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Abstract

The interest in solar radiation prediction has increased greatly in recent times

among the scientific community. In this context, Machine Learning techniques

have shown their ability to learn accurate prediction models. The aim of this

paper is to go one step further and automatically achieve interpretability during

the learning process by performing dimensionality reduction on the input vari-

ables. To this end, three non standard multivariate feature selection approaches

are applied, based on the adaptation of strong learning algorithms to the feature

selection task, as well as a battery of classic dimensionality reduction models.

The goal is to obtain robust sets of features that not only improve prediction

accuracy but also provide more interpretable and consistent results. Real data

from the Weather Research and Forecasting model, which produces a very large
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number of variables, is used as the input. As is to be expected, the results prove

that dimensionality reduction in general is a useful tool for improving perfor-

mance, as well as easing the interpretability of the results. In fact, the proposed

non standard methods offer important accuracy improvements and one of them

provides with an intuitive and reduced selection of features and mesoscale nodes

(around 10% of the initial variables centered on three specific nodes).

Keywords: Dimensionality Reduction; Interpretability; Solar Radiation

Forecast; Weather Research and Forecasting Model; Support Vector

Regression; Restricted Boltzmann Machine.

1. Introduction

According to the December 13th, 2016 report of Solar Energy Industries As-

sociation (SEIA)1, the total installed solar power capacity in the United States

of America reached 35.8 GW in the third quarter of 2016, representing over

60% of the total installed electric capacity. This report states that there are

more than 1 million residential solar installations across the country, and their

industry growth nearly doubles every year. Regarding European countries, em-

phasis on solar power is decreasing. A report from Solar Power Europe2 showed

that a total of 1.56 GW in solar capacity were installed from June to Septem-

ber, which was 10% less than in the previous quarter. Nevertheless, during the

first quarter of 2016, Europe reached 100GW of installed solar capacity. On

the other hand, and according to SEIA, China and Japan lead the solar power

market with 50% of new installed capacity. A fundamental tool for this active

and growing market is, obviously, solar forecast [1].

Atmospheric behaviour makes solar power highly stochastic. Therefore, an

efficient use of solar energy requires intelligent systems, specifically ones that

are able to forecast the energy to be produced at different time-horizon scales,

ranging from minutes to days. The amount of generated solar power primarily

1Source: www.seia.org
2Source: www.solarpowereurope.org
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depends on cloud coverage, but also on other factors such as the presence of

light absorbing particles in the air [2]. Many cloud coverage prediction methods

rely on direct measurements, including ground or satellite observations of the

clouds. The most widely used approach to address the task of solar radiation

prediction consists in the physical modeling of the deterministic part of solar

radiation, by computing the relative position of the sun with respect to the

facility in order to obtain a clear sky model, and then adding the atmospheric

conditions, including rain, wind speed and other variables [3]. However, some

causes of radiation attenuation are not easily predicted by direct observation.

For this reason, numerical methods to construct weather models, such as the

Weather Research and Forecasting (WRF) mesoscale model [4], have also been

applied, as they provide significant atmospheric information in the surroundings

of the location under study, thus improving predictions [5].

In this work we present a study on feature selection and extraction meth-

ods for solar radiation forecast from a WRF model. The WRF model provides

forecast of atmospheric variables at different heights for a given area. This

model has the drawback of presenting a large number of dimensions (prediction

variables). Indeed, the WRF model used in this paper produces around 104

prediction variables per time instant, while the number of samples available for

the algorithm’s training is much lower. This situation makes the use of power-

ful dimensionality reduction strategies mandatory. We propose and evaluate a

series of novel methods that automatically select the most powerful features by

adapting strong regression algorithms, such as SVMs or Deep Neural Networks

(DNN), to the task of feature selection. We will compare the performance of

these methods to other classic selection and extraction strategies and see their

effect on interpretability. Our experiments show how our methods can maintain

high prediction accuracies, while increasing interpretability by finding relation-

ships and patterns within the data that are opaque to expert human knowledge.
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2. Related work

There is a significant amount of work devoted to the prediction of solar ra-

diation. Most approaches tackle the problem from a computational intelligence

perspective. These strategies make use of different data sources. Some use me-

teorological data as inputs for Machine Learning (ML) predictors in order to

improve their forecasting performance. Indeed, ML models have been used for

example in [6], where a Radial Basis Function was used in solar radiation predic-

tion in a power plant using weather data. A comparison of prediction techniques

can be found in [7] where the authors take a time series prediction approach

where the input data consists of historical solar radiation data. There, Multi-

Layer Perceptron (MLP) neural networks, Markov chains, Bayesian inference

and ARIMA models are compared. Support Vector Machine models (SVM),

and specifically Support Vector Regressors (SVR) [8], have also been widely

used in energy production forecast (see e.g. [9]). For example in [10] SVRs

are used to predict monthly solar radiation from meteorological data, and the

same authors use them in [11] to estimate solar radiation from air temperature.

