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Abstract

This paper shows that, when utility is imperfectly transferable and the search pro-
cess is competitive (or directed), wealthier buyers pay higher prices to speed up trans-
actions. This result is established in a dynamic model of the housing market where
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credit availability on housing prices depends crucially on whether or not rental and
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larger than in the Walrasian version of the model. The last result is reversed with full
segmentation, when search frictions dampen the price effect of the credit expansion.

Keywords: Competitive search, wealth effects, housing prices, credit constraints, housing
supply elasticity, rental market.
JEL Classification: D31, D83, E21, R21, R30.

∗This paper was previously circulated under the title “Wealth Effects with Search Frictions in Housing
Markets". We are grateful to participants at the REDg Workshop, the Marrakech Macro Workshop, the
Search and Matching workshop at Bristol University and the SAET Conference, and in seminars at Uni-
versidad de Alicante, Universidad de Salamanca, Universidad Carlos III de Madrid, Konstanz University,
University of Edinburgh, and Baruch College for their comments and suggestions. Support from the Span-
ish Ministerio Economía y Competitividad, grants ECO2016-76818-C3-1-P, ECO2017-86261-P, PID2019-
107161GB-C31, MDM 2014-0431, and Comunidad de Madrid (Spain), grant EPUC3M11 (V PRICIT), are
gratefully acknowledged. A. Díaz thanks the European University Institute for its hospitality and the Fer-
nand Braudel Senior Fellowships programme for its support while working on this project.

†Corresponding Author: Antonia Díaz, Department of Economics, Universidad Carlos III de Madrid,
28093 Madrid, Spain; E-mail: andiaz@eco.uc3m.es



1 Introduction

We study a competitive search equilibrium model where risk-averse buyers who seek to

purchase an indivisible good sort by their wealth. Specifically, wealthier buyers pay higher

prices on average because this allows them to speed up transactions, while buyers with

lower wealth tend to choose cheaper offers that feature longer queues. Intuitively, since

the marginal utility of wealth is decreasing, wealthier buyers care relatively more about

completing a transaction, while poorer ones are more concerned about paying lower prices.

In turn, as is standard in these models, pricier goods take longer to sell. The sorting result

is general, but we derive it in the context of the housing market. We know that wealthier

buyers tend to purchase better homes. The added insight underlying the sorting result is

that, conditional on the attributes of the homes they intend to buy (e.g. for a given quality,

location and home size), buyers who are more wealthy pay higher prices in order to reduce

trading delays. This behavior generates frictional price dispersion in equilibrium. In a similar

fashion, wealthier travelers would opt for more expensive airlines or car rentals to avoid

delays, whereas poorer buyers with similar traveling plans choose cheaper deals and typically

face longer wait times. Likewise, wealthier customers prefer less crowed restaurants that are

pricier, while poorer customers opting for similar food quality choose cheaper restaurants

that are subject to delays (e.g. queues and slow service). These wealth effects are bound

to be more important when demand is high, and the corresponding markets become more

congested.

The housing market is arguably the most important application of our theory. A house-

hold’s primary asset is usually its home (e.g. housing wealth accounts for about half of

household net worth in the US). Since houses are big ticket items, wealth effects are likely

to play a role in home purchasing decisions. Several studies find variations in house prices

after controlling for house characteristics and location (e.g. Lisi and Iacobini, 2013; Guren,

2018; Kotova and Zhang, 2020). Indeed, our sorting result is consistent with empirical work

in the real estate literature which finds that, after controlling for housing attributes and

location, richer buyers tend to pay higher prices (see Elder et al., 1999; Qiu and Tu, 2018),

and search for a shorter period of time on average (see Elder, Zumpano, and Baryla 1999,
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2000). There is also widespread evidence of a positive relationship between the price of real

estate property and its average time on the market (e.g. Merlo and Ortalo-Magné, 2004;

de Wit and van der Klaauw, 2013).

The environment is a small open economy with long-lived households who consume a

nondurable good and housing services. Individuals’ bear uninsurable idiosyncratic earnings

risk. Households may own or rent their homes, and may also differ in their liquid asset wealth.

Owner-occupied housing is associated with a utility premium, but its illiquidity makes it

ineffective at shielding consumption against permanent shocks. Yet there are always some

homeowners who sell because of exogenous preference and moving shocks, and who will

therefore need to buy a new house or become renters. Home purchases can be partially

financed with non-defaultable mortgage loans, and houses serve as collateral for new loans

(i.e., their owners can always remortgage). Households can accumulate a risk-free asset both

to build a down payment and to smooth non-housing consumption. Buyers must search for

a home in a decentralized market and the search process is competitive. We assume that the

properties that are up for sale in this market are symmetric, so all price dispersion arising

in equilibrium is purely frictional. With competitive search, agents may choose to trade at

different prices, knowing that lower prices generate longer queues. The housing market is

then described as segmented. Different market segments (or “submarkets”) feature different

prices for identical homes and thus different trading probabilities for buyers and sellers.1

The construction of new housing is undertaken by competitive developers each period. We

consider an economy where rental units can be converted into owner-occupied housing (e.g.

as in Kaplan et al., 2020), as well as one where this conversion is not possible and rents

are exogenous (as in Garriga and Hedlund, 2020).2 We focus our analysis on stationary

equilibria.
1The endogenous segmentation of different agent types across submarkets is a typical property of com-

petitive search models, where different types trade off prices against trading probabilities at different rates
(e.g. see Wright et al., 2021). Search theory has long been used to rationalize the existence of frictional
price dispersion. Recent related work by Piazzesi et al. (2015) documents differential search patterns by
buyers at the ZIP code level using data from California’s website Trulia, and argues that these patterns can
explain differences in the prices of houses with similar characteristics across ZIP codes. Their model assumes
risk-neutral searchers and hence no wealth effects.

2The estimates in Greenwald and Guren (2021) indicate substantial market segmentation and Sommer
et al. (2013) (among others) show that rents have been relatively flat over the last few decades, so the second
economy is more in line with these findings.
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The model is highly tractable because it is “block recursive”, in the sense that the agents’

value and policy functions depend on the distribution of households across individual states

through a one-dimensional state variable that summarizes the relevant information about

the terms of trade in the housing market. This is unlike random search models, where

these functions depend on the entire household distribution (e.g. Molico, 2006).3 Block

recursivity arises because we assume that home buyers and homeowners, both of whom are

risk averse, do not trade directly with each other in the search market (see also Hedlund,

2016a; Karahan and Rhee, 2019; Garriga and Hedlund, 2020). Instead, homeowners sell

their homes in a Walrasian market to a housing intermediary, who then looks for potential

buyers in the competitive search market. The prices in both markets are related because

there is free entry into intermediation, so competitive intermediaries make zero profits in

each segment of the search market.

To illustrate how the model works and what its quantitative properties are, we calibrate

it to match selected statistics for the U.S. economy (which include measures of turnover).

Our steady state exercises show that price dispersion, market congestion, and wealth ac-

cumulation are tightly linked. Take the case of a highly liquid market, where demand is

high, average buying times are long. In this scenario, buyers who do not find a trading

opportunity (a likely event for poor households) accumulate more assets and, in the next

period, they target more expensive homes to increase their trading probability. As compe-

tition for these homes intensifies, wealthier buyers start to target homes that are even more

expensive and borrow more. This competition, arising from sorting, propagates throughout

the entire wealth distribution and produces frictional price dispersion in an economy where

owner occupied housing units are homogeneous. This mechanism results in greater indebt-

edness in the long run compared to a Walrasian version of the model (where all buyers trade

instantaneously at the same price). Moreover, if rental and real estate housing stocks are

not segmented and credit is limited, it also generates higher housing prices. The less elastic

the supply of new housing, the more important these differences are.
3This block-recursive structure is slightly more involved than that in Shi (2009) and Menzio and Shi

(2010), where the agents’ value and policy functions depend only on the exogenous state of the economy
(e.g., aggregate productivity). In these labor search models, block recursivity arises from the combination
of directed search and free entry of job vacancies created by risk-neutral firms under constant returns.
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We also investigate the extent to which greater credit availability affects housing prices

when the sorting mechanism described above is at play.4 When rental units can be converted

into owner-occupied housing and the elasticity of new housing supply is low, the effects are

substantial in our search model and are larger than its Walrasian counterpart. On the other

hand, when the rental and real estate housing stocks are segmented, price effects are much

larger in both models. This intuitive result is in line with the results in Greenwald and

Guren (2021), who model the real estate market as Walrasian. Interestingly, under market

segmentation, search frictions dampen the effect of the credit expansion on housing prices,

which is now higher in the Walrasian economy. This happens for two reasons: these frictions

act as bottlenecks that delay home purchases when demand is high, and they also convexify

tenure choices, making homeownership less responsive to changes in credit (in comparison

with the Walrasian economy).

Whether or not markets are segmented, the interaction between greater credit availability

and search and matching frictions leads to more buyers borrowing in a larger amount. Our

results are in line with papers reporting evidence on the expansion of mortgage debt during

the boom across income levels, as Foote et al. (2020), or Han et al. (2021), who find evidence

that changes in down payment requirements can lead to substantial price effects in hot

segments of the housing market (and argue that search frictions and competition among

traders are key to rationalize their findings). Price dispersion in our quantitative economy is

one order of magnitude smaller than that estimated, for instance, by Lisi and Iacobini (2013).

This is partly due to the fact that price dispersion in our model only reflects the buyers’

heterogeneous wealth effects (i.e., home sellers do not face search frictions). Nonetheless,

the results of our analysis shed light into the different channels that affect price dispersion

when credit conditions are eased. On the one hand, there are more poor buyers at the

lower end of the price distribution (with a higher mass of agents concentrated there), which
4It is well-known that search models constitute a powerful mechanism for demand shocks to affect aggre-

gates (e.g. see Díaz and Jerez, 2013; Ngai and Tenreyro, 2014; Head et al., 2014; Hedlund, 2016b; Garriga
and Hedlund, 2020; Anenberg and Bayer, 2020; Ngai and Sheedy, 2020; Han et al., 2021). Yet most of the
literature assumes that households are risk neutral and ignores their savings decisions. The recent quan-
titative studies by Hedlund (2016b)), Garriga and Hedlund (2020), and Eerola and Maattanen (2018) are
notable exceptions which feature related amplification mechanisms in models where real estate and rental
markets are fully segmented.
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compresses the distribution. On the other hand, wealthier buyers borrow more in order to

target pricier homes and speed up their transactions, which makes the distribution more

disperse. Ultimately, the overall effect on price dispersion is determined by the underlying

earnings risk (which determines households’ saving decisions) and by the degree of market

segmentation. In particular, when rental and real estate markets are segmented, a credit

relaxation reduces price dispersion. This result is in line with recent evidence reported by

Kotova and Zhang (2020).

This paper also makes a technical contribution to the directed search literature. The

model’s tractable structure allows us to derive several properties of the households’ value

and policy functions. We first show that the value functions exist and are differentiable along

the optimal paths. This suffices to obtain the Euler equations. These results are not trivial

since the model has some features that make it impossible to apply standard techniques of

dynamic programming. First, the decision problem of a potential buyer is not jointly concave

in the choice and state variables and, secondly, the buyer’s value function cannot be assumed

to be differentiable a priori. We thus develop new analytical tools to study the properties of

the value and policy functions. These tools are of independent interest, as they can be applied

to general non-concave and non-differentiable dynamic models that involve both discrete and

continuous choices. Menzio et al. (2013a) circumvent the technical difficulties arising from

the non-concavity by introducing lotteries in a related monetary search model. This makes

the model tractable, but obviously not equivalent to the original problem since the optimal

policy functions differ. In this paper, we do not need to introduce lotteries but work directly

within the non-concave framework. We show that the households’ value functions are concave

on the range of assets that corresponds to participation and non-participation in the search

market, respectively, provided the optimal consumption policy of households who rent are

monotone in financial wealth. This is the case in all our quantitative experiments. To the

best of our knowledge, these results are novel and provide a new benchmark for analyzing

similar block-recursive search models with an endogenous asset distribution without the need

of introducing lotteries.

Our last contribution is computational. Equilibria in related models are typically com-
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puted by discretizing household choices and using value function iteration to solve the house-

hold’s problem. This is the procedure used by Hedlund (2016b), Chaumont and Shi (2022),

and Eeckhout and Sepahsalari (2020), for instance. By contrast, our theoretical results al-

low us to apply the Endogenous Grid Method to the Euler equations of the households’

problems, so we do not need to resort to discretization. This is particularly important to

measure the effects of credit liberalization on price dispersion. Additionally, this procedure

yields substantial gains in accuracy and computational time.

The paper is organized as follows. In Section 2 we describe the environment and the prob-

lems solved by households and intermediaries, and define a stationary equilibrium. We also

show that, under free entry, the model’s block recursive structure follows from the interme-

diaries’ optimization problem, and use this result to derive the properties of the households’

value and policy functions and the sorting result. Section 4 discusses the calibration, and

some key comparative-statics results. Section 5 concludes. Proofs and computational details

are relegated to the Appendix.

2 The model economy

In this section we present our model economy and define a stationary equilibrium.

2.1 Household preferences and endowments

Consider a location populated by a continuum of infinitely-lived households. Time is discrete.

Households derive utility from a nondurable numeraire good and the service flow provided

by a durable good which we refer to as housing. Their lifetime utility is ∑∞t=0E0β
tu(ct, ht),

where ct, ht ∈ R+ are the respective amounts of the nondurable good and housing services

consumed each period, and β is the discount factor. The function u is strictly increasing,

strictly concave and C2, with uch ≥ 0 and limh→0 u(c, h) = −∞.

Each period households are endowed with an amount z of efficiency units of labor, which
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follows a stationary Markov process, denoted by Πz, with finite support Z. Households

supply labor inelastically. The wage per efficiency unit of labor is exogenous and denoted

by w.5

Households can either rent or own a (single) home in order to obtain housing services. The

owner-occupied housing stock consists of indivisible units of identical size, ~. On the other

hand, rental units come in a continuum of sizes: h ∈ [0, ~]. This assumption is introduced

because renters typically live in smaller homes than owners, and also to avoid the possibility

that rents exceed labor income for low productivity households.

Each period homeowners face i.i.d. preference shocks, and can be in two individual states,

µ ∈ {0, 1}. An owner consumes ~ > 0 housing services if µ = 1, in which case she is matched

with her home. Otherwise, she is mismatched and obtains zero housing services. The state µ

follows a Markov process with transition probabilities P (µ′ = 1|µ = 1) = 1−πµ ∈ (0, 1) and

P (µ′ = 0|µ = 0) = 1. In words, a matched owner becomes mismatched with probability πµ
each period. Also, µ = 0 is an absorbing state; so mismatched households will find profitable

to sell their home and move.6 Households who rent a unit of size h enjoy ω h services, where

ω ≤ 1. Thus we allow for a taste for ownership.

Additionally, households may be hit by an idiosyncratic migration shock that depends on

their housing tenure status. Owners are hit by a migration shock with probability ξo, in which

case they become unproductive in town. To leave town, they then have to sell their homes.

In turn, renters migrate with probability ξr. We can think of these shocks as capturing the

effect of migration flows, as well as the effect of the life cycle on housing demand.7 We assume

that households who leave move to a symmetric town in an unspecified rest of the world at

no cost, and are replaced by new immigrants who do not own any housing. The details on

these entry flows are specified in Section 2.4.4. The constant measure of households in the
5Alternatively, we could assume that the numeraire is produced with labor according to the linear tech-

nology Y = wNc, where Nc is labor demand.
6We assume that mismatched owners sell their home before they buy a new one to simplify the model.

Anenberg and Bayer (2020), Ngai and Sheedy (2020), and Moen et al. (2021) explicitly model the joint
decision to buy and sell in environments with transferable utility.

7Because state µ = 0 is an absorbing state, in the absence of migration shocks all renters have previously
owned houses, so they hold a house’s liquid value. Although this is not important for our theoretical results,
it does matter for the calibration of the model and its ability to match some data counterparts.
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town is normalized to one.

2.2 Housing construction

Housing construction is undertaken by competitive developers, using the nondurable good

and new land available for construction that is owned by the government. These developers

pay the rental price of land to the government. We proceed as Kaplan et al. (2020) and

assume that every period new housing is built according to the production function

Ih = BNαL1−α, (2.1)

where N is employment in the construction sector and L is new developed land. For sim-

plicity, we assume that L = 1 every period. This new land is owned by the government,

who taxes away the profits that developers may have in equilibrium. All tax and land rent

revenue is used to fund government spending that does not affect agents. As we explain

below, the new housing is either bundled into indivisible units of size ~ (at no cost) or it can

be sold in divisible amounts. A developer solves the static problem

maxIh,N p Ih − wN

s. t. Ih = BNαL1−α,
(2.2)

where p̄ is the per-unit price of housing that developers charge and w is the wage. The

solution to this problem, assuming that L = 1, yields a supply function

Ih =
(
α

w

) α
1−α

B
1

1−α p
α

1−α . (2.3)

As in Sommer and Sullivan (2018) and Kaplan et al. (2020), the key parameter in this

production function is α. This parameter determines the price elasticity of new housing

supply, which is given by α/(1− α). Housing depreciates at rate δ ∈ (0, 1). All agents who

own housing are required to maintain their property, and maintenance costs exactly offset

depreciation.
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2.3 Market arrangements and real estate intermediation

Financial market arrangements are as in Díaz and Luengo-Prado (2008). Each period house-

holds can save by investing in a one-period risk-free asset with price 1/R ∈ R+. Their home

purchases can be partially financed with a non-defaultable mortgage loan. Specifically, a

household can borrow up to a fraction 1 − ζ of the home’s liquidation value, so it must

save to meet the corresponding down payment. The mortgage is a loan in perpetuity with

no associated costs if there is early repayment. Houses also serve as collateral for loans:

homeowners can obtain a home equity loan for up to a fraction 1 − ζ of the home’s value

(i.e., they can always remortgage). Alternatively, mortgages in this model can be thought

of as home equity lines of credit that can be renegotiated every period although they are

non-defaultable contracts. Since households who rent do not own any collateral, they can-

not borrow (see also Kaplan et al., 2020). For simplicity, we assume that there is no spread

between borrowing and lending rates.

A key assumption of the model is that housing transactions are intermediated by risk-

neutral agents who may freely enter the town. Specifically, these intermediaries purchase

homes from mismatched owners and from developers in a Walrasian market. Then, they

decide whether to search for potential home buyers or to rent their homes to non-owners.

We are aware that this kind of intermediation is not common in reality, mainly because

the high involved transaction costs (e.g. taxes). In the real world, most real estate agents

are match-makers (rather than dealers). Yet this assumption is crucial to generate a block-

recursive structure (see also Hedlund, 2016a; Garriga and Hedlund, 2020). In our model,

buyers and sellers with different financial wealth participate in the real estate market each

period. If buyers and sellers—both of whom are risk averse—were to trade directly with each

other in the search market, the model would fail to be block recursive and would become

intractable.

