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Abstract

Global warming is a non-uniform process across space and time. This opens the door

to a heterogeneous relationship between CO2 and temperature that needs to be analyzed

going beyond the standard analysis based on mean temperature found in the literature. We

revisit this topic through the lenses of a new class of factor models for high-dimensional panel

data, labeled Quantile Factor Models (QFM). This technique extracts quantile-dependent

factors from the distributions of temperature across a wide range of stable weather stations

in the Northern and Southern Hemispheres over 1959-2018. In particular, we test whether

the (detrended) growth rate of CO2 concentrations help predict the underlying factors of

the different quantiles of the distribution of (detrended) temperature in the time dimension.

We document that predictive association is greater at the lower and medium quantiles than

at the upper quantiles and provide some conjectures about what could be behind this non-

uniformity. These findings complement recent results in the literature documenting steeper

trends in lower temperature levels than in other parts of the spatial distribution.

Keywords: Global warming, CO2 concentrations, Quantile factor models, Predictive asso-

ciation.

JEL codes: C31, C33, Q54.

∗Prepared for the Economica 100 challenge. We are indebted to an Editor and three referees for very helpful
comments, as well as to participants at the XII Time Series Workshop in Zaragoza for useful suggestions. Financial
support from the National Natural Science Foundation of China (Grant No.71703089), the Spanish Ministerio
de Economı́a y Competitividad (grants PID2019-104960GB-I00, PID2020-118659RB-I00 and TED2021-129784B-
I00), and MadEco-CM (grant S205/HUM-3444) is gratefully acknowledged. The usual disclaimer applies.



1 Introduction

As stressed by world leaders at the 2021 UN Climate Change Conference of the Parties

(COP26), one of the most pressing issues in the international policy agenda is the fight against

the rise of global surface temperatures. Since this phenomenon is mainly due to the increasing

concentrations of greenhouse gases in the atmosphere, a proper design of climate policy requires a

deep understanding of the relationship of global warming (GW, henceforth) with carbon dioxide

concentrations (CO2).
1

From an econometrics viewpoint, several studies have used time-series techniques to explore

this topic empirically (see e.g. Kaufmann et al. (2006), Stips et al. (2016), Castle and Hendry

(2020), Montamat and Stock (2020), Phillips et al. (2020), Pretis (2020), or Chen et al. (2022),

among many others). The standard practice is to use a time series of average global temperature

across a large number of stations to quantify the so-called Equilibrium Climate Sensitivity (ECS),

defined as the temperature response to a doubling in the CO2 concentrations, and Transient

Climate Response (TCR), which measures the strength and speed at which climate responds

to greenhouse gas forcing. The reliability of this evidence depends on the statistical properties

assumed for the time series of interest, such as their the order of integration or the type of trends

they present.

This standard analysis of average temperature has to be complemented by a broader one

that takes into account the well-known fact that GW is a spatially and temporally non-uniform

process (Chapman et al., 2013; Shindell, 2014; Ji et al., 2014; Previdi et al., 2021; Gadea and

Gonzalo, 2023). Our contribution to this literature goes in this direction by proposing a novel

econometric methodology aimed at establishing predictive-association between temperature and

CO2 concentrations allowing for heterogeneity in this relationship. It relies on Quantile Factor

Models (QFM) (Chen et al., 2021), whose use in this context can be motivated as follows.

Let a a panel of temperature {Xit} be available for i = 1, ..., N stations and t = 1, ..., T

periods together with time observations on CO2, denoted as {Zt}, t = 1, ..., T , which are uniform

across all stations. Different approaches are available to analyze the association between these

two variables. For example, researchers can adopt a conditional regression approach for each

individual station, E[Xit|Zt] = γ0i+γ1iZt, i = 1, ..., N , and then compute the distribution of the

parameter of interest γ1 using station-level estimates of γ̂1i. However, when N is large and T

1When sunlight reaches Earth, its surface absorbs some of the light’s energy and re-radiates it as infrared
waves. These waves travel up into the atmosphere and will escape back into space if unimpeded. For example,
while oxygen and nitrogen do not interfere with infrared waves in the atmosphere because molecules are picky
about the range of wavelengths they interact with, CO2 and other greenhouse gases absorb energy at a variety
of wavelengths whose ranges do overlap with that of infrared energy. As CO2 soaks up this infrared energy, it
vibrates and re-emits the infrared energy back in all directions. About half of that energy goes out into space,
while the other half returns to Earth as heat, contributing to GW through the so-called ”greenhouse effect”,
first discovered by Fourier (1824), experimentally verified by Foote (1856) and Tyndall (1863), and quantified by
Arrhenius (1896).
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is smaller, not only this procedure can be computationally burdensome but also the individual

estimates from each separate regression would lack precision. As a result, a standard practice

in this literature is to aggregate temperatures over the cross-sectional dimension and estimate a

single conditional regression of the form E
[
X̄t|Zt

]
= γ̄0 + γ̄1Zt, where X̄t is the series of mean

temperature, and γ̄1 is the mean of γ1. Likewise, by assuming a single common factor structure,

Xit = λift + ϵit, an alternative procedure would be to extract the common factor f̂t through

Principal Components Analysis (PCA), and estimate a single conditional regression of the form

E
[
f̂t|Zt

]
= δ0 + δ1Zt. Under the standard factor model conditions (see Bai (2003)), γ̄1 and δ1

are expected to be proportional.2

However, a serious limitation of these approaches is that they do not allow for the presence

of heterogeneous patterns in the association of CO2 with temperature. Heterogeneity can be

accounted for by adopting quantile approaches. For example, consider a conditional quantile

regression (QR) model for each individual station in the form of Qτ [Xit|Zt] = β0i(τ)+β1i(τ)Zt,

where 0 < τ < 1 denotes the quantile level, and β1i(τ) is the object of interest. In this scenario,

two different sources of heterogeneity can be considered. First, for a given station i, β1i(τ) can

vary across τ , capturing heterogeneity along the temperature distribution, e.g. by finding that

CO2 affects more strongly the lowest than the highest temperatures in a given location. Second,

for a given τ , β1i(τ) can vary across i, implying the existence of spatial heterogeneity e.g. when

CO2 affects more the lowest temperature in the Antarctica than in the Sahara.

Considering the difficulty embodied in incorporating jointly both types of heterogeneity, in

this paper we explore methods to characterize it along the temperature distribution. A natural

approach in that direction would be to estimate a standard QR for the mean temperature,

Qτ [X̄t|Zt] = β̄0(τ) + β̄1(τ)Zt, 0 < τ < 1 which, however, still disregards all the information

on the distribution of temperatures across different stations.3 Alternatively, one could run QR

for each station, and then average the estimates β̂1i(τ) across units for each τ . Yet, this would

be a doubtful statistical procedure because the average of quantiles differs from the quantile of

averages.

For this reason, our proposal relies on Chen et al. (2021, CDG hereafter) where a quantile

factor structure is assumed for a panel data on temperatures. Accordingly, Xit = λ′
i(τ)ft(τ) +

uit(τ), where ft(τ) and λi(τ) are a r(τ)× 1 vectors of factors and loadings, respectively, which

may differ at each τ . Once consistent estimates of the quantile-dependent objects are obtained,

a natural approach is to relate the estimated common factors at each quantile f̂t(τ) with Zt

through time-series methods. Note that the quantile-dependent common factors in this setup

are interpreted as aggregators for the objects of interest, in the same way as the PCA factors

2It is possible to show that, under certain assumptions on the individual loadings and the idiosyncratic er-
ror in the single common factor structure, the aggregated common factor over the cross-sectional dimension is
proportional to the mean. Therefore, PCA common factors are useful aggregators for the mean.

