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Abstract—Industry 4.0 aims at supporting smarter and au-
tonomous processes while improving agility, cost efficiency and
user experience. To fulfill its promises, properly processing the
data of the industrial processes and infrastructures is required.
Artificial Intelligence (AI) appears as a strong candidate to
handle all generated data, and to help in the automation and
smartification process. This article overviews the Digital Twin
as a true embodiment of a Cyber-Physical System (CPS) in
Industry 4.0, showing the mission of AI in such concept. It
presents the key enabling technologies of the Digital Twin such
as Edge, Fog and 5G, where the physical processes are integrated
with computing and network domains. The role of AI in each
technology domain is identified by analyzing a set of Al agents
at the application and infrastructure level. Finally, movement
prediction is selected and experimentally validated using real
data generated by a Digital Twin for robotic arms with results
showcasing its potential.

Index Terms—Cyber-Physical System, Digital Twin, Artificial
Intelligence, Industry 4.0

I. INTRODUCTION

The rapid advancements in Information and Communica-
tion Technology (ICT) are transforming the industrial sector
towards a full digitalization and integration concept. This
transformation, known as Industry 4.0, enhances industrial
systems with the ability to make decentralized and autonomous
decisions through the use of Cyber-Physical Systems (CPSs).
Consequently, the industrial world can improve the productiv-
ity, logistic and lower production costs [1]. CPSs are the main
linchpin for Industry 4.0 to move towards a fully automated
industrial infrastructure that relies on real-time capabilities,
distributed control systems, virtualization, service orientation,
and modularity [2].

Digital Twin is defined as “a virtual representation of
a physical asset enabled through data and simulators for
real-time prediction, optimization, monitoring, controlling, and
improved decision-making” [3]. This concept truly embodies
the cyber-physical integration within Industry 4.0, combining
any industrial process achieved through closed-loop feedback
mechanisms. The digital factory includes geometrical and
virtual models of tools, machines, operatives, products, etc.,
as well as behaviors, rules, physics and analytic models. The
outputs of the Digital Twin processes are executed in the
factory floor to improve the physical object performance [4].

The adaptation of Digital Twin in Industry 4.0 is inseparable
from recent advances in ICT, such as 5G and supporting
technologies. 5G networks are architected to simultaneously
support different types of service profiles in the shared in-
frastructure, such as enhanced Mobile BroadBand (eMBB),

massive Machine Type Communication (mMTC) and Ultra-
Reliable Low Latency Communication (URLLC). Together
with the Edge [5] and Fog [6] computing, they provide a
communication link with low end-to-end (E2E) latency, low
jitter, and localization awareness to industrial services. Still,
by themselves these technologies cannot efficiently manage
automation or compute best decisions to achieve dynamic
adaptation.

In this sense, the cyber space mirrored through Digital
Twins arises as the perfect playground for the development
of Artificial Intelligence (AI) agents [7]. Moreover, Machine
Learning (ML) is a strong candidate to implement such agents,
as an alternative to heuristic or decision-tree based solutions,
among others. Digital Twins provide the tools for transferring
the domain expertise of specialized personal into raw data in
the cyber space, which can be later used to train and cross-
validate different ML algorithms used in Al agents. These
agents not only develop expertise in specific tasks but also
extend and optimize it beyond the human capability due to the
volume of data they can handle to make decisions. Ultimately,
smarter and more accurate Digital Twins can be devised where
autonomy is achieved through Al-controlled processes that
operate in all types of environments and conditions.

This article overviews the Digital Twin as a CPS solution,
where Al is introduced as the missing piece in its integration
with networks and computing. In particular, it focuses on
providing an analysis of different Al agents based on ML
algorithms, with relevant applicability to improve and enhance
Digital Twins. Section II introduces the envisioned concept
of an Industry 4.0 environment, highlighting specific aspects
related of a Digital Twin that can be enhanced with Al
capabilities. The identified Al agents, both at application and
infrastructure level, are discussed in Section III, followed
by the experimental validation of a selected Al agent in
Section IV. Finally, conclusions are presented in Section V.

II. TOWARDS INTELLIGENT INTEGRATION OF DIGITAL
TWINS WITH COMPUTING AND NETWORKS

This section overviews the Digital Twin, and its integration
with the underlying Computing and Network infrastructure,
emphasizing still open challenges to be tackled by Al.