Extreme learning machines (ELM) have also been applied to solar prediction

using meteorological variables in [12]; and in [13], a Kernel Extreme Learning

Machine (KELM) has been compared to a kernel SVR. Other works introduce

neuro-fuzzy approaches [14], or hybrid models combining ARMA and artificial

neural networks [15], to cite some.

In other cases, researchers make use of observations of cloud evolution from

satellite data. For example, in [16] SVRs and Multilayer Perceptrons are used

to predict the evolution of the clouds seen from satellite images. The data is

pre-processed to generate variables related to the size, motion and other factors

of the clouds.

In [17], a numerical Weather Forecast System is combined with satellite

infrared images to predict several hours ahead. In [18], a model that estimates

cloud motion is used to predict the future positions of the clouds from satellite

imagery. In [19], a MLP combined with a genetic algorithm is used to perform
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solar radiation forecast. The authors use satellite images to perform radiation

prediction in large areas of Spain. Other works, such as [20, 21, 22, 23], also

make use of satellite data in radiation prediction. Forecasting with shorter

horizons can be implemented using ground images of the clouds. In [24] a cloud

identification model is constructed from RGB images. Cloud monitoring is

introduced in [25] for prediction. A short term solar radiance prediction scenario

using observations of the whole sky was presented in [26]. Other related works

are [27, 28, 29, 30, 31]. While the previous works use RGB images, in [32] a

prediction model is developed using a LAPART neural network [33] and infrared

images.

A portion of the strategies described above employ ML models for predic-

tion using low or moderate dimensionality databases. However, many of the

aforementioned scenarios use sources that produce data of very high dimension-

ality [34], i.e. satellite images or WRF mesoscale models. In these cases, it

is of great importance to use dimensionality reduction methods to manage the

structural complexity of the learning algorithm. To this end, there are two basic

approaches: feature selection and feature extraction [35, 36, 37, 38]. Regarding

specific application of dimensionality reduction methods to solar energy, in [39]

a first general review of some works dealing with relevant parameters selection

in solar energy prediction problems is offered. In [40] a system for solar irradi-

ance very short-term prediction (minutes time-horizon) is proposed in which a

correlation filter is applied to select relevant features. In [41] a study of the main

influencing input parameters for solar radiation prediction with neural networks

is carried out in different locations of India, by using a Decision Tree variable

selection method. In [42] the problem of forecasting the electricity power gen-

eration by a solar photo-voltaic system is tackled, comparing multivariate and

univariate correlation measurements to select useful features. In [43] an adap-

tive neuro-fuzzy inference system (ANFIS) has been applied to select the most

influential variables in a daily horizontal diffuse solar radiation prediction prob-

lem. In [44] two applications of hybrid niching genetic algorithms are presented

to solve the problem of variable selection for the estimation of Solar Radiation.
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Figure 1: Outline showing a grid of M points and the variables considered at each grid point.

3. Solar radiance problem formulation

The solar radiation prediction problem formulation can be stated in the

following way: let Rt be the global solar radiation registered at a given time t

in a location L of the Earth’s surface, and let R̂t be the prediction of the global

solar radiation under the same considerations. In order to predict R̂t, let us

consider a set of N atmospheric variables V (outputs of a mesoscale model),

some of them referred to different pressure levels (ranging from the pressure

level corresponding to the ground level to 50 hPa). Considering each variable at

each pressure level as a different predictor, the set of variables can be expressed

as V = (v11, . . . , v1N , v21, . . . , v2N , . . . , vM1, . . . , vMN ), where M stands for the

total number of grid points where the variables were obtained. Figure 1 shows

an outline of a generic grid (m = 1 . . .M) and the set of variables (n = 1 . . . N)

considered at each point.
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3.1. Model M: the Weather Research and Forecasting model

