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On the robustness of cointegration tests
when series are fractionally integrated

JESUÂ S GONZALO1 & TAE-HWY LEE2, 1Department of Statistics and
Econometrics, Universidad Carlos III de Madrid, Spain and 2Department of
Economics, University of California, Riverside, USA

abstract This paper shows that when series are fractionally integrated, but unit root
tests wrongly indicate that they are I(1), Johansen likelihood ratio (LR) tests tend to ® nd
too much spurious cointegration, while the Engle± Granger test presents a more robust
performance. This result holds asymptotically as well as in® nite samples. The diVerent
performance of these two methods is due to the fact that they are based on diVerent
principles. The Johansen procedure is based on maximizing correlations (canonical
correlation) while Engle± Granger minimizes variances (in the spirit of principal
components).

1 Introduction

It is well established that many economic series contain dominant, smooth compo-
nents, even after the removal of simple deterministic trends. A stochastic process
with no deterministic components is de® ned to be integrated of order d, denoted
I(d), if it has a stationary and invertible ARMA representation after applying the
diþ erencing operator (1 2 B)d . The components of the vector Xt are said to be
cointegrated of order (d, b), if all components of Xt are I(d) and there exists a
vector a ( ¹ 0) such that a ¢ Xt is I(d 2 b), b > 0. Usually the case with d 5 b 5 1 is
considered (for more detail see Granger, 1981; Engle & Granger, 1991).

When d is not an integer, the series are said to be fractionally integrated (Granger
& Joyeux, 1980; Hosking, 1981). There is considerable evidence that the long
memory properties of macroeconomic and ® nancial time series data such as GDP,
interest rate spreads, in¯ ation rates, forward premiums, stock returns, exchange
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rates, and etc, can be well captured by fractional integrated processes. This paper
is concerned with the robustness of cointegration tests when series are fractionally
integrated, but based on unit root tests we wrongly consider them as I(1) series.

We investigate two methods to test for cointegration. One method is the one
suggested by Engle & Granger (1987, EG hereafter), which looks for a linear
combination of level series that minimizes the variance of the linear combination
using OLS. Another method is Johansen’s (1995) procedure, which maximizes the
canonical correlation between the ® rst diþ erenced series and the level series. From
the point of view of multivariate analysis, the EG procedure is similar to principal
components, while Johansen’s method is a canonical correlations technique. The
main assumption of both tests is that series are exactly I(1). When series are I(d)
with d ¹ 1, but we wrongly consider them as I(1), this paper ® nds that Johansen
tests tend to ® nd spurious cointegration more often than the EG test does. This
result holds asymptotically as well as in ® nite samples.

Consider a (2 3 1) I(1) vector Xt 5 (yt xt) ¢ . The variance of an I(1) series (given
some initial conditions) goes to in® nity as t ® ` , while the variance of an I(0)
series is ® nite. Therefore if an I(1) vector Xt is cointegrated, there must exist a
vector a ( ¹ 0) such that the variance of a ¢ Xt is ® nite. Based on this, EG suggest
testing for a unit root on the residuals zt from the OLS cointegration regression
yt 5 aÃ 0 + aÃ 1xt + zt . The EG test is based on the augmented Dickey± Fuller (DF)
statistic (see Dickey & Fuller, 1979) of order k, ADF(k), that is the t-value for q Ã
in the OLS regression

D zt 5 q zt 2 1 + q 1 D zt 2 1 + . . . + q k D zt 2 k + error (1)

Reduced rank regression methods, like the Johansen approach, exploit the fact
that I(1) and I(0) variables are asymptotically uncorrelated and look for a vector a

that maximizes the correlation between a ¢ Xt and a linear combination of D Xt . If
that correlation is not zero, a ¢ Xt is I(0) and Xt is cointegrated. According to
Granger’s representation theorem (Granger, 1983), a cointegrated system admits
the following vector error correction model (VECM) representation

