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We investigate the growth of gas bubbles in a water solution at rest with a
supersaturation level that is generally associated with diffusive mass transfer. For
CO2 bubbles, it has been previously observed that, after some time of growing
in a diffusive regime, a density-driven convective flow enhances the mass transfer
rate into the bubble. This is due to the lower density of the gas-depleted liquid
which surrounds the bubble. In this work, we report on experiments with different
supersaturation values, measuring the time tconv it takes for convection to dominate
over the diffusion-driven growth. We demonstrate that by considering buoyancy and
drag forces on the depleted liquid around the bubble, we can satisfactorily predict
the transition time. In fact, our analysis shows that this onset does not only depend
on the supersaturation, but also on the absolute pressure, which we corroborate in
experiments. Subsequently, we study how the depletion caused by the growth of
successive single bubbles influences the onset of convection. Finally, we study the
convection onset around diffusively growing nitrogen N2 bubbles. As N2 is much
less soluble in water, the growth takes much longer. However, after waiting long
enough and consistent with our theory, convection still occurs as for any gas–liquid
combination, provided that the density of the solution sufficiently changes with the
gas concentration.

Key words: bubble dynamics, buoyant boundary layers

1. Introduction
The physics of bubble growth in mildly supersaturated solutions is potentially

relevant to several processes associated with energy production and consumption,
e.g. increased production rate in oil generation (Pooladi-Darvish & Firoozabadi
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1999; Akin & Kovscek 2002). Alternative energy generation methods such as syngas
(Munasinghe & Khanal 2010), photo-electrochemical hydrolysis to obtain hydrogen
(Leenheer & Atwater 2010; Spurgeon & Lewis 2011; Fernández et al. 2014) and
catalytic reactions (Somorjai & Li 2010) must deal with multi-phase systems which
are often affected by bubble formation. As one last example, CO2 bubble formation
is an undesired event in carbon sequestration, where CO2 is injected at high pressures
into reservoirs of saline water trapped in porous rocks at depth (Neufeld et al. 2010;
Tsai, Riesing & Stone 2013; Bolster 2014). It appears sensible to assume that in
liquids at rest such slow bubble growth (or dissolution) takes place exclusively by
diffusion, as in the seminal theoretical analysis by Epstein & Plesset (1950), which
predicts that the bubble radius R evolves in a pure diffusive regime as

R(t)≈
(√

c0 − cs

2πρg
+
√

1+ c0 − cs

2πρg

)√
2D(c0 − cs)

ρg
t. (1.1)

Here, c0 is the concentration in the bulk liquid at the initial saturation pressure P0,
cs is the supersaturated concentration at the ambient pressure Ps during the
experiments, ρg is the gas density and D is the diffusion coefficient of the dissolved
gas in the liquid. Such time evolution of the bubble radius has been confirmed in
several experimental works, with supersaturations ζ = (c0 − cs)/cs comparable to that
of carbonated beverages (ζ ∼ 1–3) (Bisperink & Prins 1994; Jones, Evans & Galvin
1999b; Barker, Jefferson & Judd 2002; Li et al. 2014).

However, in previous experimental studies of single CO2 bubbles growing on a
silicon substrate in very mildly supersaturated solutions with ζ ∼ 0.1–0.3 (Enríquez
et al. 2014; Moreno Soto et al. 2017), significant differences were observed with
respect to a purely diffusive growth. The most notable discrepancy consists of
an enhanced mass transfer rate towards the later stages of the bubble growth, which
exceeds the predicted diffusive growth rate and corresponds to a time evolution of the
bubble radius different from R∝√t. This behaviour originates from the development
of buoyancy-driven convection induced by the decreased density of the CO2-depleted
liquid around the bubble. It has been shown that buoyancy-driven convection is
also the cause of higher dissolution rates of sessile droplets in a less dense liquid
(Dietrich et al. 2016) and during droplet evaporation (Shahidzadeh-Bonn et al. 2006).
Both situations are physically analogous to growing bubbles and customarily treated
as purely diffusion-driven phenomena (Popov 2005; Stauber et al. 2014; Lohse &
Zhang 2015), neglecting convective effects.

In this article, we further delve into the development of natural convection around a
single growing bubble. We focus in particular on the time that it takes for convection
to set in as an appreciable mass transfer mechanism and what external conditions,
such as the concentration in the bulk liquid c0 and the supersaturation level ζ , have
more influence on its transition. We present a simple theoretical criterion to predict
the time tconv at which convection becomes important and find a good agreement with
experimental measurements using CO2 bubbles. Afterwards, the long-term effects
of depletion in a single bubble succession are investigated, showing a significant
influence on tconv and the strength with which convection sets in. Finally, two different
gases in solution (CO2 and N2) are contrasted, revealing a unique behavioural change
in the mass transfer rate at the predicted time tconv due to the different gas properties.
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2. Experimental set-up and theoretical approach
Our experiments start with an equilibrated solution of either CO2 or N2 in ultra-

pure degassed water at a starting saturation pressure P0. The initial dissolved gas
concentration c0 is given by Henry’s law, i.e. c0 = kHP0, where kH depends on the
gas–liquid couple and the temperature T . We then drop the pressure isothermally (T≈
20 ◦C) to Ps in order to induce a supersaturation

