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Abstract—5G networks are primarily designed to support a
wide range of services characterized by diverse key performance
indicators (KPIs). A fundamental component of 5G networks,
and a pivotal factor to the fulfillment of the services KPIs, is the
virtual radio access network (RAN), which allows high flexibility
on the control of the radio link. However, to fully exploit the
potentiality of virtual RANs in non-stationary environments, an
efficient mapping of the rapidly varying context to radio control
decisions is not only essential, but also challenging owing to the
non-trivial interdependence of network and channel conditions.
In this paper, we propose CAREM, an RL framework for
dynamic radio resource allocation, which selects the best link and
modulation and coding scheme (MCS) for packet transmission,
so as to meet the KPI requirements in heterogeneous virtual
RANs. To show its effectiveness in real-world conditions, we
provide a proof-of-concept through actual testbed implementa-
tion. Experimental results demonstrate that CAREM enables an
efficient radio resource allocation, for any of the considered time
periodicity of the decision-making process.

Index Terms—5G technology, reinforcement learning, radio
access network virtualization, radio resource allocation, hetero-
geneous networks.

I. INTRODUCTION

The envisaged paradigm of 5G mobile technologies is aimed
to serve a broad spectrum of applications having diverse
requirements on various key performance indicators (KPIs),
ranging from high reliability and low latency to large-scale
connectivity and massive data rates [1]. To accommodate such
ambitious vision of 5G, new generation wireless access net-
works are required not only to integrate various flexible multi-
access technologies such as mmWave and massive MIMO,
but also to provide a versatile radio resource management
(RRM) system that can ensure efficient spectrum utilization
and seamless interoperability [2].

A powerful concept addressing such needs is the virtu-
alization of the radio access network (RAN), wherein the
legacy communication system is decoupled by centralizing the
softwarized radio access through virtual machines or contain-
ers running on servers at the edge of the cellular network
[3]. While this makes the network more agile and minimizes
the requirement of expensive dedicated hardware, the edge
may host several applications competing for resources, thereby
limiting the efficiency of radio functions [4]. Further, the
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unification of hybrid technologies under the 5G umbrella
adds to the complexity of the problem, thereby making
the use of conventional communication theoretic approaches
often inadequate to achieve optimum traffic and resource
management, owing to intricate mathematical modeling and
complex dependencies between network and channel variables.
It has therefore become indispensable the design of innovative
solutions that can swiftly and effectively deal with the system
complexity thanks to a fully automated, data driven approach.

Recently, learning-based techniques including supervised,
unsupervised, reinforcement learning (RL), and deep learning
have shown to hold an enormous potential in addressing the
challenges of applying standard mathematical optimization
frameworks to resource allocation problems in virtual RANs
and in allowing an automatic system control [5]. However,
it is worth noting that, while deep learning approaches are
computationally intensive, the primary challenge associated
with simpler ones such as supervised/unsupervised learning
is the creation of an exhaustive dataset for training the model.
Besides, in case of rapidly changing environment, frequent
retraining of the model is required to achieve the desired
accuracy, which can be expensive when there are stringent
latency constraints. To this end, it is required to devise a
framework that is easy to train in non-stationary environments,
yet effective in making intelligent choices in an autonomous
fashion using near real-time feedback on channel conditions
and temporal variation of user demand so as to improve
performance and reliability of the network.

In this work, we leverage the advantages offered by machine
learning and develop a context-aware, RL-based solution to
radio resource management in heterogeneous virtual RANs.
Our scheme, named CAREM (Context-Aware Radio rEsource
Management), can effectively cope with time-varying operat-
ing conditions thanks to a persistent interaction between the
learning agent and its environment. The key contributions of
this work are as follows:

1) We define CAREM, a novel framework using dif-
ferential semi-gradient State-Action-Reward-State-Action
(SARSA) for periodic RRM in virtual RANs. CAREM
efficiently allocates radio resources in terms of link and
modulation and coding scheme (MCS) for packet trans-
missions while meeting two of the main KPI requirements
identified by 3GPP [6], namely, packet loss and latency.