D Xt 5 P Xt 2 1 + C 1 D Xt 2 1 + . . . + C k D Xt 2 k + e t (2)

where e t 5 (e1t e2t) ¢ is a white noise vector with ® nite variance. For simplicity we
have eliminated all the deterministic components and we only consider a ® nite k
in model (2). If Xt is cointegrated, it can be shown that the matrix P can be
decomposed into P 5 c a ¢ , where a and c are (2 3 1) matrices. Testing for cointegra-
tion is therefore equivalent to testing the rank of P (denoted as r) equal to one,
and this is exactly what the Johansen method does. Formally the Johansen LR
statistics for testing the null hypothesis of no cointegration H0 : r 5 0 are

Q1 5 2 T ln(1 2 k Ã 1) (1 2 k Ã 2) (3)

and

Q2 5 2 T ln(1 2 k Ã 1) (4)

where (1 > k Ã 1 > k Ã 2 > 0) are the eigenvalues of MÃ º S 2 1
11 S10S 2 1

00 S01, and
Si j 5 T 2 1R T

t 5 1Rit R ¢
jt (i, j 5 0, 1) are the product moment matrices of the residuals R0t

and R1t , from the regressions of D Xt and Xt 2 1 on the lagged diþ erences, respectively.
Q1 tests the null hypothesis against the alternative hypothesis H1 : r > 0, and Q2

tests H0 against H1 : r 5 1.
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2 Fractionally integrated processes

Suppose Xt 5 (yt xt) ¢ are generated from

(1 2 B)dyt 5 e1t (5)

(1 2 B)dxt 5 e2t (6)

The fractional diþ erence operator (1 2 B)d de® ned by its Maclaurin series is

(1 2 B)d 5 +
`

j 5 0

C ( 2 d + j)

C ( 2 d) C ( j + 1)
B j 5 +

`

j 5 0

djB
j , dj 5

j 2 1 2 d

j
dj 2 1 , d0 5 1 (7)

where C ( ´ ) is the gamma function. An I(d) process yt generated from (5) has the
following properties: (a) yt is covariance stationary if d< 0.5. (b) yt has an invertible
moving average representation if d > 2 0.5. (c) yt is mean-reverting when d < 1.
(d) If d > 0, yt has a long memory, the autocovariances of yt are not absolutely
summable, and the power spectrum of yt is unbounded for frequencies approaching
zero. (e) yt has an in® nite variance if d > 0.5. (f ) The DF-t statistic diverges to
2 ` if d< 1, and diverges to + ` if d > 1 as T ® ` (Sowell, 1990, Theorem 4).
Thus, if d > 1, the standard DF tests have no power asymptotically.

For simplicity, in the following proposition we consider only the case with k 5 0
in the VECM to compute the LR statistics. Any ® nite k that is not suý ciently
large enough to make the error e t a white noise vector will lead to the same results.

Proposition:
Suppose (yt xt) ¢ are I(d) processes generated from (5)± (6), and we estimate a
VECM with k 5 0.

(a) If d > 1.5, then k Ã 1 does not converge to zero in probability as T ® ` .
(b) If 1 < d< 1.5, then T (3 2 2d) k Ã 1 5 Op(1).
(c) If d 5 1, then Tk Ã 1 5 Op(1).
(d) If 0.5 < d< 1, then T (2d 2 1)k Ã 1 5 Op(1).

Proof:
(a) Following Gourieroux et al. (1989), for d > 1.5, S11 5 Op(T

2d 2 1),
S00 5 Op(T

2d 2 3), and S10 5 Op(T
2d 2 2). Therefore MÃ 5 Op(1) and the result follows.

(b) For 1< d< 1.5, S11 5 Op(T
2d 2 1), S00 5 Op(1), and S10 5 Op(T

2d 2 2). Therefore,
MÃ 5 Op(T

2d 2 3). (c) For d 5 1, S11 5 Op(T), S00 5 Op(1), and S10 5 Op(1). Therefore,
MÃ 5 Op(T

2 1). (d) For 0.5< d< 1, S11 5 Op(T
2d 2 1), S00 5 Op(1), and S10 5 Op(1).

Therefore, MÃ 5 Op(T
1 2 2d) and the result follows. This completes the proof.

