This is a postprint version of the following published document:


DOI: 10.1109/JSYST.2018.2817978

©2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
FINANCE and economics are complex domains, in which multiple components such as investors, trading venues, or intermediary firms frequently interact to generate aggregate outcomes that may be desirable or undesirable, intended or unintended. The behaviour of the underlying elements is often adaptive and the aggregate dynamics can be highly non-linear. The resulting complexity can therefore be difficult to measure, model and control. The recent financial crisis revealed how interconnections between institutions can provide feedback loops and propagation channels across the financial system, nationally and globally, spilling into the real economy. There is a great need for advances in the ways in which financial and economic systems are modelled, simulated, designed, controlled and regulated. The techniques and hybrid approaches emerging from the ongoing efforts of the systems community can help address the challenge.

The financial system is not formally engineered, but has emerged organically as an amalgam of firms, trading venues, industry sectors, jurisdictions, and regulations. Operational risks are monitored and managed primarily at the level of system components (firms and trading venues), leaving a significant gap in our understanding of vulnerabilities at the level of the system as a whole and for various subsystems. The management of systemic financial fragilities is better and improving rapidly since the 2007-09 crisis— but much remains to be done. In this regards, we should highlight the importance of new research on key areas like the measurement, analysis and management of operational and financial hazards arising from the interaction of participants and subsystems of the financial system.

A large and growing fraction of financial flows among system participants occur in the context of securities markets, both organized exchanges and decentralized over-the-counter markets. Understanding the financial system therefore requires a detailed understanding of securities market microstructures. Relevant research topics in this space include empirical analyses, theoretical models, and simulation studies of trading architectures, payment flows, and collateral deliveries.

Economists have long recognized the important role of emergent, system-level phenomena, such as liquidity, complexity, and fragility, for the smooth functioning of the financial system. However, developing models and measures for these system-level phenomena can be maddeningly challenging, and most extant research has focused on isolated subsystems, such as equities markets, foreign exchange markets, etc. More research is needed to model emergent phenomena, especially as they affect multiple subsystems simultaneously.

It is clear that financial stress can generate interesting dynamics, such as default spillovers and fire-sale feedback loops, as shocks propagate through the system. These dynamics can be very difficult to capture in closed-form theoretical models. System simulations, including agent-based simulations, are a natural alternative research methodology in this context. Interesting topics include simulation of the dynamics of global, national, or local financial systems or subsystems.

The study of system dynamics naturally involves government supervisors, who have the resources and legal authorities to intervene in exigent circumstances. Policymakers responses to evolving circumstances can have a significant impact—for good or for ill—on the ultimate outcome. There is therefore an important need for research into design of optimal policies for regulatory decision-making and analysis to control of systemic dynamics.

Historically, systemic monitoring has involved a hodgepodge of supervisors, central banks, market participants and self-regulatory organizations relying on public market data, accounting statements, and on-site examinations to track the status of the system. As the pace of activity changes—for example, through the growth of high-frequency trading—the need also increases for improved tools and techniques for system instrumentation and monitoring, especially during episodes of financial crisis, when system state may evolve very rapidly and unpredictably.

Systemic crises are rare events, typically with important idiosyncrasies. This presents significant challenges to purely econometric or statistical methodologies. A better understanding is needed of the appropriate tools, techniques, and policy frameworks for ex-post forensic data collection and analysis for systemic financial events, so that supervisors and system participants can draw the appropriate lessons from them.

In this special issue we present two interesting articles focused on this space.

In the first one, Germán Creamer focuses his contribution on the study of the mechanisms of financial instability and risk that result from the interaction of the dynamics of social groups and financial products. In his article, “Network Structure and Systemic Risk in the European Equity Market”, he introduces a methodology to calculate systemic risk using qualitative and quantitative variables that capture communicative and financial activity within equity networks. His analysis illustrates how changes in the network structures might be associated with volatility changes or with systemic risk. The author proposes a component causality index based on centrality indicators that anticipates or moves together with volatility during the period 2005-11.

In the second, Gerasimos Rigatos and Pierluigi Siano...
present a systematic method for forecasting default probabilities for financial firms that are service providers corporations. The solution that they introduce is based on the concept that credit risk is determined by the distance between the debt value and the asset value. They estimate the latter thought its relationship with company’s market value using a variation on the Derivative-free nonlinear Kalman Filter. The authors redesign the Derivative-free nonlinear Kalman Filter as a m-step ahead predictor to obtain estimates of the company’s future option values. This information subsequently allows forecasting the associated asset value and volatility and, with that, the default risk.