Intermediaries are infinitely-lived with discount factor 1/R and have deep pockets, so

they do not require credit to finance their purchases. We assume that these agents always

purchase housing units (bundles) of size ~ in the Walrasian market at price p̄. They then

9



decide whether to sell or rent these units. Recall that, whereas properties for sale are

indivisible, rental units are divisible. The rental market is competitive, and the (per-unit)

rental price is denoted by rh.

It could be argued that the assumption that owners sell their homes in a Walrasian

market makes the housing market very liquid. For instance, in Garriga and Hedlund (2020),

owners who want to sell participate in a frictional market (which is also intermediated by

risk neutral agents). However, this does not necessarily imply that owner-occupied housing

is more liquid in our model, for two reasons. First, in Garriga and Hedlund (2020), owners

have the option of defaulting on their mortgage (and being banned from the housing market

for a stochastic number of periods), in which case their home is immediately liquidated by

the bank in a Walrasian market. Second, whereas in our model owning does not entail a

default risk, matched owners are not allowed to sell their homes. Thus they can not change

their tenure status to smooth earnings risk. In other words, owning is risky in both models.

There are indirect taxes on real estate transactions. Households who sell pay taxes on

the value of their home at the rate τs, whereas the buyers’ tax rate is τb. Intermediaries do

not pay taxes. Below we specify the timing of the model, and describe the market structure

in detail. Each period is divided into three subperiods: morning, afternoon, and night.

2.3.1 Morning

At the end of period t−1, there are two types of households, depending on their tenure status:

owners and renters. At the start of period t, the housing stock depreciates, and preference,

migration and labor endowment shocks are realized. Then the Walrasian market opens.

Supply in this market includes new construction and the depreciated homes of mismatched

owners and intermediaries. As for demand, new intermediaries can freely enter the town to

purchase housing bundles of size ~ at the market clearing price, p. Also, in order to maintain

their home, all agents who own housing must purchase the depreciated part of their homes

in the Walrasian market.
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2.3.2 Afternoon

During the afternoon, those households who sold their home in the morning and did not

migrate, those who were renters in the previous period, and the newly arrived immigrants

may search for a home to buy. We refer to these households as potential buyers. Matched

owners make no economic decisions in this subperiod, so we refer to them as non-traders.

Intermediaries decide whether to put their units up for sale during the afternoon or wait until

the night when they can rent them to non-owners. A competitive search market operates in

the afternoon, where intermediaries who seek to sell supply their indivisible units and buyers

may search for a home at a negligible participation cost8. Intermediaries who are not able to

sell their units in this market are not allowed to rent at night. Potential buyers may choose

not to participate in the search market (e.g. if they have not accumulated enough assets to

meet the corresponding down payment).

Purchasing a home may require borrowing subject to a collateral constraint. Specifically,

buyers may borrow up to a fraction 1− ζ of the home’s value in the Walrasian market; i.e.,

their borrowing limit is (1 − ζ) p ~. The implicit assumption (as in Kiyotaki and Moore,

1997) is that banks lend the amount they can recover in this market if they seized the house.

The competitive search process can be described as follows. As in Moen (1997), buyers

and intermediaries can participate in different submarkets where they meet bilaterally and

at random, and where each trader experiences at most one bilateral match. The matching

probabilities in a given submarket depend on the associated buyer-seller ratio θ (or tightness).

Specifically, an intermediary is matched to a buyer with probability ms(θ), and a buyer is

matched to an intermediary with probability mb(θ) = ms(θ)/θ.9 As is standard, ms(θ) is

strictly increasing, strictly concave and C2, with ms(0) = 0 and limθ→∞ms(θ) = 1, and

mb(θ) is strictly decreasing and C2, with limθ→0mb(θ) = 1 and limθ→∞mb(θ) = 0. In words,

the higher the buyer-seller ratio θ, the easier it is for intermediaries to contact buyers, and

the harder it is for buyers to locate a home for sale (due to congestion externalities). As
8This rules out equilibria where some households participate in the frictional market (because doing so

is costless) even though they do not plan to trade there.
9The underlying assumption is that the total number of bilateral trading meetings is determined by a

matching function with constant returns to scale and that the Law of Large Numbers holds.
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θ goes to infinity (zero) the intermediary’s matching probability goes to one (zero), and

the buyer’s matching probability goes to zero (one). The elasticity η(θ) ≡ m′s(θ)θ
ms(θ) ∈ [0, 1]

is assumed non increasing, and m̂s(mb) ≡ ms(m−1
b (·)) is such that ln m̂s is concave.10 To

model market participation, we introduce a “fictitious submarket” θ0 ∈ R−, and extend the

functions mb and ms to Θ ≡ R+ ∪ {θ0} by setting mb(θ0) = ms(θ0) = 0. Households who

choose submarket θ0 do not participate in the afternoon market.

To describe the price determination process in the competitive search market, we follow

the price-taking approach in Jerez (2014). The idea is to think of houses traded in submarkets

with different tightness levels θ ∈ R+ as different commodities, which are characterized by

different degrees of trading uncertainty. The prices of these differentiated commodities are

described by a continuous function p : Θ → R+, with p(θ0) = 0. That is, p(θ) is the price

per unit of space in a submarket with tightness θ ∈ R+. Buyers and intermediaries choose

the submarkets they enter taking p(θ) as given. The difference with the standard Walrasian

equilibrium notion is that, in these submarkets, demand does not equal supply (as agents on

both sides of the market face a positive rationing probability). The market clearing condition

is then replaced by an aggregate consistency condition which requires that, given the agents’

optimal decisions, the equilibrium buyer-seller ratio in submarket θ is indeed θ whenever this

submarket attracts both buyers and intermediaries (see Section 2.4.4).

As shown in Jerez (2014), our equilibrium notion is equivalent to that of directed search.

With directed search, each intermediary first posts (and commits to) to price offer p. Then,

buyers seek the most attractive offers. In making these strategic decisions, all traders form

common beliefs about the buyer-seller ratio θ(p) associated to each offer p (i.e., the mass

of buyers seeking offer p over the mass of intermediaries posting p). In equilibrium, beliefs

are rational. To see the connection with our price-taking equilibrium notion, think of a

submarket θ as a market segment that is associated to a particular price offer p. Our

equilibrium price functional p(θ) is the inverse of the schedule θ(p) describing the agents’
10Equivalently, −m̂s

′(mb)/m̂s(mb) is non decreasing. This assumption guarantees that the problem solved
by potential buyers is concave and has a unique solution (see Sections B-D in the Appendix), and can be
further relaxed (see Section E.1). See also Menzio and Shi (2010) where m̂s is assumed concave (a slightly
stronger assumption).
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beliefs in a directed search equilibrium. In turn, our aggregate consistency condition is

the equivalent of the corresponding rational expectations condition. As we shall see, in

equilibrium p(θ) is decreasing, so prices are lower in more congested submarkets. This is

equivalent to saying that lower price offers attract relatively more buyers under directed

search. We choose the price-taking formulation because it makes the connection with the

standard notion of recursive competitive equilibrium more direct and transparent.

2.3.3 Night

Households who bought a home in the afternoon are owners at night, just as the non-

traders. The rest of the households are renters. In this subperiod, households receive their

labor income, w z, and choose their nondurable consumption and the level of assets to be

carried to the next period. For simplicity, we assume that the payments corresponding to

home maintenance (purchased in the Walrasian morning market) are made at night.

2.4 Stationary equilibrium

In this section, we state the problems of the agents in the afternoon and night subperiods

given the Walrasian price p, the price schedule p(θ), and the rental price rh (starting at night

and going backwards).11 By free entry, intermediaries make zero profits in each segment of

the search market. This implies that the equilibrium price schedule—an infinite-dimensional

object—is pinned down by the value of p. On the other hand, equilibrium rents are de-

termined as a function of p̄ by an arbitrage condition that ensures that intermediaries who

choose to rent also make zero profits. In sum, all the price information regarding the real

estate and rental markets is summarized by p̄. Hence, the problems solved by individual

households do not depend directly on the distribution of households (over financial assets,

income levels and tenure states). This distribution only affects the households’ decisions

through its effect on p. At the end of the section, we state the law of motion of the distri-
11Recall that, during the morning, owners hit by a shock sell their home at price p to the intermediaries

that enter the Walrasian market, while the rest of the households are inactive.
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bution of households and that of the vacancy stock held by intermediaries as a function of

the agents’ optimal decisions. A stationary equilibrium is then defined.

2.4.1 Night value functions

Let A = [a,∞) be the set in which the households’ financial assets can take values, and

denote the household’s assets at the start of the night by a ∈ A. The set of individual states

is then X = A × Z. The afternoon value functions of potential buyers and non-traders are

Wb : X → R and Wn : X → R, respectively. The night value function of an owner is given

by

Wo(a, z) = max
c,a′ ,̃a

{
u (c, ~) + β (1− π) EzWn (a′, z′) + β π EzWb (ã, z′)

}
s.t. c+ 1

R
a′ ≤ w z + a− δ p ~,

ã = a′ + (1− τs) p ~,

a′ ≥ −(1− ζ) p ~,

c ≥ 0,

(2.4)

where c and ~ are the amounts of the nondurable good and housing services consumed,

and a′ is the level of financial assets carried to the next period. Owners choose the values

of c and a′ to maximize their expected lifetime utility subject to a standard intertemporal

budget constraint and also face a borrowing limit equal to (1− ζ) p ~. As mentioned above,

they can remortgage their home, in which case the price of reappraisal is the value of their

home in the Walrasian morning market. Also, owners pay the maintenance cost δ p ~; i.e.,

they purchase the depreciated part of their bundle in the Walrasian market. Owners will

sell their home at the start of the next period with probability π = ξo + (1 − ξo) πµ, which

is probability of being hit by mismatch or migration shocks. These homes are sold at price

p ~ in the Walrasian market, and the transaction is subject to the corresponding indirect

taxes. Note that the assumption that agents hit by a migration shock move to a symmetric

location at no cost implies that the owners’ continuation value is the same regardless of the

kind of shock that hits them. Owners hit by the mismatch shock will be potential buyers in
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their current location, whereas owners hit by the migration shock will be potential buyers

elsewhere. In both cases, their continuation value is EzWb (ã, z′), where ã = a′+ (1− τs) p ~

is the household’s financial wealth after the home is sold. We denote the owners’ optimal

decision policies by gco(a, z) and gao(a, z).

The night value function of a renter is defined in a similar way:

Wr(a, z) = max
c,h,a′

{
u (c, ω h) + β EzWb (a′, z′)

}
s.t. c+ 1

R
a′ ≤ w z − rh h+ a,

a′ ≥ 0, c ≥ 0, 0 ≤ h ≤ ~,

(2.5)

and gcr(a, z), ghr (a, z), and gar (a, z) denote the optimal policies. Differently from owners,

renters choose their home size h, and are not allowed to borrow. While they face a migration

shock, they do not change financial status when they migrate (and recall that moving does

not entail any cost). Hence, renters only face labor uncertainty.

The value of an intermediary who rents at night is

Jr = −κ+ rh ~− δ p ~ + 1
R
J. (2.6)

Recall that these rental companies hold ~ units of housing which (differently from the units

sold in the afternoon real estate market) are divisible. They pay the cost of posting their

vacancy in the night rental market, κ, as well as the maintenance of their property, δ p ~. In

the next period, they will decide whether to rent their property again at night or sell it in

the morning or afternoon markets. That is, their continuation value is

J = max
{
Jr, Js, p ~

}
, (2.7)

where Js is the value from participating in the afternoon market.
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2.4.2 Afternoon value functions

Let a ∈ A be the household’s financial assets at noon. Non-traders are inactive during the

afternoon, so their value function is given by

Wn(a, z) = Wo(a, z). (2.8)

Potential buyers choose the submarkets they join taking as given the price schedule, p(θ),

and the maximum loan they can obtain, (1− ζ) p ~. Their value function is given by

Wb(a, z) = max
θ∈Θ

{
mb (θ) Wo (a− (1 + τb) p(θ) ~, z) + (1−mb (θ)) Wr (a, z)

}
s. t. a+ (1− ζ) p ~ ≥ (1 + τb) p(θ) ~ if θ ∈ R+,

(2.9)

and gθb (a, z) denotes their optimal decision rule. The collateralized borrowing constraint in

problem (2.9) ensures that buyers who join submarket θ ∈ R+ have enough assets to pay

for the corresponding down payment and the associated taxes. The maximum amount of

credit a buyer gets is (1 − ζ) p ~. Based on Kiyotaki and Moore (1997), we assume that

financial intermediaries lend according to the liquidation value of the house, which is p ~.

With probability mb(θ), these households buy a home at price p(θ) per unit of space, and

enter the night with financial assets a − (1 + τb) p(θ) ~.12 With complementary probability,

they do not trade and carry their assets a into the night, when they will be renters (just as

those potential buyers who choose not to participate in the afternoon market).

Similarly, realtors choose the submarkets they join in order to maximize their expected

lifetime value:

Js = max
θ∈R+

{
ms (θ) p(θ) ~ + (1−ms (θ))

( 1
R
J − δ p ~

)}
. (2.10)

Realtors who join submarket θ ∈ R+ sell their bundle ~ with probability ms(θ) and earn

revenue p(θ) ~, in which case they leave town. With complementary probability, they do not
12Households with a mortgage have negative assets at night and pay interests on that debt, as implied by

the intertemporal budget constraint in (2.4).
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trade. They must then pay the maintenance costs of their property and wait until the next

period to decide (as the rental companies) whether to put their property up for sale in the

morning or afternoon markets or rent it at night.

2.4.3 Block-recursivity and the afternoon price schedule

Note that intermediaries are indifferent between the three markets. Moreover, by free entry,

their expected profits are zero, so their expected value in each market equals the price they

pay for their dwellings in the Walrasian morning market:

J = Jr = Js = p ~. (2.11)

Equation (2.6) and the zero-profit condition (2.11) pin down the equilibrium rental price as

a function of the Walrasian morning price:

rh = κ

~
+ (1− 1/R + δ) p. (2.12)

Combining (2.10) and (2.11) yields:

p(θ) ≤ (1− 1/R + δ) p
ms (θ) + (1/R− δ) p, for all θ ∈ R+, (2.13)

with strict equality if θ solves (2.10). In active submarkets, p(θ) is then given by the right-

hand side of (2.13). In particular, p(θ) decreases with θ. Intuitively, since intermediaries

make zero expected profits in all active submarkets, prices are lower in submarkets where

the probability of completing a sale, ms (θ), is higher. Prices in inactive submarkets instead

imply weakly lower expected profits.

In fact, there is no loss of generality in assuming that intermediaries make zero expected

profits in all submarkets, whether active or not. A standard feature of general equilibrium

models with a continuum of commodities is that prices in inactive markets are indeterminate.

Assuming that (2.13) holds with equality for all θ ∈ R+ is equivalent to selecting the highest
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prices that support the equilibrium allocation. This price selection rule is equivalent to the

restriction typically imposed on out-of-equilibrium beliefs in directed search models, known

as the market utility property (see Jerez, 2014). With this selection rule, p(θ) is pinned

down by p. Given p, households know the price schedule p(θ). As shown in Figure 1, p(θ) is

strictly convex and C2 (since ms is strictly concave and C2). It is also bounded below by p.

This lower bound is the price intermediaries would charge if the probability of completing

a sale was one (to break even). Since trade is subject to rationing, no intermediary would

trade at a price p ≤ p.

2.4.4 Stationary equilibrium definition

Before defining the equilibrium, we describe the law of motion of the distribution of house-

holds and the stock of vacancies held by realtors.

Let X denote the Borel σ-algebra on X. The distribution of non-traders and potential

buyers across individual states at noon is described by the Borel measures, ψn and ψb,

respectively. Likewise, ψo and ψr represent the distributions of owners and renters at night.

Since the mass of households in town is one,

∫
x∈X

dψn +
∫
x∈X

dψb =
∫
x∈X

dψo +
∫
x∈X

dψr = 1. (2.14)

Define the transition function Qo : X ×X → [0, 1] which gives the probability that an agent

with state x ∈ X who owns at night will be in state x′ ∈ X ′ ∈ X in the next morning.

Likewise, Qr represents the transition function for renters. We use primes to denote the

corresponding measures in the next period.

The laws of motions from the night to the following afternoon are

ψ′n (X ′) = (1− πµ) (1− ξo)
∫
x∈X

Qo(x,X ′) dψo, (2.15)

ψ′b (X ′) = (1− ξr)
∫
x∈X

Qr(x,X ′) dψr+

πµ (1− ξo)
∫
x∈X

Qo(x,X ′) dψo + ψi (X ′) , (2.16)
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for each X ′ ∈ X . In (2.16), ψi is a measure on X representing the exogenous distribution of

immigrants, which ensures that net migration flows are zero. Recall that owners who do not

migrate and remain matched at the start of t are non-traders in the afternoon. This event

has probability (1− πµ) (1− ξo). On the other hand, renters who do not migrate, owners

who do not migrate and become mismatched, and immigrants are potential buyers in the

afternoon.

The laws of motion from the afternoon to the night are

ψ′o (X ′) = ψn (X ′) +
∫
x∈X

Πo (x,X ′) dψb, (2.17)

ψ′r (X ′) =
∫
x∈X

Πr (x,X ′) dψb, (2.18)

where the transition functions Πo : X × X → [0, 1] and Πr : X × X → [0, 1] give the

probability that a potential buyer with state x at the start of the afternoon will be an

owner or a renter with state in X ′ at night, respectively. These probabilities are related to

the probability that the buyer purchases a home in the afternoon, which depends on the

submarket θ she joins. A successful trade implies, not only a change in tenure status, but

also a change in the financial assets (which again depends on θ). Specifically,

Πo((a, z), X ′) =


mb

(
gθb (a, z)

)
, if

(
a− (1 + τb) p

(
gθb (a, z)

)
~, z

)
∈ X ′,

0, otherwise,
(2.19)

Πr((a, z), X ′) =


1−mb

(
gθb (a, z)

)
, if (a, z) ∈ X ′,

0, otherwise.
(2.20)

Let Ho be the amount of housing owned by households at night, that is,

Ho = ~
∫
X
dψo. (2.21)

Let Hr be the supply of rental properties. The market clearing condition in the night rental
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market is

Hr =
∫
X
ghr (x) dψr. (2.22)

Finally, let V denote the amount of vacancies that realtors hold overnight. These are the

units that remain unsold in the afternoon market. Recall that these units cannot be rented

at night, and will join the pool of housing that can be traded in the Walrasian market in the

next morning. Hence, Ho +Hr + V is the total housing stock at night.