If d 5 1, T k Ã 1 5 Op(1). If d ¹ 1, T k Ã 1 ® p ` as T ® ` , and the size of the LR tests
increases to one as T ® ` because Q2 > T k Ã 1 and Q1 > T( k Ã 1 + k Ã 2). Note that if
1< d < 1.5 then 0< 3 2 2d< 1, and if 0.5 < d< 1 then 0< 2d 2 1 < 1. Thus, in
these two cases, k Ã 1 ® p 0 but at a slower rate than T so that T k Ã 1 diverges, and
therefore the size of the LR tests goes to one asymptotically.

A suý ciently large k such that the residuals are white noise may solve the
problem. But there are many situations in macroeconomics where it is not possible,
in practice, to try a large k. As previously mentioned, our Proposition will hold not
only for k 5 0 but also for any k > 0 not suý ciently large to make the error a white
noise vector.
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3 Monte Carlo results

We generate Xt 5 (yt xt) ¢ from (5)± (6) where e1t and e2t are i.i.d. N(0, 1), and
E( e 1i e 2j) 5 0 for every i and j. In order to avoid the initial conditions (x0 5 0, y0 5 0)
eþ ect, we generate samples of sizes t 5 1, . . . , T + q and discard the ® rst q 5 2000
observations. We approximated (1 2 B)d

5 R `
j 5 0djB

j by assuming dj 5 0 for j > 1000.
It is clear that both variables are not cointegrated in any sense. In Tables 1 and 2,
we report the size of the cointegration tests for various values of d.

Table 1. Size of cointegration tests (T 5 100)

k 5 0 k 5 3 k 5 9

EG Q1 Q2 EG Q1 Q2 EG Q1 Q2

d 5 0.5 0.986 1.000 0.997 0.361 0.651 0.432 0.083 0.233 0.171
d 5 0.6 0.900 0.991 0.947 0.223 0.406 0.262 0.060 0.180 0.141
d 5 0.7 0.636 0.832 0.652 0.146 0.224 0.167 0.043 0.152 0.132
d 5 0.8 0.341 0.447 0.340 0.094 0.142 0.105 0.042 0.129 0.129
d 5 0.9 0.143 0.147 0.132 0.065 0.087 0.076 0.038 0.132 0.122
d 5 1.0 0.047 0.048 0.052 0.048 0.068 0.072 0.032 0.133 0.130
d 5 1.1 0.016 0.058 0.069 0.037 0.077 0.078 0.034 0.153 0.149
d 5 1.2 0.010 0.152 0.166 0.028 0.090 0.085 0.036 0.163 0.165
d 5 1.3 0.031 0.337 0.351 0.021 0.105 0.113 0.030 0.171 0.171
d 5 1.4 0.053 0.563 0.592 0.024 0.110 0.128 0.027 0.188 0.184
d 5 1.5 0.076 0.753 0.774 0.019 0.135 0.144 0.032 0.221 0.206
d 5 1.6 0.100 0.860 0.873 0.016 0.165 0.185 0.037 0.236 0.230
d 5 1.7 0.111 0.921 0.931 0.012 0.185 0.196 0.048 0.274 0.267
d 5 1.8 0.135 0.952 0.957 0.016 0.191 0.213 0.045 0.312 0.294
d 5 1.9 0.150 0.969 0.973 0.029 0.231 0.243 0.053 0.357 0.336
d 5 2.0 0.176 0.982 0.981 0.039 0.271 0.254 0.054 0.400 0.385

The frequency of rejecting the null hypothesis in 1000 replications is reported at the 5% level. The
critical values for T 5 100 are simulated from 90 000 replications using the DGP with d 5 1.