A. Digital Twin

Digital Twin in Industry 4.0 integrates any industrial process
achieved through the implementation of closed-loop feedback
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Fig. 1: General Concept for Digital Twin

mechanisms. It creates digital replicas of physical objects in
the cyber space, replicating the behaviors of their physical
counterparts, and provide feedback mechanisms for control.
The control-loop starts with the physical object sending sensor
information and its current state to the digital replica, which
then closes the control-loop by sending back commands in
real-time. In doing so, industrial machinery become software-
enhanced objects that incorporate self-management capabil-
ities and respond quickly to changes. In this way, cyber-
physical integration is achieved, providing a new set of tools
to monitor, control and predict behaviors and to accurately
optimize the factory floor.

Digital Twins for industrial applications in the areas of
design, production, and system-health checks demonstrate
superiority over the traditional solutions. These allow to re-
inforce the collaboration between design and manufacturing,
mimicking the real factory environment to ease remote control
operations, and facilitate the detection of machinery problems,
respectively.

Challenge #1: How to effectively use sensors real-time data
streams in Digital Twins to further improve remote control
operations and maintenance?

B. Computing

In Industry 4.0, physical objects are composed by either
low-performance and constrained hardware or hardware tai-
lored to a specific task. Owing to the development of vir-
tualization, software components of the physical object are
represented as modular virtualized functions, which execution
is outsourced into more powerful computing resources.

Cloud-based solutions have been initially exploited for im-
plementing such concepts [8], by providing elastic and power-
ful computing capabilities required to support the Digital Twin.

However, Cloud providers cannot ensure the performance of
the network between the physical object and its digital replica,
worsening with their network distance and the number of
providers in-between. As a result, Cloud-based Digital Twins
suffer from time-varying network delay, unpredictable jitter,
limited bandwidth, or data loss. These drawbacks prevent time-
sensitive tasks, including real-time remote control, to be fully
supported by the Cloud computing substrate. To overcome the
shortcomings of Cloud computing, Edge and Fog emerged as a
natural extension. While Edge computing provides computing
capabilities near the physical objects via static substrates,
Fog computing also integrates volatile, constrained or mobile
resources (including the physical objects). By exploiting Edge
and Fog computing, the Digital Twin can offload time-sensitive
processing from the physical object, which in turn contributes
towards further optimizations of the hardware costs. Addition-
ally, new algorithms for efficient data filtering, envisioning
privacy and security improvements [9], can be applied and the
data can be restricted within a trusted private infrastructure.
Finally, due to the close proximity, Edge-based Digital Twins
can use the available radio network information to adapt the
physical objects operations or to optimize resource allocation
in order to improve the Quality of Experience (QoE).

Challenge #2: How to optimally allocate computing re-
sources for Digital Twins in the cloud-to-thing continuum,
to satisfy Key Performance Indicators (KPIs) as latency, and
security requirements?

C. Networks

The underlying network infrastructure of the Digital Twin
comprises of different dynamic and heterogeneous topologies.
It can be divided in three segments, as shown in Figure 1:



(i) Aggregation Ring; (ii) Access Ring; and (iii) (Radio) Ac-
cess Network ((R)AN). The Aggregation Ring resides far from
the physical objects, relying on wired connectivity to connect
Cloud-based Digital Twins that are suitable for human-scale
responsive services and delay-tolerant tasks (e.g., monitoring).
The Access Rings go closer to the physical objects, intercon-
necting multiple (R)ANs. The Access Rings are locally present
and expose radio network information (e.g., radio channel)
to Edge-based Digital Twins, namely for time-sensitive tasks
(e.g., remote manipulation). Finally, the (R)AN is in the
vicinity of the factory floor, providing connection to the
physical objects using both wired and wireless connectivity.
Different radio access technologies (RATs) are available (e.g.,
WiFi, LTE, 5G), differing on their capabilities with respect to
latency, range, data rate, power profile, and scalability.

Wired technologies are most suitable for fulfilling the
communication requirements of a Digital Twins. Due to their
limitations in terms of flexibility, mobility and high-density
connections, wireless technologies are becoming more ap-
pealing in the (R)AN. However, the critical processes within
industrial environments are sensitive to radio-frequency in-
terference, requiring RATs to be interference-free, to work
on licensed bands, and to provide an extremely controlled
environment. Industry 4.0 claims 5G as a key enabler to fulfill
the communication requirements set by Digital Twin [10],
not only through radio enhancements but also by employing
network slicing and virtualization as core features. At the same
time, WiFi 6E appears as another candidate for Industry 4.0,
with trials already showcasing its capability to sustain the
presence of interference and noise, and to meet the stringent
requirements of most use cases.