It is easy to show that, at the stationary equilibrium, the market clearing condition in

the morning market can be written as

δ (Ho +Hr + V )− Ih = 0, (2.23)

where the left-hand side of (2.23) represents aggregate excess demand in this market.13 In

words, in equilibrium, the production of housing must equal the depreciation of the stock.

To pin down the equilibrium value of V , we use the consistency condition in the compet-

itive search market. Let X̃ ⊆ X denote the set of states of potential buyers who participate

in this market. That is, x ∈ X̃ if and only if gθb (x) 6= θ0. We can construct a measure ψs on

X̃ such that

ψs(Ξ) =
∫

Ξ

1
gθb (x) dψb, (2.24)

for each Ξ in the Borel σ-algebra X̃ defined on X̃. Recall that the consistency condition

implies that gθb (x) is the equilibrium buyer-seller ratio in the submarket where buyers with

state x participate.14 Hence, there ought to be 1/gθb (x) intermediaries per buyer there. Since
13Supply includes new construction and the depreciated homes of mismatched owners, rental companies

and realtors. That is, supply is given by Ih + (1− δ)[(Ho−Hn) +Hr +V ], where Hn denotes the number of
owners who remain matched each morning. In turn, demand includes home maintenance by matched owners
and home purchases by new intermediaries (which include the associated maintenance payments). Demand
then equals δHn + Hr + Ṽ , where Ṽ denotes the number of homes for sale in the search market. Since Ṽ
equals sales in this market plus overnight vacancies, and sales equal Ho−Hn, it follows that Ṽ = V +Ho−Hn.
Aggregate excess demand is then δ(Ho +Hr + V )− Ih.

14In section 2.5.2, we show that all buyers with the same state x will participate in the same submarket
in equilibrium.
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dψb(x) is the density of buyers with state x, the number of intermediaries in this submarket

must then be 1
gθ
b
(x) dψb(x). Therefore, for the consistency condition to hold, the number of

intermediaries who are randomly matched to buyers with state x ∈ Ξ is ψs(Ξ) for each Ξ.

The total number of intermediaries who do not trade in the afternoon is then

V =
∫
X̃

(
1−ms

(
gθ(x)

))
dψs. (2.25)

We are now ready to define a stationary equilibrium.

Definition 1. A recursive stationary equilibrium for this economy, given the interest factor,

R, the wage w, and the distribution of the immigrants, ψi, is a list of value functions and op-

timal decision policies for the households
{
Wo,Wr,Wn,Wb, g

c
o, g

a
o , g

c
r, g

h
r , g

a
r , g

θ
b

}
, value func-

tions for intermediaries,
{
J, Js, Jr

}
, prices (p, p(·), rh), Borel measures

{
ψo, ψr, ψn, ψb, ψ

s
}
,

and a tuple (Ih, V,Ho, Hr) such that:

1.
{
Wo,Wr,Wn,Wb, g

c
o, g

a
o , g

c
r, g

h
r , g

a
r , g

θ
b

}
solve the households’ problems shown in (2.4)–

(2.9), given (p, p(·), rh).

2. The supply of new housing is given by (2.3).

3. Realtors make zero expected profits in all submarkets, and rental companies make zero

profits: (2.10) holds with equality for all θ ∈ R+, and (2.12) holds.

4. The night rental market and the morning housing market clear, and the consistency

condition is satisfied in the afternoon search market: (2.22), (2.23), and (2.24) hold.

5. The stationary probability measures
{
ψo, ψr, ψn, ψb

}
satisfy (2.15)–(2.18), and the overnight

vacancy stock is stationary, so (2.25) holds.

The non-standard condition in Definition 1 is the consistency condition in the afternoon

market. By condition 3, realtors are indifferent between all submarkets θ ∈ R+. Equation

(2.24) in condition 4 says that the distribution of realtors across active submarkets is such

that the actual buyer-seller ratios in these submarkets are equal to the ratios (or tightness
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levels) that households take as given when they make their optimal afternoon decisions. In

turn, given this distribution, (2.23) and (2.25) ensure that the realtors’ overnight vacancy

stock equals their vacancy stock at the start of each period.

2.5 Some properties of the stationary equilibrium

Here we discuss some properties of the stationary equilibrium.

2.5.1 Properties of the value functions

The block-recursive structure of the model allows us to derive several properties of the

households’ value functions, which in turn support the characterization and computation

of their policy functions. These derivations involve two main difficulties: (i) the decision

problem of a potential buyer’s is not concave, and (ii) the buyer’s value function, Wb, cannot

be assumed to be differentiable a priori. There are two sources of non-concavity in problem

(2.9): the discrete decision of the buyer whether to participate or not, and the objective

function not being jointly concave in the choice and state variables. The latter feature is due

to the dependence of the matching probability on the market tightness, a variable that also

affects the surplus of trade in the afternoon market. The product of these two terms is not

concave in general, preventing the use of standard dynamic programming techniques, which

start from the assumption that the objective function is jointly concave in the choice and

state variables. We thus develop new analytical tools to study the properties of the value and

policy functions. Appendixes A and B describe these tools, which are of independent interest,

as they can be applied to general non-concave and non-differentiable dynamic models that

involve both discrete and continuous choices.

In Appendix A we show that, given the price schedule in (2.13), the dynamic programming

problems (2.4), (2.5), (2.8) and (2.9) admit continuous solutions Wo, Wr, Wn, and Wb,

which are unique in a suitable class of functions (under quite general conditions). Also,

Wo, Wr, and Wn are strictly increasing and Wb is non-decreasing. Whereas these functions
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need not be differentiable and concave in general, in Appendix B we show that they are

differentiable along the optimal paths. This is all we need to establish the sufficiency of

the Euler equations. Moreover, if we restrict to the range of assets of the households who

participate in the afternoon market, Wo, Wr, and Wn are strictly concave and Wb is concave,

provided the renters’ consumption policy function gcr(a, z) is non-decreasing on this range.15

This implies that the household’s optimal choices are unique.

2.5.2 Sorting and participation in the competitive search market

In this section, we exploit these results to characterize the equilibrium sorting pattern and

establish the existence of a participation threshold asset level, apart(z), for each productivity

state z. The proof of these results can be found in Appendix C.

The optimal decision rule of a buyer who participates in the afternoon market is

gθb (a, z) ∈ arg max
θ∈R+

{
Wr (a, z) +mb (θ) [Wo (a− (1 + τb) p(θ) ~, z)−Wr (a, z)]

}
s. t. a+ (1− ζ) p ~ ≥ (1 + τb) p(θ) ~.

(2.26)

For buyers with state (a, z), the ex-post gains from trading at price p are

S(a, z, p) = Wo (a− (1 + τb) p ~, z)−Wr (a, z) . (2.27)

Hence, gθb (a, z) maximizes the buyer’s (ex-ante) expected gains, mb (θ)S(a, z, p(θ)). These

maximal expected gains are non-negative, since θ0 is a feasible choice for all buyers. Figure

1 depicts the buyers’ indifference curves on the space (θ, p) as a function of their state

(a, z). Buyers prefer submarkets with low prices (which yield higher ex-post gains) and low

congestion (which imply a higher trading probability). In the case of a buyer with state

(a, z), an indifference curve is given by mb (θ)S(a, z, p) = Saz for some fixed value Saz ≥ 0.

Thus gθb (a, z) attains the highest value of Saz along the price schedule p(θ), subject to the

borrowing constraint. To illustrate the role of financial wealth, Figure 1 depicts the optimal
15In particular, due to the endogenous participation decision, Wb is not concave on A, but it is concave

on the range of assets that correspond to participation (those a ∈ A with Wb(a, z) > Wr(a, z)).
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choices of three buyers with identical labor productivity z and different financial assets.

When the borrowing constraint does not bind, the buyer’s indifference curve is tangent to

the schedule p(θ). This is the case for buyers with assets a1 or a2, in the figure. Since

the schedule p(θ) corresponds to the realtors’ zero isoprofit curve on the space (θ, p), the

indifference curve of an unconstrained buyer is tangent to this isoprofit curve. This is the

standard characterization of a competitive search equilibrium in the absence of borrowing

constraints (e.g. Moen, 1997; Acemoglu and Shimer, 1999). If the constraint binds, this

tangency point is not feasible. This is the case of a buyer with lower assets, a3. Constrained

buyers join the submarket where homes are sold at the maximum price they can afford to

pay given their financial wealth, the taxes involved in the transaction, and the borrowing

limit.

SinceWo(a, z) is differentiable with respect to a, so is the buyer’s objective function. The

first-order condition for problem (2.26) is

m′b(θ)S(a, z, p(θ))
~ (1 + τb)

−mb(θ)W ′
o (a− (1 + τb) p(θ) ~, z) p′(θ) = λ(a, z) p′(θ), (2.28)

whereW ′
o is the derivative ofWo with respect to its first argument, and λ(a, z) is the Lagrange

multiplier of the constraint. If the constraint is slack, (2.28) simplifies to

( 1
1 + τb

)(1− η(θ)
~ θ

)(
S(a, z, p(θ))

W ′
o (a− (1 + τb) p(θ) ~, z)

)
= −p′(θ), (2.29)

where η(θ) is the elasticity of ms(θ). Equation (2.29) describes the tangency between the

buyer’s indifference curve and the price schedule. In particular, the left-hand side of (2.29)

represents the buyer’s marginal rate of substitution of θ for p. The last term in this expression

gives the buyer’s ex-post gains measured in units of consumption (rather than in utils):

Ŝ(a, z, p) =
(

S(a, z, p)
W ′
o (a− (1 + τb) p ~, z)

)
, (2.30)

since W ′
o is the marginal utility of wealth of an owner at night. This term will be key for our

sorting result, as it determines how the rate at which buyers trade off prices and congestion
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varies with their financial wealth.

Using the expression of the equilibrium price schedule in (2.13), the tangency condition

(2.29) can be written as

( 1
1 + τb

)
Ŝ(a, z, p(θ)) = η(θ)

1− η(θ)

(
p(θ)~− p~

( 1
R
− δ

))
, (2.31)

where p(θ)~− p~(1/R− δ) are the realtor’s ex-post gains in submarket θ. In the absence of

taxation (τb = 0), (2.31) generalizes the well-known Hosios (1990) condition for transferable-

utility environments to our setting, where utility is imperfectly transferable. It says that a

fraction η(θ) of the bilateral surplus is appropriated by the buyer and the rest goes to the

realtor.

If the borrowing constraint binds, gθb (a, z) satisfies

p
(
gθb (a, z)

)
= a+ (1− ζ) p ~

(1 + τb) ~
> p. (2.32)

Recall that the prices buyers pay exceed p (otherwise, realtors trading at these prices would

make negative profits). Constrained buyers start the night with a negative asset position

equal to −(1 − ζ) p ~. As one would expect, for a given z, the multiplier λ(a, z) decreases

with a (see Lemma D.1 in the Appendix). There are then three possible cases. Either all

buyers with productivity z are unconstrained, they are all constrained, or the constraint only

binds below a threshold that depends on z.

Proposition 1 provides conditions under which the buyer’s optimal choice is unique, so

buyers in the same state join the same submarket in equilibrium. This is always the case

for constrained buyers, whose unique optimal choice is characterized by (2.32). In turn, the

problem of an unconstrained buyer has a unique solution provided gcr(a, z) is non decreasing

in a on the range of assets that correspond to participation. This guarantees that Wo is

strictly concave with respect to a on this range, which implies that there is a single tangency

point between the buyer’s indifference curve and the schedule p(θ).16

16Since η(θ) is non-increasing, one cannot conclude from (2.29) that the buyer’s marginal rate of substitu-
tion increases along an indifference curve as θ rises (as depicted in Figure 1). In the Appendix, we circumvent
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Proposition 1. A solution for problem (2.26) exists. Suppose that, for each z ∈ Z, gcr(a, z)

is non decreasing in a on the range of assets for which θ0 /∈ gθb (a, z). Then gθb (a, z) is

single-valued on this range.

We now turn to the sorting result. In the case of constrained buyers, the result follows

trivially from (2.32). These buyers pay the maximum price they can afford to pay, and this

price increases with a (and does not depend on z). In other words, constrained buyers who

are wealthier trade in less congested submarkets, where prices are higher.

Proposition 2. For constrained buyers, gθb (a, z) does not depend on z, and gθb (a, z) >

gθb (a′, z) if a < a′.

In the case of unconstrained buyers, prices depend on both a and z, and a similar sorting

result holds provided wealthier buyers have steeper indifference curves than poorer buyers

with identical productivity z. Under this single-crossing property, the former are willing to

accept a larger price increase in order to increase their trading probability (while remaining

indifferent). As depicted in Figure 1, for a given z, buyers who are wealthier choose lower

values of θ, and pay higher prices. As noted above, the buyer’s marginal rate of substitution

at a given (θ, p) is proportional to Ŝ(a, z, p). Hence, the single crossing property holds when

Ŝ(a, z, p) increases with a.

Proposition 3. Suppose that the condition in Proposition 1 holds and S(a, z, p) is non

decreasing in a for each p ≥ p and each z ∈ Z. Then gθb (a, z) > gθb (a′, z) if a < a′.

The result in Proposition 1 is intuitive. If Wo is strictly concave in a, wealthier owners

have lower marginal utilities of wealth at night. Hence, as long as the buyers’ ex-post gains do

not decrease with financial wealth, the gains measured in units of consumption, Ŝ(a, z, p),

are higher for wealthier buyers (see (2.30)). Since these are the buyers who gain more

when a transaction is completed, they care relatively more about reducing trading delays.

this issue by assuming that traders choose mb rather than θ, since there is a one-to-one mapping between
both variables. If Wo(a, z) is strictly concave, the buyer’s indifference curve has a strictly convex shape in
the space (mb, p), just as the intermediary’s zero isoprofit curve, so both curves are tangent at most one
point.
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By contrast, poorer buyers care more about paying lower prices. Note that S(a, z, p) =

Wo (a− (1 + τb) p ~, z) − Wr (a, z) is non decreasing in a whenever the marginal utility of

wealth at night is not lower when agents buy (rather than rent) a home. It is direct to check,

using the Envelope Theorem, that a sufficient condition for this is that the purchase of a home

always implies lower consumption at night; i.e., gco (a− (1 + τb)p ~, z) ≤ gcr(a, z). This will

be the case if housing prices are sufficiently high. Indeed, this sufficient condition holds in all

our quantitative exercises, where S(a, z, p) always increases with a. In any case, the sorting

result will still hold if S(a, z, p) decreases with a at a lower rate than W ′
o (a− (1 + τb) p ~, z),

so Ŝ(a, z, p) still increases with a.

Proposition 4. Suppose that the condition in Proposition 1 holds. Also, given z, Ŝ(a, z, p)

is increasing in a for each p ≥ p and each z ∈ Z. Then gθb (a, z) > gθb (a′, z) if a < a′.

Consider now the participation decision. Potential buyers with financial assets a ≤

(τb + ζ) p ~ do not participate, since they cannot afford the down payment and associated

taxes in any submarket. For wealthier agents, the expected gains from participating in a given

submarket are mb (θ)S(a, z, p(θ)). If S increases with a, so do the agents’ (maximal) gains

from participation, as wealthier agents can afford to trade in more expensive submarkets

than poorer ones (i.e., their feasible choice sets are larger). Take agents with productivity

z. As long as their gains are strictly positive if a ∈ A is sufficiently high, there is then a

threshold apart(z) ∈ A such that agents with assets a > apart(z) strictly prefer to participate

(because the associated gains are positive), those with assets apart(z) are indifferent between

participating or not (because the gains are zero), and the rest do not participate (because the

gains are negative). Thus Wb(a, z) > Wr(a, z) for all a > apart(z), and Wb(a, z) = Wr(a, z)

for a ≤ apart(z). These participation thresholds depend on the Walrasian price, so they

change with aggregate conditions.

Proposition 5. Suppose that the condition in Proposition 1 holds and S(a, z, p) increases

with a for each p ≥ p. If Wb(a, z) > Wr(a, z) for some a ∈ A, there exists apart(z) ∈ A such

that gθb (a, z) ∈ R+ if a > apart(z), gθb (a, z) = θ0 if a < apart(z), and gθb (apart(z), z) = {θ0, θz}.
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In the above statement, θz denotes the optimal submarket for buyers with state (apart(z), z)

(who are indifferent between participating or not). The marginal buyer type in this economy

is the one who participates in the cheapest active submarket, which is also the most congested

one. This type is (apart(z), z) where

z = arg max
z∈Z

θz. (2.33)

These buyers face the lowest down payment requirement and the longest trading delays in

the afternoon market.

2.6 Computation of equilibrium

We now outline our strategy for computing the equilibrium. Appendix D provides specific

details on the numerical algorithm.

2.6.1 The household’s problem

As already noted, the Walrasian morning price, p, determines the afternoon price schedule

and the night rental price. Given these prices, households make three intertemporal decisions:

the amount of financial assets for next period, whether or not to participate in the afternoon

market, and their preferred submarket (conditional on participating). We allow households

to choose both financial assets a′ and a submarket θ in R+. In this way, we do not fix

ex-ante the set of submarkets where agents can participate, Θ. We do this because the

main action in our economy comes from agents trading off prices and trading probabilities.

Discretizing and fixing the set Θ would bias the results and produce an artificially high or low

equilibrium price dispersion. Instead, we compute the policy functions using the households’

Euler equations, without resorting to discretization of Θ.

A difficulty in the computation is that the participation decision is endogenous, so house-

holds solve a non-concave problem. Thus we build on Fella (2014) in order to compute the

household’s optimal choice. The solution method proposed by Fella (2014) involves using the

28



Endogenous Grid Method (EGM hereafter) to find the local maximum and a Value Function

Iteration step to verify whether the point is not only a local but also a global maximum. We

discuss the main computational issues below.

In order to solve the buyer’s afternoon problem, we need to know her gains in each

submarket and the marginal utility of trading at a particular price. That is, we need to

know the value functions of owners and renters. Proposition 1 ensures that the first-order

conditions of problem (2.26) are sufficient. Consider now the night stage, when households

decide the amount of financial assets for next period. As already noted, the buyer’s value

function is not globally concave. We know, however, that this function is concave on the range

of assets that corresponds to participation (a > apart(z)) and non-participation (0 < a <

apart(z)), respectively. We apply the EGM to each range. Solving this part of the problem

requires an additional step of Value Function Iteration, comparing the local maximum if the

agent does not participate in the afternoon market next period and if she does. The support

of each range is endogenous (as the participation thresholds) and depends on p.

2.6.2 Equilibrium in the morning market

The fact that we do not fix the set Θ ex-ante implies that we cannot use Monte Carlo

simulations to find the stationary distribution of agents. The reason is that any change in

the distribution of financial assets implies a change in the distribution of active submarkets.

We instead compute directly the stationary distributions shown in (2.15)–(2.18).