In this work, the Weather Research and Forecasting (WRF) mesoscale model

[4] has been considered to obtain the set of atmospheric variables used as pre-

dictive variables. In this study, WRF model version 3.6 has been used and

atmospheric and meteorological data have been calculated over a window rang-

ing in latitude from 39◦ 30’ 58”N to 40◦ 11’ 57”N , and in longitude from 4◦

42’ 14”W to 4◦ 1’ 5”W. In this window, the grid has 5 elements or nodes from

West to East and 5 from North to South, summing up a total of 25 nodes,

covering roughly, 15×30 km2 each. Atmospheric values are calculated, in the

vertical dimension, at 37 levels above the ground, at ground-level, and at four

additional levels beneath the surface. The grid type is Arakawa, that is to say

that the data is calculated at the center of each element, with a 72 second time

step.

The WRF model used in this study provides 423 variables at each of the 25

nodes, including wind speed components, temperature values, upper atmosphere

outgoing long wave radiation, cloud coverage per cell, etc. This results in 25×423

variables to determine the predicted global solar radiation R̂t at each time

instant. As objective variable data to train and test the algorithms, the global

solar radiation measured at Toledo’s radiometric station (Spain), located at (39◦

53’ 5”N, 4◦ 02’ 43”W) and at an altitude of 515 m, is considered. One complete

year of hourly data (from May 1st, 2013 to April 30th, 2014) was used. Figure 2

shows the geographical locations of the 25 mesoscale nodes as well as the Toledo

measuring station.

4. Methods for Feature Selection

In this section, the three non standard feature selection methods included in

this study are described. Two of them are based on a bootstrapping technique

[45] to approximate the sample distribution of the weights of two ML models: a

linear SVR and a Restricted Boltzmann Machine (RBM). In the third method

we implement a selection method based on the reconstruction error during the

7



Figure 2: Map showing the geographical locations of the 25 mesoscale nodes as well as the

Toledo’s measuring station.

unsupervised RBM training phase. All three methods then feed the selected set

of features to an SVR for prediction.

Before describing the proposed feature selection methods, let us briefly es-

tablish the concept of the feature selection problem and the notation used

throughout this work. In its more general form, feature selection for a ma-

chine learning scenario can be defined as follows: given a set of labeled data

samples (x1, y1), . . . , (xl, yl), where xi ∈ Rn and yi ∈ R (or yi ∈ {±1} in the

case of classification problems), choose a subset of m features (m < n), that

achieves the lowest error in the prediction of the variable yi.

4.1. Feature selection through Bootstrapped SVRs

The first of the non standard methods employed in the experiments is the

Bootstrapped SVM feature selection method (BSFS) presented in [46]. This

algorithm trains a large number of SVMs, each of them using different sub-

sets sampled at random and with replacement from the training data. Thus,

by training K SVRs we will obtain a set of K corresponding weight vectors,
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〈w(k)〉Kk=1. This is akin to the idea of using an ensemble paradigm for the

purpose of feature selection [47, 48].

One of the key ingredients of this algorithm is the use of a linear SVM with

an l2 regularisation term. This exploits two basic theoretical properties of this

regression scenario:

• Features that are irrelevant will present a weight distribution centered in

zero.

• Isolated features that are relevant will present non-zero mean weight dis-

tributions.

Determining which are the irrelevant features is performed by applying a

one sample location Student’s t-test [49] where the null hypothesis is that a

feature-weight’s sample distribution presents a mean of zero. After applying

the test to each component of the feature-weight space, the p-values are used

to determine the probability that the weight distribution for each component

has a mean of zero (a lower p-value rejects the null hypothesis and indicates a

non-zero mean). Algorithm 1 shows the pseudo-code for the BS-FS method.
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Algorithm 1: The BS-FS algorithm.

Data:

Xtr,ytr

Input:

K = number of bootstrap iterations

S = number of samples per subset

1 for k ∈ K do

2 X
(k)
tr ,y

(k)
tr = random sample of size S from Xtr & ytr

3 Train SVR using X
(k)
tr → obtain w(k)

4 W(k, :) := w(k)

5 for d ∈ D do

6 Perform Student’s t-test for W(:, d) with null hypothesis: w̄d = 0

7 Store p-value for feature d

8 Rank features according to their corresponding p-values.

Two different approaches can be used to determine the optimal feature set.