3Throughout the paper we use QX [τ |Z] to denote the conditional quantile of X given Z.
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are aggregators for the mean.

In line with the generalization of linear regression to QR models, QFM can be understood

as an extension of approximate factor models (AFM) to allow for hidden factors shifting specific

characteristics (moments or quantiles) of the distribution of temperature.4 As a simple illustra-

tion of the advantages of QFM over AFM, consider the factor structure in a standard location-

scale shift model with the following Data Generating Process (DGP): Xit = αif1t + ηif2tϵit,

with f1t ̸= f2t (both are scalars), ηi, f2t > 0 and E(ϵit) = 0. The first factor (f1t) shifts location,

whereas the second (f2t) shifts the scale and therefore governs the volatility of shocks to Xit.
5

Such a DGP can be rewritten in QR format as Xit = λ′
i(τ)ft + uit(τ), with 0 < τ < 1,

λi(τ) = [αi, ηiQϵ(τ)]
′, where Qϵ(τ) represents the quantile function of ϵit, ft = [f1t, f2t]

′,

uit(τ) = ηif2t[ϵit − Qϵ(τ)], and the conditional quantile Quit(τ)[τ |ft] = 0.It can be checked

that PCA will only extract the location-shifting factor f1t in this model, but it will fail in cap-

turing the scale-shifting factor f2t. By contrast, the estimation of QFM by the so-called Quantile

Factor Analysis (QFA) will be able to retrieve the space spanned by both factors in this DGP. 6

As explained further below, the QFA estimation procedure relies on the minimization of the

standard check function in QR (instead of the quadratic loss function used in AFM) to estimate

jointly the common factors and their loadings at a given quantile, once the number of factors has

been selected by a consistent criterion. Lastly, it is noteworthy that, given that QFA captures all

quantile-shifting factors (including those affecting the means of observed variables), it provides a

natural way to differentiate AFM from QFM. This is specially relevant in the presence of outliers

where QFA will render valid estimation and inference while AFM may not work well7 Indeed,

since outliers are present in the panel data of temperature, we will illustrate the advantages of

using QFA in such a case through several Monte-Carlo simulations.

In the empirical analysis, we make use of a balanced panel of 441 station-level annual mean

temperature series over the period 1959-2018. A key requirement for extracting the QFA (and

PCA) factors is that the individual time-series processes do not have stochastic or deterministic

trends. Therefore, prior to implementing the QFA, we establish the statistical properties of

these series and apply the corresponding filtering to achieve that condition. Note that the

identification of the type of process followed by the temperature series has been subject to an

intense debate in the climate econometrics literature. On the one hand, authors as Kaufmann

et al. (2006), Chang et al. (2020), Phillips et al. (2020), or Pretis (2020), among others, argue

4Ando and Bai (2020) use a similar setup with an unobservable factor structure which is also allowed to be
quantile dependent; yet, their assumptions are more restrictive since all the moments of the idiosyncratic errors
are required to exist.

5Note that the simplifying assumption of a known number of factors in this specific example is later relaxed.
6Note that, since f1t can be consistently estimated by PCA in this specific DGP, it is also feasible to estimate

f2t by applying PCA to the squared residuals obtained from subtracting the factor structure at the mean from
the original variables. However, in practice, the DGP is unknown and therefore QFA is needed

7The insight for this relative performance is similar to the one underlying the use of robust least median
regression when outliers abound, as in Huber (1981)
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that temperature has stochastic trends, as it is also the case for (CO2), and therefore defend the

use of cointegration methods if appropriate. On the other hand, authors as Gao and Hawthorne

(2006), Gay-Garcia et al. (2009), or Estrada et al. (2013), claim that global temperature follows

a trend-stationary process with nonlinear deterministic trends. Our findings are more in line

with the latter view: we cannot reject that the temperature series are trend-stationary, though

trends appear to be linear.8 Hence, we linearly detrend Xit before QFA is implemented.

Once the quantile-dependent common factors have been obtained, the next step in our pro-

posed methodology is to determine the existence of predictive-association between them and

CO2 concentrations. In line with most of the literature, the statistical properties of the latter

variable points to the existence of a unit root in levels, while its first difference is trend-stationary,

again with a linear trend. Therefore, we consider linearly-detrended changes in atmospheric CO2

concentrations as a predictor for the quantile-dependent common factor series of (detrended)

temperature. The existence of predictive-association is determined through an F-test for the

joint significance of the coefficients associated to the lags of the CO2 concentrations-related

variable.

Two important features of our proposed methodology need to be clarified from the outset.

First, our proposed procedure is akin to a Granger-causality analysis for a given information set

in a restrictive sense, namely, by assuming CO2 concentrations (together with past temperatures)

are the whole information set available by the econometrician. Since this is not realistic, we

only claim the existence of predictive-power or predictive-association. Second, the object of

interest in our analysis differs from the complementary studies relating temperature and CO2

concentrations. Here, the QFA allows us to extract the common factors that drive variations of

temperature around a linear trend in all the stations. For instance, at a low quantile of reference,

we are extracting the common factors that drive large-negative fluctuations in detrended local

temperatures in all available units, to later examine if such fluctuations can be predicted by

past changes in CO2 concentrations around its trend. This is a different association indicator

from the TCS or the TCR analyzed in the standard literature which seek to establish a causal

relationship through a more structural model.

In summary, starting from the well-known fact that GW is a non-uniform process (spatially

and temporarily), this paper provides a novel quantitative methodology which helps analyze

the heterogeneous predictive association between CO2 and the GW process. We find that this

association, at the temporal level station by station, is statistically significant at the lower part

of the temperature distribution and non-significant at the upper one. This feature can have

more serious consequences than an increase in the middle part of the distribution. In this sense,

our results complement the available ones in the literature on climate sensitivity (Sherwood

et al., 2020) that mostly focus on the mean temperature. They also point out that future

8A complete theoretical as well as empirical trend analysis can be found in Gadea and Gonzalo (2020).
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climate agreements should go beyond the mean-temperature target and instead consider the

whole temperature distribution and a CO2 concentrations objective.

The rest of the paper is organized as follows. Section 2 defines QFM. In Section 3, we

introduce the QFA estimator and its computational algorithm, a consistent selection criterion

to choose the number of factors at each quantile, and finally run a Monte Carlo simulation

to highlight the advantages of using QFA instead of PCA in finite samples with big outliers.

Section 4 considers the empirical application about the predictive association between CO2

concentrations and GW using a large panel dataset on the annual distributions of temperatures.

Section 5 discusses our main findings. Finally, Section 6 concludes. An Appendix gathers

supplementary material related to further robustness results and some auxiliary procedures

referred to in the main text.

2 Quantile Factor Model

To motivate our empirical analysis, this section reviews the basic concepts and tools underlying

CDG’s (2021) QFM approach.