2) To provide an adaptive and self-sustaining solution, learn-
ing in CAREM is governed by a reward signal which
acts as an evaluative feedback from the network to asses
the KPI satisfaction. A snapshot of the environment in
terms of Signal to Noise Ratio (SNR) and buffer state is
provided as input, along with the reward signal, at the
decision-making instant to make a smart and context-
aware choice. High dimensionality of context variables
is addressed using tile coding.

3) A proof-of-concept is provided in the context of vehicle-
to-infrastructure (V2I) communications, by designing a
testbed for heterogeneous radio access network and im-
plementing CAREM over 3GPP LTE and IEEE 802.11p
links using software defined radios.

Unlike Q-learning [7], which is a popular off-policy RL
approach particularly useful for episodic tasks, SARSA has
low per-sample variance, thereby making it less susceptible to
convergence problems. Also, in a continuous task setting such
as RRM where it is required to care for agent’s performance
during the exploration phase, online learning using SARSA
is preferred as it avoids high risk actions that generate large
negative reward from the environment. To the best of our
knowledge, no existing work has presented such comprehen-
sive and dynamic framework for RRM, keen on fast and
reliable data transmission in heterogeneous virtual RANs.

II. RELATED WORK

RL is a popular approach in the recent literature for radio
resource provisioning problems, especially if the action cor-
responds to a decision-making scenario with discrete choices.
RL-based schemes have been proposed for selecting the radio
access technology in heterogeneous networks using network-
centric [8], and user-centric approaches [9]. In [10], a policy
gradient actor-critic algorithm is studied for user scheduling
and resource allocation in energy-efficient heterogeneous net-
works. The works in [11] and [12] instead investigate dynamic
spectrum access in cognitive radio networks using the RL
framework, with the aim to achieve high controllability in
spectrum sharing and to minimize the sensing duration.

Owing to delay-sensitivity and massive volume of data traf-
fic in 5G access networks, a RL-based scheduling scheme is
introduced in [13], [14] to minimize the packet delay and drop
rate. The study in [4], instead, proposes a deep deterministic
policy gradient algorithm based on actor-critic neural network
and a classifier for resource control decisions. This is the most
relevant work to ours, as it specifically addresses a virtualized
access network and presents an implemented solution in a full-
fledged testbed.

Advanced machine learning such as deep learning tech-
niques are of interest for resource allocation problems when
the size of state-action space is large, leading to slow con-
vergence of RL approaches. A deep Q-network for channel
selection is proposed in [15], [16] to adaptively learn in
time-varying scenarios subject to improvement in accuracy of
channel selection and maximization of network utility. The
study in [17] envisions an adaptive deep actor-critic, RL-based

framework for channel access in dynamic environment for sin-
gle user as well as multi-user scenarios. Deep RL is explored
for selection of suitable MCS for primary transmissions in
cognitive radio networks in [18]. In a similar setting, the study
in [19] investigates a deep learning dynamic power control
method for a secondary user to coexist with the primary user.
A distributed dynamic power allocation using multi-agent deep
RL is developed in [20], which utilizes the channel state and
quality of service information as feedback to maximize a sum-
rate utility function.

In this work, by RRM we broadly refer to the action of
link and MCS selection such that the learning objective, i.e.,
meeting the target values of the packet loss rate and latency
KPIs, is achieved. In terms of actions, we find [9], [18], and
[4] somewhat aligned to our work. In particular, [9] addresses
the problem of link selection by modeling it as a repeated
game wherein the players (mobile users) aim to maximize
their throughput over long run using network assisted feedback
through RL. A deep RL agent in [18] is trained at the primary
receiver in a cognitive radio network to infer interference from
secondary transmissions in future frames and adaptively select
MCS to minimize the packet loss. We observe, however, that,
although in these works the actions might be similar to ours,
their learning objectives and KPIs are very different.

The resource allocation problem in [4] focuses on allocating
the computation resources and maximum eligible MCS to
the point of access. It is important to note that, unlike our
work, none of these studies have considered the connectivity
between a radio point of access and users over heterogeneous
links. Besides, the radio policy selection in [4] is based on a
supervised neural network classifier, which is required to be
pre-trained offline using an extensive dataset. On the contrary,
in MCS selection using CAREM, the policy is spontaneously
learned and updated over time by its continuous interaction
with the environment, thus being able to adapt continuously
to time-varying channel and network dynamics.