ζ = c0 − cs

cs
= P0 − Ps

Ps
. (2.1)

The pressure controller induces some oscillations after the pressure drop, which
can be slightly detected in the figures shown later. Due to this pressure decrease,
a bubble grows out of a hydrophobised micro-pit of radius Rp = 10 µm or 50 µm
which is covered with black silicon (Jansen et al. 1995) and acts as an artificial
bubble nucleation site (Borkent et al. 2009). The size of the pit, etched on a silicon
substrate, determines the minimum supersaturation for which a bubble grows (Jones,
Evans & Galvin 1999a; Enríquez 2015; van der Linde et al. 2018), ζ > 2σ/PsRp,
which typically corresponds to a value ζ ≈ 0.07. However, it is extremely difficult to
achieve bubble formation for this value due to the limitations of our set-up. On the
other limit, very high cs or ζ imply uncontrolled bubble nucleation in areas outside
the field of view. This interferes with the proper analysis of the target bubble due to
massive bubble formation. Rp also defines the bubble detachment radius (known as
the Fritz radius; Fritz (1935)) by equilibrating capillary and buoyancy forces:

Rdet =
(

3Rpσ

2(ρm − ρg)g

)1/3

, (2.2)

where σ is the surface tension coefficient, ρm is the solution density and g is the
gravitational acceleration. The pit is located so that the bubble growing atop is far
from the holding device, where several bubbles usually grow, and also far enough
from the edges of the substrates, where parasitic bubbles might grow on the micro-
roughness caused by the dicing process through which an original silicon wafer is
cut into the shape of the experimental chips. Unless otherwise indicated, the bubbles
always grow on top of the substrate and all experiments are done in the range 0.1<
ζ < 0.5; higher supersaturations already result in too many bubbles on the walls of
the tank and on the edges of the silicon substrate and, consequently, it can no longer
be ensured that the liquid is at rest. Figure 1(a) shows a sketch of the experimental
set-up. A detailed description can be found in Enríquez et al. (2013).

Figure 1(b) shows a sketch of a growing bubble. The Laplace pressure due to the
surface tension is in our case very small compared to Ps and can be safely neglected.
Hence, the gas concentration at the interface can be considered constant and equal
to cs and, therefore, the bubble grows due to the diffusive gas flow driven by the
concentration difference csζ and the gas diffusivity D. The idealised initial condition
is that the bubble grows from a radius Rp with concentration cs at the interface and
c0 everywhere else. The asymptotic solution for the growth of a bubble in an infinite
medium with the aforementioned initial conditions (1.1) (Epstein & Plesset 1950)
needs to be adapted to account for the presence of the silicon substrate below the
bubble interface (Enríquez et al. 2014), which obstructs the mass transfer towards the
bubble. The corrected asymptotic solution thus reads:

ε ≈
(√

csζ

2πρg
+
√

1
2
+ csζ

2πρg

)
x≡ S∗x, (2.3)
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FIGURE 1. (Colour online) Sketches of (a) the experimental set-up and (b) the growing
bubble. (a) A saturated water–CO2 solution is prepared in the reservoir tank at a
pressure P0. After transferring part of the mix to the observation tank, the pressure
is dropped to Ps in order to produce a small supersaturation. A bubble grows from a
nucleation site defined by a single hydrophobic cavity etched in a silicon substrate. We
record the process using a long distance microscope objective through a lateral window
of the tank. (b) As the bubble radius R grows, it develops a concentration c and density
ρm profile of thickness δ(t).

where ε = R/Rp is the dimensionless bubble radius and x=
√
(2Dcsζ t)/(ρgR2

p). Note
that Rp works in (2.3) as a reference value and does not directly affect the growth
rate (Barker et al. 2002). S∗ typically reaches values around 0.9 and it increases with
higher ζ and P0. To compare experiments with this theoretical behaviour, a time origin
needs to be determined. We measure it in two steps: firstly, we identify t0 = 0 with
the moment in which we first detect a bubble protruding from the pit; secondly, we
numerically fit a function

√
t (i.e. the theoretical behaviour for pure diffusion) to the

early stages of the experimental bubble growth (ignoring the first few data points
associated with the growth of the bubble out of the pit). We correct the former t0,
which was already within the error limit ±0.5 s.