Let {Xit} be a panel of N observed variables (units), each with T observations. Then, Xit,

with i = 1, 2, .., N and t = 1, 2, ..., T , has the following QFM structure at some τ ∈ (0, 1):

QXit [τ |ft(τ)] = λ′
i(τ)ft(τ),

where the common factors ft(τ) are gathered in a r(τ)×1 vector of unobserved random variables,

λi(τ) is a r(τ)× 1 vector of non-random factor loadings with r(τ) ≪ N . Note that in the QFM

defined above, the factors, the loadings, and the number of factors are all allowed to be quantile-

dependent.

Alternatively, the above equation implies that

Xit = λ′
i(τ)ft(τ) + uit(τ), (1)

where the quantile-dependent idiosyncratic error uit(τ) is assumed to satisfy the quantile re-

striction P [uit(τ) ≤ 0|ft(τ)] = τ .

As mentioned in the Introduction, location-scale shift models provide nice illustrations of

potential DGPs with the above QFM representation. In particular, recall the example given

above, i.e. Xit = α′
if1t + (η′if2t)ϵit, where {ϵit} are zero-mean i.i.d errors independent of {f1t}

and {f2t}, with cumulative distribution function (CDF) Fϵ such that the median of ϵit is 0, i.e.,

Qϵ(0.5) = 0, αi, f1t ∈ Rr1 , ηi, f2t ∈ Rr2 , and η′if2t > 0. Then, when f1t and f2t do not share

common elements, this model has a QFM representation as in (1) with λi(τ) = [α′
i, η

′
iQϵ(τ)]

′,
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ft(τ) = [f ′
1t, f

′
2t] for τ ̸= 0.5, and λi(τ) = αi, ft(τ) = f1t for τ = 0.5. Note that, for this DGP, the

loadings are quantile-dependent objects while the factors are not. An alternative example where

factors do depend on quantiles is provided by a similar DGP where now different (positive)

factors affect the first three moments of the data, i.e. Xit = αif1t + f2tϵit + f3tϵ
3
it, where

ϵit follows a standard normal random variable with CDF Φ(·). Then Xit has an equivalent

representation in form of (1), with λi(τ) = [αi,Φ
−1(τ), ciΦ

−1(τ)3]′, ft(τ) = (f1t, f2t, f3t)
′ for

τ ̸= 0.5, and λi(τ) = αi, ft(τ) = f1t for τ = 0.5. In particular, since the mapping τ 7→ Φ−1(τ)3

is strictly increasing, then there exists a QFM representation as in (1) with λi(τ) = [αi,Φ
−1(τ)]′

and ft(τ) = [f1t, f2t + f3tΦ
−1(τ)2]′ for τ ̸= 0.5, so that the second factor in ft(τ) is quantile

dependent even for τ ̸= 0.5.

Finally, recall that applying PCA to the data in the two previous DGPs will fail to capture

the extra factors shifting quantiles, other than the means. Hence the need to use QFA to estimate

all quantile-dependent objects in the QFM.

3 QFA Estimators

To simplify the notations, we suppress hereafter the dependence of ft(τ), λi(τ), r(τ) and uit(τ)

on τ , so that the QFM in (1) is rewritten as:

Xit = λ′
ift + uit, P [uit ≤ 0|ft] = τ, (2)

where λi, ft ∈ Rr. Let {f0t} and {λ0i} be the true values of {ft} and {λi}, respectively. A fixed-

effects approach is taken by treating {λ0i} and {f0t} as parameters to be estimated, so that

the asymptotic analysis is conditional on {f0t}. In subsection 3.1, we consider the estimation of

{λ0i} and {f0t} while r is assumed to be known, while the estimation of r at each quantile is

discussed later in subsection 3.3.

3.1 Estimating Quantile Factors and Loadings

It is well known in the literature on factor models that {λ0i} and {f0t} cannot be separately

identified without imposing normalizations (see Bai and Ng (2002)). Without loss of generality,

the following normalizations are imposed:

1

T

T∑
t=1

ftf
′
t = Ir,

1

N

N∑
i=1

λiλ
′
i is diagonal with non-increasing diagonal elements. (3)

Let M = (N + T )r, θ = (λ′
1, . . . , λ

′
N , f ′

1, . . . , f
′
T )

′, and θ0 = (λ′
01, . . . , λ

′
0N , f ′

01, . . . , f
′
0T )

′

denotes the vector of true parameters, where the dependence of θ and θ0 on M is also suppressed
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to save notation. Let A,F ⊂ Rr and define:

Θr =
{
θ ∈ RM : λi ∈ A, ft ∈ F for all i, t, {λi} and {ft} satisfy the normalizations in (3)

}
.

Further, define:

MNT (θ) =
1

NT

N∑
i=1

T∑
t=1

ρτ (Xit − λ′
ift),

where ρτ (u) = (τ − 1{u ≤ 0})u is the check function. The QFA estimator of θ0 is defined as:

θ̂ = (λ̂′
1, . . . , λ̂

′
N , f̂ ′

1, . . . , f̂
′
T )

′ = argmin
θ∈Θr

MNT (θ).

This estimator extends the PCA estimator studied by Bai and Ng (2002) and Bai (2003) in

the same way as QR is related to standard least-squares regressions. However, unlike these

PCA estimators, θ̂ does not yield an analytical closed form. Thus the need of CDG’s (2021)

computational algorithm, labeled Iterative Quantile Regression (IQR), that can effectively find

the stationary points of the object function and can be described as follows.

Let Λ = (λ1, . . . , λN )′, F = (f1, . . . , fT )
′, and define the following averages:

Mi,T (λ, F ) =
1

T

T∑
t=1

ρτ (Xit − λ′ft) and Mt,N (Λ, f) =
1

N

N∑
i=1

ρτ (Xit − λ′
if).

Note that we have MNT (θ) = N−1
∑N

i=1Mi,T (λi, F ) = T−1
∑T

t=1Mt,N (Λ, ft). The main dif-

ficulty in finding the global minimum of MNT is that this object function is not convex in θ.

However, for given F , Mi,T (λ, F ) happens to be convex in λ for each i and likewise, for given Λ,

Mt,N (Λ, f) is also convex in f for each t. Thus, both optimization problems can be efficiently

solved by various linear programming methods (see Chapter 6 of Koenker (2005)). Based on

this observation, the following iterative procedure is proposed:

Iterative quantile regression (IQR):

Step 1: Choose random starting parameters: F (0).

Step 2: Given F (l−1), solve λ
(l−1)
i = argminλMi,T (λ, F

(l−1)) for i = 1, . . . , N ; given Λ(l−1), solve

f
(l)
t = argminf Mt,N (Λ(l−1), f) for t = 1, . . . , T .

Step 3: For l = 1, . . . , L, iterate the second step until MNT (θ
(L)) is close to MNT (θ

(L−1)), where

θ(l) = (vech(Λ(l))′, vech(F (l))′)′.

Step 4: Normalize Λ(L) and F (L) so that they satisfy the normalizations in (3).

In the general case where r ≥ 1, replacing the check function in the IQR algorithm by

the least-squares loss function and normalizing F (l−1),Λ(l−1) to satisfy (3) at step 2, IQR is

equivalent to the method of orthogonal iterations proposed by Golub and Van Loan (2013) to

compute the eigenvectors associated with the r largest eigenvalues of XX ′.
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The asymptotic properties of the QFA estimators are not presented here for brevity, but can

be reviewed directly in CDG (2021). In any case, it should be noted that they achieve asymptotic

normality with the same convergence rates as PCA and, foremost, that these properties hold

even when the distribution of the idiosyncratic errors has no moments.