The equilibrium price p clears the Walrasian morning market. Figure 2 represents the

excess demand in this market; that is, the difference between the depreciated stock and new

housing. Construction, Ih, is continuous and increasing in p. In our quantitative experiments,

the depreciated stock, δ (Ho +Hr + V ), decreases smoothly with p, as shown in the Figure.

Intuitively, as p rises, the afternoon price schedule shifts upwards, and fewer households

want to own (Ho falls). Since rents also rise, households rent smaller units (Hr also falls).

Finally, there are fewer vacancies for sale in the afternoon because demand is lower in the

search market (V falls). We use a standard iterative tatonnement-type algorithm to find the
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equilibrium value of p. As shown in the Figure, if we start by assuming that the Walrasian

price is equal to p0, supply exceeds demand, so the price must be adjusted downwards. In

particular, the lower price at which demand meets this supply (IS0
h ) is p′0, and is below the

equilibrium price. Hence, the equilibrium price lies in [p′0, p0]. Our next guess is a weighted

average of p′0 and p0. A similar argument applies if demand exceeds supply at the guessed

prices. See Section D.4 in the Appendix.

3 Parameterization

The model period is a month. Since a property’s average time on the market (TOM) is always

below a quarter (as we will see), we do not want to amplify the role of search and matching

frictions by imposing a lower frequency. Some model parameters are chosen externally. The

remaining parameters are chosen to minimize the distance between a selection of moments

of the stationary distribution and their data counterparts.

3.1 Functional forms

As in Díaz and Luengo-Prado (2010), we use the additively-separable felicity function

u (c, h) = c1−σ

1− σ + φ
h1−σ

1− σ . (3.1)

The risk aversion parameter is set equal to σ = 2. Recall that rental units of size h ∈ [0, ~]

yield ω h housing services. Thus, for renters, u (c, h) = (c1−σ)/(1−σ)+φ ((ω h)1−σ) /(1−σ).

Matching probabilities in the search market are as in Menzio and Shi (2011):

ms(θ) =
(
1 + θ−γ

)−1
γ , mb(θ) = ms(θ)/θ, (3.2)

with γ > 0. Unlike the standard urn-ball matching process, this process has an extra degree

of freedom in that γ governs the elasticity of mb(θ) with respect to θ. The parameter γ
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also determines the severity of search and matching frictions. As γ increases, frictions are

reduced. Since our computation method requires a one-to-one mapping between θ and mb,

we cannot use the standard (truncated) Cobb-Douglas matching function (which implies

mb = 1 for θ sufficiently low). Note that (2.13) can be written as

ms(θ) = (1− 1/R + δ) p
p(θ)− (1/R− δ) p. (3.3)

This expression shows that the probability of selling a home in submarket θ is a function

of the ratio p(θ)/p. This relation is independent of the matching process we use, but the

functional form of the matching process does affect the tightness level and the probability of

buying. This insight will be very useful in the computation of the equilibrium (see Section

D.1).

3.2 Externally chosen parameters

As in Díaz and Luengo-Prado (2010), we set the annualized real interest rate at 3%. We

set τs = 6% and τs = 2.5%, following Díaz and Luengo-Prado (2008). The depreciation rate

of housing is 1.50% in annual terms, as in Sommer and Sullivan (2018). We follow Kaplan

et al. (2020) and set α so that the price elasticity of new housing supply, α/(1−α), is equal

to 1.5, which is the median value across MSAs estimated by Saiz (2010).

The process for labor productivity is chosen in two steps. First, we calibrate an AR(1)

process:

ln ẑt = ρ ln ẑt−1 + εt, (3.4)

so its annualized version has the properties of the permanent component of labor earn-

ings estimated by Storesletten et al. (2004). Hence, ρ = 0.9521/12 = 0.9959 and σε =

0.17/
(√

12∑
i=1

ρ2 (i−1)

)
= 0.0502. The Rouwenhorst method is then used to discretize ln zt into

a 3-state Markov chain, Πẑ. Next, we add a transitory state which can be thought of as an

unemployment state. This state plays a similar role to the catastrophic state of Díaz and
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Luengo-Prado (2008), who show that agents prefer renting to owing when they face more

transitory risk. We proceed as Broer et al. (2021) and assume that, when hit by this shock,

the agent’s productivity drops to 40% of their lowest previously calibrated productivity state.

This implies that z takes values in the set Z = {0.88, 1.00, 2.19, 4.81}. The probability of the

transitory state is always ϕ = 5%, which is roughly the average unemployment rate in the

US. The probability of exiting unemployment to any other state is equal to the associated

stationary probability implied by (3.4). The Markov process on Z is shown in Table 1.

The probability of becoming mismatched is set so that owners move every 9 years on

average, as the National Association of Realtors (NAR) reports. Similarly to Head et al.

(2014), we have assumed that households move across locations and target the annual fre-

quency of owners and renters moving across counties in the US, which is about 3.2 and 12

percent, respectively, according to the Census Bureau. These three targets combined are

used to calibrate the probabilities of the mismatch and migration shocks, πµ, ξo, and ξr.

The value of the wage per efficient unit of labor is set equal to w = 1000. Also, we set

~ = wmean(z).

The rental price rh and the Walrasian housing price p are linked by the non-arbitrage

condition (2.12). We calibrate κ so that the price-to-rent ratio (in annual terms), measured

as p/rh, is 12.5%, as in Sommer and Sullivan (2018). This gives a value of κ equal to 20%

of the monthly wage w.

We have assumed that immigrants own no residential assets. Since we do not have a

sensible way to calibrate the distribution of their financial assets, we assume that they all

enter the location with zero assets.

3.3 Parameters jointly calibrated

The rest of the parameters, β, φ, ω, γ, ζ, and B, are chosen jointly to minimize the distance

between a number of selected equilibrium moments and their data counterparts. The data

moments are chosen from the Survey of Consumer Finances (SCF). We have taken various

waves from the SCF, from 1989 to 2007, and have selected the sample of households with
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positive earnings. We proceed as Budria et al. (2002) to compute household earnings. For

each wave, we compute the same statistics and we take the mean across waves. In this paper,

we refer to the homeownership rate as the fraction of households who own their home. In

the data, we take it to be the fraction of households who own residential real estate, which is

69.15%. The average median wealth-to-earnings ratio for renters is 0.22. Matching housing

wealth ratios requires that we take a stand regarding the value of housing. In the SCF,

households are asked about the market value of their property. The counterpart of that

value in our economy is the liquidation value of the house, p. This is why we value housing

at price p when we measure housing wealth. The median housing-wealth-to-earnings ratio

for homeowners is 2.57. To have a sense of the size of mortgage debt, we calculate the median

ratio for homeowners whose financial wealth (financial network minus real estate debt) is

negative and call it the median loan-to-value ratio. The average of this ratio across waves is

-0.43. Finally, we follow Kaplan et al. (2020) and target an average house size ratio of 1.5

between owners and renters. Table 2 summarizes the calibration of our benchmark economy.

Interestingly, the calibrated down payment is 26%, which is very close to the number used

by Favilukis et al. (2017), 25%, and slightly higher than that in Sommer and Sullivan (2018).

3.4 Alternative economies

We also consider alternative search economies that differ in the specification of the production

of housing and the rental market, as shown in Table 3. All economies are calibrated so that

they lead to the same steady state whenever the down payment is ζ = 0.26.

The low elasticity economy is one where the elasticity of new housing supply is 0.6, the

lowest value estimated by Saiz (2010) for the US MSAs areas.17 This implies a reduction

in the value for α from 0.47 to 0.37. The TFP parameter, B, of the housing production

function is recalibrated so that this economy generates the same equilibrium as our bench-

mark economy when ζ = 0.26. Additionally, we consider a very low elasticity economy

where we further reduce the supply elasticity to 0.1. This is consistent with the estimates in
17Specifically, it corresponds to Miami, FL.

33



Baum-Snow and Han (2019) for US urban neighborhoods.

In addition, to assess the importance of the absence of segmentation of rental and owner-

occupied housing stocks in the model, we consider also the opposite extreme case with full

market segmentation. Specifically, we assume that rental and owner-occupied units are

different objects and that rents are exogenous (so they are unaffected by changes in housing

demand). We fix the rental price equal to its calibrated value in the benchmark economy,

and assume that rental units are elastically supplied at this price (and, for simplicity, do not

depreciate). We then recalibrate the TFP parameter, B, so that housing production only

replaces depreciated owner-occupied housing and vacancies: Ih = δ (Ho + V ). This is done

for the three supply elasticities considered above.

4 Quantitative results

In this section, we present the results of our quantitative experiments. We first describe

our benchmark economy, and then explore the effects of relaxing credit conditions in the

alternative economies we consider.

4.1 The benchmark economy

Table 4 shows selected statistics of our benchmark economy. Let us focus on the untargeted

moments (pointed with ?). The share of owners who hold debt in equilibrium is 68.15%,

whereas the number reported in Sommer and Sullivan (2018) is 65%. In the SCF, though,

the mean of working age households with negative financial assets across 1989-2007 waves

is 42%. Median rental expenditures are 19.37% in the steady state are, whereas in the data

they are about 25%, according to Sommer and Sullivan (2018). We have calibrated the

matching function parameter to match the median time to buy and let the model determine

average time on the market (TOM). The National Association of Realtors reports a TOM

between 4 and 17 weeks. Average TOM is 9.89 weeks in the steady state, which is about the

mean estimate of the National Association of Realtors. A remark is in order. In reality, TOM
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refers to the average time between listing and sale of a property. Thus, although households

sell their property without delays in the morning market, we think that the appropriate

model counterpart of this statistic is the average time it takes an intermediary to sell the

property in the afternoon market.

In our economy there are vacancies overnight; these are the units that could not be sold in

the afternoon and are not occupied. According to the American Housing Survey, the ratio of

the stock of year-round vacant units for sale to the total stock of owner occupied units (plus

those vacant units) is 1.59% every quarter for the period 1965:1-2010:4. We take this as the

data counterpart of our overnight vacancy rate, computed as vacant units, V , over V +Ho,

where Ho is the stock of owner-occupied housing. The implied rate in our benchmark model

is 1.35%, which is pretty close to the data. In our economy there is a difference between the

stock of houses for sale in the afternoon and the stock that remains unsold over night (and

will be up for sale again the next period). We also report the rate of vacancies for sale in

the afternoon, which is 2.27%. The greater the difference between these two rates, the more

liquid the afternoon market is.

Our model generates frictional housing price dispersion, as illustrated in Figure 3. Panel

3(a) plots the afternoon policy function, gθ(a, z). In line with our theoretical results, given

the productivity state z, there is sorting by financial wealth, meaning that buyers with higher

wealth trade in less congested market segments. As shown in panel 3(b), both the probability

of buying and the price buyers pay rise with wealth. However, there is no sorting by labor

earnings in general. In particular, buyers in state 1 trade in less congested submarkets and

pay higher prices than buyers in state 2 who have identical financial wealth. The reason is

that state 1 is a transitory state with a much lower persistence than state 2. In fact, agents

in state 1 are more likely to enter states 3 and 4 than agents in state 2. Our results suggest

that there can be sorting by earnings only if earnings shocks are sufficiently persistent. This

non-monotonicity is also reflected in the participation thresholds, apart(z), as shown in Figure

3.

Price dispersion, measured as the coefficient of variation of the price distribution in the

search market, is small in the steady state, 0.14%. For instance, Lisi and Iacobini (2013)
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estimate the coefficient of variation of house prices to be about 2% in the data. Kotova and

Zhang (2020) find a much larger dispersion, about 15%, for a selection of US counties. There

are three factors compressing the distribution of prices in the model. First, owning is risky as

owners cannot sell at will; recall that we are allowing to sell, on average, every 9 years. Since

earnings risk operates at a shorter frequency, agents do not want to be caught with too much

debt. This discourages households with high financial wealth from searching in submarkets

with higher prices (compressing the upper tail of the afternoon price distribution). Addi-

tionally, the parameter γ of the matching process affects price dispersion because it governs

the trade off between prices and congestion. This parameter is chosen to match the observed

median time to buy. The calibrated value makes the probability of buying “highly concave”

in the price, and this tends to reduce price dispersion. Finally, it is important to note that,

in our model economy, price dispersion only reflects the buyers’ heterogeneous wealth effects

(across the wealth distribution), since sellers in the search market are risk neutral.

4.2 The role of search and matching frictions

Search and matching frictions act as bottlenecks: home buyers would like to trade instanta-

neously, but they cannot. Prices in the afternoon market then reflect both how buyers value

housing services, as well as how they value the speed of the transaction. To understand how

these bottlenecks affect the economy, we consider a version of the model without search and

matching frictions, where home buyers trade directly with mismatched owners and develop-

ers in the morning market. In equilibrium, all buyers then trade at price p with probability

one. In this economy, there are no realtors and the frictional afternoon market shuts down.

Again, households can either buy an indivisible home that yields services ~ or rent out one

that yields ω h, where h ≤ ~. The buyer’s value function is then

Wb(a, z) = max
mb∈{0,1}

{
mbWo (a− (1 + τb) p ~, z) + (1−mb) Wr (a, z)

}
s. t. a ≥ (ζ + τb) p ~.

(4.1)
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The effect of eliminating search and matching frictions in our environment is described in

columns 4 to 6 of Table 4 for each of the supply elasticities we consider. Column 3 (Walras1)

describes the equilibrium that results when these frictions are eliminated in our benchmark

economy, where the price elasticity of new housing supply is 1.5. The other two columns

(Walras2 and Walras3) present the corresponding effect in the low and very low elasticity

economies.

While we do not recalibrate the Walrasian economy (in column 4), note that the targeted

moments remain similar, except for the lower homeownership rate (66.47%) and for time to

buy (which is now zero). The Walrasian price is 2% lower than in our benchmark economy.

This is so because of demand factors. First, fewer agents now turn to owning. This may

seem surprising, but it is explained by the fact that search and matching frictions partially

convexify the binary tenure decision in problem (4.1); this makes owning relatively more

attractive in the benchmark economy for our risk-averse households. Furthermore, in the

Walrasian economy, there are no intermediaries who demand owner-occupied housing. As a

result of the drop in total housing demand, there is less construction every period, and the

Walrasian price is lower. The existence of search and matching frictions is also important to

understand the share of indebted owners and the magnitude of their debt. In the Walrasian

economy, 40.32% of owners hold debt, as opposed to 68.15% in the benchmark economy and

65% in the data. The median debt is also lower. Recall that our economy has been calibrated

to match the median LTV ratio, but the ratio of indebted owners is determined by the model.

This ratio is tightly linked to the existence of equilibrium price dispersion. Since home

buyers not only compete to obtain housing services but also to speed up transactions, they

borrow to afford a higher price. The existence of search and matching frictions also affects

the distribution of financial assets. While there are more renters in the Walrasian economy,

their median wealth-to-earnings ratio is smaller (0.20 versus 0.22 in the benchmark economy).

This is again due to the fact that, with search frictions, potential buyers accumulate more

assets in order to afford higher prices and reduce trading delays. This competitive effect is

nonexistent in the Walrasian model, as the buyers trade instantaneously at the same price,

which is also why the participation rate falls from 7.68 to 2.33%.
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Naturally, the lower the housing supply elasticity, the larger the reduction in the Wal-

rasian price generated by the elimination of bottlenecks. This price is 7.3% lower in the

low elasticity economy and 16% lower in the very low elasticity economy, compared to the

benchmark economy. It is interesting to note, however, that homeownership rates bounce

back up as owner-occupied housing becomes cheaper. In summary, search and matching

frictions increase the overall demand of housing, and imply that more households borrow,

and this translates into higher housing prices. Notice that this is so even though the model

period is a month and homeowners move once every 9 years on average. That is, we are

imposing relatively mild search and matching frictions, which in turn are consistent with

monthly average TOM and buying times.

4.3 The long-run effect of credit expansions

Here we conduct a series of experiments in which we lower the down payment from 26%

to 5%. This is similar to the exercise in Favilukis et al. (2017), and is performed in our

benchmark economy and in the alternative economies we consider. The results are shown in

columns 3 to 8 of Table 5.

4.3.1 The role of search and matching frictions

The effect of a credit expansion in our benchmark economy is described in column 3, whereas

column 4 shows the effect in its Walrasian counterpart. The enormous credit expansion

makes owning less risky, as households can borrow more to smooth earnings risk. A word

of caution is needed here. As discussed in Kaplan et al. (2020), the way in which mortgages

are modeled matters for a credit expansion to impact prices significantly. We have assumed

that a reduction in the down payment allows both new and existing owners to increase their

borrowing. In reality, this reduction affects mainly new mortgages, unless many owners

refinance. We believe that this distinction is important when studying the transitional

dynamics of housing prices, but it matters less when studying long-run effects. Also, Foote

et al. (2020) document that a large part of the growth in mortgage debt during the housing
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boom can be attributed to income rich households who were refinancing their mortgages.

In the benchmark economy, the supply of new housing is quite elastic, and construction

increases by 5.87% as demand rises in the face of the credit expansion. This implies a

mild increase of 3.88% in the Walrasian price. The reason is that rental companies are

supplying their units in the Walrasian market to meet the higher demand of owner occupied

housing. These units are repackaged at no cost, and supplied as vacant homes in the frictional

market. As a result, there is a stark 24.38% increase in supply in this market relative to the

benchmark. This swift conversion of rental units into owner-occupied housing then explains

why the homeownership rate increases sharply from 69.17 to 88.29%, while the increase in the

Walrasian price is moderate. These aggregate effects imply some interesting distributional

changes. The median loan-to-value ratio rises by around 40% (from 46.74 to 66.15%), and the

fraction of indebted owners increases from 68.15 to 80.24%. The credit expansion increases

not only because there are new home borrowers, but because everyone borrows more.

Since there are more owners, renters concentrate among the poor, which is why their

median wealth-to-earnings ratio falls from 0.22 to 0.10. The standard deviation of prices

in the search market increases by 13.56 %, and as a percentage of the mean price, it rises

from 0.14 to 0.15, relative to the benchmark economy. This mild change in price dispersion

is due to various countervailing forces. On the one hand, there are more poor buyers at

the lower end of the price distribution (with a higher mass of agents concentrated there),

which compresses the distribution. This is why the buyers’ median wealth-to-earnings ratio

drops from 0.86 to 0.34%, and so does the ratio of this median to the mean. On the other

hand, wealthier buyers borrow more in order to target pricier homes and speed up their

transactions, which makes the distribution more disperse. As a result of these two opposing

effects, the standard deviation rises, but as a percentage of the mean price, it only rises

slightly. Note that the participation rate in the frictional market rises sharply from 7.68

to 27.04%. Overall, the increase in both demand and supply in this market translates into

a slight rise in median time to buy and a small reduction in average TOM and overnight

vacancies.