Table 2. Size of cointegration tests (T 5 1000)

k 5 0 k 5 3 k 5 9

EG Q1 Q2 EG Q1 Q2 EG Q1 Q2

d 5 0.5 1.000 1.000 1.000 1.000 1.000 1.000 0.984 1.000 1.000
d 5 0.6 1.000 1.000 1.000 0.994 1.000 1.000 0.851 0.992 0.936
d 5 0.7 0.998 1.000 1.000 0.879 0.984 0.941 0.572 0.815 0.648
d 5 0.8 0.872 0.978 0.946 0.535 0.708 0.565 0.269 0.370 0.284
d 5 0.9 0.384 0.455 0.376 0.193 0.213 0.186 0.134 0.140 0.116
d 5 1.0 0.063 0.056 0.056 0.059 0.055 0.055 0.059 0.053 0.062
d 5 1.1 0.020 0.118 0.124 0.026 0.057 0.066 0.037 0.051 0.058
d 5 1.2 0.047 0.439 0.464 0.026 0.160 0.175 0.023 0.078 0.104
d 5 1.3 0.102 0.768 0.805 0.029 0.304 0.332 0.023 0.141 0.154
d 5 1.4 0.166 0.925 0.925 0.040 0.441 0.483 0.021 0.210 0.248
d 5 1.5 0.211 0.974 0.977 0.030 0.522 0.546 0.018 0.248 0.283
d 5 1.6 0.253 0.991 0.990 0.017 0.543 0.573 0.014 0.257 0.281
d 5 1.7 0.302 0.994 0.995 0.010 0.483 0.517 0.008 0.245 0.258
d 5 1.8 0.331 0.999 1.000 0.004 0.380 0.390 0.009 0.216 0.215
d 5 1.9 0.345 0.999 0.999 0.007 0.245 0.256 0.015 0.196 0.199
d 5 2.0 0.349 0.999 0.999 0.029 0.204 0.192 0.034 0.208 0.196

The frequency of rejecting the null hypothesis in 1000 replications is reported at the 5% level. The
critical values for T 5 1000 are simulated from 90 000 replications using the DGP with d 5 1.
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Table 3. Power of ADF tests for a unit root

T 5 100 T 5 1000

ADF ADF ADF [mean sd ADF ADF ADF [mean sd
(0) (3) (paic) (paic), (paic)] (0) (3) (paic) (paic), (paic)]

d 5 0.5 0.999 0.553 0.696 1.875 2.805 1.000 1.000 0.963 7.937 3.997
d 5 0.6 0.941 0.355 0.556 1.926 2.874 1.000 0.998 0.867 7.647 3.860
d 5 0.7 0.691 0.223 0.399 1.811 2.925 0.999 0.887 0.674 6.602 3.606
d 5 0.8 0.354 0.129 0.258 1.500 2.807 0.825 0.521 0.412 4.981 3.148
d 5 0.9 0.141 0.080 0.117 1.258 2.805 0.331 0.177 0.187 2.959 2.705
d 5 1.0 0.047 0.055 0.069 1.229 2.842 0.055 0.055 0.050 1.021 2.400
d 5 1.1 0.032 0.049 0.058 1.513 2.846 0.032 0.026 0.030 3.368 2.993
d 5 1.2 0.047 0.038 0.047 2.150 3.013 0.104 0.036 0.042 5.701 3.394
d 5 1.3 0.087 0.041 0.056 2.605 2.983 0.205 0.071 0.050 7.322 3.598
d 5 1.4 0.148 0.047 0.067 2.832 2.916 0.285 0.112 0.064 8.124 3.651
d 5 1.5 0.214 0.053 0.067 2.842 2.884 0.330 0.133 0.068 8.452 3.688
d 5 1.6 0.257 0.056 0.080 2.706 2.759 0.368 0.138 0.066 8.045 3.624
d 5 1.7 0.317 0.052 0.079 2.563 2.674 0.383 0.126 0.069 7.081 3.372
4 5 1.8 0.342 0.049 0.077 2.339 2.646 0.388 0.095 0.062 5.698 3.068
d 5 1.9 0.366 0.052 0.062 2.207 2.706 0.405 0.065 0.052 3.813 2.688
d 5 2.0 0.387 0.050 0.061 2.301 2.817 0.398 0.055 0.061 2.017 2.359

5% level. 1000 replications. ADF(p) denotes the DF tests augmented with p lagged ® rst diþ erences.
p 5 0,3, or paic ´ paic is chosen using the AIC among p 5 0, 1, . . . , 19. When p 5 paic is used, the mean
and the standard deviation of paic in 1000 replications are reported in brackets, [mean(paic), sd(paic)].