Challenge #3: How to build Digital Twins that benefit from
an optimal use of heterogeneous RAT resources, and overcome
radio interference problems?

The aforementioned challenges demand Digital Twins that
satisfy the expected real-time and secure performance. On top,
Digital Twins should also tackle the problems derived from
its integration with the network and computing infrastructure.
Al agents are strong candidates to handle such challenges, as
they can benefit from ML algorithms to exploit existing data
sources with context information at both the application, and
infrastructure level.

III. AI AGENTS FOR DIGITAL TWIN

In order to address the challenges presented in the previous
section, exemplary Al agents for Digital Twins are identified
(Table I), including possible ML algorithms [11] to implement
them. The In-Network or On-Device deployment strategies are
envisioned while leveraging on the pervasiveness of the cloud-
to-things continuum (i.e., Fog, Edge and Cloud). Moreover,
Al agents can be trained in the Cloud (cloud learning) for
computation-intensive training, or in the Edge (edge learning)
for local training considering enormous real-time and private
data generated by the industrial processes.

A. Application Related Enhancements

The following AI agents describe different enhancements
on top of Digital Twins, which improve the robustness and
reliability of the existing processes and pave the way for
novel features and capabilities that rely on highly automated
processes.

1) Movement Prediction: Remotely control a physical ob-
ject over a wireless channel via its Digital Twin can be prone
to unpredictable radio-frequency interference that introduce
high jitter and packet loss. Consequently, the remote operator
experience lagged behavior that breaks the real-time control
of the physical object and creates an unsafe environment.
A solution that recovers from such unpredictable behaviors,
keeping the remote control uninterrupted, is required. Al
stands out as strong candidate that can forecast future move-
ments providing extra reliability in case movement commands
are lost. In this context, Movement Prediction uses the historic
of commands to predict future ones using ML time-series
algorithms like VAR, TCN, GRU or LSTM (see bottom of
Table I for description). Whenever the next command is lost,
or do not arrive on time, the Movement Prediction triggers
the forecasting of such command to keep the remote control
uninterrupted (as showcase in Section IV). To prevent from
packet loss and high latencies, the Movement Prediction has to
be deployed in the Fog, executing when a failure occurs, or in
the Edge, piggybacking predictions with every real command.

2) Task Learning: In industrial scenarios, there are still
highly complex and dynamic tasks that require human exper-
tise/presence. Traditional agents based on finite state machines
are not suitable for automating such tasks, as they cannot
react under unforeseen situations, such as appearance of
unpredictable obstacles. Task Learning Al agents based on
IL and RL algorithms are potential solutions to overcome
such situations, as they are designed to learn and, afterwards,
interact with a dynamic environment. The Task Learning is
first trained through observations of human-based operations,
in a trial and error fashion, through the simulated environment
enabled by the Digital Twin. Then, its behavior is validated
in the simulated environment, which includes unexpected
and random situations. Finally, its runtime deployment is
envisioned in the factory floor (i.e., Fog or Edge) to ensure
secure, reliable, and low-latency execution of the task. For
example, the Task Learning is able to introduce generalization
and adaptability to drive a lift truck for package delivery.
Thus, the Digital Twin can learn how to act robustly upon
introduction of obstacles in the path, or changes in the shapes
or position of packages.

3) Risk Reduction: As remote control mechanisms emerge
and physical objects become more autonomous, safety plays
a critical role in the design of a Digital Twin. When con-
sidering human-machine collaboration scenarios, failures of
either humans or machines may suppose a risk for the safety.
Factory floors equipped with surveillance cameras could reuse
them to perform image segmentation, and pattern recognition
in order to identify and mitigate dangerous situations. Over
the recent years, it has been proved that Al solutions based on
CNN algorithms achieve the best performance on computer
vision related tasks. Hence, the Risk Reduction uses CNN



