.0272 0.0448 0.0494 
b= 0.6 0.0262 0.0434 0.1174 0.0254 0.0388 0.1008 0.0370 0.0530 0.0588 0.0300 0.0436 0.0512 
b= 0.7 0.0276 0.0522 0.1352 0.0280 0.0488 0.1148 0.0454 0.0538 0.0110 0.0372 0.0434 0.0590 
b= 0.8 0.0262 0.0508 0.1490 0.0268 0.0450 0.1280 0.0392 0.0584 0.0664 0.0320 0.0446 0.0538 
b= 0.9 0.0270 0.0542 0.1555 0.0272 0.0476 0.1342 0.0384 0.0570 0.0680 0.0298 0.0428 0.0560 



TABLE 3� 

Statistic values, resampled critical values and p-values from exchange rates 
changes data of sterling pound, yen, and deutschmark with respect to US dollar 
in New York Stock Market from January 1977 to April 1988, (2,832 dally, 158 
monthly, and 53 quarterly observations). Resampled critical values are 
computed using 1,000 random permutations of the original series. 

IA. Sterling Pound/US DollarI 
Dally Monthly Quarterly 

EDF EDF EDF--L --L -.L 
Statistic 0.140 0.076 0.071 0.416 0.016 0.001 

Critical Values: 
u = 0.05 

Asymptotic 0.058 3.840 0.058 3.840 0.058 3.840 

Resampled 0.060 3.836 0.055 3.468 0.060 4.211 

u = 0.01 

Asymptotic 0.087 6.630 0.087 6.630 0.087 6.630 

Resampled 0.093 6.171 0.079 5.544 0.087 6.406 

P-Value 0.002 0.796 0.015 0.507 0.771 0.986(Resampled) 

I B. DeutschmarklUS DollarI 

Daily Monthly Quarterly 

EDF Q EDF Q EDF Q 

Statistic 0.158 7.326 0.071 0.170 0.017 0.053 

Critical Values:' 
u = 0.05 

Asymptotic 0.058 3.840 0.058 3.840 0.058 3.840 
. 

Resampled 0.059 3.582 0.057 3.758 0.057 3.713 

u = 0.01 

Asymptotic 0.087 6.630 0.087 6.630 0.087 6.630 

Resampled 0.082 5.645 0.085 6.664 0.084 6.427 

P-Value 0.000 0.004 0.0269 0.880 0.712 0.842
(Resampled) 



TABLE 3 (Cont.> 

I C. Yen/US Dollar I 

Daily Monthly Quarterly 

EDF --L EDF --L EDF --L 
Statistic 0.112 2.389 0.081 0.978 0.083 2.447 

Critical Values: 
Cl .. 0.05 

Asymptotic 0.058 3.840 0.058 3.840 0.058 3.840 

Resampled 0.061 3.990 0.054 3.664 0.057 3.539 

Cl • 0.01 

Asymptotic 0.087 6.630 0.087 6.630 0.087 6.630 

Resampled 0.100 6.230 0.073 5.673 0.081 5.691 

P-Value 
(Resampled) 0.003 0.115 0.007 0.338 0.005 0.105 