III. SYSTEM ARCHITECTURE

In this section, we present the system model considered for
provisioning of radio resources via CAREM. Although our
approach and methodology are general and can apply to any
number and type of virtual RAN technologies, we focus on
a vehicle-to-infrastructure (V2I) communication environment
where a cellular and a IEEE 802.11p link are available.

As shown in Fig. 1, the system architecture is composed of
two interconnected blocks: the edge host (left block) and the
mobile terminal (right block). The purpose of the edge host
is to provide computational resources and mobile connectivity
for services offered by the edge applications, which are then
consumed by the mobile applications running on the mobile
terminal. Connectivity between the edge host and the mobile
terminal is provided through a heterogeneous RAN integrating
the 3GPP LTE (bottom link in Fig. 1) and IEEE 802.11p (top
link) technologies, both implemented with SDR solutions. The
LTE RAN is based on srsLTE [21], an open-source SDR
LTE stack implementation that offers EPC, eNB, and UE



Fig. 1: System architecture.

applications. It is compliant with LTE Release 9 and supports
up to 20 MHz bandwidth channels as well as transmission
modes from 1 to 4, all using the FDD configuration. The
802.11p transceiver is implemented through a GNU Radio
flowgraph, released by the WiME project [22], and it is
interoperable with commercial IEEE 802.11p devices.

The core component of the edge host is the proposed
CAREM framework, which controls the operation of the
heterogeneous RAN. The algorithm periodically selects the
appropriate link and the MCS to be used by the selected
link for downlink packet transmission. To interact with the
host operating system network stack, both the SDR solutions
expose a tun/tap interface to which an IP address is assigned.
A router is connected to those interfaces to steer traffic over the
radio links, the host applications, and the internet, according
to the link selected by CAREM. The link selection is enforced
with dynamic modification to the Linux kernel routing table.

The srsLTE eNB application has been patched to run a dedi-
cated thread that listens to and applies the MCS selected by the
CAREM framework to the downlink and uplink transmission
of a specific UE. The 802.11p GNU Radio flowgraph has
been modified for the same purpose by adding an XMLRPC
server block, which exposes a remote procedure call interface
to dynamically set the MCS to be used. Furthermore, both the
SDR applications have been modified to collect environment
variables such as mean and variance of SNR, and buffer
occupancy status at the MAC layer.

IV. THE CAREM FRAMEWORK

The joint impact of channel and network dynamics on
RRM in wireless networks is non-trivial. To comprehensively
investigate this within a machine-learning framework, it is
essential to continuously map the variations in transmission
channel and traffic load into a context, and learn to decide
on the best link and MCS for a given context using a reward
signal. The reward we use here is basically a feedback that
quantifies the goodness of the decision taken. In the sequel, we
discuss the components and RL algorithm used in CAREM.

A. Components of CAREM

The agent comprises a policy and a RL algorithm. The
policy continuously maps observation of a context from the
environment to a decision in the form of an action, while
the learning algorithm updates the policy parameters based
on actions, context, and reward values. The goal of the RL
model is to train the agent to find an optimal policy that
eventually maximizes the cumulative reward from an uncertain
environment. The single components are detailed below.

Context Space. At every monitoring slot n ∈ N, the agent
observes a context vector s(n) ∈ S, takes an action a(n) ∈
A, which has been chosen with periodicity equal to N slots,
and receives a reward value r(s(n), a(n)) as feedback. The
environment variables, namely, SNR and buffer state, influence
the choice of the link and MCS in the provisioning of radio
resources. Let γ(n) and σ(n) denote, respectively, the SNR and



the buffer state reported by the UE during the n-th monitoring
slot. Then we define the context space S ∈ R comprising
context vector s(n) := {γ(n), σ(n)},∀n ∈ N.