TABLE I: Summary of Al agents For Digital Twin

ML Candidate
Al agent Input Data Outcomes . Runtime
algorithm(s) .
Location
Movement Historic of commands, real-time commands Predictions on the N next | VAR, TCN, Fog, Edge
Prediction ’ = ’ commands GRU, LSTM 2, Bdg
Application X o
. Demonstrations of the task from different knowl- . .
Task Learning edge domains (e.g., physical object states) Generalized task policy IL, RL Fog, Edge
Risk Reduction Sensqr data, video streams, localization data and Iden.tlﬁcatlon gnd Afore— CNN Fog, Edge
machinery states casting unsafe situations
. . . ARIMA,
Prefhctlve Machinery and f:nVlr_onmental sensor data (e.g., Failure predictions LSTM + LR, | Edge, Cloud
Maintenance motors status, vibration, temperature) SVM
Infrastructure SDyr;_amic Resource usaglg, dgte ?élgltime(,i tsali]j\ number of | Scale ip/out or up/down II\Q/IIL,P g"ll\"], RF, Edge, Cloud
(Computing caling instances, application S an S suggestions A
and Privacy, Security | Infrastructure and network context information, Security breaches and sus- | PCA. K-means
Networking) and Intrusion | traffic flows patterns, service and infrastructure ecurty ’ ’ i ’ | Edge, Cloud
. picious flows Autoencoders
Detection KPIs
Heterogeneous Radio network information, available resources, | RAT and handover candi- | RL, ANN, Foe. Edee
RAT Selection mobility patterns, application KPIs and SLAs date selection Fuzzy Logic e, Bag

ANN: Artificial Neural Networks; ARIMA: Autoregressive Integrated Moving Average; BN: Bayesian Network; CNN: Convolutional Neural Networks; GRU: Gated Recurrent
Unit; IL: Imitation Learning; LR: Logistic Regression; LSTM: Long-Short Term Memory; MPL: Multi-Layer Perceptron; PCA: Principal Component Analysis; RL: Reinforcement
Learning; RF: Random Forest; RT: Random Tree; SVM: Support Vector Machines; TCN: Temporal Convolutional Networks; VAR: Vector Autoregressive.

algorithms to identify dangerous situations analyzing a video-
stream, helping the Digital Twin to act preventively, such as
blocking the physical object or adapting its operation. Since
fast counter-measures are required, its runtime deployment is
best fit in the Edge or, in scenarios with higher degree of
autonomy, in the Fog. For example, based on a real-time video
stream, the Risk Reduction can detect that a human-operator is
in a dangerous proximity of an operational industrial machine,
and use this information to block the machine.

4) Predictive Maintenance: Industrial physical objects have
always been held to a higher reliability and predictability stan-
dard than any general-purpose systems. Industrial companies
consider unplanned downtime and emergency maintenance
caused by failures a major challenge. For preventing from
eventual failures, the future state of a given component must be
forecasted and classified in order to verify if it requires main-
tenance. ML-based solutions provide high accuracy to solve
both prediction and classification problems. Thus, Predictive
Maintenance Al-agent is a suitable candidate to preemptively
detect failures or repair needs by using a combinations of
algorithms as ARIMA, LSTM, LR or SVM. The Predictive
Maintenance checks if the available sensor data might lead to
failure situations and, if so, it schedules the maintenance of the
physical object. Since this Al-agent is not performing a time-
sensitive operations, it can be deployed anywhere from the
Edge up to the Cloud. For example, if historical data reported
high vibrations upon the break of a screw, the Predictive
Maintenance can forecast future vibrations (e.g., LSTM), and
decide if maintenance is required (e.g., SVM).

B. Infrastructure Related Enhancements

The following AI agents highlight several enhancements
applicable to the computing and network domains, which have
the potential to impact and optimize the performance of a
Digital Twin.

1) Dynamic Scaling: With the recent development of vir-
tualization technologies, smart factories benefit from having
Digital Twins coexisting under the same cloud-to-thing con-
tinuum. During the lifetime of a given application, an adequate
scaling of resources is required, so that Digital Twin related
KPIs (e.g., latency) are satisfied without deteriorating the
performance of others. Such a problem is analyzed in the
existing literature as a NP-hard problem, that is, optimal
scaling polices cannot be found in feasible run-times. Con-
sequently, Al solutions based on Markov Decision Processes
can be used to find near optimal scaling policies in feasible
times, using algorithms based on RL, RT, RF, MLP and
BN. The Dynamic Scaling follows scaling policies learned
with the aforementioned algorithms, training with data such
as resource consumption, date and time, task, number of
instances and sessions. The Dynamic Scaling can then compute
scaling decisions in order to fulfill KPIs and Service Layer
Agreements (SLAs). The runtime deployment of this Al agent
is most suitable on the network side (i.e., Edge or Cloud),
depending on inference time and network latency towards
the orchestrator. For example, whenever a new robotic arm
is added in the factory floor, the Dynamic Scaling increases
the allocation of vCPUs to the virtual instance in charge of
holding its digital replica, allowing its processing delay to stay
below a threshold.