3.2 Selecting the Number of Factors at Quantiles

To allow for an unknown number of quantile-dependent factors CDG (2021) propose a rank-

minimization criterion to select the correct number at each τ with probability approaching one.

Suppressing once again the dependence of r(τ) on τ to ease notation, the criterion works as

follows.

Let k be a positive integer larger than r, and Ak and Fk be compact subsets of Rk. In

particular, let us assume that [λ′
0i 01×(k−r)]

′ ∈ Ak for all i.

Let λk
i , f

k
t ∈ Rk for all i, t and write θk = (λk′

1 , . . . , λ
k′
N , fk′

1 , . . . , fk′
T )′, Λk = (λk

1, . . . , λ
k
N )′,

F k = (fk
1 , . . . , f

k
T )

′. Consider the normalizations for factors and loadings discussed above, define

Λ̂k = (λ̂k
1, . . . , λ̂

k
N )′ and write

(Λ̂k)′Λ̂k/N = diag
(
σ̂k
N,1, . . . , σ̂

k
N,k

)
.

The rank minimization criterion to estimate the number of factors r is defined as:

r̂rank =
k∑

j=1

1{σ̂k
N,j > PNT },

where PNT is a sequence that goes to 0 as N,T → ∞. In other words, r̂rank can be interpreted

as a rank estimator of (Λ̂k)′Λ̂k/N since this average converges to a matrix with rank r, where

PNT can be viewed as a cutoff value determining that asymptotic rank. In particular, CDG

(2021) find that the following choice of PNT works well in practice,

PNT = σ̂k
N,1 ·

(
1

L2
NT

)1/3

3.3 Relative Performance of PCA and QFA in a DGP with Outliers

One of the main characteristics of climate change is the existence of extreme events and the

presence of outliers. In particular, the proportion of records that can be considered as outliers

in the temperature data that we use in the empirical analysis is around 4% of the sample per year

8



(see Figure 1).9 Therefore, this subsection studies how robust is our novel proposed methodology

to outliers.

As mentioned earlier, at τ = 0.5, QFA can be viewed as a robust QR alternative to the PCA

estimators. By the same token, the QFA estimator of the number of factors should also be more

robust to outliers and heavy tails than the IC-based method of Bai and Ng (2002). In what

follows, we confirm these two claims by means of a few Monte Carlo simulations.

Figure 1: Proportion of outliers in temperature data

In particular, the following DGP is considered:

Xit =
3∑

j=1

λjifjt + uit,

where f1t = 0.8f1,t−1 + ϵ1t, f2t = 0.5f2,t−1 + ϵ2t, f3t = 0.2f3,t−1 + ϵ3t, λji, ϵjt are all independent

draws from N (0, 1), and uit ∼ i.i.d Bit · N (0, 1) + (1 − Bit) · Cauchy(0, 1), where Bit are i.i.d

Bernoulli random variables with means equal to 0.98 and Cauchy(0, 1) is the standard Cauchy

distribution. Thus, approximately 2% of the idiosyncratic errors are generated as outliers.

We consider four estimators of the number of factors r: two estimators based on PCp1, ICp1

of Bai and Ng (2002), the Eigenvalue Ratio (ER) estimator proposed by Ahn and Horenstein

(2013) and CDG’s (2021) rank-minimization estimator with PNT chosen as in section 3.3. We

set k = 8 for all four estimators, and consider N,T ∈ {50, 100, 200, 500}.
9The proportion of outliers in a given year is determined by the number of stations whose temperature record

is above two standard deviations around the mean global temperature in that year.
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Table 1 reports the following fractions for each estimator having run 1000 replications:

[proportion of r̂ < 3 , proportion of r̂ = 3 , proportion of r̂ > 3 ]

It becomes evident that PCp1 and ICp1 almost always overestimate the number factors, while

the ER estimator tends to underestimate them, though to a lesser extent than what PCp1 and

ICp1 overestimate them. By contrast, the rank-minimization estimator selects more accurately

the right number of factors.

Table 1: AFM with Outliers in the Idiosyncratic Errors: Estimating the Number of Factors

N T PCp1 of BN ICp1 of BN Eigenvalue Ratio Rank Estimator

50 50 [0.00 0.04 0.96] [0.00 0.14 0.86] [0.26 0.30 0.44] [0.47 0.53 0.00]

50 100 [0.00 0.02 0.98] [0.00 0.05 0.95] [0.33 0.19 0.48] [0.40 0.60 0.00]

50 200 [0.00 0.00 1.00] [0.00 0.01 0.99] [0.41 0.12 0.47] [0.33 0.67 0.00]

50 500 [0.00 0.00 1.00] [0.00 0.00 1.00] [0.56 0.07 0.37] [0.29 0.71 0.00]

100 50 [0.00 0.02 0.98] [0.00 0.05 0.95] [0.34 0.18 0.48] [0.39 0.61 0.00]

100 100 [0.00 0.00 1.00] [0.00 0.01 0.99] [0.41 0.13 0.46] [0.10 0.90 0.00]

100 200 [0.00 0.00 1.00] [0.00 0.00 1.00] [0.48 0.07 0.45] [0.06 0.94 0.00]

100 500 [0.00 0.00 1.00] [0.00 0.00 1.00] [0.65 0.05 0.30] [0.02 0.98 0.00]

200 50 [0.00 0.00 1.00] [0.00 0.01 0.99] [0.45 0.10 0.45] [0.37 0.63 0.00]

200 100 [0.00 0.00 1.00] [0.00 0.00 1.00] [0.48 0.08 0.44] [0.10 0.90 0.00]

200 200 [0.00 0.00 1.00] [0.00 0.00 1.00] [0.63 0.06 0.31] [0.00 1.00 0.00]

200 500 [0.00 0.00 1.00] [0.00 0.00 1.00] [0.76 0.08 0.16] [0.00 1.00 0.00]

500 50 [0.00 0.00 1.00] [0.00 0.00 1.00] [0.57 0.08 0.35] [0.36 0.64 0.00]

500 100 [0.00 0.00 1.00] [0.00 0.00 1.00] [0.68 0.06 0.26] [0.05 0.95 0.00]

500 200 [0.00 0.00 1.00] [0.00 0.00 1.00] [0.76 0.08 0.16] [0.00 1.00 0.00]

500 500 [0.00 0.00 1.00] [0.00 0.00 1.00] [0.80 0.10 0.10] [0.00 1.00 0.00]

Note: The DGP considered in this Table is: Xit =
∑3

j=1 λjifjt + uit, where f1t = 0.8f1,t−1 + ϵ1t,

f2t = 0.5f2,t−1 + ϵ2t, f3t = 0.2f3,t−1 + ϵ3t, λji, ϵjt ∼ i.i.d N (0, 1), uit ∼ i.i.d Bit · N (0, 1) +

(1 − Bit) · Cauchy(0, 1) where Bit ∼ i.i.d Bernoulli(0.98). For each estimation method, the

[proportion of r̂ < 3 , proportion of r̂ = 3 , proportion of r̂ > 3 ] is reported from 1000 replications.