Action Space. The action space comprises choices for the
selection of the appropriate link and MCS. Given that the
network supports heterogeneous connectivity, namely, IEEE
802.11p and LTE, and several MCSs can be supported over
each link, we map a link-MCS pair {ζ(n),m(n)} for the n-th
monitoring slot into a single action denoted by a(n). Note that
an action is selected at the beginning of every decision period
of duration N slots, and it is applicable to all subsequent N
monitoring slots. Let the number of MCS supported over the
two available links be i and j respectively, then the action
space is given by A := {a(n) ∈ [0, i + j − 1]}, such that
a(n) = {0, 1, · · · , i − 1} when the first (e.g., IEEE 802.11p)
link is selected with MCS varying from 0 to i − 1, and
a(n) = {i, i+1, · · · , i+j−1} when the second (e.g., cellular)
link is selected with MCS varying from 0 to j − 1. The
advantage of such definition of an action is that it limits the
action space to a subset of discrete positive integers with low
cardinality, and facilitates simultaneous selection of link as
well as MCS with a single action.

Reward. Given a traffic flow, we consider as KPIs the
packet loss rate at the MAC layer and the latency observed
during a packet transmission within the system. To meet the
KPI requirements at the UE, it is required to provide the traffic
flow with radio resources such that the observed KPIs do
not exceed their target values (hereinafter also referred to as
thresholds). Besides meeting the KPI thresholds, it is essential
to keep the observed KPIs as close as possible to the respective
KPI thresholds for optimum utilization of network resources:
substantially better values than the target ones would indeed
translate into a waste of resources. To this end, the choice of
reward function should be such that it equally accounts for
both the KPIs and its value increases as the observed KPIs
approach the KPI thresholds and vice versa.

Let the observed packet loss rate, target packet loss rate,
observed latency, and target latency be denoted with xo, xth,
lo, and lth, respectively. We define the reward value r as the
sum of two reward components, namely, packet loss rx(·) and
latency rl(·). Thus, at the n-th monitoring slot, we have:

r(s(n), a(n)) = rx(s
(n), a(n)) + rl(s

(n), a(n)) (1)

where the packet loss and latency components are given by:

rx(s
(n), a(n)) = 1− erf(xth − xo),

rl(s
(n), a(n)) = 1− erf(lth − lo)

if the target KPIs are met, and by:

rx(s
(n), a(n)) = erf(xth − xo),

rl(s
(n), a(n)) = erf(lth − lo)

otherwise.
Since the maximum and minimum value of the erf function

lies between +1 and −1, we have: −2 ≤ r(s(n), a(n)) ≤ 2.
Our choice of erf for estimating individual reward components

is motivated by its shape, which takes 0 value at the origin, and
gradually increases (decreases) and saturates to the maximum
(minimum) value in the positive (negative) direction. Conse-
quently, for the individual reward components, in the positive
region of operation, i.e., when the KPI threshold is met, the
reward value is positive and it further increases to saturate
to +1 as the observed KPI approaches its target KPI value.
Likewise, in the negative region of operation, i.e., when the
KPI threshold is not met, the value of the individual reward
components is negative, which further reduces and saturates to
−1 as the observed KPI moves away from the KPI threshold.

It may be recalled that the agent’s goal in RL is to eventually
maximize the cumulative reward measured as the sum of
immediate reward and future rewards in the long run. Here,
we adopt our definition of cumulative reward observed during
slot n as the differential return G(n) defined in [23], i.e.,

G(n) = r(n+1) − r(π) + r(n+2) − r(π) + r(n+3) − r(π) · · ·
(2)

where, π(s) : S → A, denotes the radio policy that maps
the context space into actions, r(π) being the average re-
ward conditioned on initial state s(0), and subsequent actions
a(0), a(1), · · · , a(n−1) taken according to π. Assuming that
agent’s interaction with the environment since n = 0 has been
over k slots, then the average reward is given by [23],

r(π) = lim
k→∞

1

k

k∑
n=1

E[r(n)|s(0), a(0:n−1) ∼ π] . (3)

Thus, differential return essentially represents the gain in the
reward value compared to average reward of the policy.