As the bubble grows, it depletes its surroundings of gas (Moreno Soto et al. 2017),
developing a diffusively growing concentration profile that extends a distance δ =√

πDt into the liquid solution (figure 1b). Variations in concentration imply changes in
the solution density, determined by the concentration expansion coefficient λc, which
for a dilute solution of gas in water can be approximated as (Gebhart & Pera 1971;
Moreno Soto et al. 2017; Peñas-López et al. 2017):

λc = 1
ρ

(
∂ρ

∂c

)
P,T

≈ 1
ρm,0

ρm,0 − ρm,s

c0 − cs
. (2.4)

Hence, a positive λc means that the density of the solution increases with the gas
concentration. If the density of the saturated solution is ρm,0, the density value at
the bubble surface is given by ρm,s = ρm,0(1 − λccsζ ). The different gas properties
of CO2 and N2 are listed in table 1. Combining λc with csζ ≈ 2 kg m−3 (for the
CO2 experiments; csζ is much smaller for the N2 case) implies that |λccsζ | � 1 and
makes it tempting to neglect the changes in density, which has been routinely done in
most earlier works on bubble growth in supersaturated solutions. However, the long
growth times of the bubbles require that we do take long term density changes into
consideration.
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CO2 N2

D (m2 s−1) (Wilke & Chang 1955) 1.79× 10−9 1.88× 10−9

kH (kg (m−3 Pa−1)) (Sander 2015) 1.67× 10−5 1.78× 10−7

λc (m3 kg−1) (Equation (2.4) and Watanabe & Iizuka (1985)) 9.90× 10−4 −2.32× 10−4

ρg (kg m−3) (Greenwood & Earnshaw 1997; Pierantozzi 2007) 9.97 6.29

TABLE 1. Properties of CO2 and N2 when dissolved in water at P = 0.55 MPa and
T = 21 ◦C. The large difference in the values of Henry’s constant kH accounts for the two
orders of magnitude change in solubility.

As will be thoroughly explained in the following section, after an initial diffusive
growth, a transition to density-driven natural convection occurs. In order to experimen-
tally measure the time in which this transition takes place, two methods are used and
compared. An analytical model comparing buoyant and viscous forces will be defined
to theoretically approximate this transition time, which only depends on the properties
of the solution and the supersaturation level ζ at which bubbles grow. Whereas for
a purely diffusively growing bubble (2.3) the ratio between the bubble radius and
its diffusive concentration boundary layer R/δ = S∗

√
2csζ/πρg remains constant

through time, the transition to convection enhances the bubble growth rate but does
not influence δ. Thus, the ratio R/δ increases as compared to a purely diffusive
case. Higher supersaturation levels ζ and P0 (which directly relates to cs) also make
this ratio increase. However, within this relatively smaller concentration layer, higher
concentration gradients are reached, which results in higher and intensified onset to
natural convection, as we will analyse in the following section.

3. The case of CO2 bubbles
The typical bubble growth from our experiments is best appreciated by plotting

the derivative dε/dx, which represents the dimensionless rate of change of the
bubble area. Following (2.3) this should be constant and approximately equal
to S∗. Figure 2(a) shows dε/dx divided by S∗ for some experiments with CO2
solutions at P0 = 0.35 MPa and different ζ . After the initial transient associated with
the sudden growth of the bubble out of the pit, there is indeed a plateau around
(1/S∗)(dε/dx) ≈ 1, which indicates a diffusion-driven growth. The plateau reaches
larger values with increasing ζ . This originates from the stronger bubble growth rate
at larger supersaturation levels ζ , which the asymptotic model (2.3) cannot follow
any longer. Nevertheless, for the experimental range studied, the expected plateau
corresponding to a diffusive process is always found. Afterwards, the curves start to
rise as a result of the enhancement of mass transfer caused by natural convection.
To properly associate this effect with a transition to natural convection, following
Enríquez et al. (2014), we introduce the Sherwood number Sh and the mass Rayleigh
number Ra, respectively defined as:

Sh= 2RṘρg

Dcsζ
, Ra= gλccsζ (2R)3

νD
, (3.1a,b)

where Ṙ is the (dimensional) bubble growth rate and ν is the kinematic viscosity of
water. Defined this way, Sh stands for the dimensionless mass transfer rate towards
the bubble and Ra for the dimensionless buoyancy force due to the concentration
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FIGURE 2. (Colour online) Dimensionless bubble growth rate (or, equivalently, the
dimensionless change in the bubble surface over time) divided by S∗ as a function of
x∝√t. The leftmost rising part associated with the sudden growth of the bubble out of
the pit and the following horizontal plateau are expected from a diffusion-driven growth;
the right-hand slope suggests the influence of convection. The horizontal dashed line
represents the purely diffusive evolution according to (2.3). (a) Experiments at P0 =
0.35 MPa and a pit of Rp= 50 µm with various supersaturation levels ζ . In all cases, the
bubble grows on top of the silicon chip. The vertical solid lines in corresponding colours
indicate the experimentally measured dimensionless square root of the transition time xc
for each ζ . The two reference lines used on its calculation are shown as dotted lines for
ζ = 0.10. (b) Experiments at P0 = 0.65 MPa, a pit of Rp = 10 µm and ζ ≈ 0.2 with the
bubble growing in different geometrical configurations, indicated by the sketches next to
the corresponding curves.