Next, to compare the PCA and QFA estimators of the common factors in the previous DGP,

let us assume that r = 3 is known. We first get the PCA estimator (denoted F̂PCA), and then

obtain the QFA estimator at τ = 0.5 (denoted F̂ 0.5
QFA) using the IQR algorithm. Next, each of

the true factors is regressed on F̂PCA and F̂ 0.5
QFA separately, and their average (adjusted) R2 from

1000 replications are reported in Table 2 as an indicator of how well the space of the true factors

10



is spanned by the estimated factors. As can be inspected, the PCA estimators are not very

successful in capturing the true common factors, while the QFA estimators approximate them

very satisfactorily, even when N,T are not too large. Thus, this simulation exercise provides

strong evidence in favour of using QFA instead of PCA in those cases where the idiosyncratic

error terms in AFM exhibit heavy tails and outliers.

Table 2: AFM with Outliers in the Idiosyncratic Errors:
Estimation of the Factors

Regress F on F̂PCA Regress F on F̂ 0.5
QFA

N T f1 f2 f3 f1 f2 f3

50 50 0.939 0.810 0.686 0.987 0.975 0.968

50 100 0.931 0.718 0.578 0.987 0.975 0.968

50 200 0.890 0.589 0.412 0.987 0.975 0.968

50 500 0.807 0.405 0.252 0.988 0.975 0.968

100 50 0.928 0.738 0.595 0.993 0.986 0.984

100 100 0.921 0.630 0.441 0.994 0.988 0.984

100 200 0.857 0.479 0.285 0.994 0.988 0.985

100 500 0.713 0.294 0.138 0.994 0.988 0.984

200 50 0.890 0.657 0.513 0.997 0.994 0.992

200 100 0.858 0.514 0.333 0.997 0.994 0.993

200 200 0.779 0.358 0.178 0.997 0.994 0.992

200 500 0.530 0.131 0.051 0.997 0.994 0.992

500 50 0.819 0.501 0.371 0.998 0.997 0.996

500 100 0.725 0.327 0.196 0.999 0.998 0.997

500 200 0.546 0.165 0.062 0.999 0.998 0.997

500 500 0.273 0.036 0.018 0.999 0.998 0.997

Note: The DGP considered in this Table is: Xit =
∑3

j=1 λjifjt+

uit, where f1t = 0.8f1,t−1 + ϵ1t, f2t = 0.5f2,t−1 + ϵ2t, f3t =

0.2f3,t−1 + ϵ3t, λji, ϵjt ∼ i.i.d N (0, 1), uit ∼ i.i.d Bit · N (0, 1) +

(1 − Bit) · Cauchy(0, 1) where Bit ∼ i.i.d Bernoulli(0.98). For

each estimation method, we report the average R2 in the regres-

sion of (each of) the true factors on the estimated factors by

PCA and QFA (assuming the number of factors to be known).
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4 Climate Change and CO2 Concentrations

4.1 Data description

For the empirical analysis, we use data from the Climatic Research Unit (CRU) at University of

East Anglia. In principle, CRU provides monthly and annual data of land and sea temperatures

in North and South hemispheres from 1850 to the present, collected at different stations around

the globe. However, a limitation of this dataset is that the number of stations fluctuates each

year and its geographic distribution of stations is far from being homogeneous. In effect, a higher

concentration of stations is reported for the U.S., Southern Canada, Europe, and Japan, while

lesser coverage is reported in South America, Africa, and Antarctica. Thus, to guarantee some

stability in the distribution of temperatures, we restrict the sample to 1959-2018 when data for

those stations is available each year. Applying this procedure, we construct a balanced panel

of local mean annual temperatures for 441 stations (N) observed over 60 periods (T ). Figure 2

plots the temperature time series for five selected stations in our dataset.

Figure 2: Temperature series in selected stations

Data on CO2 is obtained from the Global Carbon Budget (GCB) series, compiled by Friedling-

stein et al. (2021) and available at https://www.icos-cp.eu/science-and-impact/global-carbon-

budget/2021. The specific information on atmospheric CO2 concentrations that we use is drawn

from Dlugokencky and Tans (2020) for the period 1959-2018 and measured in gigatons of carbon

(GtC) per year.10 Figure 3 displays the above series, both in levels (Panel [a]) and in first dif-

10The same series has been used recently by Bennedsen et al. (2020) in the estimation of a multivariate dynamic
model involving the main variables included in the Global Carbon Budget (GCB).
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ferences (Panel [b]). For the early period 1959-1980, estimations are based on Mauna Loa and

South Pole stations as observed by the CO2 Program at Scripps Institution of Oceanography;

from 1980 onward it corresponds to global averages estimated from multiple stations run by

the National Oceanic and Atmospheric Administration (NOAA) and Earth System Research

Laboratory (ESRL). The robustness of our findings to the data source and transformations is

analyzed in Appendix A.1 where we consider the CO2 concentrations from Mauna Loa only and

the Radiative forcing of CO2 estimated by Hansen et al. (2011).

Figure 3: Atmospheric CO2 concentrations data (GCB)

In addition, our choice of sample period is also determined by the characteristics of the data

on CO2. In fact, before 1958, CO2 concentrations were inferred from ice drilling, and it is only

from 1959 that they started to be measured with instruments. As Pretis and Hendry (2013)

discuss, pooling over different measurement regimes hinders the statistical analysis of the series

and, in particular, the identification of the order of integration. Hence, these arguments also

support restricting attention to the above-mentioned sample period. 11

4.2 Testing for trends in temperature data

Gadea and Gonzalo (2020) provide a methodology to test for the existence of trends in the

unconditional distributional characteristics (moments, quantiles, etc.) of global temperatures.

Treating temperatures as a functional stochastic process, their distributional characteristics can

be thought of as time-series objects to which one could apply standard testing procedures. For

11Other papers analyzing the relationship between temperature and CO2 over the same time window include
Pretis (2020) and Bennedsen et al. (2022)
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example, the proposed robust linear trend-test is based in the statistical significance of the β

coefficient in the following least-squares regression:

Ct = α+ βt+ vt, t = 1, .....T, (4)

where Ct denotes a particular distributional characteristic of interest (e.g. a given quantile).

The asymptotic properties of the OLS estimator in (4) depend on the summability order of

the unknown trend component, k ≥ 0, defined as follows. Let Ct = h(t) + vt, where vt is an

I(0) process and h(t) is the unknown trend polynomial process of order k with coefficients βk.

Then its summability order becomes ST = 1
T 1+k

∑T
t=1 h(t). The OLS estimated coefficient in

(4) becomes:

β̂ =

∑
tCt − T t̄C̄∑
t2 − T t̄2

, (5)

where
∑

tCt = T 2+k 1
T

∑
( t
T )

Ct

Tk ) and
∑

t2 = T 3 1
T

∑
( t
T )

2, so that T 3/2(β̂ − T k−1βk) = Op(1),

implying consistency if k = 0, 1. In such cases, it can be verified that tβ=0 → N(0, 1), implying

that the linear test based on Equation (4) can detect any type of trend even if it is non-linear.