B. RL in CAREM using differential semi-gradient SARSA

In the absence of any prior knowledge of the environment,
here we exploit the concept of experience-based learning using
sample sequences of context, actions, and rewards observed
from the actual interaction of RL agent with the environment.
SARSA, an acronym for quintuple (St, At, Rt, St+1, At+1),
is an on-policy algorithm where learning of the RL agent at
time t is governed by its current state St, choice of action At,
reward Rt received on taking action At, state St+1 that the
RL agent enters after taking action At, and finally the next
action At+1 that the agent chooses in new state St+1 [23].
Given a context vector, the key steps involved in the learning
of the SARSA approach are: (i) estimation of action values,
(ii) selection of best action, and (iii) update of the action-value
estimates. These are further elaborated as follows.

Action value estimation. The goodness of taking an action
in a given context is quantified using action values. If action a
is taken in state s under policy π, then its action value qπ(s, a)
is defined as expected differential return conditioned on state
s, and action a following policy π. Mathematically,

qπ(s, a) = Eπ[G(n)|s(n) = s, a(n) = a] . (4)

Apparently, a policy π can be better than any other policy π′ if
qπ(s, a) ≥ qπ′(s, a). Since the context vector comprises SNR



and buffer state, context space S is real and an uncountable
number of states are possible. Consequently, tracking action
values corresponding to different contexts is not scalable.
To overcome this problem, we use a practical method for
action value estimation using function approximation. This
yields a parametric approximation of action value function
q̂π(s

(n), a(n), w) =
∑m
i=1 wixi(s

(n), a(n)), where w ∈ Rm
and x(s(n), a(n)) denote the weight and feature vector, respec-
tively. Here, feature vector xi(s(n), a(n)) is generated using
tile coding [24], which converts a point in the 2-dimensional
context vector into a binary feature vector such that vectors of
neighboring points have a high number of common elements.

Action selection. The estimation of the action values is
followed by an ε-greedy action selection policy [23], which
selects the best action so as to maximize the cumulative
reward over infinite time horizon. We consider an ε-greedy
action selection with ε = 0.1 and ε-decay factor = 0.99.
Thus, if the context at the beginning of a decision-making
period is s(n), and the action value estimates for all possible
actions an = 0 · · · |A| in s(n) are obtained as q̂π(s(n), an, w),
the greedy action a∗(n) is chosen with probability 1 − ε
such that a∗(n) = argmaxa q̂π(s

(n), an, w). The ε parameter
decays by a factor of 0.99 in the subsequent decision period.
This favors higher exploration while the environment is still
unfamiliar; with progression of time, instead, it allows for
further exploitation of the environment knowledge gained
during the exploration, so as to maximize the expected return.

Action value update. Action values satisfy the recursive
Bellman equations given as,

qπ(s, a) =
∑
r,s′

p(s′, r|s, a)[r − r(π) +
∑
a′

π(a′|s′)qπ(s′, a′)]

(5)

where p(s′, r|s, a) = Pr{s(n) = s′, r(n) = r|s(n−1) =
s, a(n−1) = a}, with π(a′|s′) being the probability of tak-
ing action a′ in state s′ under policy π. This fundamental
property forms the basis of the update of the action values
of the present context, based on an error term defined as
the difference between a target action value and the current
action value. Details on Bellman equation and the derivation
of the update rule can be found in [23]. Here we consider
the temporal difference learning in which the target action
value for the present context is the bootstrapping estimate of
the action values of the immediate next context, given by,
r(s(n), a(n))− r(π) + q̂π(s

(n+1), a(n+1), w). Since the differ-
ence in action value estimates of successive contexts drives the
learning procedure, the error is termed as temporal difference
error δ. Subsequently, δ updates the average reward r(π) and
weight vector w using gradient descent. Note, however, that
the bootstrapping target itself depends on the weight vector.
Consequently, it is biased and does not produce a true gradient
descent, hence this is referred to as a semi-gradient method.