difference in the liquid. When Sh is plotted against Ra (figure 3a), two main phases
can be distinguished. Firstly, an initial transient stabilises to a plateau value which
reads Sh= 2S∗2 for pure diffusive growth. For higher supersaturation ζ , this plateau is
expected to reach slightly higher values, as S∗ increases accordingly with ζ , equation
(2.3). Secondly, the rising part of the curve follows a power law Sh ∝ Ra1/4, which
is the expected relation between Sh and Ra for natural convection around a sphere
(see e.g. Potter & Riley 1980; Bejan 1993). Further experimental confirmation of the
presence and influence of natural convection is obtained by comparing the bubble
growth in different geometrical configurations, such as the situation where the bubble
grows underneath the substrate and where it grows between two horizontal parallel
plates with a vertical separation of 1 mm (a distance approximately 2.5 times larger
than the bubble detachment radius), figure 2(b). In the first case, an increase of the
growth rate is still observed, but at a slower pace, which is to be expected because of
the geometrical inversion of the problem where the buoyant depleted liquid needs to
move sideways due to the presence of the substrate. In the second case, the growth
rate starts to rise but decreases again as the bubble surface approaches the other
wall, which inhibits the possibility of convection developing further. We anticipate
the different configurations to affect the Riley scaling law, more precisely on the
prefactor multiplying Ra1/4. This power law has also been demonstrated for natural
convection above and below a heated plate (Bejan 1993, chap. 7, § 7.3.3).
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FIGURE 3. (Colour online) (a) Sherwood number Sh as a function of Rayleigh number
Ra in double logarithmic scale from the same data presented in figure 2(a). The dashed
line represents a 1/4 power law, which indicates that in the advanced stages, growth is
driven by natural convection (Enríquez et al. 2014; Moreno Soto et al. 2017). The dotted
horizontal line stands for a purely diffusive growth and its intersection with the power
law indicates the transition to convection. The vertical solid lines in corresponding colours
indicate the measured Rac for each curve. (b) Rayleigh number Rac at the cross-over to
convection-driven growth as a function of the supersaturation ζ . Blue circles correspond
to experiments with P0= 0.35 MPa and Rp= 50 µm and red diamonds to P0= 0.65 MPa
and Rp = 10 µm. The solid black line represents the theoretical Rac as given by (3.7),
which does not depend on P0 and therefore is coincidental for the two cases presented.

3.1. Transition to convection-driven growth
To characterise the cross-over to convection-driven growth in experiments, we fit a
horizontal line to the plateau region of the Sh versus Ra curves (figure 3a) and a
1/4-power law to their rising part and assume that the transition takes place at the
intersection of those two lines. The crossing Rac can be directly associated with a
bubble radius R and thus directly translated to a transition time tconv. Equivalently, we
also fit a horizontal line to the plateau in the derivative curves in figure 2(a) and a
best-fit ascending straight line on their slope, measuring their intersection. From there,
we obtain xc, which by its definition is easily converted to tconv. The fitting of the
plateau was sometimes troublesome due to its short duration and the proximity to the
initial transient; for this reason, the determination of the transition Rac (or xc) cannot
be made very precisely, which explains the scatter in the data. The experimental points
determined by the latter method appear to be more accurate than the ones obtained by
the former. However, the spread in data remains within a reasonable tolerance of ±5 s.
Nonetheless, the cross-over Rac values increase with increasing ζ (see figure 3b). The
origin of this behaviour will be explained later in the text.

The gas-depleted region that develops around the bubble is subjected to an upward
buoyant force due to its lower density compared to the fluid bulk. In order to estimate
the force magnitude, we calculate the volume Vb of the buoyant region determined by
the spherical segment (of horizontal diameter 2R+ 2δ and height 2R+ δ) denoted by
the dotted line in figure 1(b) minus the volume of the bubble. With the bubble radius
and buoyant region growing as R≈ S∗

√
2Dcsζ t/ρg and δ ≈√πDt, respectively, the

https://doi.org/10.1017/jfm.2019.276
https://www.cambridge.org/core
https://www.cambridge.org/core/terms


Transition to convection in single bubble diffusive growth 339

buoyant volume is given by

Vb = 1
3
(πDt)3/2

(
24S∗2

csζ

ρg
+ 9S∗

√
2πcsζ

ρg
+ 2π

)
≡ fV t3/2, (3.2)

where fV stands for a volumetric buoyant factor. We stress that fV is a dimensional
constant that depends on the liquid–gas properties and, most importantly, on the
supersaturation ζ .

We then estimate the terminal rising velocity ub of the buoyant region by
recognising that the only relevant forces acting upon it are buoyancy Fb and the
viscous drag Fd, which for definiteness we estimate from the Stokes’ flow. This last
assumption is reasonable since the Reynolds number Re is small at all times, as
we will see later. The small density difference and ‘quasi-static’ (extremely slow)
growth of Vb in the small supersatured regime result in a negligible acceleration, and
therefore, negligible added mass force on Vb. Hence, we define:

Fb = csζλcρm,0gVb, Fd = 6πub(R+ δ)µ, (3.3a,b)

which once equated lead to

ub = csζλcgVb

6πν(R+ δ) =
csζλcgfV

6πν(R+ δ) t
3/2. (3.4)

Note that, in the end, the final scaling is ub∝ t and that the expression presented above
has been written as ub ∝ t3/2/(R+ δ) for convenience.