This test is implemented as a preliminary inspection of the statistical properties of tempera-

tures in our dataset. Using their cross-sectional distribution, a set of representative distributional

characteristics (mean, sd, quantiles, etc.) are estimated for the sample period 1959-2018. Figure

4 presents the plots of the mean and quantiles q10, q25, q50, q75, and q90. According to the

evidence shown in Table 3, a linear trend component is detected in most of these characteristics

(except in the inter-quantile rage, iqr). Moreover, the GW phenomenon is clearly heterogeneous

along the temperature distribution since the slope of the trend coefficients in the lower quantiles

is steeper than those in the mean, median, and upper quantiles. Interestingly, these results are

qualitatively similar to those reported by Gadea and Gonzalo (2020) using a different dataset

over the longer period 1880-2015.
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Figure 4: Estimated distributional characteristics

Table 3: Gadea-Gonzalo Trend test (1959-
2018).

Characteristic Test-statistic p-value

mean 0.0264 0.0000
sd -0.0050 0.0000
min 0.0605 0.0000
max 0.0407 0.0000
iqr -0.0013 0.2461
kur -0.0018 0.0054
skw 0.0007 0.0114
q01 0.0468 0.0000
q05 0.0385 0.0000
q10 0.0302 0.0000
q25 0.0240 0.0000
q50 0.0301 0.0000
q75 0.0227 0.0000
q90 0.0181 0.0000
q95 0.0161 0.0000
q99 0.0215 0.0000

Note: Annual distributional characteristics
are estimated using the cross-sectional distri-
bution at each year (1959-2018). OLS esti-
mates and HAC tβ=0 p-values from regression
(4) are reported.
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4.3 Quantile Factor Analysis

The previous evidence opens the door to analyze heterogeneous association patterns between

local (station-level) temperatures and atmospheric CO2 concentrations using our proposed QFA

procedure. To do so, we first estimate the quantile-dependent common factors of the temperature

panel, and then use them as dependent variables in predictive-association regressions with CO2

concentrations.

As mentioned earlier, a key requirement for extracting the QFA (and the PCA) factors

is the absence of stochastic and deterministic trends in the individual temperature processes.

Appendix A.2 reports the results of applying standard Augmented Dickey-Fuller (ADF) tests in

regressions with a linear trend component. As can be observed, the null of unit root is rejected

in almost all the stations (except in five cases), as well as in the distributional characteristics

of interest. Based on this evidence, we conclude that the individual temperature series are

trend-stationary. Thus, linear detrending is implemented to achieve the above requirements.12

Accordingly, QFA is applied on the linearly detrended panel of station-level temperatures in

its standardized format, so that the lower (higher) quantiles capture large negative (positive)

variations of temperature around a linear trend. The number of factors are selected according

to the rank-minimization criterion discussed in section 3.3 for a fine grid of quantile levels, τ ,

ranging from 0.01 to 0.99. As pointed out before, the number of factors varies across quantiles,

declining as we move away from the median. In particular, these numbers are: 1 (at τ = 0.01,

0.05, 0.10, 0.95, 0.90, and 0.99), 3 (at τ = 0.25 and 0.75), and 4 (at τ = 0.5). For illustrative

purposes, Figure 5 shows that the estimated factors for the quantiles 0.01, 0.50, and 0.99 are

fairly different. In addition, PCA is used to estimate the factors at the mean, where the number

of factors being chosen according to the PCp1 criterion of Bai and Ng (2002) which selects 8.

This is the maximum number imposed in the IQR computational algorithm.

To compare the QFA factors (denoted as F̂ τ
QFA) with the PCA factors (denoted as F̂PCA), we

regress each element of F̂ τ
QFA on the 8 F̂PCA and compute their corresponding R2 as a measure

of correlation.13 The results are shown in Table 4. It becomes clear that, for the quantiles at the

center of the distribution (τ = 0.25, 0.5, and 0.75), the estimated factors are highly correlated

with the PCA factors, with all the R2s exceeding 0.90, especially in the case of the factors for

the median (above 0.98). By contrast, the QFA factors at the upper and lower quantiles (e.g.

τ = 0.01, 0.05, 0.95, and 0.99) exhibit much lower correlations with the PCA factors, with R2s

fluctuating between 0.6 and 0.7. Thus, there seems to be room for using QFA in this application

since the factors at the extreme quantiles help identify different features of the temperature

distribution which the factors at the medium quantiles are unable to capture.

12Note that these properties of the dependent variables precludes the use of cointegration in a bivariate setup.
13Recall that the PCp1 is chosen to select the number of PCA factors estimated in these regressions to play

conservative.
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Figure 5: Estimated QFA factors

Table 4: Comparison of F̂QFA and F̂PCA

Elements of F̂ τ
QFA

τ 1 2 3 4

0.01 0.6846

0.05 0.7179

0.10 0.7852

0.25 0.9560 0.9624 0.9571

0.50 0.9967 0.9968 0.9839 0.9806

0.75 0.9368 0.9481 0.9372

0.90 0.7290

0.95 0.6624

0.99 0.6043

Note: This Table reports the R2 of regressing

each element of F̂QFA on F̂PCA. For F̂QFA,

the numbers of estimated factors is obtained

using the rank-minimization criterion, while

for F̂PCA the numbers of estimated factors are

8 for all datasets.
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4.4 Temperature Factors and CO2 Concentrations

Bivariate tests characterizing the predictive association between the estimated QFA temperature

factors and a suitable transformation of the atmospheric CO2 concentrations are implemented

next. The statistical properties of the latter determine how it should be transformed. Panel [a] in

Figure 3, makes it is clear that the CO2 concentrations series from the GCB is upward trending

and exhibits the typical dynamics of a unit root process. Moreover, the first-differenced series

presented in Panel [b] point to an acceleration over the sample period following a linear trend.

These features are confirmed by an ADF test reported in Appendix A.2, which suggest that

the level of CO2 concentrations has a unit root, while the growth rate is trend-stationary. As

discussed in Bennedsen et al. (2020), these properties are consistent with a dynamic statistical

model relating CO2 concentrations, antrhopogenic CO2 emissions, and absorption of CO2 by the

terrestrial, ocean and marine biospheres. The same statistical properties hold for the (logged)

CO2 concentrations from Mauna Loa and the CO2 radiative forcing, series that we use in the

robustness exercises in Appendix A.1.

Building on the previous observations, the tests to be implemented rely on linear regressions

of the estimated QFA factors at each relevant quantile (F̂ τ
QFA,t) on p own lags and q lags of the

linearly detrended changes in atmospheric CO2 concentrations (∆̂CO2). In other words, this

approach sheds light on whether past fluctuations in CO2 concentrations changes around a linear

trend have a predictive power on the common quantile-dependent factors of the stations-level

temperature fluctuations, again around a linear trend. The specific regressions are given by:

F̂ τ
QFA,t = α(τ) +

p∑
i=1

βi × F̂ τ
QFA,t−i +

q∑
j=1

γj × ∆̂CO2,t−j + ut, (6)

where the lag lengths p and q are selected through a general-to-specific approach.