In our opinion, these two articles pose significant contributions to the field of complex systems in finance and economics.

Mark Flood, U.S. Department of the Treasury, USA.
Alex Lipton, StrongHold Labs, Clearmatics and MIT, USA.
David Quintana, Universidad Carlos III de Madrid, Spain.
Antoaneta Serguieva, nChain and LSE Systemic Risk, UK.

Mark Flood
Mark D. Flood did his undergraduate work at Indiana University in Bloomington, where he majored in finance (B.S., 1982), and German and economics (B.A., 1983). In 1990, he earned his Ph.D. in finance from the Graduate School of Business at the University of North Carolina at Chapel Hill. He has taught finance and business at universities in the U.S. and Canada, and worked as a financial economist on issues of regulatory policy and risk management at the Federal Reserve Bank of St. Louis, the Office of Thrift Supervision, the Federal Housing Finance Board, and the Federal Housing Finance Agency. He was a founding member of the Committee to Establish a National Institute of Finance. He is currently a Research Principal in the Treasury’s Office of Financial Research. His research has appeared in a number of scholarly journals, including the Review of Financial Studies, the Annual Review of Financial Economics, Quantitative Finance, the Journal of International Money and Finance, the Federal Reserve Bank of St. Louis Review, and in the two-volume Handbook of Financial Data and Risk Information.

Alex Lipton
Alexander Lipton is Founder and CEO of Stronghold Labs, Co-Founder of Distilled Analytics, Partner at Numeraire Financial, Connection Science Fellow at MIT, and Visiting Professor of Financial Engineering at EPFL. He is an Advisory Board Member at several FinTech Companies. In 2016 he left Bank of America Merrill Lynch, where he served for ten years in various senior managerial roles including Quantitative Solutions Executive and Co-Head of the Global Quantitative Group. Earlier, he held senior managerial positions at Citadel Investment Group, Credit Suisse, Deutsche Bank, and Bankers Trust. In parallel, Alex held several prestigious academic appointments at NYU, Oxford University, Imperial College, and the University of Illinois. Before switching to finance, Alex was a Full Professor of Mathematics at the University of Illinois. In 2000 Alex was awarded the first ever Quant of the Year Award by Risk Magazine. Alex published seven books and more than a hundred scientific papers. His next book Financial Engineering - Selected Works of Alexander Lipton is to appear shortly.

David Quintana
David Quintana is an Interim Associate Professor with the Department of Computer Science at Universidad Carlos III de Madrid, Spain. There, he is part the bio-inspired algorithms group EVANNAI. He holds a Bachelor in Business Administration and a Ph.D. in Finance from Universidad Pontificia Comillas (ICADE), a Bachelor in Computer Science from UNED and an M.S. in Intelligent Systems from Universidad Carlos III de Madrid. He has visited at Inria Futurs, Stanford, University of Genoa and the University of Geneva. His current research interests are mainly focused on applications of evolutionary computation and artificial neural networks in finance and economics. He has been a guest editor for scholarly publications such as Computational Intelligence and AI Communications, and he has co-chaired special sessions at several international conferences. David is the current Chair of the Computational Finance and Economics Technical Committee of the IEEE Computational Intelligence Society.

Antoaneta Serguieva
Antoaneta has background in systems engineering/cybernetics (MSc), finance (MBA), computer science/computational finance (PhD), and mathematics. She is a Senior Researcher at nChain focused on blockchain research and applications, and has been a quant consultant for investment funds. Antoaneta became aware of regulatory priorities in systemic risk during fellowships at the Bank of England, Bank of Mexico, Federal Reserve, and US Treasury. She is a Research Associate with the Systemic Risk Center at LSE, a Visiting Professor with the Center for Computational Finance and Economic Agents at Univ. Essex, and until recently a member of the Research Center for Blockchain Technologies at UCL. Her research interests are in the area of nature-inspired computational intelligence and heuristics for modeling complex sociotechnical systems, contagion mechanisms, and cognition. She is an Associate Editor of IEEE Trans. Fuzzy Systems, Chaired the Computational Finance and Economics TC of IEEE Computational Intelligence Society in 2014-15, and is Chairing 2018 Blockchain at IEEE WCCI.