The corresponding effects in the Walrasian counterpart of the benchmark economy are
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shown in column 4. A few differences stand out. First, the increase in the Walrasian

price is slightly smaller (3.63%), implying that search frictions contribute in 0.25 percentage

points of the total price increase. This is because TOM is zero in the Walrasian economy,

where the rise in construction that is necessary to meet demand is smaller (5.49%). Search

and matching frictions thus amplify the demand increase triggered by a credit expansion,

although the quantitative effect is small in this case. Second, the Walrasian economy features

an even larger increase in the homeownership rate, which rises to 92.64%, as households can

buy a home instantaneously. Third, while search and matching frictions act as bottlenecks,

they also lead to more borrowing, both in terms of the median loan-to-value ratio and

the share of indebted owners. Intuitively, in response to increasing demand, competition

aimed at reducing trading delays becomes more intense in our benchmark, resulting in more

borrowing.

In summary, a credit expansion in our benchmark economy makes homeownership more

attractive, as it gives insurance against earnings risk through borrowing. This rises the

demand of owner-occupied housing, and induces rental companies to sell their properties to

intermediaries, who also demand new construction to satisfy demand. As construction rises,

so do vacancies for sale. In spite of this, the overnight vacancy rate falls due to the sharp

increase in ownership. Search and matching frictions add 0.25 modest percentage points to

the Walrasian price.

4.3.2 The interaction of search and matching frictions and new housing supply

elasticity

We now investigate the importance of the price elasticity of new housing supply in deter-

mining the magnitude of the amplification effects arising from competitive search. To this

aim, we quantify the effect of a credit expansion in the low elasticity and the very low elas-

ticity economies in columns 6 to 8 of Table 5. The qualitative effect is the same—search

and matching frictions imply greater increases in the Walrasian price—but the magnitude

is larger when the supply elasticity is lower. In the low elasticity and very low elasticity

economies, search and matching frictions add 1.27 and 2.11 percentage points to the price
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with respect to their Walrasian counterparts, respectively. Likewise, the higher borrowing

induced by these frictions is a robust feature of the model, the effect being larger when the

supply elasticity is lower. Notice also that, in these economies, the standard deviation of

prices in the search market rises by 29.37 and 39.45%, respectively, relative to the bench-

mark. As already noted, there are two forces affecting price dispersion: more poor households

search in cheaper market segments, while wealthier households borrow more to enter more

expensive submarkets and speed up their transactions. Both forces almost compensate, and

the coefficient of variation rises to 0.16 and 0.17%, respectively.

4.3.3 The role of market segmentation

In our benchmark economy, rental units can be converted into owner-occupied housing (and

vice versa) at no cost within one month. This amounts to assuming that the housing supply

in the Walrasian morning market has a flat segment (where it is infinitely elastic). Given

that this is a rather extreme assumption, we also explore the opposite scenario: an economy

where rental units are different objects and rents are exogenous (so they are unaffected by

changes in housing demand). We fix the rental price equal to its calibrated value in the

benchmark economy and conduct the same exercises as in Section 4.3.2 in order to explore

the interaction of search frictions and credit constraints in this scenario. The results are

shown in Table 6.

Consider first the implications of market segmentation in our benchmark economy, where

the elasticity of new housing supply is 1.5 (columns 3 and 4). As one would expect, the

increase in the Walrasian price is much larger when the rental and real estate markets are

completely segmented. In fact, it is more than three times larger, 12.68% (versus 3.88%

in the case of no segmentation). Since there is no possibility of converting rental units

into owner-occupied ones, the increase in demand has to be met with construction, which

increases by 19.62% (as opposed to 5.87% in the benchmark). The standard deviation of

prices in the search market rises by 35.25%, relative to the benchmark economy, so it is more

strongly influenced by wealthier households bidding for higher prices than by the presence

of many new poorer buyers in the search market. However, since prices are also rising more
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sharply, the coefficient of variation only rises from 0.14 to 0.17.

Eliminating search frictions leads to an even larger price increase, 15.95%. This may

come as a surprise, as we argue that search and matching frictions act as bottlenecks, so

agents are willing to pay more to avoid them. There are two insights that we learn from this

exercise. First, as we have argued in Section 4.2, search and matching frictions “convexify”

the tenure decision so it makes the demand not as elastic as in the case without frictions.

That is, the demand of owner occupied housing is more sensitive to credit conditions in the

absence of search and matching frictions. If we add market segmentation we get a higher price

increase. Additionally, search and matching frictions act as bottle necks. The second insight

is that these bottlenecks also imply that less construction is needed to meet the increase in

demand in this scenario. Note that median time to buy increases significantly after the credit

relaxation when markets are segmented, so it is harder for buyers to trade. These stronger

bottlenecks tend to slow down sales growth in the search market and, thus, the intermediaries

demand in the Walrasian market, relative to the scenario without segmentation. In summary,

while market segmentation significantly amplifies the effect of a credit expansion on housing

prices, search and matching frictions tend to dampen that amplification effect in this case.

We also report for the sake of comparability, the effect of a credit expansion in the

alternative search economies with lower housing supply elasticities in columns 5 and 6 of

Table 6. As we can see, when the elasticity is very low, the price effect is much larger

(22.77%), while there is almost no change in the homeownership rate (which rises to 70.95%).

Additionally, it is important to note that the impact on price dispersion is now different, due

to the interaction between market segmentation and the reduction in the supply elasticity.

First of all, while the standard deviation of prices raises (to 22.94 and 22.76%, respectively),

the increase is now smaller than in the scenario with no market segmentation. Since price

increases are much stronger now, this in turn implies that the coefficient of variation does

not rise in this case. In fact, it falls to 0.13% when the elasticity is very low. Kotova and

Zhang (2020) report that price dispersion fell as prices rose during the housing boom that

preceded the Great Recession. In the light of the results in Greenwald and Guren (2021),

who provide evidence of substantial market segmentation, this is consistent with our sorting
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mechanism under market segmentation, provided the housing supply elasticity is low.

5 Final comments

This paper investigates how the interaction between search and matching frictions and risk-

aversion affects the long-run level and dispersion of house prices when the search process is

competitive. We also study how this interaction shapes the response of housing prices to a

relaxation of credit constraints. We do so in an economy populated by households who live

forever and face idiosyncratic uninsurable earnings risk. There is also a meaningful tenure

choice: owner-occupied housing is associated with a utility premium, but its illiquidity makes

it ineffective at shielding consumption against permanent shocks.

We show theoretically that, when search is competitive, wealthier households are willing

to pay a higher price to speed up transactions. Hence, the equilibrium features frictional price

dispersion. Our quantitative experiments show that search and matching frictions have a

double positive effect on housing demand in the model. First, they act as bottlenecks, which

is why buyers are willing to pay more in order to the speed up transactions. Second, they

tend to convexify the tenure choice, making homeownership more attractive for risk-averse

agents. In the long run, this double effect results in higher house prices and higher debt

levels than in an economy without these frictions. These differences are more pronounced

when the elasticity of new housing supply is low.

In our benchmark economy, search frictions amplify the long run effect of a credit re-

laxation with respect to a Walrasian economy. When borrowing constraints are relaxed,

households who would not have searched for a home before now do so, whereas wealthier

households purchase more expensive homes to avoid queues. The overall effect is a rise in the

average price and a sharp increase in the amount of borrowing and the number of borrowers.

Price dispersion increases due to the fact that wealthier households are willing to pay more

to avoid congestion. Economies with low housing elasticity experience larger increases in

housing prices.
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We also uncover some interesting interactions of search and matching frictions and market

segmentation. As pointed out by Kaplan et al. (2020) or Greenwald and Guren (2021),

among others, segmentation between rental and owner occupied housing amplifies the effect

of a credit relaxation. This is due to the fact that more construction is necessary to meet

the increase in housing demand in this scenario. This is also the case in our framework.

Naturally, the lower the elasticity of new housing supply, the stronger the amplification

effects are. However, our results indicate that search and matching frictions act as a buffer

in this case because they obstruct the direct channel through which credit affect prices: the

change in the tenure decision. Interestingly, unlike in the case of no market segmentation,

price dispersion may even fall when credit is eased if the new housing supply elasticity is

small. This last result offers an additional margin of analysis that may be helpful when

assessing the importance of market segmentation in the data.

We have made some simplifying assumptions to establish our results. We have abstracted

from the property ladder. Ortalo-Magné and Rady (2006) show that credit relaxation allows

households to invest in better, larger homes, pushing prices up. We leave it for future

research to examine how the existence of a property ladder affects housing price dispersion.

We have also abstracted from the life cycle. This is important as many buyers do not have

previous real estate wealth to purchase a new home. According to the National Association

of Realtors, around 30 percent of all buyers are first-time buyers. Therefore, credit conditions

matter more to them than to repeat buyers. We have assumed that new agents enter the

economy each period with zero assets, which somehow resembles the life cycle effect.

In our model, homeowners face no default risk and may sell their homes instantaneously

when they become mismatched. Hedlund (2016a 2016b) argues that the joint interaction

between tighter credit standards, default risk, and decreasing liquidity is important during

a housing bust (see also Head et al. (2019)). A quantitative study of the housing market

based on our theory is likely to incorporate several of these additional features.

Finally, the paper focuses on steady states. Studying the transitional dynamics of our

model is not trivial. Out of the steady state, the Walrasian price, p̄t, at which intermediaries

purchase homes—which is the key state variable of the model—equals their expected return
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in the competitive search market. Since intermediaries carry unsold inventories over time,

their expected return depends not only on the prices that prevail in the search market in

that period, but also in subsequent periods. This means that p̄t depends on {p̄t+l}∞l=1, since

all price information is summarized by the Walrasian price. In particular, if intermediaries

expect higher prices in the future, their current expected return and thus p̄t will increase

(shifting the price schedule that buyers face in the search market upwards). In the Walrasian

version of the model we have studied, this effect is absent because there are no unsold

inventories over night. The effect is also absent in Hedlund (2016b) and Garriga and Hedlund

(2020), for the same reason. In Hedlund (2016b), the intermediation sector is modeled as a

large real estate firm which consists of a continuum of agents. Each period the firm decides

how to distribute these agents across submarkets, and also decides total construction. In

taking these decisions, the firm faces no uncertainty. By the law of large numbers, it can

pool the rationing risks faced by the individual agents that form the firm. This ensures that

there are no unsold inventories in the intermediation sector at the end of a period. Taking

price expectations seriously seems important, and an extension of our model along these

lines would be extremely interesting. The problem amounts to finding a sequence of prices,

which is much easier than finding sequences of higher dimensional objects. We leave all these

interesting extensions for future work.
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A Properties of the value functions

Let a denote the household’s assets in a given subperiod (either night or afternoon). Denote
X = A × Z, where A = [a,∞) and Z = {z1, . . . , zn} is a finite set of exogenous shocks,
0 < z1 < z2 < · · · < zn. Let C(X) be the space of continuous functions f : X → R,
where we consider the usual topology on A and the discrete topology on Z. Define the
two-dimensional Bellman operator T acting on C(X)× C(X) by T = (To, Tr), where

To(fo, fr)(a, z) = max
c,a′

{
u (c, ~) + β (1− π) Ez fo (a′, z′)

+βπ Ez Tb(fo, fr) (a′ + (1− τs) p ~, z′)
}

s.t. c+ 1
R
a′ ≤ w z + a− δp~,

a′ ≥ −(1− ζ) p~, c ≥ 0

(A.1)

Tr(fo, fr)(a, z) = max
c,h,a′

{
u (c, ω h) + β Ez Tb(fo, fr) (a′, z′)

}
s.t. c+ 1

R
a′ ≤ w z + a− rh h,

a′ ≥ 0, c ≥ 0, 0 ≤ h ≤ ~

(A.2)

and where Tb(fo, fr)(a, z) =

max
{

max
θ∈D(a)

{
mb (θ) fo (a− (1 + τb) p(θ)~, z) + (1−mb (θ)) fr (a, z)

}
, fr(a, z)

}
. (A.3)

The feasible correspondence D of the inner maximization problem in (A.3) is defined by

D(a) = {θ ∈ R+ : a− (1 + τb) p(θ) ~ + (1− ζ) p ~ ≥ 0} for a ∈ A. (A.4)

If D(a) = ∅, we attach the value −∞ to participation, and thus Tb(fo, fr)(a, z) = fr(a, z) in
this case. Also, since

p(θ) =
(1− 1

R
+ δ)p

ms (θ) +
( 1
R
− δ

)
p for all θ ∈ R+, (A.5)

limθ→∞ p(θ) = p. Since p is decreasing, D(a) 6= ∅ if and only if a > (τb + ζ) p ~. Since p is
continuous in R++, D has closed sections. However, D(a) is not compact. To circumvent
this problem and be able to apply Bergé’s Maximum Theorem, we assume that agents choose
mb rather than θ, which is allowed since mb is strictly monotone. Let

p̂(mb) =
(1− 1

R
+ δ) p

m̂s (mb)
+
( 1
R
− δ

)
p for mb ∈ (0, 1), (A.6)

and p̂(0) = p. The function p̂ is continuous in [0, 1), since it is the composition of two
continuous functions when 0 < mb < 1 and, for mb = 0, limmb→0+ p̂(mb) = limθ→∞ p(θ) = p.
Also, since m̂s is strictly decreasing and −m̂s

′/m̂s is non decreasing, p̂ is strictly increasing
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and strictly convex. Finally, limmb→1− p̂(mb) = limθ→0+ p(θ) = ∞. By choosing mb as the
new decision variable, the feasible correspondence D becomes D, defined by

D(a) = {mb ∈ [0, 1) : a− (1 + τb) p̂(mb) ~ + (1− ζ) p ~ ≥ 0}. (A.7)

The sections of D are nonempty and compact for a − (1 + τb) p̂(mb)~ + (1 − ζ) p~ > 0. In
fact, when nonempty, D(a) is the bounded and closed interval

[
0, p̂−1

(
a/~+(1−ζ) p

1+τb

)]
. Problem

(A.3) thus transforms into Tb(fo, fr)(a, z) =

max
{

max
mb∈D(a)

{
mb fo (a− (1 + τb) p̂(mb) ~, z) + (1−mb) fr (a, z)

}
, fr(a, z)

}
. (A.8)

In what follows, we assume that the minimum rental-unit size is ε > 0, so 0 < ε ≤ h ≤ ~.
This is an innocuous assumption since the utility of renting 0 units in −∞. Also, we assume
that the poorest and less productive owner can sustain a strictly positive level of consumption
at the borrowing limit, w z1 + a > δ p ~ + (1 − ζ) p ~/R > 0. In the same way, the poorest
and less productive renter can sustain a strictly positive level of consumption when renting
maximum-sized units, w z1 + a > rh ~. Since u is non decreasing both with respect to c and
h, this assumption assures that a positive level of consumption is always possible for both
owners and renters, so that their utility functions remain bounded from below:

u(c, ~) ≥ uo := u (w z1 + a+ δ p ~ + (1− ζ) p/R, ~) > −∞
u(c, ωh) ≥ ur := u(w z1 − rh h+ a, ω ε) > −∞, (A.9)

for all c > 0, ε < h ≤ hr.

Let u = min{uo, ur}. Theorem 1 below uses (A.9) to deal with the utility functions
postulated in the calibration and numerical exercises, but allows for unbounded from above
utilities (e.g., logarithmic). In this latter case, we need to control for their rate of growth on
the feasible correspondence, as well as for the size of the discount factor β to guarantee that
the dynamic programming equations define a contraction operator. To this end, consider
the sequence {a0, a1, . . . , aj, . . .}, defined by

aj =
(
Rw zn +Rδ p ~

R− 1 + a

)
Rj − Rw zn +Rδ p ~

R− 1 , j = 0, 1, 2, . . . , (A.10)

and recall that zn = maxZ. Note that a ≤ aj ≤ aj+1, aj →∞ as j →∞, and a0 = a. Let

uoj = max
a∈[a,aj ]

∣∣∣∣∣u
(
w zn + a+ (1− ζ)p ~

R
, ~
)∣∣∣∣∣ ,

urj = max
a∈[a,aj ]

|u (w zn − rh + a, ωε)| ,

and uj = max{uoj , urj}. Note that both uoj and urj are well defined because u is continuous
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and by (A.9). Define

vj :=
∞∑
i=j

βi−juj, for j = 0, 1, 2, . . .. (A.11)

The following theorem establishes the existence of a unique solution to the Bellman equation
in a suitable class of functions. The result covers both the bounded and unbounded-from-
below cases under the hypotheses discussed above.

Theorem 1. Suppose that

u := lim
j→∞

uj+1

uj
<

1
β
. (A.12)

Then, the dynamic programming equations (A.1), (A.2) and (A.3) admit unique continuous
solutions Wo, Wr and Wb, respectively, in the class of functions F defined by

F =

f ∈ C(X) : f(a, z) ≥ u

1− β ,

for all a ∈ A, z ∈ Z, and max
a∈[a,aj ]

f(a) ≤ vj, for all j = 0, 1, . . .

. (A.13)

Moreover, both Wo and Wr are strictly increasing and Wb is non decreasing.