Given that QFA and PCA estimated factors share the same rates of convergence, a similar

condition to that used in Bai and Ng (2006) is required to replace the true quantile factors

by the QFA estimated ones in Equation (6), namely,
√
T/N → 0. This condition is easily

verified in our finite sample since
√
60/441 = 0.017. Thus, the proposed test looks at the joint

significance of the γj coefficients, j = 1, ...., q, by means of an F-statistic, and can be interpreted

as a predictive-association test.14

Table 5 reports the p-values of the proposed tests. At a 10% significance level, we find

that past values of the linearly detrended changes in atmospheric CO2 concentrations have a

predictive power on the current values of QFA factors of the temperature at the lower and middle

14The specification in first differences of (logged) CO2 is further corroborated when run predictive regressions
using q + 1 lags of that variable in levels since the sum of their estimated coefficients is not significantly different
from zero, pointing to the use of q lags of the first-differenced series as the correct choice .
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quantiles (τ from 0.01 to 0.75). Yet, this is not the case for the QFA factors at the extreme upper

quantiles (τ = 0.90, 0.95 and 0.99) where the null hypothesis of the test is not rejected. The

detected heterogeneous predictive-association pattern is the main finding of our paper which, as

Appendix A.1 shows, happens to be robust to alternative sources, units of measurement, and

transformations of the CO2 concentrations series.

Table 5: p-values of the predictive association tests for
the QFA factors

Elements of F̂ τ
QFA

Regressor τ 1 2 3 4

0.01 0.0713

0.05 0.0317

0.10 0.0546

0.25 0.0140 0.5626 0.7714

∆̂CO2 0.50 0.0057 0.2568 0.1899 0.0835

0.75 0.9149 0.0878 0.2499

0.90 0.2747

0.95 0.6395

0.99 0.8308

Note: This Table reports the p-values of the proposed F test

for the joint significance of the coefficients γj , j = 1, ...q in

Equation (6). Lag lengths are chosen following a general to

specific approach. p-values smaller than 0.1 are in bold.

As a complementary exercise, we study the predictive association between the 8 PCA mean

factors selected with the PCp1 criterion and the suitable transformation of the CO2 concentra-

tions. Notice that under the standard factor model conditions, the average temperature across

stations is equivalent to a linear combination of these 8 PCA factors. Table 6 shows the p-

values for the proposed tests. In agreement with the results for the median factors, a significant

predictive association is detected for some of the PCA factors.
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Table 6: p-values of the predictive association tests for the PCA factors

Elements of F̂PCA

Regressor 1 2 3 4 5 6 7 8

∆̂CO2 0.0138 0.3556 0.2285 0.2202 0.0046 0.6469 0.4759 0.0135

Note: This Table reports the p-values of the proposed F test for the joint significance of the

coefficients γj , j = 1, ...q in the corresponding version of Equation (6). Lag lengths are chosen

following a general to specific approach. p-values smaller than 0.1 are shown in bold.

5 Discussion

The link between temperature and CO2 concentrations is a long standing issue in the climate

science literature. Our analysis of climate sensitivity departs from the standard approach that

is typically quantified as warming per doubling of CO2 (see Sherwood et al. (2020) for a recent

overview of this line of research). In particular, we use a different metric, namely, one that focuses

on the predicting power of CO2 on temperature, where the former is measured as levels of global

concentrations. In this fashion, our approach complements other research on heterogeneous

climate sensitivity like Shindell and Faluvegi (2009) where the sensitivity of regional climate to

changes in CO2 (spatial heterogeneity) is investigated. Moreover, this non-uniformity seems to

be a finding associated only to CO2. In Appendix A.3 we consider the radiative forcing of other

greenhouse gases as methane, ozone, or nitrous oxide, as well as natural forcings such as solar

irradiance or volcanic activity, finding that predictive association holds for all quantile factors.

Admittedly, we still do not have a clear physical reason explaining our findings. Yet, a

possible conjecture would go in parallel with the causes that explain the well-known diurnal

asymmetry: the night-time temperatures have increased more rapidly than day-time temper-

atures (see Davy et al. (2017)). The proposed factors behind this asymmetry could rely on

changes in cloud covering, precipitation, soil moisture, the planetary boundary layer, etc.

Finally, in spite of addressing a different research question related to GW, our results seem

to be in line with the evidence reported in Gadea and Gonzalo (2020, 2023), where GW is also

found to be non-uniform: lower temperatures increase much more than the medium and higher

ones. The lower unconditional quantiles in their study correspond to the Arctic region. However,

an increase of CO2 concentrations will have unforeseen consequences (that is, whatever happens

in the Poles does not remain there): ice melting, sea level increases, floods, migrations, extreme

events, etc. All these events are further aggravated by their own feedback effects due to the

reduction in the surface albedo (less solar energy is reflected out to space) and by the release of

more greenhouse gasses (CO2, and Methane) from the permafrost melting. In this respect, we

highlight that non-uniform climate sensitivity is not regionally concentrated but rather affects
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all the regions around the Globe. In particular, the growth rate of CO2 emissions predicts

(positively) the periods where the temperature decreases or does not increase much.

In view of this evidence, further research should aim at jointly analyzing the heterogeneous

predictive power of (CO2 for GW at both the spatial (across stations) and temporal dimensions.

Preliminary results in a ongoing project on this issue point in the same direction as the ones

reported in this paper. Hopefully, this quantitative analysis will help in the design of more

efficient mitigation climate policies.

6 Conclusions

In this paper we test for predictive association between (detrended) CO2 concentrations changes

and temperatures from 441 weather stations in the Northern and Southern hemispheres over

the period 1959-2018. Using the QFA methodology proposed by CDG (2021), we retrieve the

quantile-dependent common factors and their number at different quantiles. We apply predic-

tive association tests of different CO2 concentration measures on those factors. The specifica-

tion of the corresponding dynamic predictive equations is helped by the methodology proposed

by Gadea and Gonzalo (2020) to detect deterministic and stochastic trends in different mo-

ments/quantiles of the distribution of temperature and by ADF tests for unit roots. As a

by-product of the analysis, it is shown that QFA is a much more robust estimation method that

standard PCA in the presence of outliers, as is the case in climate data.

Our main finding is that CO2 concentrations changes have stronger predictive power for

factors at the lower quantiles of the temperature fluctuations around a linear trend than at the

middle and upper quantiles. We stress once again that this result is not picked up by the use the

PCA mean factors since they capture common features of all temperatures whereas QFA factors

capture common features at each quantile. Thus, as discussed earlier, we interpret our results

as complementary to the available on climate sensitivity (see e.g. (Sherwood et al., 2020)).
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A Appendix

A.1 Robustness

The main finding of the paper is the heterogeneous predictive-association between a suitable

transformation of the atmospheric CO2 concentrations series from the GCB and the QFA factors

of the linearly detrended panel of local temperatures. To investigate the robustness of our

findings to the data source, units of measurement, and transformation, the analysis is repeated

using two additional series of atmospheric CO2 concentrations as regressors. The first is the

mean annual CO2 concentrations series measured in parts per million by volume (ppmv) as

obtained from direct measurements at Mauna Loa (CO2,MLO).
15 The second corresponds to

the Effective Radiative Forcing (ERF) from the CO2 series (ERFCO2
t )16 measured in Watts per

meter squared (Wm−2) and obtained from Hansen et al. (2011).17 From Figures A.1 and A.2 it

is clear that the dynamics of both series are similar to the dynamics of the CO2 concentrations

from the GCB.