2) Privacy, Security and Intrusion Detection: By employ-
ing Digital Twins in an industrial environment, huge volumes
of network traffic are distributed in the cloud-to-things con-
tinuum in order to create the digital factory. This makes the
detection and diagnosis of security breaches and intrusions
very challenging and complex for the infrastructure operators
and their tenants. Performing an exhaustive analysis of all the
network traffic would take a vast amount of time, which is
unfeasible to early detect intrusions, or security breaches. ML
learning algorithms, like PCA, K-means or autoencoders, are



ideal solutions to shrink traffic volume and speed up the traffic
inspection. The Privacy, Security and Intrusion Detection uses
these algorithms to detect malicious traffic and, consequently,
block remote control of physical objects through their Digital
Twins. Moreover, federated learning and transfer learning
appear as ML approaches that boost a collaborative training
across different industrial players, which, by not centralizing
the training data, retain the privacy and locality of private data.
The Edge and Cloud are candidate locations to deploy this Al
agent, depending on whether on-site security operations are
required or not.

3) Heterogeneous Network (HetNet) Selection: In an in-
dustrial environment comprising multiple RATs, the challenge
of being always best connected arises, directly affecting the
design and performance of Digital Twins. RAT selection is
traditionally solved by applying rules derived from the network
infrastructure with prior domain knowledge and experience
by experts. However, applying this type of RAT selection to
Digital Twins is often complex to manage on dynamic and
heterogeneous industrial environments. A HetNet Selection Al-
agent that uses ML algorithms (e.g., RL, ANN and Fuzzy
Logic) appears as a tool to mitigate the aforementioned
challenges. It exploits the locally available radio context
information to select the best RAT for each physical object in
the factory floor and, if required, the best handover candidate.
The radio context information is defined by ETSI Multi-access
Edge Computing (MEC), and provided by different radio infor-
mation services, such as Radio Network Information Service
(RNIS) and WLAN Access Information Service (WIS) [12].
Based on such information, the HetNet Selection detects when
e.g., an AGV will be out of coverage and lose the connection
to the point of attachment. The Digital Twin can use this
information to preemptively transfer state information to the
new point of attachment, and to instruct the AGV to change its
RAT in order to seamless move within the factory floor. Since
this AI agent depends on the locally available information, its
preferable deployment location is the Edge or Fog.

IV. MOVEMENT PREDICTION: EXPERIMENTAL
VALIDATION

A proof-of-concept showcasing the Movement Prediction
is implemented over a Digital Twin application for robotic
arms (as defined in [10]), extending the baseline service with
a newly implemented Movement Prediction component.

A. Experimental setup

The Digital Twin application consists of: (i) Digital Replica
used for remote operation; (ii) Robotic Stack; (iii) Robotic
Drivers; and (iv) Movement Prediction. The Digital Replica
and the Robotic Stack are deployed in a virtual machine with
1 vCPUs and 2 GB of RAM in an Edge Server (Dell Pow-
erEdge R430), while the Robotic Drivers and the Movement
Prediction are deployed in a Niryo One robotic arm. The
robotic arm is equipped with IEEE 802.11n interface and an
Edge TPU accelerator for ML inferring. Note that the robotic
arm is part of the Fog computing infrastructure, therefore

included in the network service graph. Finally, all components
are deployed through Docker containers.

The Movement Prediction continuously stores received com-
mands as Cartesian coordinates (i.e., Xyz points), computing
the prediction for the subsequent movements. This allows
creation of a dataset with the past movements in order to
compute the predictions. If the robotic arm does not receive the
corresponding movement on each control loop, the Movement
Prediction triggers the execution of a predicted movement.
This proof-of-concept compares two ML-based algorithms:
(i) Vector Autoregressive (VAR) [13]; and a (ii) Sequence-
to-Sequence Neural Network (seq2seq) [14] that produces
a prediction matrix of the three xyz coordinates. A classic
Moving Average (MA) is used as benchmark. Results are
derived using a seq2seq implementation in Tensorflow, and
a VAR implementation using the statsmodels library. The
seq2seq model has a layer of 200 LSTM units [15] with
163200 parameters, and a repeat vector layer that feeds a dense
time-distributed layer of 603 parameters.

A set of 4 actions is considered for the creation of the
dataset. Each action is manually repeated 20 times by an
operator making use of the Digital Replica. Lastly, a new
instruction is issued every 20ms, representing a total of 22893
instructions. 80% of the dataset is used for training, while the
remaining 20% for testing the performance of each selected
technique.