One option is to establish a confidence level threshold and reject all feature-

weights that present a p-value that surpasses it. This results in a very fast

implementation, but has the disadvantage of an arbitrarily set threshold that can

lead to weak selections. A better approach is to cross-validate the optimal set

of features. Although this method is slower, it will yield much more significant

feature sets.

The computational cost of this algorithm during training depends on the

method used to compute the weights of the SVM. The most widespread method,

and indeed the one used in this work, is the Sequential Minimal Optimization

algorithm (SMO) [50]. In the worst case, the cost of SMO is O(N3), while on

average it is of O(N2). Performing the Student’s t-test has linear cost. There-

fore, the worst case scenario cost of the BS-FS algorithm can be approximated

by:

O(KS3 +DN) (1)
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where K is the number of bootstrap iterations, S is the subsample size, D is

the number of input dimensions and N is the total number of training samples.

Note that S will always be smaller than N . Indeed, both S and K can be

tuned to control computational complexity, while reasonably maintaining the

model’s functionality. Therefore, this model compares very favorably to other

approaches like Recursive Feature Elimination, where the complexity is a direct

function of the number of training data, N , times the dimensionality, D.

4.2. Feature selection with RBMs

Another strategy considered in this work is to use a restricted Boltzmann

Machine (RBM) or a stack of them (deep Boltzmann Machine or DBM) as

a feature selector whose output is fed to an SVR. A DBM can be used as a

pre-processing unit in which each layer of the machine produces a higher level

of abstraction. An RBM can be viewed as a type of Markov Random Field

[51] with hidden and visible nodes where the relationships between them are

restricted to connections between a hidden node and all visible nodes and vice-

versa. This structure allows to approximate a joint probability distribution

model for the hidden and visible nodes [52, 53] that can be factorized [54]). In

this application, we treat the visible nodes as the data input and the hidden

nodes are fed into a SVR. The training of the RBM is fully unsupervised and

based on the Contrastive Divergence strategy introduced in [52].

The RBM and deep or multilayer versions of the RBM have been used for

feature selection in [55]. The main idea is that during the reconstruction phase,

this is, when visible states are synthesized from hidden states, those features that

contain information will be better reconstructed, but those that contain only

noise will have a significant reconstruction error. Therefore, once the training

phase has finished, the expectation of the reconstruction error of each input

feature can be computed, i.e.

E(ej) =
1

N

∑
n

xj,n (2)
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where xj,n represents feature j of data vector xn. All features are simply ranked

using this measure. We call this approximation RE-RBM.

Another alternative for feature selection, and the third model proposed in

this work, is to use the BS-FS Algorithm 1, but where the SVR is substituted

with the hybrid RBM SVR structure. The RBM weights are selected instead

of the SVM weights. The features are ranked according to the p-values of their

associated weights. This model is abbreviated as the BS-RBM.

The complexity of the RBM section is dominated by matrix multiplication.

The RE-RBM uses a Contrastive Divergence forward step, and a backpropaga-

tion step. If the total number of parameters is P , the total number of samples

is N and the number if iterations until convergence is L, then computational

burden of the training is approximately [56]:

O(LNP +N3) (3)

where the N3 term is due to tthe SVM training with the whole training dataset.

The BS-RBM has a training computational burden that depends on the matrix

parameter manipulation of the RBM and SVM trainings plus the Student’s test,

i. e, its computational burden is:

O(LKSP +N3 +DN) (4)

5. Experiments and results

This work evaluates the ability of the methods presented in Section 4, along

with a battery of classical dimensionality reduction models, to provide a good

selection of variables in terms of both predictive performance and interpretabi-

lity. The experimental results will now be presented and analyzed.

5.1. Experimental setup

The first step in the experimental process of this study was to perform a

preliminary processing of the data described in Section 3, revealing that many
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features have a standard deviation smaller than 0.01. These predictive vari-

ables are deemed to be irrelevant and were eliminated from the study. As a

consequence, 301 variables per mesoscale point remained, resulting in a dimen-

sionality reduction of close to 40%, and an input matrix of dimension 25× 301.

Table 1 shows the remaining variables considered for each grid point. Note that

a variable (i.e. CLDFRA) obtained at two different pressure levels is analyzed

in this work as two separate predictive variables.
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Table 1: Outputs of the WRF model used in the experiments as predictive variables (301

variables per WRF model node).