The lighter liquid around the bubble will thus rise with the velocity ub which sets
up a flow of similar magnitude over the substrate to which the bubble is attached.
This will lead to a viscous boundary layer that is described by a Reynolds number

Re= ub(R+ δ)
ν

= csζλcgVb

6πν2
= csζλcgfV

6πν2
t3/2. (3.5)

Only if the buoyant velocity ub is large enough to overcome the viscous velocity
ν/(R+ δ) in a boundary layer over a substrate of similar size as the buoyant volume
will the liquid start to rise and convective mass transport begin to set in. This implies
that Re> 1, and that the threshold value, i.e. Re≈ 1, marks the moment in time tconv
at which convection sets in,

tconv ≈
(

6πν2

csζλcgfV

)2/3

. (3.6)

If we consider a pure diffusive growth until the moment of transition, the crossing
Rac can be directly calculated by combining (2.3), (3.1) and (3.6),

Rac = 48πνS∗3

DfV

(
2Dcsζ

ρg

)3/2

, (3.7)

an expression which depends only on the properties of the solution and the
supersaturation ζ . Note that this occurs because we are performing a quasi-steady-state
analysis on a growing bubble with a boundary layer that grows at the same pace.
Incidentally, the Reynolds number defined in (3.5) can be easily interpreted as a
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FIGURE 4. (Colour online) (a) Experimental and theoretical convection transition times
tconv (solid symbols and solid lines, respectively) as functions of the supersaturation level ζ
for P0= 0.35 MPa (blue circles) and P0= 0.65 MPa (red diamonds). Open symbols show
the experimental detachment times tdet, whereas the dashed line represents the theoretical
one for a bubble growing until Rdet (2.2) following the growth law (2.3). Inset: detachment
times of bubbles in the experiments by Bisperink & Prins (1994) (diamond) and Jones
et al. (1999b) (square). They reported no influence of natural convection. (b) Theoretical
cross-over tconv (solid) and detachment tdet (dashed) times as function of the supersaturation
ζ for CO2 (blue) and N2 (red) bubbles. For thick solid lines, P0 = 0.65 MPa, and for
thin solid ones, P0 = 0.35 MPa. The detachment curves are calculated considering pure
diffusive growth until a radius Rdet = 500 µm (2.2), corresponding to a pit radius of Rp=
10 µm.

Grashof number based on the length scale (Vb/6π)1/3. By the definition in (3.5),
the higher the buoyant velocity ub, the earlier and more intensified the onset of
convection occurs and the more the mass transfer is enhanced.

In figures 3(b) and 4(a), we see that the cross-over time prediction agrees well
with experimental measurements. In figure 3(b), there seems to be a slight dependence
on P0 which our model (3.7) does not account for. In figure 4(a) we also show,
for reference, the experimental detachment times tdet and the theoretical ones if the
bubbles would have grown only by diffusion (2.3) to a radius of 500 µm, i.e. the
approximate detachment size (2.2) from a pit of Rp= 10 µm. Furthermore, we include
the detachment times of experiments by other authors (Bisperink & Prins 1994; Jones
et al. 1999b) who reported no influence of natural convection during bubble growth.
Those times are only slightly larger than our prediction for tconv, which suggests that in
their experiments there was not enough time to observe this phenomenon. In addition,
at higher supersaturation values (such as in those studies) the advective flow induced
by the expanding bubble surface is no longer negligible and could possibly overwhelm
the influence of natural convection.

To analyse the supersaturation range in which convection may become dominant,
we compare the Sherwood number Sh (3.1) with the Péclet number Pe= 2RṘ/D, i.e.
we compare advective mass transport to the total mass transport:

Pe
Sh
= csζ

ρg
= ζkHrCO2T, (3.8)
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FIGURE 5. (Colour online) Values of ζ for which Pe/Sh= 1 and (inset) Henry’s constant
kH in water as function of temperature for CO2 (solid blue lines) and N2 (dashed red
lines). In both cases, the region Pe/Sh< 1 is below the respective curve.

where we have used both Henry’s law and the ideal gas law. Here the specific
gas constant for CO2 equals rCO2 = 188.95 J kg K−1. A necessary condition for
natural convection to eventually become dominant is that Pe/Sh < 1, i.e. that
advective transport is less relevant than the total mass transfer process including
natural convection. Importantly, the threshold only depends on the specific gas,
the supersaturation level ζ and the temperature T . In figure 5 we show the
temperature dependence of the values of ζ corresponding to Pe/Sh = 1 and of kH .
At our experimental temperature (T ≈ 293 K), convection becomes dominant for
supersaturation levels below ζ = 1.08, including the entire range of our experiments.
Therefore, we always observe a transition to density-driven convection during bubble
growth. Larger ζ may then cause advective effects due to the bubble interface
expansion and detachment to set in earlier than natural convection. The experiments
from Bisperink & Prins (1994) and Jones et al. (1999b) had supersaturations of 1.78
and 1.07, with corresponding temperatures of 294 and 299 K. For these, Pe/Sh= 1.65
and 0.88, respectively, which puts them very close to the limit where, given enough
time and experimental precision, convection might have been noticeable.