B. Prediction Accuracy

Figure 2 depicts the performance of each algorithm with
respect to the Root Mean Square Error (RMSE), a widely
adopted metric for predictions’ accuracy. As the prediction
window increases (i.e., number of movements ahead), seq2seq
increases its error faster than the Moving Average and the
VAR. Even though the loss function converges in 100 episodes
for seq2seq, it does not manage to train properly the 163803
parameters that ended up having with scenarios of lsec
forecasting windows. Whereas VAR beats the MA by an order
of 107 units.

Figure 3 showcases how the different forecasting methods
differ from the real position given prediction windows of (a)
5 movements (100ms), and (b) 50 movements (1000ms). The
position is represented using the distance from the origin.
On the 5 movements’ forecasts, the predicted values overlap
the real one, given the short prediction period. However,
in the scenario of 50 movements’ forecasts, all solutions
evidence a delay in the predicted values, unable to anticipate
the peaks until the increase/decrease of past values happens.
Nevertheless, VAR guesses the different actions (each different
action is appreciated by different peak patterns highlighted
with dashed circles), despite of some perturbations appearing
in a saw teeth fashion (Figure 3b between milliseconds 3000
and 5000). On the other hand, the seq2seq presents a delayed
stair-step pattern, that deviates more than VAR with respect to
the real position (Figure 3b).

Overall, Figure 3b evidences that seq2seq provided worse
predictions than VAR, a solution designed to forecast corre-
lated signals. Moreover, it is very likely that seq2seq under-
performance is due to its bast amount of training parameters.
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Given the performance of VAR, future work will consider
exponential smoothing methods, and the Vector Autoregres-
sion Moving-Average (VARMA). The latter method combines
the benefits of both MA and VAR to prevent the saw-teeth
oscillations, and anticipate faster the increases/decreases of the
time-series. Additionally, the required look-ahead for different
RATs (i.e., 5G and WiFi 6E) will be studied, considering that
RATs directly affect the packet arrivals and consecutive packet
losses.

C. Integration with Digital Twin Operation

VAR and seq2seq algorithms are integrated in the developed
proof-of-concept to evaluate the benefits introduced in remote
operation of Digital Twins. The WiFi link between the robotic
arm and the Edge is configured with a delay of 54+1ms and
with 5% probability of occurring a packet loss. The purpose
is to emulate an unreliable link, causing movement commands
to be lost.

Figure 4 compares the remote operation of the robotic arm
with and without the assistance of the Movement Prediction
against the expected action. When Al is not in place, the loss of
movement commands leads to a bouncy operation of the robot.
The Movement Prediction fills the gap created by a missing
movement, allowing the robotic arm to move smoothly and
to make the recover less abruptly. However, results show that
such case is only achieved when the Movement Prediction
is implemented using VAR. Its implementation using seq2seq
showed to be faulty and error prone, with no clear benefits.

V. CONCLUSIONS

This article discusses the role of Artificial Intelligence in ad-
dressing some of the challenges in Industry 4.0, mainly related
to the Digital Twin. Al agents, with the help of ML algorithms,
open the range of opportunities to enable optimizations in
terms of reliability, robustness and performance in the Digital
Twin. This article starts by introducing the re-modeled concept
for Digital Twin, where Cloud, Edge and Fog computing are
integrated with emerging networking technologies such as 5G
and WiFi 6E, and physical processes. It then identifies and
analyzes exemplary Al agents for the Digital Twin, spanning
from the application to the infrastructure level. Experimental
validation has been carried out to demonstrate the applicability
of the Movement Prediction Al agent to predict the next
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movement(s) by using real data from a Digital Twin for robotic
arms. Results indicate that VAR is more accurate than seq2seq
and MA in predicting the next movements, with clear benefits
when integrated in remote control operations via a Digital
Twin.

Finally, Digital Twins are expecting to growth over 30% by
2026 in the market size worldwide. Through Al, Digital Twins
are evolving into powerful, dynamic and automated tools to
explore and monitor the whole industrial environment through
e.g. an immersive digital world without temporal or spatial
constraints. Altogether, there are several challenges to cope
with industrial environments, like the creation and validation
of virtual models, the need for expertise from different en-

Expected action Without Al —%— seq2seq VAR —e—

0.48 T T T T T T
039 -

3300 3400 3500

0.46

0.44

0.42

0.4

distance from the origin [m]

0.38

036 I L L L L L
3600 3800 4000

Experiment Time [ms]
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gineering fields (e.g., robotics, networking, software), and the
real-time access, connection and synchronization to production
data. The latter aspect will be a driving factor for the future
6G networks.
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