Proof. Let (fo, fr) ∈ F×F . If a ≤ (1+τb) p ~−(1−ζ) p ~, the optimal choice in the afternoon
market is θ0, and so Tb(fo, fr)(a, z) = fr(a, z), which is continuous. When a > (1 + τb) p ~−
(1 − ζ) p ~, the function (a, z,mb) 7→ mb fo (a− (1 + τb) p̂(mb)~, z) + (1−mb) fr (a, z) is
continuous and the correspondence D defined in (A.7) is nonempty valued, compact valued,
and continuous. Hence, by the Theorem of the Maximum, the value function

max
mb∈D(a)

{
mb fo (a− (1 + τb) p̂(mb)~, z) + (1−mb) fr (a, z)

}
(A.14)

is continuous. Since Tb(fo, fr) is defined as the maximum between this value function and fr,
it is also continuous. It follows that the functions defining the right-hand side of To(fo, fr)
and Tr(fo, fr) given in (A.1) and (A.2), respectively, are continuous. Moreover, the feasible
correspondence is nonempty valued, continuous and compact valued in both cases. Hence,
by the Theorem of the Maximum, both To(fo, fr) and Tr(fo, fr) are continuous. Let us see
that Ti(F × F) ⊆ F , for i = o, r, b. Let (fo, fr) ∈ F × F . By the definition of Tb as the
maximum of a convex combination of fo and fr, it is clear that Tb(fo, fr) ≥ u

1−β . Plugging
this inequality into (A.1) and (A.2), we obtain

To(fo, fr)(a, z) ≥ max
c,a′

u(c, ~) + β
u

1− β ≥ u+ β
u

1− β = u

1− β , (A.15)
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and

Tr(fo, fr)(a, z) ≥ max
c,h,a′

u(c, ωh) + β
u

1− β ≥ u+ β
u

1− β = u

1− β , (A.16)

respectively. On the other hand,

Tb(fo, fr)(a, z) ≤ mb fo (a− (1 + τb) p̂(mb)~, z) + (1−mb) fr (a, z) ≤
mbvj + (1 −mb)vj = vj (A.17)

and Tb(fo, fr)(a, z) ≤ fr(a, z) ≤ vj, for all a ∈ [a, aj], for all j = 0, 1, . . .. Hence, given that
for any a ∈ [a, aj], D(a) ⊆ [a, aj+1] by the definition of vj given in (A.12), we have

To(fo, fr)(a, z) ≤ uj + βvj+1 = vj, for all a ∈ [a, aj]. (A.18)

By a similar computation, To(fo, fr)(a, z) ≤ vj for all a ∈ [a, aj]. It thus follows that
Ti(F × F) ⊆ F , for all i = o, r, b. Consider now C(X) with the topology generated by
the countable family of seminorms ‖f‖j = maxa∈[a,aj ],z∈Z |f(a, z)|, for all j = 0, 1, . . .. This
family is separated (‖f‖j = 0 for all j implies that f is the null function). Since the
compact intervals [a, aj] form an increasing family that covers A and they have nonempty
interiors, and the space Z is finite, the space C(X) is complete with this topology (see
Rincón-Zapatero and Rodríguez-Palmero, 2003). Consider the product space F × F with
the seminorms ‖(fo, fr)‖j = max{‖fo‖j, ‖fr‖j}, for j = 0, 1, . . . and (fo, fr) ∈ F × F . It is
clear that F ×F is complete with this topology, thus closed. Consider the series ∑∞j=0 c

−juj,
with c > u, where u was defined in (A.12). By the ratio test and by (A.12),

lim
j→∞

c−(j+1)uj+1

c−juj
= u

c
< 1, (A.19)

so the series converges. Moreover, since β u < 1, it is possible to choose c > u with β c < 1.
Following Theorem 4 in Rincón-Zapatero and Rodríguez-Palmero (2003), T = (To, Tr) is
a local contraction on F × F , so T admits a unique fixed point in F × F , that is, there
are unique Wo ∈ F , Wr ∈ F such that To(Wo,Wr) = Wo and Tr(Wo,Wr) = Wr. Also,
Tb(Wo,Wr) = Wb is the buyer’s value function.

To prove that Wo and Wr are increasing in a, let z ∈ Z be fixed and let a1 < a2. Then
D(a1) ⊆ D(a2), since p̂, as the composition of two decreasing functions, is increasing. Let
(fo, fr) ∈ F×F , where both fo and fr are non decreasing. Thenmb fo (a− (1 + τb) p̂(mb)~, z)+
(1−mb) fr (a, z) is non decreasing in a, since 0 ≤ mb < 1. Hence,

max
mb∈D(a1)

{
mb fo (a1 − (1 + τb) p̂(mb)~, z) + (1−mb) fr (a1, z)

}

≤ max
mb∈D(a1)

{
mb fo (a2 − (1 + τb) p̂(mb)~, z) + (1−mb) fr (a2, z)

}

≤ max
mb∈D(a2)

{
mb fo (a2 − (1 + τb) p̂(mb)~, z) + (1−mb) fr (a2, z)

}
.
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It follows that Tb(fo, fr) is continuous and, being the maximum of two non-decreasing func-
tions, it is also non decreasing. Plugging this result into the definitions of To and Tr, we
get, by the same reasoning, that both Tb(fo, fr) and Tr(fo, fr) are non decreasing, since the
feasible correspondence of both problems is increasing in a. Actually, both Tb(fo, fr) and
Tr(fo, fr) are strictly increasing, since the utility functions are increasing. Finally, the subset
of non-decreasing functions of F is closed, so the fixed points Wo, Wr and Wb are non de-
creasing. However, in the case of Wo and Wr, they are increasing by the previous argument,
as they satisfy To(Wo,Wr) = Wo and Tb(Wo,Wr) = Wb, respectively.

The general theorem above applies to the utility functions used in the calibration of the
model in Section 3.

Corollary 2. The conclusions of Theorem 1 hold under the same hypotheses when

u(c, h) = c1−σ

1− σ + φ
h1−σ

1− σ , φ > 0,

for any σ ≥ 1, or when σ < 1 but R1−σβ < 1.

Note that σ = 1 corresponds to u(c, h) = ln c+ φ ln h.

Proof. We only need to show that (A.12) holds. Note that u(·, h) is increasing in cases 1 and
2. When σ > 1, u is negative and bounded above. The sequence {uj} defined just above
Theorem 1, being increasing and bounded is convergent, thus u = 1 < 1

β
. When σ < 1, u is

positive but unbounded from above. Given the definition of aj made n the proof of Theorem
1, it is immediate to see that

u = lim
j→∞

uoj+1

uoj
= lim

j→∞

φ
(
w zn + aj+1 + (1−ζ)p

R

)1−σ
+ v(~)

φ
(
w zn + aj + (1−ζ)p

R

)1−σ
+ v(~)

= R1−σ, (A.20)

hence R1−σ < 1
β
assures that the hypothesis of Theorem 1 are fulfilled. In the logarithmic

case, where σ = 1, uoj is bounded by
∣∣∣log (w + aj + (1−ζ)p

R
)
∣∣∣+φ| log ~| for large enough j. The

ratio

| log (w + aj+1 + (1−ζ)p
R

)|+ φ| log ~|
| log (w + aj + (1−ζ)p

R
)|+ φ| log ~|

(A.21)

tends to 1 as j →∞, so (A.12) is satisfied. A similar computation holds for urj .

B Differentiability, Euler equations and concavity

In this section we prove differentiability of the value functions along the optimal paths,
obtain rigorously the Euler equations and prove concavity of the value functions in the
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participation region. Our results are based on a generalization of the Envelope Theorem
that we develop in Theorem 3, and on the approach recently introduced in Rincón-Zapatero
(2019) for dealing with non-concave stochastic dynamic programming problems. Theorem
3 characterizes the so-called Fréchet differentials of the value function, which is a rather
weak concept of differentiability. This is specially well suited for studying the household’s
problem, where, aside from non concavity, it is not legitimate to assume differentiability of
the buyer’s value function in the definition of (A.1) and (A.2). This is the main reason
for which other approaches to prove differentiability of the value function in a non-concave
framework (as those explored in Dechert and Nishimura (1983), Milgrom and Segal (2002),
or Clausen and Strub (2016)) do not apply to our setting (Menzio et al. (2013b) in a related
model enumerate another reasons that also apply to our model). Thanks to the results that
we introduce in this section, we do not need to introduce lotteries but work directly within
the original non-concave framework. We prove rigorously that the Euler equations still hold
as necessary conditions of optimality, so they can be used to compute the optimal policies.
We establish a link between the concavity of the value functions and the monotonicity of the
optimal consumption policies.

We introduce the concepts of Fréchet super– and subdifferentials of a function (F-
superdifferential and F-subdifferential, henceforth) to simplify the presentation and the
proofs that follow. For a continuous function f : Ω ⊆ Rn → R, where Ω is an open
set, the vector p ∈ Rn belongs to the F-superdifferential of f at x0 ∈ Ω, D+f(x0), if and
only if there exists a continuous function ϕ : Ω −→ R which is differentiable at x0 with
Dϕ(x0) = p, f(x0) = ϕ(x0) and f −ϕ has a local maximum at x0. Similarly, p ∈ Rn belongs
to the F-subdifferential of f at x0 ∈ Ω, D−f(x0), if and only if there exists a continuous
function ϕ : Ω −→ R which is differentiable at x0 with Dϕ(x0) = p, f(x0) = ϕ(x0) and f−ϕ
has a local minimum at x0. D+f(x0) and D−f(x0) are closed convex (and possible empty)
subsets of Rn. Yet, if f is differentiable at x0, then bothD+f(x0) andD−f(x0) are nonempty
and D+f(x0) = D−f(x0) = {Df(x0)}. Reciprocally, if for a function f , both D+f(x0) and
D−f(x0) are nonempty, then f is differentiable at x0 and D+f(x0) = D−f(x0) = {Df(x0)},
where Df denotes the derivative of f . Given two continuous functions f1 and f2, two non-
negative numbers λ1 and λ2 and pi ∈ D+fi(x), for i = 1, 2, λ1p1 +λ2p2 ∈ D+(λ1f1 +λ2f2)(a).
A similar proposition holds for D−. Another property that we will use is that, whenever x0 is
a local maximum of f in Ω, 0 ∈ D+f(x0). Finally, D+f(x0) 6= ∅ if the function f is concave.
See, for instance, Bardi and Capuzzo-Dolcetta (1997) for these and for other properties of
the F-super– and subdifferentials of a function.

The next theorem characterizes the F-differentials of the value function

f(x) = max
y∈Γ(x)

F (x, y),

where F : X × Y → R is continuous, with X, Y ⊆ Rn, and where Γ is a correspondence
from X to Y is nonempty, compact valued and continuous. The result is well known in the
case in which the correspondence Γ is constant (i.e., when Γ(x) = Y for all x ∈ X), but
for the general case it is a generalization of the Benveniste–Scheinkman envelope argument
which applies to non-concave problems.
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Theorem 3. Consider the problem described above, f(x) = maxy∈Γ(x) F (x, y). Let x0 be an
interior point of X and y0 ∈ Γ(x0) satisfying:

(i) f(x0) = F (x0, y0), and

(ii) there is a ball B(x0, ε) in X with center x0 and radius ε > 0, such that for all
x ∈ B(x0, ε), y0 ∈ Γ(x).

Then D−x F (x0, y0) ⊆ D−f(x0) and D+f(x0) ⊆ D+
x F (x0, y0), where D±x F (x0, y0) denotes

the F–upper/lower differential of the function x 7→ F (x, y0).

Proof. By Bergé’s Theorem, f is continuous and the optimal policy correspondence is nonempty.
Assumptions (i) and (ii) ensure that the function x 7→ f(x)−F (x, y0) is well defined on the
ball B(x0, ε) and attains a local minimum at x0. If D−x F (x0, y0) is empty, there is nothing
to prove. Suppose that it is nonempty. Let ϕ be continuous in B(x0, ε) and differentiable
at x0 such that F (x, y0) − ϕ(x) has a local minimum at x0 and F (x0, y0) = ϕ(x0). Then
f(x)− ϕ(x) ≥ F (x, y0)− ϕ(x) ≥ 0 and f(x0)− ϕ(x0) = F (x0, y0)− ϕ(x0) = 0 by (i). Thus
x0 is a local minimum of f − ϕ, and so Dϕ(x0) ∈ D−f(x0). Now, if D+f(x0) = ∅ then
D+f(x0) ⊆ D+

x F (x0, y0), trivially. If D+f(x0) 6= ∅, let ϕ be continuous in B(x0, ε) such that
Dϕ(x0) ∈ D+f(x0) and f − ϕ has a local maximum at x0, with (f − ϕ)(x0) = 0. Then
F (x, y0)− ϕ(x) ≤ f(x)− ϕ(x) ≤ 0 = F (x0, y0)− ϕ(x0), for all x ∈ B(x0, ε). Hence, x0 is a
maximum of x 7→ F (x, y0)− ϕ(x), and so Dϕ(x0) ∈ D+

x F (x0, y0).

Remark 4. The theorem is a generalization of the classical Envelope Theorem of dynamic
programming, since when the value function f is concave, D+f(x0) 6= ∅. If F is differentiable
with respect to a then D−x F (x0, y0) 6= ∅, and hence D−f(x0) 6= ∅. Both Fréchet differentials
of f are then non empty and thus f is differentiable. Note that D−x F (x0, y0) 6= ∅ is much
weaker than the assumption of differentiability of F . On the other hand, (ii) is satisfied when
(x0, y0) is an interior point of the graph of Γ, although it may be fulfilled more generally, as
we will show in our housing model.

We will apply the above theorem to show the validity of the Euler equations in our model,
which is a non-trivial issue due to the lack of concavity. Although the household problem we
study is stochastic, the theorem adapts easily since the set of shocks is finite. The properties
of differentiability and concavity of the functions involved in our model have to be understood
once z ∈ Z is fixed. In particular, we will use the same notation D±f(x, z) for the upper or
lower differential of the mapping x 7→ f(x, z), where z is fixed, for a function f that depends
on the variables (x, z). Also, we will use the notation f ′(x, z) for the derivative of f with
respect to x with preference over the more involved Dxf(x, z) or ∂f

∂x
(x, z), since z plays the

role of an exogenous parameter.

After this preliminary exposition, we turn to our specific problem, given by (A.1)–(A.3).
In the results that follow, we will assume that there are selections of gao , gar , ghr and gθb such
that gao and gar are interior, and

0 ≤ gθ(a, z) < p−1
(
a+ (1− ζ)p~

(1 + τb
)~
)
, (B.1)
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for all a ∈ A. We do not assume uniqueness of the optimal policies. From (A.2), the renter’s
consumption and housing choices, when interior, are related by the optimality condition

rhuc(gcr(a, z), ωghr (a, z)) = ωuh(gcr(a, z), ωghr (a, z)).

Thus, since u is concave, the assumption uch > 0 guarantees that gcr and ghr have the same
monotonicity properties with respect to a. We will assume that u is of class C2 and that
uch > 0 holds.

Our strategy for proving that the value functions are differentiable at the optimal poli-
cies, consists of showing that both the F-subdifferential and the F-superdifferential of the
continuation value functions EzWo and EzWb are nonempty. This is key to show the validity
of the Euler equations and to link concavity of Wo and Wr with the renter’s and owner’s op-
timal consumption being non-decreasing. The Euler equations are used in the computation
part of the model combined with endogenous grid method (see Section D.2.2) and concavity
allows us to prove differentiability of the value functions, which is used to derive the sorting
result and to characterize the participation thresholds in the competitive search market (see
Section 2.5.2). All this program is made possible thanks to Theorem 3, complemented with
the results obtained in Rincón-Zapatero (2019). However, this approach does no apply di-
rectly to the Bellman equations satisfied by Wo, Wr and Wb, due to their complex structure,
so we need to elaborate a bit more.

Lemmas 5, 6 and 7 below deal with the F -differentials of the value functions, Proposi-
tions 8 and 9 establish the Euler equations for renters and owners, and differentiability of
EzWb and EzWo, respectively. Concavity of Wr and Wo is proved in Propositions 11 and
12. Differentiability of the value functions Wr and Wo at the optimal policies is proved in
Corollary 13.

Lemma 5. Let a0 > a and z ∈ Z. Then

(i) uc(gco(a0, z), ~) ∈ D−Wo(a0, z), and

(ii) uc(gcr(a0, z), ωghr (a0, z)) ∈ D−Wr(a0, z).

Proof. For a0 > a and z ∈ Z, Wo(a0, z) and Wr(a0, z) satisfy the Bellman equations (A.1)
and (A.2), respectively. Since both gao(a0, z) and gar (a0, z) are interior and the feasible cor-
respondence is a closed interval, there is an open interval I, centered at a0, such that both
gao(a0, z) and gar (a0, z) belong to D(a) for all a ∈ I. Thus (i) and (ii) in Theorem 3 hold. To
prove statement (i) in the lemma, consider the function F defined by

F (a, gao(a0, z), z) = u (wz + a− δp~− gao(a0, z)/R, ~) + β (1− π)EzWo (gao(a0, z), z′)
+ βπ EzWb (gao(a0, z) + (1− τs)p~, z′) ,

which is differentiable with respect to a, with derivative uc(gco(a0, z), ~) at a = a0, since
the second and third summands in the definition of F are constant. Note that Wo(a0, z) =
F (a0, g

a
o(a0, z), z) andWo(a, z) ≥ F (a, gao(a0, z), z). Thus Theorem 3 implies uc(gco(a0, z), ~) ∈
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D−Wo(a0, z). In order to prove statement (ii), let now the function F be defined by

F (a, gar (a0, z), z) = u
(
wz + a− rhh− gar (a0, z)/R, ωghr (a0, z)

)
+ β EzWb (gar (a0, z), z′) ,

which is differentiable with respect to a, with derivative uc(gcr(a0, z), ωghr (a0, z)) at a = a0.
Note that Wr(a0, z) = F (a0, g

a
r (a0, z), z) and Wr(a, z) ≥ F (a, gar (a0, z), z). Hence, Theorem

3 implies uc(gcr(a0, z), ωghr (a0, z)) ∈ D−Wr(a0, z).

To prove that D−Wb is nonempty is a bit more involved. We rewrite the problem of
a potential buyer in an equivalent form. Let us define amin = (1 + τb) p~ − (1 − ζ) p~ =
(ζ + τb)p~. This is the threshold value of a above which D(a), as defined in (A.4), is
nonempty. Remember the definition of apart(z) > amin as the maximum a > amin such that
gθ(a, z) = θ0 (if it exists.) Let, for z ∈ Z, the function

W (a,mb, z) =

 Wr(a, z), if a ≤ amin, mb ∈ [0, 1],
mb (Wo(a− (1 + τb)p̂(mb)~, z)−Wr(a, z)) +Wr(a, z), if a > amin, mb ∈ D(a),

(B.2)

where p̂(mb) in (A.6) and D(a) in (A.7). Let D̃(a) = {0} for a ≤ amin, and D̃(a) = D(a) for
a > amin. The correspondence D̃ is nonempty, compact valued and continuous. Formally, we
are identifying the choice θ0 in the original problem with mb = 0. Given this, it is clear that
the original problem is equivalent to the following new formulation: maxW (a,mb, z) subject
to mb ∈ D̃(a). Note that W is piecewise continuous and, when restricted to the graph of D̃,
it is continuous. To see this, let (an, (mb)n) be a sequence converging to (amin,mb) along the
graph of D̃, where mb ∈ [0, 1], then for an > amin, (mb)n = p̂−1(an)→ p̂−1(amin) = 0, and for
an < amin, (mb)n = 0. Hence,

W (an, (mb)n, z)→ 0 ·(Wo(0, z)−Wr(amin), z)+Wr(amin, z) = Wr(amin, z) = W (amin, 0, z),

as n → ∞. Since mb = 0 is feasible for any a and gθb (a, z) = 0 in the region a ≤ apart(z),
Wb(a, z) = Wr(a, z) in this region.

Lemma 6. Let a0 > a and z ∈ Z. Then D−Wb(a0, z) = D−Wr(a0, z), for a0 < apart(z), and

mb

(
gθb (a0, z)

)
po +

(
1−mb

(
gθb (a0, z)

))
pr ∈ D−Wb(a0, z), for a0 > apart(z), (B.3)

where po = uc
(
gco(a0 − (1 + τb) p(gθb (a0, z)), z), ~

)
and pr = uc(gcr(a0, z), ωghr (a0, z)).