3.2. Effect of the initial saturation pressure P0 on the transition to convection
As already indicated, the gas concentration in a liquid c0 depends on the properties of
the gas–liquid couple, the temperature T and the saturation pressure P0. At constant T ,
cs is directly proportional to Ps, and therefore the supersaturation level ζ can be easily
controlled by pressure change. The time evolution of the radius in the diffusive regime
is fixed by providing ζ (Epstein & Plesset 1950; Enríquez et al. 2014; Moreno Soto
et al. 2017). This can be easily realised by noting that in (1.1) and (2.3), the factor
csζ/ρg= ζkHrT depends on ζ . The situation is different in the case of buoyancy. Since
the buoyant force is directly determined by the density difference 1ρ = ρm,0λccsζ =
ρm,0λcζkHPs, its effect is expected to depend on both the supersaturation ζ and the
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FIGURE 6. (Colour online) (a) Derivative of the dimensionless bubble radius ε against the
dimensionless time x for experiments with different P0 but same ζ ≈0.15 and Rp=50 µm.
The corresponding coloured dashed vertical lines stand for the theoretical tconv, whereas the
solid lines indicate the experimentally measured one. The guidelines to calculate the latter
are indicated as dotted lines for P0= 0.8 MPa. The horizontal black dashed line indicates
the theoretical behaviour for pure diffusion according to (2.3) (Enríquez et al. 2014). Note
that for purely diffusively growing bubbles, the experimental curves would be expected to
coincide. (b) Sh versus Ra for the first bubble after the pressure decrease at different P0
and ζ = 0.15 in logarithmic scale. The differences present in (a) are directly translated and
better visualised in this representation, where for the same Ra, Sh, i.e. the dimensionless
mass transfer, increases with higher P0. A 1/4 power law has been fitted to one of the
experimental curves for comparison with the natural convective behaviour. The transition
Rac is calculated as the intersection with the horizontal dotted line which represents
a purely diffusive growth. The vertical solid lines in corresponding colour indicate the
different Rac for each curve. The same colour palette in (a) applies to (b).

pressure Ps (or, alternatively, P0). This implies that, when by fixing ζ the zeroth-order
diffusive bubble growth is fixed, the time for convection to set in should still depend
on the absolute pressure values.

To analyse this phenomenon, we performed experiments at a constant supersaturation
level ζ =0.15±0.02 but initially saturating the solution at a different P0. Consequently,
the pressure drop to Ps = P0/(ζ + 1) is defined from (2.1). Figure 6(a) shows some
representative curves of the derivatives of the dimensionless radius ε with respect
to the dimensionless time x for three different initial saturation pressures P0. The
influence of the onset of convection is evident: not only do we observe a shift in the
onset time, but even more importantly, the plateau that represents diffusion reaching
a higher value for higher P0, which indicates an intensified diffusive growth rate
associated with larger concentration differences (but still of the same order of S∗).
The slope of the convective portion of each curve also increases with P0, as can
be determined by examining figure 6(b). In the latter, the data from figure 6(a) are
replotted in dimensionless form as Sh versus Ra. Clearly, for the same Ra, Sh is larger
at higher P0, indicating a stronger convection and an earlier onset. This intensification
of the convective regime with increasing P0 originates from the larger concentration
change (and consequently, the larger solution density variation) to achieve a constant
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FIGURE 7. (Colour online) (a) Value of tconv for the different initial saturation pressure
P0 at ζ = 0.15. Experiments are represented by error bars, whereas the theoretical
estimation (3.9) is plotted as a solid blue line. Despite the imprecisions in the experimental
measurements, especially for lower P0, theory agrees qualitatively with experiments, i.e.
tconv decreases with increasing P0. (b) Effect of depletion on the transitional time to
convection t̃conv . Blue circles correspond to P0 = 0.3 MPa, whereas red diamonds refer
to P0 = 0.7 MPa. For both curves, ζ = 0.15. Note that the numbers in the x-axis are
presented in decreasing order. Even though theory (solid lines) indicates a gradual delay
in t̃conv , experiments show an intensified effect.

supersaturation level. Thus according to (3.4), the buoyant velocity ub increases
with P0, which results in a stronger convection and an earlier transition time tconv.
However, as reflected in (3.7), the pressure dependence disappears when defining Rac,
as the increase in the concentration difference and expansion of the buoyant depleted
volume is counteracted by a faster transition time tconv. The discrepancies in this
aspect observed in figure 6(b) still lie within our experimental error.