Figure A.1: Atmospheric CO2 concentrations (MLO)

15Available at https://gml.noaa.gov/ccgg/trends/data.html.
16By definition, ERFCO2

t = 5.35× ln(CO2t/CO2base), where CO2t are the CO2 concentrations at a given year
t and CO2base are the CO2 concentrations at a given base year.

17Available at http://www.columbia.edu/ mhs119/Forcings/.
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Figure A.2: Effective Radiative Forcing from CO2

Provided that the series in Panel [b] of the previous Figures are trend-stationary according to

the ADF tests for unit roots described in Appendix A.2, in Equation (6) we consider as regressors

the linearly detrended growth rate of CO2 concentrations from Mauna Loa (∆̂log(CO2,MLO))

and the linearly detrended first differences the ERF from CO2 (∆̂ERFCO2
t ). Results reported in

Table A.1 indicate that the main finding of the paper holds for the two additional series. In both

cases we reject the null of the implemented test for QFA factors at lower and middle quantiles

(τ from 0.01 to 0.75), while the null of the test is not rejected at upper quantiles (τ = 0.90, 0.95

and 0.99).
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Table A.1: p-values of the predictive association tests for the
QFA factors

Elements of F̂ τ
QFA

Regressor τ 1 2 3 4

0.01 0.0754

0.05 0.1959

0.10 0.0143

0.25 0.0533 0.0131 0.3997

∆̂log(CO2,MLO) 0.50 0.0057 0.0154 0.5053 0.0583

0.75 0.0357 0.1356 0.6663

0.90 0.2092

0.95 0.2763

0.99 0.2076

0.01 0.0088

0.05 0.0970

0.10 0.0187

0.25 0.0259 0.0041 0.3057

∆̂ERFCO2
t 0.50 0.0236 0.0002 0.1732 0.0706

0.75 0.0365 0.0582 0.4800

0.90 0.1213

0.95 0.1027

0.99 0.3969

Note: This Table reports the p-values of the proposed F test for the

joint significance of the coefficients γj , j = 1, ...q in the correspond-

ing version of Equation (6) for ∆̂log(CO2,MLO) and ∆̂ERFCO2
t . Lag

lengths are chosen following a general to specific approach. p-values

smaller than 0.1 are in bold.
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A.2 Unit root tests

Augmented Dickey-Fuller (ADF) tests for unit roots are implemented to guide the choice of

the suitable transformations of the data coherent with the methodological devices at hand. For

the case of the temperature series, individual unit root tests are implemented on the full set of

stations. Additionally, such tests are implemented on the distributional characteristics of interest

(moments, quantiles, etc.) estimated using the cross sectional distribution of temperatures. In

the test specification we include intercept and a linear trend. As reported in Table A.2, the

null hypothesis of unit root is rejected in 98.66% of the stations; it is not rejected only in 5

stations out for 441. In a similar direction, the ADF test suggests no unit roots on the different

distributional characteristics. This piece of evidence suggest that temperature series do not

contain unit roots, but rather follow trend-stationary processes.

Table A.2: ADF unit root tests.

ADF test by stations

Percentage of rejections 98.66 %
Number of nonrejections 5

ADF test by characteristics
Characteristics Test-statistic p-value

mean -5.6261 0.0001
sd -6.5609 0.0000
min -6.2759 0.0000
max -8.1441 0.0000
iqr -6.1115 0.0000
kur -6.5601 0.0000
skw -7.6596 0.0000
q01 -8.7850 0.0000
q05 -8.0555 0.0000
q10 -5.0763 0.0006
q25 -5.4339 0.0002
q50 -6.1891 0.0000
q75 -6.7940 0.0000
q90 -6.3746 0.0000
q95 -6.6529 0.0000
q99 -6.2450 0.0000

Note: Annual distributional characteristics estimated us-
ing the cross-sectional distribution at each year (1959-2018).
Significance level of 5% is considered in the individual
tests. ADF-test equations include intercept and trend. Lag-
selection conducted using SBIC criterion.

In Table A.3 the p-values of the ADF test implemented on the series of CO2 and ERF are

reported. The three series related to CO2 (CO2,GCB, log(CO2,MLO), and ERFCO2) contain a
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unit root in its levels, while the first differences are trend-stationary. Regarding the ERF series,

the test results indicates that the non-CO2 ERF is stationary in its levels while the total ERF is

I(1). The unit root analysis for this set of series is consistent with Pretis (2020) and Bennedsen

et al. (2022).

Table A.3: ADF unit root tests

Level series First differences
Variable Constant Constant and trend Constant Constant and trend

CO2,GCB 7.7983 -0.4758 -0.4491 -6.9110
log(CO2,MLO) 4.3538 -1.3849 -1.3903 -6.4887

ERFCO2 6.4539 -0.9759 -4.5028 -7.0202
ERFnonCO2 -4.3825 -5.7877 -7.6238 -7.5589
ERF Tot -1.372 -5.8092 -7.6105 -7.5558

Note: This Table reports test-statistic of the ADF tests on the corresponding variable when
the test includes only a constant or a constant and an intercept. Lags are selected using the
BIC criterion. The values in bold indicate that the null of the test is rejected.

A.3 Other warming sources

Even though the interest of the paper is on the bivariate association between CO2 and station-

level temperatures, in this section we briefly examine the association with other greenhouse

gases as methane, ozone, or nitrous oxide, as well as natural forcings such as solar irradiance or

volcanic activity. In Figure A.3 we present the total ERF (ERF Tot) (Panel [a]) and the ERF

from other sources different than CO2 (ERFnonCO2) (Panel [b]) as taken from Hansen et al.

(2011). The ADF tests for unit root described in Appendix A.2 indicates that ERF Tot is I(1)

and ERFnonCO2 is I(0).
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Figure A.3: Effective Radiative Forcing from all sources

The predictive-association analysis is conducted considering as regressors the first differences

of ERF Tot (∆ERF Tot) or the levels of ERFnonCO2 . As observed in Table A.4, when including

other sources of warming (natural or anthropogenic) different from CO2, a more homogeneous

pattern of predictive association is obtained. In fact, when considering ERFnonCO2 , it seems

that the predictive association is stronger for the QFA factors of the medium and upper quantiles.

A deeper examination of the patterns of association between local temperatures and different

warming is beyond the scope of this study but constitutes an interesting avenue for future

research.
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Table A.4: p-values of the predictive association tests for
the QFA factors

Elements of F̂ τ
QFA

Regressor τ 1 2 3 4

0.01 0.0000

0.05 0.0592

0.10 0.0077

0.25 0.0001 0.6193 0.0000

∆ERF Tot 0.50 0.0008 0.3757 0.0057 0.0782

0.75 0.0014 0.7196 0.0007

0.90 0.0065

0.95 0.0040

0.99 0.0434

0.01 0.0572

0.05 0.0554

0.10 0.0180

0.25 0.0001 0.5056 0.0000

ERFnonCO2 0.50 0.0012 0.5520 0.6629 0.1269

0.75 0.0155 0.8938 0.0011

0.90 0.0070

0.95 0.0147

0.99 0.0055

Note: This Table reports the p-values of the proposed F test for

the joint significance of the coefficients γj , j = 1, ...q in the corre-

sponding version of Equation (6) for ∆ERFTot and ERFnonCO2 .

Lag lengths are chosen following a general to specific approach.

p-values smaller than 0.1 are in bold.
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