Proof. For a < a < apart(z), Wb(a, z) = Wr(a, z), so (i) is trivial. Let now a0 > apart(z).
Since gθb is interior, the optimal gmb(a0, z) is interior. Thus the function of a

F (a, gmb(a0, z), z) = gmb(a0, z)Wo(a− (1+ τb)p̂(gmb(a0, z))~, z)+(1−gmb(a0, z))Wr(a, z))
(B.4)
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is well defined in a suitable interval centered at a0. Although we can not assert that F is
differentiable with respect to a, as we have not proved yet differentiability of Wo and Wr, we
can prove that18 D−a F (a0, g

mb(a0, z), z) 6= ∅. To see this, take

po ∈ D−Wo (a0 − (1 + τb) p̂(gmb(a0, z)~), z) and pr ∈ D−Wr(a0, z),

which exist by Lemma 5. By the property of convexity of the differentials mentioned just
above Theorem 3, gmb(a0, z) po+(1−gmb(a0, z)) pr ∈ D−a F (a0, g

mb(a0, z), z), or, equivalently,

mb

(
gθb (a0, z)

)
po +

(
1−mb

(
gθb (a0, z)

))
pr ∈ D−a F (a0, g

θ
b (a0, z), z), (B.5)

with po and pr as described in the statement of the lemma. Since D−a F (a0, g
θ
b (a0, z), z) ⊆

D−Wb(a0, z) by Theorem 3, the result in the lemma holds.

The fact that the lower F–subdifferential of the value function is nonempty is not enough
to get differentiability, since the value functions need not be concave and hence the F-
superdifferential could be empty. Below we follow the path initiated in Rincón-Zapatero
(2019) to prove differentiability in the absence of concavity, which uses the optimality condi-
tion in the Bellman equation, where the value function appears both at the left and the right
of the equality defining the functional equation. This will provide us with conditions for the
nonemptyness of the F-superdifferential of the value functions at the optimal policies.

The following results deal with the F -superdifferentials of the value functions. Actually,
due to the stochastic nature of the problem, what is characterized is the F -superdifferentials
of the expected value functions (at the optimal policies). In consequence, what can be
asserted with full generality is the differentiability of the expected value functions, and not
the value functions itself. This was pointed out for the first time in Rincón-Zapatero (2019).

Lemma 7. Let a0 > a. Then 1
βR
uc(gcr(a0, z), ωghr (a0, z)) ∈ D+EzWb(gar (a0, z), z′).

Proof. Consider the Bellman equation (A.2) and the function of a′ given by

F (a0, a
′, z) := u(wz + a0 − rhh− a′/R, ωghr (a0, z)) + βEzWb(a′, z′). (B.6)

Since gar (a0, z) is an interior maximizer to the Bellman equation (A.2), 0 ∈ D+
a′F (a0, g

a
r (a0, z), z).

But, since u is differentiable, D+
a′F = {−uc/R}+ βD+EzWb, where we have omitted the ar-

guments. Hence, 1
βR
uc(gcr(a0, z), ωghr (a0, z)) ∈ D+EzWb(gar (a0, z), z′).

Our next result shows that EzWb is differentiable at the renter’s optimal policy, and
establishes the validity of the renter’s Euler equation.

18This is one of the advantages of working with F -sub or superdifferentials, and a sample of the usefulness
of Theorem 3 and how it relax the classical assumption of differentiability. Note that at this stage nothing
is known about the differentiability of EzWo and EzWb, and consequently about the auxiliary function F ;
without resorting to the a weaker concept of differentiability as the Fréchet–differentials, we could not move
forward.
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Proposition 8. Let a > a, z ∈ Z. Then EzWb is differentiable at a′ = gar (a, z) 6= apart(z),
with derivative

[EzWb]′ (a′, z′) = 1
βR

uc(gcr(a′, z), ωghr (a′, z))

and the Euler equation

− 1
βR

uc(gcr(a, z), ωghr (a, z)) + Ezuc(gcr(a′, z′), ωghr (a′, z′)) = 0,

for a′ = gar (a, z) < apart(z) and

− 1
βR

uc(gcr(a, z), ωghr (a, z)) + Ez

mb

(
gθb (a′, z′)

)
uc
(
gco(a′ − (1 + τb) p(gθb (a′, z′))), ~

)

+
(
1−mb

(
gθb (a′, z′)

))
uc(gcr(a′, z′), ωghr (a′, z′))

 = 0,

for a′ = gar (a, z) > apart(z), holds.

Proof. Let a > a and z ∈ Z such that a′ = gar (a, z) ≤ apart(z). By Lemma 5 and Lemma 6,
uc(gcr(a0), ωghr (a0, z)) ∈ D−Wb(a0, z). By the properties of the differentials listed above,

Ezuc(gcr(a′, z′), ωghr (a′, z′)) ∈ EzD−Wb(a′, z′). (B.7)

Similarly, if gar (a, z) > apart(z), we have

Ez

mb

(
gθb (a′, z′)

)
uc
(
gco(a′ − (1 + τb) p(gθb (a′, z′))), ~

)

+
(
1−mb

(
gθb (a′, z′)

))
uc(gcr(a′, z′), ωghr (a′, z′))

 (B.8)

belongs to D−EzWb(a′, z′), where a′ = gar (a, z). By Lemma 7, the F-superdifferential
D+EzWb(gar (a, z), z′) is nonempty, for all a > a. Hence, EzWb(·, z) is differentiable at
gar (a, z), D−EzWb(gar (a, z), z′) = D+EzWb(gar (a, z), z′), and these two sets are singletons.
By Lemma 7, the unique element of D+EzWb(gar (a, z), z′) is 1

βR
uc(gcr(a, z), ωghr (a, z)), which

has to be the unique element of D−EzWb(gar (a, z), z′) given in (B.7) and (B.8) above, ob-
taining in this way the renter’s Euler Equation and the expression for the derivative stated
in the lemma.

Differentiability of EzWb proved above will be used to prove differentiability of EzWo and
to obtain the owner’s Euler equation.

Proposition 9. Let a > a, z ∈ Z. Then EzWo is differentiable at a′ = gao(a, z), with
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a′ 6= apart(z)− (1− τb)p~, with derivative

[EzWo]′ (a′, z′) = uc(gco(a′, z), ~)

and the Euler equation

βR(1− π)uc(gcr(a′, z), ~)− uc(gco(a, z), ~) + βRπ [EzWb]′ (a′ + (1− τs)p~, z′) = 0.

holds.

Proof. From (A.1), the function of a′

F (a, a′, z) = u (wz + a− δp~− a′/R, ~)+β (1−π)EzWo (a′, z′)+βπ EzWb (a′ + (1− τs)p~, z′)

satisfies 0 ∈ D+
a′F (a, gao(a, z), z). Since EzWb is differentiable by Proposition 8, we have by

the properties of the differentials19

− 1
R
uc(gco(a, z), ~) + βπ [EzWb]′ (a′ + (1− τs)p~, z′) ∈ −β (1− π)D+EzWo(a′, z′),

showing that D+EzWo is nonempty at a′ = gao(a, z). This, combined with Lemma 5, and a
reasoning similar to the proof of Proposition 8 above, imply that EzWo is differentiable
at gao(a, z) and that the derivative is given by the unique element in D−EzWo, that is
[EzWo]′(a′, z) = uc(gco(a′, z), ~). Finally, the equalityD−EzWo(a′, z′) = D+EzWo(a′, z′), gives
the owner’s Euler equation.

A more explicit expression of the Euler equation id obtained after replacing [EzWb]′(a′+
(1− τs)p~, z′) by the value obtained in (B.8) above.

We now study concavity. Given an exogenous shock z, concavity of the value functions
with respect to the endogenous variable a is proved in intervals where the renter’s optimal
consumption policy is non decreasing (to be precise, a suitable selection of gcr). We first
establish concavity of EzWb.

Lemma 10. Let z ∈ Z. Let I ′ be a subinterval of the image of gar (·, z) such that apart(z) /∈ I ′.
Then EzWb is concave in I ′ if and only if gcr(·, z) is nondecreasing in the inverse image of
I ′, (gar )−1(I ′, z) = {a > a : gar (a, z) ∈ I ′}.

Proof. Let a′i ∈ I ′ and let ai > a such that a′i = gar (ai, z), for i = 1, 2. Without loss of
generality, suppose that a′1 < a′2. By the Mean Value Theorem

EzWb(a′2, z′)−EzWb(a′1, z′) = [EzWb]′(a′z, z′)(a′1−a′2) = 1
βR

uc(gcr(a′z, z), ωghr (a′z, z))(a′2−a′1),

(B.9)
19We are implicitly assuming that there is some asset value ã ∈ A such that gao (a, z)+(1−τs)p~ = gar (ã, z).

Since gar is an upper semicontinuous and unbounded correspondence, this must hold.
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where a′1 < a′z < a′2. If gcr is non decreasing with respect to a, then gcr(a′1, z) ≤ gcr(a′z, z) and
ghr (a′1, z) ≤ ghr (a′z, z); since u is concave, uc is decreasing, thus

uc(gcr(a′z, z), ωghr (a′z, z)) ≤ uc(gcr(a′1, z), ωghr (a′1, z))

Plugging this inequality into (B.9), we have

EzWb(a′2, z′)−EzWb(a′1, z′) ≤
1
βR

uc(gcr(a′1, z), ωghr (a′1, z))(a′2−a′1) = [EzWb]′(a′1, z′)(a′2−a′1),

proving that EzWb is concave in I ′. Obviously, the reasoning above is reversible, that is, if
EzWb is concave in I ′, then gcr is non decreasing with respect to a.

Proposition 11. Let z ∈ Z. Let I be an interval of A such that gar (I, z) = {a′ ∈ A : a′ =
gar (a, z), a ∈ A} is an interval and apart(z) /∈ gar (I, z). Then Wr is strictly concave in I if
and only if gcr(·, z) is non decreasing in I.

Proof. Let a1, a2 ∈ I and let λ1, λ2 ∈ [0, 1]. Since λ1a1 + λ2a2 ∈ I and gar (I, z) is an interval,
λ1g

a
r (a1, z) + λ2g

a
r (a2, z) ∈ gar (I, z). Hence, (λ1a1 + λ2a2, λ1g

a
r (a1, z) + λ2g

a
r (a2, z)) belongs to

the graph of the buyer’s feasible correspondence, since it is convex. Moreover, Wb is concave
on gar (I, z) by Lemma 10, from which is follows that Wr is concave. Let, to simplify the
notation, (gir)λ = λ1g

i
r(a1, z) + λ2g

i
r(a2, z), for i = c, a, h. Then

Wr(λ1a1 + λ2a2, z) ≤ u((gcr)λ), ω(ghr )λ)) + βWb((gar )λ), z)
≤ λ1u(gar (a1, z), ωghr (a1, z))) + λ2u(gar (a2, z), ωghr (a2, z)))

+ βλ1Wb(gar (a1), z) + βλ1Wb(gar (a1), z)
= λ1Wr(a1, z) + λ2Wr(a2, z),

where we have used (A.2), that u is concave and that EzWb is concave in the image of gar .
Hence, Wr is concave in I. Strict concavity of Wr follows from strict concavity of u.

Proposition 12. Let z ∈ Z. Let I be an interval of A such that both gao(I, z) and gar (I, z)
are intervals, apart(z) /∈ gar (I, z) and {(1 − τs)p~} + gao(I, z) ⊆ gar (I, z). Then Wo is strictly
concave on I if and only if gcr(·, z) is non decreasing in I.

Proof. We use the fact that the restriction of the operator To to the set F defined in (A.13)
is a contraction. This restricted operator is defined in the obvious way. Suppose that gcr(·, z)
is non decreasing in I. First, fix the buyer’s value function Wb which, given the hypotheses
of the proposition and Lemma 10, is concave on gar (I, z). The restricted operator is then

T bo (fo)(a, z) = max
c,a′

{
U b(c, ~, z) + β(1− π)Ezfo(a′, z)

}
, (B.10)

where U b(c, a′, z) = u(c, ~) +β(1−α)EzWb(a′+ (1− τb)p~, z) is strictly concave with respect
to (c, a′). Hence, if fo ∈ F is concave in a, then T bofo is concave in a and hence the limit of the
iterating sequence (T bo )n,Wo, is concave in a. Once this is proved, the dynamic programming
equation (B.10) implies that Wo is in fact strictly concave, since U b is strictly concave.
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Corollary 13. Let z ∈ Z. Suppose that I ⊆ (a,∞) is an open interval where the assumptions
of Propositions 11 and 12 hold and where gcr(·, z) is non decreasing. Then the value functions
Wr and Wo are differentiable on I ∩ gcr(A, z).

Proof. The functions Wr and Wo are (strictly) concave on I, and the F–superdifferential of
a concave function is nonempty. Since the F–subdifferential of Wr and Wo are nonempty at
gcr by Lemma 5, the result follows from the properties of the differentials.

C Proofs of Propositions 1, and 3 to 5

The characterization results in Section 2.5.2 of the main text follow from the properties of the
value functions established in Sections A and B. Potential buyers solve problem (A.8), or,
equivalently, the problem described right after Lemma 5. Under the conditions of Theorem
1, an optimal solution to this problem exists, by the Theorem of the Maximum. Since the
price function p̂ in (A.6) is strictly increasing and strictly convex, the concavity result in
Propositions 11 and 12 imply that, conditional on participating in the afternoon market, the
optimal solution is unique under the assumptions in Proposition 1.

Proof of Proposition 1. Consider the buyer’s problem (A.8) formulated in terms of the deci-
sion variable mb and the price function p̂(mb). By the properties of p̂ and the monotonicity
and concavity of Wo, the function mb 7→ Wo(a − (1 + τb)p̂(mb)~, z) is differentiable, de-
creasing and strictly concave. Let us denote this function by Ŵo. Note that the function
mb 7→ mbŴ

′
o(mb) is decreasing, since 0 < m1

b < m2
b implies m2

bŴ
′
o(m2

b) < m1
bŴ

′
o(m2

b) and
m1
bW

′
o(m2

b) < m1
bW

′
o(m1

b), thus

m2
bŴ

′
o(m2

b) < m1
bŴ

′
o(m2

b) < m1
bW

′
o(m1

b).

If follows that (mbŴo(mb))′ = Ŵo(mb) +mbŴ
′
o(mb) is decreasing, thus mbŴo(mb) is strictly

concave. In consequence, the optimal mb, and hence the optimal gθb , is unique, for each z.
Hence, by the Theorem of the Maximum, the policy function is continuous. �

Proposition 3 follows from the properties of Wo in Theorem 1, and Propositions 9 and
12.

Proof of Proposition 3. Since Wo is differentiable (Proposition 9), the optimal choice of
a buyer with state (a, z) who participates in the afternoon market satisfies the first-order
condition:

Wo (a− (1 + τb)~p̂(mb), z)−Wr (a, z)−mb(1 + τb)~p̂′(mb)W ′
o (a− (1 + τb)~p̂(mb), z)

= λ̂(a, z)(1 + τb)~p̂′(mb), (C.1)

where λ̂(a, z) is the Lagrange multiplier of the borrowing constraint in (A.7). If λ̂(a, z) = 0,
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(C.1) can be written as:
( 1

1 + τb

)(
Wo (a− (1 + τb)~p, z)−Wr (a, z)

mb~W ′
o (a− (1 + τb)~p, z)

)
= p̂′(mb). (C.2)

The term in the left-hand side of (C.2) is the buyer’s marginal rate of substitution of p for
mb. Buyers prefer high values of mb and low values of p. Also, Wo is increasing and concave,
given z (by Theorem 1 and Proposition 12). Hence, (C.2) has a unique solution (in line with
Proposition 1), as the buyer’s marginal rate of substitution falls as mb and p increase along
an indifference curve. In addition, if (Wo (a− (1 + τb)~p, z)−Wr (a, z)) is non-decreasing in
a for each z and each p ≥ p̄, the fact that Wo is strictly concave in a implies that the buyer’s
marginal rate of substitution increases with a. Hence, so does the optimal choice of mb.
More generally, this result holds if the second term in the left-hand side of (C.2) increases
with a for each z and each p ≥ p̄. �

When the borrowing constraint binds for some buyers and is slack for other buyers with
identical productivity z, the existence of a threshold ac(z) below which the constraint binds
follows directly from the following result, which uses the differentiability of Wo and Wr and
the strict monotonicity of Wr.

Lemma 14. For a given z ∈ Z, if a < a′ and λ̂(a, z), λ̂(a′, z) > 0 then λ̂(a′, z) < λ̂(a, z).

Proof. If λ̂(a, z) > 0, the price paid by the buyer is a/~+(1−ζ)p
(1+τb)

, and assets at night are
−(1− ζ)p~. Thus (C.1) implies

λ̂(a, z) = Wo (−(1− ζ)p~, z)−Wr(a, z)
(1 + τb)~p̂′(mb)

−mbW
′
o (−(1− ζ)p~, z)

= Wo (−(1− ζ)p~, z)−Wr(a, z)
(1 + τb)~p̂′(mb)

−mbuc (gco (−(1− ζ)p~, z) , ~) , (C.3)

where the last equality follows from the Envelope Theorem. On the other hand, since p̂(mb)
is given by (A.6), mb satisfies

(1− 1/R + δ)p
m̂s(mb)

+ (1/R− δ)p = a/~ + (1− ζ)p
(1 + τb)

. (C.4)

As a increases to a′, mb increases, since m̂s is strictly decreasing. So does p̂′(mb), since p̂ is
strictly increasing and strictly convex. Since Wr is strictly increasing by Theorem 1, (C.3)
then implies λ̂(a′, z) < λ̂(a, z).

Proposition 5 follows from the continuity and differentiability of Wb and Wr, and Propo-
sition 1. The proof is based on the original problem in (2.9), where potential buyers choose
θ.

Proof of Proposition 5. Let W̃b(a, z) denote the value of problem (2.26), and let g̃θb (a, z) be
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the associated policy function. Then

Wb(a, z) = max{W̃b(a, z),Wr(a, z)}, (C.5)

and gθb (a, z) = g̃θb (a, z) if Wb(a, z) = W̃b(a, z) > Wr(a, z). Fix an arbitrary z ∈ Z. Since θ0
is the only feasible choice for a potential buyer when a ≤ amin = (τb + ζ) p ~, on this range
Wb(a) = Wr(a). Suppose a > amin, so the constraint set of problem (2.26) is nonempty.
Applying the Envelope theorem to the Lagrangian of this problem yields

W̃ ′
b(a, z)−W ′

r(a, z) = mb

(
g̃θb (a, z)

) (
W ′
o

(
a− (1 + τb)~p(g̃θb (a, z))

)
−W ′

r(a, z)
)

+λ(a, z).
(C.6)

The right-hand side of (C.6) is strictly positive because mb(θ) > 0 for all θ ∈ R+, the term
in brackets is strictly positive by assumption, and λ(a, z) ≥ 0. Thus W̃b(a, z) −Wr(a, z) is
strictly increasing in a for a > amin. By assumption,Wb(a, z) = W̃b(a, z) > Wr(a, z) for some
a. Since W̃b and Wr are continuous, there then exists apart(z) such that W̃b(a, z) > Wr(a, z)
for all a > apart(z) and W̃b(apart(z), z) = Wr(apart(z), z). Given that p(gθb (a)) > p for
a > apart(z), p(θ) is continuous, and so is gθb (a) on this range (by Proposition 2.26), it
follows that p(lima→apart(z)+ gθb (apart(z))) > p. Hence, apart(z) > amin and, by continuity,
p(gθb (a)) > p for any a < apart(z) sufficiently close to apart. Since W̃b(a, z)−Wr(a, z) is strictly
increasing on this range, Wr(a, z) > W̃b(a, z) and so gθb (a, z) = {θ0} for any a < apart(z). �

D Computation

In order to compute a stationary equilibrium, it is best to rewrite the problems of potential
buyers and intermediaries as follows. Instead of choosing mb taking p̂(mb) as given, they
choose p taking as given the inverse of the function p̂(mb), which we denote by mb(p). For
this, it is crucial that mb(θ) is a function rather than a correspondence. In particular, we
cannot use the standard “truncated” Cobb-Douglas matching function.

