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Abstract—Different kinds of user-generated data are increas-
ingly used to tailor and optimize, through Machine Learning, the
operation of online services and infrastructures. This typically
requires sharing data among different partners, often including
private data of individuals or business confidential data. While this
poses privacy issues, the current state-of-the-art solutions either
impose strong assumptions on the usage scenario or drastically
reduce the data quality. In this paper, we evaluate through a
generic framework the trade-offs between the accuracy of Machine
Learning tasks and the achieved privacy (measured as similarity)
on the input data, discussing trends and ways forward.

Index Terms—Machine Learning, Privacy, Trade offs

I. INTRODUCTION

The number of Machine Learning (ML) applications that are
used in production real-world environments has rocketed in the
past years, following the amazing advances obtained in different
areas. These ML-based applications range from the personaliza-
tion of services or the improved healthcare offered to final users
to the automatic management of networks by Telco operators in
the new 5G architectures. However, these applications rely on
input data coming from possibly heterogeneous sources (either
human or other machines), and spread through platforms owned
by different actors which may not be fully trusted. Clearly,
this poses different privacy and confidentiality issues. Thus,
before being processed, data shall be conveniently transformed
to obtain privacy-preserving properties.

In this work, we propose an empirical evaluation of how
different data transformation methods targeting privacy preser-
vation perform in practical scenarios. Designing a generic
framework that can prevent any information leakage with little
or no prior assumption is unsurprisingly very challenging.
Among other categorizations [1], the state of the art solutions
can be classified according to the part of the system that
requires privacy protection, depending on whether they are
targeting (¢) the Machine Learning model itself, redesigning
training algorithms and pipelines to have specific privacy-
preserving properties; (¢2) the output, pruning some information
and protecting against over-fitting prevention techniques, which
have been proven successful in black-boxing attacks; and (i)
the input data, pre-processing it before its disclosure to e.g. data
brokers, to ensure the privacy of sample features and sometimes
also statistical information about groups of samples.

Roberto Gonzalez
NEC Laboratories Europe
Heidelberg, Germany
roberto.gonzalez @neclab.eu

An Empirical Analysis

Marco Gramaglia
University Carlos Il of Madrid
Leganes, Spain
mgramagl @it.uc3m.es

Data Broker

Transformed
Data

Privacy

User

ML
Task

Accuracy

Transformation

Fig. 1. The target scenario.

In this work, we focus on the latter approach. This family of
techniques allows the sharing of training data among different
actors without the privacy risks associated (i.e., the Privacy-
Preserving Data Publishing, PPDP [2]). Thus, these technolo-
gies open the possibility of novel applications only possible
before among trusted parties in (complex) federated learning
scenarios.

In this scenario (depicted in Fig. 1) the user (or data owner)
applies a transformation to the raw data. Then, the transformed
data can be shared with other actors that may use it to train
a ML model (possibly by adding the transformed data to
other transformed data she owns). Hence, In this work we
provide the following contributions: (¢) a generic pipeline for
measuring the similarity (which we use as an inverse proxy
of privacy) between the transformed and raw data eventually
used to perform a generic ML task (see Sec. II) and (i7) a
discussion on the obtained results, showing the potential and
the opportunities of the proposed methodology (see Sec. III).

II. METHODOLOGY

The goal of our methodology is to provide a generic pipeline
to measure the accuracy versus privacy trade-off when generic
ML tasks are performed on anonymized data, implementing
the scenario depicted in Fig. 1. To showcase the generality of
our pipeline we implement different transformation strategies,
analyzing them in two ways: by measuring the similarity
between the raw and the transformed data, which we use as
a proxy of the achieved privacy level, and the accuracy of the
performed machine learning task on the transformed data.
Data Transformation Strategies: In this work, we limit the
study to a set of solutions that do not impose any specific
knowledge on the input data and we set the basis for the
study of other transformation algorithms. We first analyze noise
addition, as proposed in [3], which advocates for randomly