The workflow of the CAREM RL algorithm is presented in
Algorithm 1. Parameters including decision-making period N ,
step size α, learning rate β, weight vector for learning of action
values w, and the average reward estimate r(π) are initialized

at the start of the algorithm. After observing the context vector,
reinforcement learning takes place using differential semi-
gradient SARSA, as discussed above. For periodic-decision
making (i.e., N > 1), the mean reward and weighted mean
context observed over the last decision period are used for
learning the action values in the subsequent decision period.
The weights yn in the weighted mean context are assigned
such that the latest context has the highest weight. Although
they can be arbitrarily set, in our experiments, we fix them as
1, 2, . . . , N , in accordance with the temporal sequence of the
monitoring slots.

Algorithm 1 Workflow in CAREM framework

1: Define N , Initialize α, β ∈ (0, 1]
2: Initialize w ∈ Rm arbitrarily, w ≥ 0, r(π) = 0
3: Initialize context s0, and action a0
4: for the h-th decision period, h = 1, 2, · · · do
5: for n = 1, 2, · · · , N do
6: if h = 1 then
7: if n = 1 then
8: s(n) = s0, a

(n) = a0
9: else

10: Observe s(n), a(n) = a0
11: else
12: if n = 1 then
13: s(n) = s(h), a(n) = a(h)

14: else
15: Observe s(n), a(n) = a(h)

16: Take action a(n), and evaluate reward r(s(n), a(n))
17: r(s(h), a(h)) =

∑N
n=1 r(s

(n), a(n))/N . Find mean
reward over the h-th decision period

18: s(h+1) =
∑N
n=1 yns

(n)/
∑N
n=1 yn, such that yn > 0

and yN > yN−1 > · · · y1 . Find weighted mean of
context observed over the h-th decision period

19: Compute action values q̂π(s(h+1), , w) for all possible
actions in s(h+1)

20: Choose a(h+1) as a function of s(h+1) using the ε-
greedy policy

21: δ ← r(s(h), a(h)) − r(π) + q̂π(s
(h+1), a(h+1), w) −

q̂π(s
(h), a(h), w) . Evaluate temporal difference error

22: r(π)← r(π) + βδ . Update average reward estimate
23: w ← w + αδ∇q̂(s(h), a(h), w) . Update weights
24: s(h) ← s(h+1)

25: a(h) ← a(h+1)

V. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the CAREM
framework using our testbed implementation. We consider
two cases: (a) N = 1, which corresponds to per-slot (i.e.,
100 ms) decision making, and N = 10, where a decision is
periodically made every second. We first discuss the variation
of the KPI values observed in our testbed implementation of
CAREM. Since this is a limited scenario, we also execute
CAREM over a longer time horizon using Matlab simulations
in a heterogeneous vRAN environment and analyze its average



performance. The simulations are carried out for a duration
of about 40 hours. Based on the obtained results, we discuss
the convergence of reward values for each of the two above
operational settings and the variation of the KPI values with
respect to time and the context variables.

A. Testbed-based KPIs assessment

Using our testbed implementation of the CAREM frame-
work, we measured the variation of the KPI values over time,
when per-slot and periodic decision making are executed.
According to the 3GPP specifications for 5G [6], the KPI
thresholds are set at 0.1 s for latency and 0.01 for packet loss.
The results, presented in Figures 2a and 2b, show that, except
for an initial exploration period, the observed KPI values
remain below their respective thresholds, thereby satisfying
the performance requirements. Compared to per-slot decision
making, packet losses and latency are higher in the case of
N = 10 (note the different y-axis scale in the two plots),
as the action executed by the CAREM framework during a
decision making interval may not be the optimum choice for
all the slots in that interval. Also, owing to the higher values
of observed packet losses and latency, the low reward values
lead to larger exploration time for N = 10.