D.1 The matching function and the equilibrium price schedule

Given the Walrasian price p, equation (A.6) determines ms as a function of p:

ms(p) = (1− 1/R + δ) p
p− (1/R− δ) p. (D.1)

This function is strictly decreasing and strictly convex withms(p) = 1 and limp→∞ms(p) = 0,
and does not depend on the choice of the matching technology. We takems(θ) = (1 + θ−γ)

−1
γ
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with γ > 0, and mb(θ) = ms(θ)/θ. Thus m̂s(mb) = (1−mγ
b )

1/γ, and we can write

mb(p) = (1−ms(p)γ)1/γ , (D.2)

θ(p) = ms(p)
(1−ms(p)γ)1/γ . (D.3)

Here, θ(p) is the inverse of p(θ), so it is strictly decreasing and strictly convex with limp→∞ θ(p) =
0 and limp→p θ(p) =∞. Also,mb(p) is strictly increasing withmb(p) = 0 and limp→∞mb(p) =
1. As shown in Appendix A, mb(p) is strictly concave provided −m̂s

′(mb)/m̂s(mb) is non
decreasing. This last assumption can be further relaxed. For instance, for the value of γ
used in our calibration to match the value of median TTB in the data (and, in fact, for
any γ < 1), the assumption only holds for values of mb above some threshold. Yet we
only require that it holds for the range of values of mb which correspond the submarkets
that are active in equilibrium (since eliminating inactive submarkets does not change the
problem of a potential buyer). One can easily verify that it suffices to check that the slope
of −m̂′s(mb)/m̂s(mb) is positive for the lowest value of mb observed in equilibrium (which
corresponds to the optimal choice of a marginal buyer). If so, mb(p) is strictly concave on
the range of prices at which agents trade in equilibrium, and the results in Propositions 1,
and 3 to 5 again hold.

D.2 The household’s problem

Here we describe in detail the algorithm to solve the household’s problem.

D.2.1 The optimal choice of potential buyers

In order to extend the method in Fella (2014) to our framework, we proceed in two steps.
The problem of a potential buyer with state (a, z), where a > apart(z), can be written as

Wb(a, z) = maxp {Wr(a, z) +mb(p) [Wo (a− (1 + τb) p ~)−Wr(a, z)] }
s. t. p ~ ≤ p ~ ≤ a+(1−ζ) p ~

(1+τb)
,

(D.4)

with associated policy function gp(a, z). Since mb(p) = 0, the constraint p ≥ p does not
bind. The buyer’s gains from trading at price p > p are S(a, z, p) = Wo (a− (1 + τ) p ~, z)−
Wr(a, z). By Theorem 1, S(a, z, p) is strictly decreasing in p. If S(a, z, p) ≤ 0 then
S(a, z, p) < 0 for all p > p, and non-participation is optimal in this case. Suppose that
S(a, z, p) > 0, so the gains from participation are positive. It is direct to check from the
first-order condition of problem (D.4) that the Lagrange multiplier of the borrowing con-
straint is given by λ(a, z) = m′b(p)[S(a, z, p)− S̃(a, z, p)], where

S̃(a, z, p) = mb(p)
m′b(p)

uc (gco (a− (1 + τb) p ~, z) , ~) (1 + τb).
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Hence, at an optimal solution, S(a, z, p) ≥ S̃(a, z, p), with equality if the constraint does not
bind. By the Envelope Theorem,

W ′
o (a− (1 + τ) p ~, z) = uc (gco (a− (1 + τb) p ~, z) , ~) , so

S̃(a, z, p) = mb(p)
m′b(p)

(1 + τb)W ′
o (a− (1 + τ) p ~, z) .

If gco(a, z) is non-decreasing thenWo is concave, since u is strictly concave. Sincemb is strictly
increasing and strictly concave, this implies that S̃(a, z, p) is strictly increasing in p and non-
increasing in a. Also, S̃ (a, z, p) = 0 regardless of the value of a, since mb (p) /m′b (p) = 0.
There is then a unique value pT which solves S(a, z, pT ) = S̃(a, z, pT ) (in line with Proposition
1), and S(a, z, pT ) > 0. There are then two cases: (i) if pT ~ ≤ (a+ (1− ζ) p ~) /(1 + τb)
then gp(a, z) = pT , and (ii) otherwise, gp(a, z) ~ = (a+ (1− ζ) p) /(1 + τb).

We use the following algorithm to find gp(a, z). Given the value functions Wo, Wr and
the policy function gco:

1. Check that S (a, z, p) > 0, so the agent’s gains from participation are positive. (Oth-
erwise, gθ(a, z) = θ0).

2. Find the maximum price the agent is willing to pay. This is equal to pr = p̃ where
S (a, z, p̃) = 0 if p̃ ~ ≤ (a+ (1− ζ) p ~) /(1 + τb). Otherwise, this maximum price
satisfies pr ~ = (a+ (1− ζ) p ~) /(1 + τb).

3. If S̃ (a, z, pr) > S (a, z, pr) use any solver to find a price p ∈ (p, pr) for which S̃ (a, z, p) =
S (a, z, p).

4. If S̃ (a, z, pr) ≤ S (a, z, pr), set p = pr.

If S(a, z, p) is increasing in a, as in our quantitative model, the above arguments imply that
both pr and gp(a, z) increase with a (in line with Proposition 3). Agents with low assets are
constrained and choose p ~ = (a+ (1− ζ) p ~) /(1 + τb). Wealthier agents are unconstrained.

D.2.2 The choice of financial assets

Let us focus on the problem solved by a renter at night. Her choice of housing is intratemporal
and always satisfies

ghr (a, z) = min


(
φω1−σ

rh

) 1
σ

gcr(a, z), ~

. (D.5)

To simplify the exposition let us assume that h denotes the services of rented housing.
The expression for the Euler equation of the problem depends on whether the agent can
participate in the frictional market in the next afternoon. Thus. there are two cases. If
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gar (a, z) + (1− ζ) p ~ < (1 + τb) p ~, the Euler equation is:

−uc (gcr(a, z), h) +Rβ Ez uc (gcr(a′, z′), h) ≤ 0, (D.6)

with equality if a′ = gar (a, z) > 0. If gar (a, z) ≥ (ζ + τb) p ~, the Euler equation becomes

− uc (gcr(a, z), h) +Rβ Ezmb (gp(a′, z′)) uc (gco (a′ − (1 + τb) gp(a′, z′) ~, z) , ~)
+Rβ Ez (1−mb (gp(a′, z′))) uc (gcr (a′, z′) , h)

+ Rβ Ez
m′b (gp(a′, z′))

1 + τb

[
S (a′, z, gp(a′, z′))− S̃ (a′, z′, gp(a′))

]
≤ 0, (D.7)

with equality if a′ = gar (a, z) > 0. The problem solved by owners is similar, except for the
fact that they can borrow up to (1−ζ) p ~. We build on Fella (2014) and solve for the optimal
consumption rule using a modified version of his generalized endogenous grid method.

D.2.3 Solving the household’s problem

The algorithm is as follows:

1. Choose an initial guess for (W j
o , W

j
r , g

c,j
o , g

c,j
r ). For the owner’s value function, we use

the value function of an owner that is never hit by any shock. For the renter, we use
that of a renter who never participates in the afternoon market. The consumption
policy function of the renter will have a discontinuity point at apart(z). We choose
ajpart(z) = (ζ + τb) p as the first guess for this point.

2. Solve the afternoon problem as outlined in Section D.2.1 to find gp(a, z) and Wb(a, z).

3. For a given grid for next period’s assets, a′, we use the Euler equation to find consump-
tion today. We know that, if a′ < ajpart(z), the Euler equation is (D.6); otherwise it is
(D.7). We need to interpolate to obtain the consumption policy function as a function
of the grid of assets today. We also need to be aware of the discontinuity at ajpart(z).
This is key to use interpolation to find the policy function of consumption (as a function
of assets today). To find the maximum in the region of assets that correspond to par-
ticipation and non-participation, respectively, we conduct a Value Function Iteration
Step. There is a cutoff point below which the renter will not participate in the after-
noon market in next period. Save the node as aj+1

part(z). SaveW j+1
o , W j+1

r , gc,j+1
o , gc,j+1

r .
Notice that aj+1

part(z) may depend on the earnings state, z.

4. Go to step 2. Iterate until convergence.

A grid of 400 points in financial assets gives very high accuracy and is very fast.
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D.3 The stationary distribution

As we have already explained in Section 2.6, we cannot use Monte Carlo simulations because
the curse of dimensionality. We thus solve for the stationary distribution as in Huggett (1993)
and as explained in Ríos-Rull (1997). We use a much finer grid than the one used to solve
the household’s problem (750 points in our case) and guess the distribution of owners and
renters at night. Then we use the policy functions for financial assets to integrate numerically
and find the distribution of non-traders and potential buyers in the afternoon as shown in
equations (2.15)–(2.18).

D.4 The outer fixed point problem and the algorithm to find the
stationary equilibrium

1. Choose an initial guess for the Walrasian price p and obtain the price function in (D.2).
This guess pins down the rental price, rh = κ/~ + (1− 1/R + δ) p.

2. Find the households’s value and policy functions and the participation threshold apart(z)
using the process described in Section D.2.

3. Use the policy functions to find the stationary distributions using (2.15)–(2.18).

4. For each (a, z) in the support of ψb, use gp(a, z) to calculate the probabilities of buying
and selling in the submarkets where the buyers who participate search, mb(gθ(a, z))
and ms(gθ(a, z)).

5. Use (2.24) and (2.25) to find the amount of vacancies overnight, V .

6. ObtainHo, Hr and use the market clearing condition in the frictionless morning market.
Given the price find the amount built today, Ih. If Ih is greater than δ (Ho +Hr + V ),
update p downwards. Likewise, if Ih < δ (Ho +Hr + V ), rise p. Go back to step 1.
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Figure 1: The choice of submarket.
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Figure 2: Demand and supply of housing.
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(a) Afternoon policy function gθ(a, z) (b) Probability of buying mb

(
gθ(a, z)

)

(c) House price p
(
gθ(a, z), p

)
Figure 3: Policy functions
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Table 1: The earnings process

z
0.8773 1.0000 2.1933 4.8107

Πz

0.0500 0.2375 0.4750 0.2375
0.0500 0.9461 0.0039 0.0000
0.0500 0.0019 0.9461 0.0019
0.0500 0.0000 0.0039 0.9461

Stationary distribution
0.0500 0.2376 0.4748 0.2376

Table 2: Calibration of the benchmark economy

Param. Observation Value
Financial parameters

w Monthly wage 1000.0000
R? − 1 Díaz and Luengo-Prado (2010) 0.0300
τb Díaz and Luengo-Prado (2008) 0.0250
τs Díaz and Luengo-Prado (2008) 0.0600
ζ Median LTV ratio = 43% 0.2600

Technological parameters
κ Price-to-rent ratio = 12.5 199.3954
α Kaplan et al. (2020) 0.6000
B Median H/E for owners = 2.57 17.7963
γ Median TTB (NAR) 11 weeks 0.6500
δ? Sommer and Sullivan (2018) 0.0150

Mobility and productivity parameters
πµ NAR: Median tenure of 9 years 0.0068
ξo Annual mobility of owners = 3.2% 0.0025
ξr Annual mobility of renters = 12% 0.0100
ρ? Storesletten et al. (2004) 0.9520
σ?ε Storesletten et al. (2004) 0.1700
ϕ Average US unemployment rate 0.0500

Preference parameters
σ Risk aversion parameter 2.0000
β? Median A/E for renters = 0.2257 0.8900
~ Owner occupied housing services wmean(z)
φ Homeownership rate = 69.15% 0.1700
ω Relative house size 1.5 0.8300

Notes: The model period is a month. ?Annualized values.
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Table 3: Calibration of alternative economies

Param. Observation Value
Low elasticity economy

α Supply elasticity = 0.6, Saiz (2010) 0.3750
B Median H/E for owners = 2.57 10.6392

Very low elasticity economy
α new housing supply elasticity = 0.1, Baum-Snow & Han (2019) 0.0909
B Median H/E for owners = 2.57 4.4272

Exogenous rental market and α = 0.6
B Median H/E for owners = 2.57 16.0418

Exogenous rental market and α = 0.3750
B Median H/E for owners = 2.57 9.0465

Exogenous rental market and α = 0.0909
B Median H/E for owners = 2.57 3.4969

Notes: The model period is a month. ?Annualized values.

Table 4: The benchmark steady state

Target Data Bench. Walras1 Walras2 Walras3

p ~/(12w) - 5.64 5.54 5.41 4.74
Home. rate 69.15 69.17 66.47 67.55 69.26
Median H/E owners 2.57 2.57 2.53 2.47 2.16
Median LTV ratio (%) 43.00 46.74 40.07 40.08 41.05
?(%) of indebted owners 65.00 68.15 40.32 39.87 36.83
Mean ~/ghr 1.50 1.48 1.52 1.51 1.46
Median A/E renters 0.23 0.22 0.20 0.26 0.23
Price-to-Rent ratio (%) 12.50 12.50 12.41 12.28 11.54
Median TTB [10-12] 11.30 - - -
?Mean TOM [4-17] 9.89 - - -
For sale rate - 2.27 - - -
?Vacancy rate 1.59 1.35 - - -
?σp (%) 2.25 0.14 0.00 0.00 0.00
Participation rate - 7.68 2.33 2.41 2.57
A/E buyers† - 0.86 0.81 0.81 0.77
A/E med./mean†† - 0.63 0.42 0.42 0.41

Notes: σp is the standard deviation of the deviation of the log prices as a fraction of its
mean. Walras1: Walrasian equilibrium with α = 0.6. Walras2: Walrasian equilibrium with
α = 0.375. Walras3: Walrasian equilibrium with α = 0.0909. † median A/E for potential
buyers who participate in the frictional market. †† Median to mean ratio of wealth to
earnings ratio for potential participating buyers. ?: Non targeted moments.
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Table 5: Credit expansion when markets are not segmented

Target Bench. α = 0.6 α = 0.375 α = 0.09
Search Walras1 Search Walras2 Search Walras3

∆ p (%) - 3.88 3.63 9.19 7.92 23.74 21.63
Homeownership rate 69.17 88.29 92.64 87.60 90.71 80.69 83.22
Med. H/E owners 2.57 2.67 2.66 2.81 2.77 3.18 3.13
Med. LTV ratio (%) 46.74 66.15 57.20 66.19 56.53 64.44 53.57
(%) of indebted owners 68.15 80.24 69.23 81.56 69.11 84.59 66.77
Mean ~/ghr 1.48 1.71 1.99 1.73 1.93 1.71 1.81
Med. A/E renters 0.22 0.10 0.04 0.11 0.06 0.15 0.13
Price-to-Rent ratio (%) 12.50 12.71 12.70 12.98 12.92 13.66 13.57
Med. TTB 11.30 11.50 - 11.85 - 15.48 -
?Mean TOM 9.89 9.52 - 9.12 - 8.65 -
For sale rate 2.27 2.22 - 2.15 - 2.03 -
?Vacancy rate 1.35 1.29 - 1.21 - 1.09 -
∆ for sale units (%) - 24.38 - 19.53 - 4.01 -
∆ Ih (%) - 5.87 5.49 5.42 4.68 2.15 1.98
σp (%) 0.14 0.15 - 0.16 - 0.17 -
∆σp (%) - 13.56 - 29.37 - 39.45 -
Participation rate 7.68 27.04 10.99 29.22 8.88 19.84 4.97
A/E buyers† 0.86 0.34 0.66 0.34 0.65 0.44 0.65
A/E med./mean†† 0.63 0.35 0.46 0.38 0.44 0.47 0.40

Notes: In all cases ζ = 5%. ∆ p refers to the increase in the Walrasian price as percentage of its
value in the benchmark economy. ∆σp is the increase in the standard deviation with respect to
its value in the benchmark economy. †: median A/E for potential buyers who participate in the
frictional market. ††: Median to mean ratio of wealth to earnings ratio for potential participating
buyers.
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Table 6: Credit expansion when markets are segmented

Target Bench. α = 0.6 α = 0.375 α = 0.09
Search Walras Search Search

∆ p (%) - 12.68 15.95 18.28 22.77
Homeownership rate 69.17 82.97 82.89 76.36 70.95
Med. H/E owners 2.57 2.90 2.98 3.04 3.16
Med. LTV ratio (%) 46.74 64.80 53.81 61.74 59.89
(%) of indebted owners 68.15 82.10 65.42 82.51 82.98
Mean ~/ghr 1.48 1.61 1.68 1.55 1.51
Med. A/E renters 0.22 0.15 0.13 0.19 0.21
Price-to-Rent ratio (%) 12.50 14.09 14.49 14.78 15.35
Med. TTB 11.30 15.95 - 15.62 15.87
?Mean TOM 9.89 8.54 - 8.33 8.11
For sale rate 2.27 2.03 - 2.01 1.94
?Vacancy rate 1.35 1.08 - 1.04 0.98
∆ for sale units (%) - 6.74 - 19.53 4.01
∆ Ih - 19.62 24.86 10.39 2.56
∆σp (%) - 35.25 - 22.94 22.76
σp (%) 0.14 0.17 - 0.14 0.13
Participation rate 7.68 28.04 4.89 16.76 13.86
A/E buyers† 0.86 0.36 0.60 0.47 0.57
A/E med./mean†† 0.63 0.43 0.38 0.51 0.59

Notes: In all cases ζ = 5%. ∆ p refers to the increase in the Walrasian price as percentage of its
value in the benchmark economy. ∆σp is the increase in the standard deviation with respect to
its value in the benchmark economy. †: median A/E for potential buyers who participate in the
frictional market. ††: Median to mean ratio of wealth to earnings ratio for potential participating
buyers.
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