When d < 1, the size is large for both the EG and Johansen tests. These ® nite
sample results match the asymptotic results. For the EG test the asymptotic
behaviour is derived from Sowell (1990), where it is shown that the DF t statistic
diverges to 2 ` if d< 1 as T ® ` . For Johansen tests the theoretical result is in
our Proposition.

When d > 1, Johansen LR tests tend to ® nd too much spurious cointegration
while the EG test does not. Again these ® nite sample results coincide with the
asymptotic results. The performance of the EG test is derived from Sowell (1990),
where it is shown that if d > 1, the DF test has zero power asymptotically. The
asymptotic performance of Johansen tests is derived in our Proposition.

Table 3 shows how diý cult it is to distinguish in ® nite samples an I(d, d > 0.5)
variable from an I(1) using the augmented DF (ADF) test. Thus, if the variables
are fractionally integrated, it is likely that we will proceed assuming the series are
I(1), and therefore get the incorrect conclusion that the variables are related in the
long-run (i.e. cointegrated).

In order to avoid the spurious cointegration, one could think that a possible
solution is to increase k with T, in a similar way to what Berk (1974) does for
stationary and ergodic processes. We are not aware of any result in the literature
on how to do this for non-stationary and non-ergodic processes. We suspect the
problem must be complicated because the sum of absolute correlations for a
fractional integrated process is not bounded, therefore any ® nite k will produce
inconsistent estimates. Moreover, a fractionally integrated process with d > 0.5 is
not ergodic. We report the results computed with k 5 3 and 9, but the problem
remains even in the latter case. Based on our Monte Carlo experiment we have to
agree with Brockwell & Davis (1991, p. 520) when they say `While a long memory
process can always be approximated by an ARMA(p, q) the orders p and q required
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to achieve a reasonable good approximation may be so large as to make parameter
estimation extremely diý cult.’

How often do we have d > 1 in practice? Examples of values of estimates of d
reported in the literature are: d 5 1.17 for annual disposable income (Diebold &
Rudebusch, 1991), d 5 1.29 for quarterly real GNP (Sowell, 1992a), and d is
ranged from 1.04 to 1.36 for various nominal spot exchange rates (Cheung, 1993).
Also, d is estimated about 0.6 for money growth rates (Tieslau, 1991) and is ranged
from 0.40 to 0.57 for in¯ ation rates in several developed countries (Hassler &
Wolters, 1995), indicating money stock and price series may have d greater
than one.

Another important and related question would be to see how precisely one could
estimate d with the sample sizes used in applied studies. Several diþ erent approaches
have been suggested for estimating d: Geweke & Porter-Hudak (1983) suggest a
two step estimator from a regression of ordinates of the periodogram on a
trigonometric function; Fox & Taqqu (1986) suggest an approximate ML proce-
dure; Sowell (1992b) derives the full ML estimator, and Chung & Baillie (1993)
consider the minimum conditional sum of squares estimator. Some simulation
evidence on the ® nite sample performance of these methods has been provided by
Agiakoglou et al. (1992), Cheung & Diebold (1994), and Chung & Baillie (1993).
They show severe biases of these estimators. In our opinion this diý culty on
estimating d gives even more relevance to the results obtained in this paper.

4 Conclusions

In applied research, once a pair of variables are considered to be I(1), the next step
is to investigate if there exists a long-run equilibrium relationship between them.
Because it is very diý cult to distinguish an I(d, d > 0.5) from an I(1), this paper
shows that, asymptotically, as well as in ® nite samples, Johansen LR tests tend to
® nd spurious cointegration more often than EG does. Therefore, a recommendation
in order to detect this problem is to run both tests. If they produce diþ erent
cointegration results, then proceed with a more exhaustive univariate analysis than
a simple unit root test.