Variable Description

OLR Top of the atmosphere outgoing long-wave radiation

GLW Downward long-wave flux at ground level

SWDOWN Downward short-wave flux at ground level

TSK Surface skin temperature at ground level

v10 y-wind component at 10 meters above the ground

u10 x-wind component at 10 meters above the ground

PSFC Surface atmospheric pressure

TH2 Potential temperature at 2 meters above the ground

u x-wind component at the 37 vertical levels of the WRF model

v y-wind component at the 37 vertical levels of the WRF model

w z-wind component at the 37 vertical levels of the WRF model

CLDFRA Fraction of clouds in each cell at 30 vertical levels of the WRF model

QVAPOR Water vapor mixing ratio at the 37 vertical levels of the WRF model

T’ Perturbation potential temperature at the 37 vertical levels of the WRF model

P Perturbation pressure at the 37 vertical levels of the WRF model

P_HYD Hydrostatic pressure at the 37 vertical levels of the WRF model

SMCREL Relative soil moisture at 4 depth levels

From the aforementioned model, a data set consisting of 5840 samples with

7525 input features is obtained (resulting from the 25× 301 node-variable ma-

trix).

For the experiments, the dataset is randomly split into ten partitions that are

used to calculate independent performance measurements. The measurements

for the ten partitions are then averaged to obtain a single stable performance
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measurement for each of the methods under study.

The feature selection methods described in Section 4 are tested alongside the

following well known dimensionality reduction strategies, ranging from classic

statistical analysis tools to modern ML models:

• A principal component analysis (PCA) feature extraction algorithm [57].

This is a non-supervised, multivariate model.

• A partial least squares approximation (PLS) feature extraction algorithm

[58]. This is a supervised, multivariate model.

• A filter that ranks features in terms of their variance (variance filter). This

is a non-supervised, univariate method. Features with higher variance are

considered to be more relevant.

• A filter that ranks features in terms of their individual correlation with the

target vector (correlation filter). This is a supervised, univariate method.

Features with higher correlation are considered to be more relevant.

• A Lasso regression model [59]. This is a supervised, multivariate method

that pairs a least mean square error regressor with an L1 regularisation

term that provides a sparse selection of features.

• An Recursive Feature Elimination (RFE) algorithm [60]. This is a super-

vised, multivariate algorithm.

A baseline method without any feature selection or extraction is also im-

plemented to give a reference performance value. PCA, PLS, the variance and

correlation filters, the BS-FS algorithm and the RFE algorithm were all paired

with an SVR trained with the resulting feature sets. The Lasso algorithm in

turn uses its own embedded least mean square error regressor. The algorithms

labeled as BS-RBM and RE-RBM make use of a Restricted Boltzmann Machine

with sigmoidal activations and 500 output nodes. The output of these models

is again fed into a linear ν-SVR.
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5.2. Parameter validation

All parameters across the board were validated using a 10-fold cross-validation

strategy applied to each of the ten test experimental partitions. This includes

the determination of the optimal number of dimensions for each model and test

partition.

After validation, the optimal values for the parameters of the baseline SVR,

namely the regularization coefficient C and the epsilon-tube coefficient ε, were

found to be: C = 1.0, after sweeping a range of 7 values logarithmically spaced

between 10−3 and 103; and ε = 0.2, swept linearly within the range of 0.1 and

1.0 with increments of 0.1.

Having realized that, for this database, there is a very flat region around

these values where the SVR performs well, it was decided that the same param-

eters would be used for the final SVR regression phase of all the dimensionality

reduction models. Similarly, these same values are used for the internal SVR pa-

rameters of the BS-FS and RFE algorithms. In the case of the Lasso model, the

regularization term is what dictates the sparsity of the solution, therefore, it’s

C parameter is what determines the final number of selected features and needs

to be independently validated. Thus, the L1 regularization coefficient for the

Lasso was validated using the same 10-fold cross-validation strategy, sweeping

50 equally spaced values in the range between 10−5 and 10−2.

In the case of the RBM methods, cross-validation included the discovery of

the optimal number of output nodes [61]. The best validation error was achieved

with one layer, after sweeping values between 1 & 3. In order to control the

computational burden, only 50, 100, 100, 500 and 1000 nodes were swept during

the validation stage.