B. Convergence of the CAREM RL algorithm

We further study the performance of CAREM using vRAN
simulations designed in Matlab. First, we evaluate the per-
formance of CAREM in terms of convergence of reward
values on time-sequenced context. The variation of reward
values as a function of time, under both the per-slot and
periodic decision-making operational settings, is depicted in
Fig. 3. Although the variation in reward values is higher for
periodic decision making, it converges faster with respect
to per-slot decision case. This may seem to contradict the
observation we made based on the results obtained through
the testbed implementation where periodic decision making
has a higher exploration time. However, it is important to note
here that the limited scenario of the testbed implementation
cannot represent a wide range of variations in the network
and channel conditions. Consequently, given a quasi-stationary
scenario, the periodic decision setting may spend a longer time
exploring the solution space, but it converges faster in the
presence of a non-stationary environment over a longer time
horizon. This is primarily due to the averaged values of context
variables and reward that are used in periodic decision making,
which tends to smoothen sharp variations thereby expediting
the learning process. It follows that, in comparison to per-slot
decisions, periodic ones not only reduce the computational
efforts in the system, but they also lead to faster convergence
of reward values, and hence rapid learning.

C. Variation of KPI values with SNR

Figures 4a and 4b depict the variation of the observed
latency and packet loss averaged over context variable SNR,
for per-slot and periodic decision making, respectively. In
both the cases, latency is almost constant with respect to
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Fig. 2: Variation of KPIs observed over time using the testbed
implementation: (a) N = 1, (b) N = 10.

SNR. This may be surprising, as one would expect that, with
the increase in SNR, the number of possible retransmissions
required for successful packet reception at the UE, and hence
the observed latency, should reduce. However, in this case the
retransmission delay in the network is much less as compared
to the queueing delay at the buffer; consequently, the impact of
the SNR on the observed latency is negligible. Unlike latency,
we observe that an increase in SNR causes the packet loss to
reduce for both N = 1 and N = 10, which is as expected.
Additionally, note that the values of packet loss in Figures 2a
and 2b may exceed the threshold during the learning phase,
but when averaged over SNR, they fall below the threshold,
thereby meeting the KPI requirements.

D. Variation of KPI values with buffer state

Similar to SNR, next we average the KPI values over the
other context variable. The variation of packet loss and latency
with respect to buffer state for different decision-making
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Fig. 3: Convergence of the reward for per-slot decision making
(N = 1), and periodic decision making (N = 10).

periodicity are presented in Figures 5a and 5b, respectively.
As discussed earlier, since the latency is largely governed
by the buffer state, we observe a linear increase in latency
as the number of packets in the buffer increases. It may be
noted that, since we have considered a single-UE scenario
in our implementation, an increase in the vRPA buffer state
values does not significantly add to the packet losses. Also,
the packet loss measured in case of N = 10 in Figures 4b
and 5b is always higher in comparison to that obtained for
N = 1 in Figures 4a and 5a, because in the former case, the
corresponding actions are computed based on averaged context
and reward values and they need not necessarily be optimal
for all slots in a decision period. Nevertheless, the attained
KPI values always meet the required threshold once learning
is completed.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed CAREM, a novel RL-based framework
that efficiently allocates radio resources in terms of link and
MCS for packet transmissions in heterogeneous virtual RANs.
The choice of the RL algorithm, actions, and reward functions
have been made so that the resource utilization is optimized
with respect to dynamic and non-stationary environment, with
minimum computation efforts. We have also provided a proof-
of-concept of our solution, by developing a testbed that lever-
ages an LTE and an IEEE 802.11p SDR implementation. We
have evaluated CAREM under two operational settings, with
different decision-making periodicity. Furthermore, through
large-scale simulations, we demonstrated that the RL algo-
rithm converges faster when a longer decision-making period-
icity is adopted, although the packet loss observed in this case
is slightly higher than in the case of a per-slot decision-making
process. Nevertheless, as the learning process of the model
saturates, actions are chosen such that both the observed KPIs,
latency and packet loss, always satisfy their target values.
Finally, we remark that CAREM is a promising starting point
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Fig. 4: Variation of KPIs with SNR: (a) N = 1, (b) N = 10.

to the development of 5G heterogeneous networks, where
the advantages of different radio technologies can be fully
exploited to maximize the performance and the robustness of
the network. Additionally, it effectively addresses the need for
a solution that can swiftly adapt to the underlying channel-
network dynamics for context-aware radio resource allocation
in heterogeneous virtual RANs.

Future work will focus on extending the framework imple-
mentation and performance evaluation in the case of additional
SDR technologies and multiple UEs connected to the virtual
RAN.
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