Turning to the prediction (3.6), we observe that tconv is inversely proportional to the
gas concentration difference csζ . By applying Henry’s law, it can be rewritten as csζ =
kHP0ζ/(ζ + 1). Thus, we may reformulate the approximate model (3.6) and obtain:

tconv ≈

 6πν2

kHP0

(
ζ

ζ + 1

)
λcgfV


2/3

. (3.9)

Note that the volumetric buoyant factor fV (3.2) also depends slightly on P0 as the
product csζ/ρg in its definition refers to a difference in concentration (c0− cs), where
c0 is directly proportional to P0, divided by the gas density, which also depends
on this pressure. The experimental results are plotted in figure 7(a). Despite the
difficulties in measuring a proper tconv, especially for the lower values of P0 in which
there is not a clear transition towards convection, theory and experiments follow the
same trend and qualitatively agree, i.e. tconv decreases with increasing P0.
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FIGURE 8. (Colour online) (a) Evolution of the depletion number Υ in time with different
supersaturation level ζ and fixed P0 = 0.9 MPa. An evident faster depletion occurs with
larger ζ . The solid line stands for the theoretical behaviour by Moreno Soto et al. (2017)
with α = 0.42 for the case ζ = 0.25. (b) Evolution of Υ in time for different starting
saturation pressure P0 and ζ =0.15. The experimental results make it reasonable to suggest
that P0, and therefore the intensity of the transition to convection, plays a secondary role
in the speed of depletion.

3.3. Long-term effects on the convective transition during a single bubble succession
As singles bubbles grow in succession, they will suffer the accumulated depletion
which originates from the previous bubbles absorbing the gas from their surroundings.
This cumulative depletion remarkably affects subsequent bubbles and significantly
delays their growth rate and inhibits the transition to convection (Moreno Soto et al.
2017). We account for the effect of depletion by defining the discrete depletion
number Υn:

Υn = c̃n − cs

c0 − cs
, (3.10)

where c̃n is the apparent bulk concentration that the nth bubble in the succession
observes. By definition, the first bubble in the succession, n = 1, grows in a
non-depleted domain and therefore, Υ1 = 1. The subsequent values of Υn are
calculated by collapsing the different curves Shn versus Ran into one universal
curve S̃h = f (Υn, R̃a), where S̃h = Shn/Υn and R̃a = RanΥn, following the approach
of Moreno Soto et al. (2017), who also calculated a simplified analytical expression
for Υn. By obtaining the different values of Υn, figure 8, different responses can be
identified. Firstly, increasing the supersaturation level ζ at the same starting P0 results
in a faster depletion, and therefore, Υ decreases faster, as can be seen in figure 8(a).
Secondly, saturating the solution at different P0 does not play a significant role in the
evolution of Υ , figure 8(b). In general, it is true that higher P0 results in a slightly
slower depletion, except for the case of P0 = 0.2 MPa, in which depletion is much
slower than in the others. We identify this effect as originating from the difficulty in
achieving a specific value of ζ , which becomes more challenging at lower P0.

Depletion also affects the time at which convection sets in. By assuming that the
effective concentration difference csζ which affects the transition to convection is
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FIGURE 9. (Colour online) Derivative of the dimensionless bubble radius ε versus
the dimensionless time x for one CO2 (yellow squares) and two N2 (blue and red
circles) bubbles. The vertical dashed lines in corresponding colours indicate the predicted
convection cross-over times xconv for each case (refer to figure 4b). The horizontal dashed
line stands for (2.3).

governed by the apparent bulk concentration c̃, equation (3.6) can be redefined as

t̃conv ≈
(

6πν2

(c̃− cs)λcgfV

)2/3

=
(

6πν2

Υ csζλcgfV

)2/3

. (3.11)

This equation relates the delay in the transition to convection as depletion intensifies.
We plot some experimental results and compare them to this theoretical expression
in figure 7(b). Despite the toughness in calculating t̃conv, which becomes even more
difficult as depletion increases and there is no longer a defined transition from plateau
to slope in the curves dε/dx(x) nor Sh(Ra) (Moreno Soto et al. 2017), experimental
results indicate a significant delay in the transitional time to convection, which is in
accordance with (3.11).

4. The case of N2 bubbles
CO2 is a gas with a very high solubility in water, indicated by Henry’s constant kH ,

whereas N2 has a lower solubility (refer to table 1). The diffusivity D and the
expansion coefficient λc in aqueous solutions are however of the same order
of magnitude (in absolute terms) for both gases. That cs is approximately one
hundred times smaller for N2 leads to a much smaller csζ if the supersaturation
ζ is the same as in the CO2 experiments. Consequently, since the radius grows as
R(t)∝√2Dcsζ t/ρg, N2 bubbles grow more slowly and tconv is expected to be much
larger. Figure 4(b) compares the theoretical cross-over tconv and detachment tdet times
for the two gases, showing the indeed much longer times to achieve convection and
detachment for N2. Our estimation of tconv remains valid for negative λc, where in
the final expression (3.6), λc needs to be replaced with its absolute value |λc|. Some
experimental dε/dx curves are shown in figure 9 along with a reference curve for
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tconv (s) R(tconv) (mm) δ(tconv) (mm)

CO2, ζ = 0.381 60 0.300 0.610
N2, ζ = 0.304 3280 0.210 4.400
N2, ζ = 0.457 2620 0.230 4.000

TABLE 2. Comparison of cross-over time tconv , bubble radius at cross-over time R(tconv)
and boundary layer thickness at cross-over time δ(tconv) for CO2 and N2 bubbles.