11 @ pca 8 ® PCA ® PCA 3
B Autoencoder | Bl Autoencoder - OO Bl Autoencoder _|
§0'95 4 Noise Qﬁ 4 Noise @ 4 Noise L@
< 0.9{ % Vanila O O ® Vanilla O
g ¢ ¢ ¢
So08s O @) @
goof @ & ¢
B () (] O
® 0.75 <>i> <>> <§>
£
5 0.7
=2
0.65 <> <> <>
0619 ¢ ¢
0.3 04 05 06 0.7 0.8 0.9 1 15 25 30 03 04 05 06 07 08 09 1
Structural Similarity Index Measure Peak Signal-to-Noise Ratio Average SIFT Matches Ratio
, 21 18 15 12 9 6
e | l [ [ [
rvalue 0.2 0.4 0.5 0.6 0.7 0.8 1

Fig. 2. The accuracy vs similarity tradeoffs for different similarity metrics. The accuracy results are normalized by the accuracy yielded by the raw data.
Different markers represent the transformation strategies, while the color scale indicates their intensity (i.e., the amount of noise or the number of dimensions

for the PCA and the AE).

(with a probability p) including White Gaussian Noise to the
pixels that compose the image.

Then, we assess the performance of Principal Component
Analysis (PCA), varying the number of retained Principal Com-
ponents and reconstructing the data by reverting the operation
starting from the retained dimensions. Finally, we evaluate
Autoencoders (AE). We employ an 11-layer 2D Convolutional
AE, trained for 100 epochs with a batch size of 256, a learning
rate of 0.001, mean squared error as loss function, and Adam
as optimizer. We revert to the original data shape following the
same approach used for PCA.

Anonymization (Similarity) metric. Measuring privacy is
complex, especially when no assumptions can be made on the
kind of ML task, nor on the attacker models. To keep the
system generic, we use Similarity measurements as a proxy
for the achieved privacy levels. Thus, we resorted to numerical
methods that measure the similarity between two items of data,
and we chose three different methods to evaluate the similarity:
(¢) the Structural Similarity Index Measure (SSIM) [4], (i¢) the
Peak Signal-to-Noise ratio (PSNR), and (¢¢7) a custom metric
based on the Scale-invariant feature transform (SIFT) feature
matching algorithm [5], which measure the ratio of common
matching points between the original and transformed data.
Machine Learning algorithm. Finally, our pipeline should
train a ML model to check the effect of the transformation on
the accuracy. In this case, we use a vanilla image classification
task, trained on the transformed data generated using one of the
methods discussed above. We use a simple, 8-layer, 2D CNN
to perform the classification task.

III. EXPERIMENTAL EVALUATION

We test the framework depicted in Fig. 1 for an image
classification task on the CIFAR-10 dataset [6]. Results are
depicted in Fig. 2, showing the achieved trade-off between the
two metrics we study, accuracy and privacy, the latter quantified
with the methods presented in Sec. 1.

For a system as the one targeted by this work, the ideal
operational point lays in the top left corner: very high accuracy

(comparable to the one achieved without any transformation)
with very low similarity with the original data, hence maxi-
mizing the privacy level. The technique that, in general, better
approximates that behaviour is the Noise addition one. By
completely “hiding” features (pixels, in this case) this family
of solutions achieves the lowest similarity level, still retaining
enough accuracy for the envisioned Machine Learning task.
The other solutions analyzed indeed better approximate the
accuracy obtained by the not transformed data, but at a cost
of a negligible loss in similarity, as most of the samples are in
the top right corner for each of the discussed metrics.

IV. CONCLUSIONS

In this work, we presented an empirical analysis on the trade-
offs that may be achieved in a data-sharing scenario where the
machine learning task and the kind of attacker model are not
known beforehand, a common scenario in a real operational
environment. We tested several data transformation techniques,
evaluated their accuracy, and discussed their effectiveness as
privacy-preserving mechanisms.
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