5.3. Performance measurements

To evaluate the performance of these algorithms, the R2 metric is used,

which is defined as:

R2 = 1−
∑

l∈Ctst
(yl − ŷl)2∑

l∈Ctst
(yl − ȳ)2

, (5)
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where yl is the true target value for the lth test sample, ŷl is the predicted target

value for the lth test sample, ȳ is the true mean of the test target values and

Ctst is the set of test samples.

Table 2 shows the validated performances for the feature extraction and

selection methods, both in terms of the R2 score and the number of features or

components. Note that in the case of the two extraction models, the reduced

dimensionality results not from a selection of a subset of original features, but

from their projection onto the space of the optimal components selected by cross

validation. This is an important distinction in terms of interpretability, as will

be discussed in the following subsection.

The results indicate that, as a rule, dimensionality reduction, be it by means

of extraction or selection, leads to an improvement not only in terms of com-

plexity, as there is a considerable dimensionality reduction in all cases, but also,

albeit slightly, in terms of performance. All the multivariant methods (the PCA

and PLS feature extraction models as well as the BS-FS, BS-RBM, RE-RBM,

BS-RBM, Lasso and RFE feature selection models) outperform the univariant

algorithms (the correlation and variance filters).
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Table 2: Feature selection & extraction performance analysis. All values are obtained by

crossvalidation of the working point. All results are averaged over the 10 test partitions and

their standard deviations are included.

R2 Features Components O ∼

Baseline 0.922 ± 0.006 All - N3

PCA 0.931 ± 0.003 - 217.0 ± 42.2 D2N +D3 +N3

PLS 0.933± 0.004 - 12.7± 1.0 D2N +D3 +N3

Correlation 0.928 ± 0.004 1030 ± 603.41 - D2N +N3

Variance 0.923 ± 0.004 270 ± 161.55 - DN +N3

Lasso 0.933± 0.004 53± 2.25 - N3

RFE 0.926 ± 0.005 1355 ± 140.46 - (D + 1)N3

BS-FS 0.931 ± 0.004 450 ± 143.37 - KS3 +DN +N3

RE-RBM 0.928 ± 0.005 3140 ± 337.31 - LNP +DN +N3

BS-RBM 0.930 ± 0.004 3327 ± 376.00 - LKSP +DN +N3

5.4. Interpretability analysis

Figures 4 to 12 have been designed to summarize the consistency with which

each dimensionality reduction method has deemed each feature to be important.

Figure 3 explains the construction process: the selection maps (or weight maps

in the case of the PLS and PCA models) resulting from the ten experiments

are averaged and normalized to give a picture of how consistent each method is

when selecting variables. This is shown in a 25×301 matrix representing the 25

mesoscale WRF nodes and their corresponding 301 variables. We have called

this matrix the aggregated map. Dark red colors indicate that the variable was

consistently considered important over the ten experiments, whereas deep blue

colors indicate that a variable was consistently considered irrelevant. Lighter

blues, greens and yellows indicate inconsistency in the selection, and therefore,

a lack of informativeness for a particular variable.

The high relevance map applies a hard threshold of 0.75 to the aggregated

map. This means that any variable with a high relevance and consistency will

appear in black, giving us a visual clue of which variables are consistently more
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important for a particular method. This map also includes two information

bars: the bar on the right hand side represents the row-average of the high

relevance map, therefore giving us a visual indication of what mesoscale nodes

are contributing more towards the final prediction process; likewise, the bar on

the bottom represents the column average of the high relevance map, giving us

an idea of what variables are more contributive over all the nodes.

From these maps we can establish how consistently selective and visually

informative each method is in terms of both the node space and the variable

space. This information, coupled with the results from Table 2, can be used to

evaluate each method in terms of effectiveness and interpretability.

The worst performers seem to be the RFE algorithm (Figure 4) and the

variance filter (Figure 5). Their selections are all over the place in both the

mesoscale node and variable spaces. They both appear to be extremely noisy

and inconsistent, giving us almost no information as to what variables or nodes

may be the most helpful for the prediction of solar energy. RFE fairs only

slightly better than the variance filter in the mesoscale node space, yet it still

fails to provide useful information in the variable space. These two methods

are also the worst performers in terms of R2, so it is obvious that they are

inadequate in this particular scenario. It is also worthy of note that the RFE

algorithm has a very high computational cost. The correlation filter is also a

weak performer in terms of R2, although it seems to be very consistent in it’s

selection over the variable space.