CO2. Note that, although the time scales are very different in experiments with each
gas, x is similar for N2 and CO2. The early stages look very similar; in fact, the
slow growth of N2 bubbles allows for a smoother plateau region, avoiding the slight
oscillations of the CO2 curve caused by the pressure controller after the pressure drop.
At the predicted tconv there is a clear change in behaviour for the N2 bubbles, but
very different from that of the CO2 case. In this case, λc is negative and therefore,
the stratified density profile is stable: the solution is then denser close to the bubble
than in the bulk liquid, i.e. the depleted volume may stay on the substrate and sink.
The subsequent convective stream flows in the opposite direction to that in the CO2
case. Still, the transition to natural convection occurs since additional gas is brought
from the bulk to the bubble interface. However, the behaviour is totally different from
that of CO2 bubbles: now the growth rate oscillates around the solution for purely
diffusive growth. Thus, the Riley scaling of the convective flux, i.e. Sh∝ Ra1/4, may
not apply any longer to this scenario. The different transition times for CO2 and N2
are listed in table 2. As one can see from the data in the table, the cross-over radius
R(tconv) is of the same order for both gases. However, the cross-over time tconv and
consequently the boundary layer thickness δ(tconv) are much larger for N2.

As we previously mentioned in § 2, it is not uncommon that some bubbles grow
on the edges of the silicon substrate during the experiments, which are at least 4 mm
away from the target bubble. For CO2 bubbles this is not a problem, since that
distance is much larger than the boundary layer thickness at the time convection sets
in, δ(tconv), and hence beyond the range in which they might interact (Enríquez 2015,
chap. 5). However for N2, this distance allows for considerable overlap of buoyant
regions, which may cause that the mixing due to natural convection brings liquid
that is already depleted of gas to the bubble surface. This is consistent with the
irregular growth rates and the lack of reproducibility that we observe in all our N2
experiments after tconv even though the initial growth is reproducible and similar to
CO2 bubbles in dimensionless units (figure 9). In addition, the mixing process itself
might be significantly altered in the case of N2 bubbles where, despite the similar
magnitude of the buoyant force (in absolute terms), the buoyant depleted volume is
much larger than for CO2 bubbles. Finally, and regarding the supersaturation range
where diffusion effects should prevail over convection in the case of N2, we can
see in figure 5 that the small solubility of this gas in principle sets a very high
supersaturation limit to this phenomenon, which again is indicated by the threshold
Pe/Sh = 1. The transition to convection is therefore most likely to occur in the
majority of applications involving N2 bubbles.

5. Conclusions
We have shown that diffusive bubble growth driven by a small gas supersaturation

in a liquid solution can lead to natural convection and, thereby, enhance the
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bubble growth rate (figures 2 and 3a). This transition to natural convection or
density-driven convection originates from the change in density experienced by the
solution surrounding the bubble as it absorbs the dissolved gas and the liquid becomes
depleted. For experiments with CO2, the prediction for the cross-over time tconv agrees
with measurements, despite the difficulty in precisely determining tconv (figures 3b,
4a and 7a). The analytical prediction of tconv suggests that, in principle, density-driven
convection around a growing bubble can occur at any value of supersaturation ζ as
long as the detachment radius is large enough (figure 4). However, the balance
between the expansive motion of the bubble surface and the convection due to
concentration differences establishes a supersaturation threshold for which convection
is expected to become relevant (figure 5). The initial saturation pressure P0 at
which the solution is prepared significantly affects results as well. At constant
supersaturation ζ , a higher P0 implies a larger pressure drop, and consequently, a
larger concentration and density change. As a result, convection sets in at earlier
tconv and with intensified effects, indicated by the different convective slopes in the
derivative analysis (figure 6a).

Single bubbles growing in a succession are also extremely affected by the transition
to convection. The study of the depletion number Υ yields that depletion is highly
dependent on the supersaturation level, whereas the initial starting pressure P0 has a
secondary role and barely influences the results. This sheds some more light in the
possible origin of depletion: even though the transition to convection may be relatively
important, the major cause of depletion emerges from the evident fact that bubbles
absorb gas as they grow (gas that cannot be fully replaced by the diffusive transport
through the bulk) and from the way bubbles alter their surroundings while detaching.
Besides, depletion causes a significant delay in the transition to convection, which
becomes less relevant as subsequent bubbles keep growing and detaching.

For N2 bubbles, there is a clear transition occurring at tconv, consistent with the
presence of natural convection, but different from the CO2 case. This originates from
the different solubilities and the different way in which the solution density changes
with the gas concentration, which is reflected in an opposite sign of λc as that for the
CO2 bubbles. The convective plumes flow in the reverse direction and consequently,
the bubble evolution during the convective regime and the time needed for it to
set in behave differently, as depicted in both tables 1 and 2 and figures 4(b), 5
and 9. Nevertheless, that we observe such transition with a gas one hundred times
less soluble suggests that this can happen for any gas–liquid solution as long as its
density changes with the gas concentration.
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