Acknowledgements

J. Gonzalo thanks ® nancial support from the Spanish Secretary of Education
(PB 98-0026). T. Lee thanks the Academic Senate of UCR for the research
support.

REFERENCES

Agiakloglou, C., Newbold, P. & Wohar, M. (1992) Bias in an estimator of the fractional diþ erence
parameter, Journal of Time Series Analysis, 14, pp. 235± 246.

Berk, K. (1974) Consistent autoregressive spectral estimates, Annals of Statistics, 2, pp. 489 ± 502.
Brockwell, P. & Davis, R. A. (1991) Time Series: Theory and Methods, 2nd edn (Springer Verlag).
Cheung, Y. W. (1993) Long memory in foreign exchange rates, Journal of Business and Economic

Statistics, 11, pp. 93± 101.
Cheung, Y. W. & Diebold, F. X. (1994) On maximum likelihood estimation of the diþ erencing

parameter of fractionally integrated noise with unknown mean, Journal of Econometrics, 62, pp. 301 ±
316.



The robustness of cointegration tests 827

Cheung, Y. W. & Lai, K. S. (1993) A fractional cointegration analysis of purchasing power parity,
Journal of Business and Economic Statistics, 11, pp. 103± 112.

Chung, C. F. & Baillie, R. T. (1993) Small sample bias in conditional sum of squares estimators of
fractionally integrated ARMA models, Empirical Economics, 18, pp. 791± 806.

Dickey, D. A. & Fuller, W. A. (1979) Distribution of the estimators for autoregressive time series
with a unit root, Journal of American Statistical Association, 74, pp. 427± 431.

Diebold, F. X. & Rudebusch, G. D. (1991) Is consumption too smooth? Long memory and the
Deaton paradox, Review of Economics and Statistics, 71, pp. 1 ± 9.

Engle, R. F. & Granger, C. W. J. (1987) Cointegration and error correction: representation,
estimation, and testing, Econometrica, 55, pp. 251 ± 276.

Engle, R. F. & Granger, C. W. J. (1991) Long-Run Economic Relationships, Readings in Cointegration

(Oxford University Press).
Fox, R. & Taqqu, M. S. (1986) Large sample properties of parameter estimates for strongly dependent

stationary Gaussian time series, Annals of Statistics, 14, pp. 517 ± 532.
Geweke, J. & Porter-Hudak, S. (1983) The estimation and application of long memory time series

models, Journal of Time Series Analysis, 4, pp. 221± 238.
Gourieroux, C., Maurel, F. & Monfort, A. (1989) Least squares and fractionally integrated

regressors, INSEE, Working Paper No. 8913.
Granger, C. W. J. (1981) Some properties of time series data and their use in econometric model

speci® cation, Journal of Econometrics, 16, pp. 121± 130.
Granger, C. W. J. (1983) Co-Integrated variables and error-correcting models, unpublished UCSD

Discussion Paper 83-13.
Granger, C. W. J. & Joyeux, R. (1980) An introduction to long memory time series models and

fractional diþ erencing, Journal of Time Series Analysis, 1, pp. 15± 29.
Hassler, U. & Wolters, J. (1995) Long memory in in¯ ation rates: international evidence, Journal of

Business and Economic Statistics, 13, pp. 37 ± 45.
Hosking, J. R. M. (1981) Fractional diþ erencing, Biometrika, 68, pp. 165± 176.
Johansen, S. (1995) Likelihood-based Inference in Cointegrated Vector Autoregressive Models (Oxford

University Press).
Sowell, F. B. (1990) The fractional unit root distribution, Econometrica 58, pp. 495 ± 505.
Sowell, F. B. (1992a) Modeling long run behavior with the fractional ARIMA model, Journal of

Monetary Economics, 29, pp. 277± 302.
Sowell, F. B. (1992b) Maximum likelihood estimation of stationary univariate fractionally integrated

time series models, Journal of Econometrics, 53, pp. 165± 188.
Tieslau, M. A. (1991) Long memory models and macroeconomic time series, Michigan State

University, Working Paper, No. 9005.