The BS-RBM model (Figure 6) also provides a very noisy selection of vari-

ables, although with much greater consistency. Interestingly, this model seems

to very consistently ignore a specific band of variables related to cloud cover,

which is a counterintuitive result. In terms of R2 it fares better than the RFE

model and the variance filter. The RE-RBM algorithm (Figure 7) is able to

locate a number of variables related to pressure and cloud cover which are sig-

nificant for the prediction in a consistent way. It is not particularly strong in

terms of R2 performance, but it still manages to produce visual results that are

somewhat informative.
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The correlation filter (Figure 8) seems to be quite selective in the variable

space, specifically with variables related to wind speed and temperature, whilst

completely loosing focus on the node space. It also offers only average perfor-

mance in terms of R2.

The first component of the PLS algorithm (Figure 9) seems to place most of

the importance in a few of the variables related to long-wave radiation. At the

same time it makes little distinction over the mesoscale nodes 3. It is important

to note that this method is among the most powerful in terms of both R2 and

dimensionality reduction, although it seems to be very sparse in its informative-

ness. The first component of PCA (Figure 10) has very strong preference for

the variables related to pressure. Considering its good performance in terms of

R2 and the variables it gives preference to, it seems to be a useful model. It is

important to remember that both PLS and PCA are feature extraction methods

that do not select specific variables, but rather define linear combinations of all

the variables. This implies that the results are not as directly interpretable.

Both the Lasso and BS-FS approaches have a good performance in terms

of R2, and they also seem to provide a narrow and consistent set of variables

and nodes, specially in the case of the BS-FS. This can be attested by the fact

that the aggregated map shows little inconsistencies, with high percentages of

strongly rejected variables with a few confidently selected ones. Lasso tends to

favor cloud cover related variables at different levels over most of the nodes,

although it’s selection is more scattered. BS-FS seems to favor the downward

shortwave flux over most nodes as well as atmospheric pressure variables for

nodes 1, 15 and 20. It is interesting to note that the Toledo measuring station

is very close to nodes 15 and 20, whereas node 1 is very far away. Given their

good performance and strong selectiveness, these seem to be among the most

useful and informative models in this particular scenario. It is also important

to consider that they both present good performance in terms of computational

3The first component in the PLS model is the most important in terms of the covariance of

the input with the target values. Other components (not shown) behave in a similar fashion.
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load, considering the BS-FS has good performance even with small values for S

and K (see Section 4).

We can now perform an analysis of the variables selected by the best per-

formers for this problem. One interesting fact is that the more informative

algorithms (Lasso, BS-FS, PCA and RE-RBM) tend to give importance to sim-

ilar bands of variables, although they vary on the nodes they prefer. It is also

interesting that these models tend to select large groups of leveled variables such

as pressure, temperature and fraction of cloud cover (see Table 1).

Lasso and RE-RBM lean towards the selection of the cloud fraction CLDFRA

at different altitude levels. This seems like a good indicator, since the more

clouds at different levels of the atmosphere, the less solar radiation will reach

the ground. Pressure and temperature are key variables in the cloud formation,

so it seems that PCA, BS-FS, and RE-RBM all focus on the selection of vari-

ables related to cloud and cloud-formation in the area under study, which seems

quite intuitive.

Note that the algorithms have automatically selected these variables based

only on a statistical processing of the information, and not on the physical

meaning of the variables, as a human guided by expert knowledge would do.

Nevertheless, the physics underneath the phenomenon arises in the analysis of

the best solutions found by the algorithms.
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Figure 3: Visual explanation for the construction of the descriptive figures. A binary selection

map (or weight map in the case of the PCA and PLS models) is generated for each of the ten

data partitions. These maps are averaged and normalized to 1 to generate the Aggregated

Map. The Aggregated Map is in turn thresholded at 0.75 to generate the High Relevance

Map. The node and variable information bars to the right and to the bottom of the High

Relevance Map are generated by computing its row and column averages respectively.

(a) Aggregated map. (b) High relevance map.

Figure 4: RFE model relevance maps.
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(a) Aggregated map. (b) High relevance map.

Figure 5: Variance Filter relevance maps.

(a) Aggregated map. (b) High relevance map.

Figure 6: BS-RBM relevance maps.

(a) Aggregated map. (b) High relevance map.

Figure 7: RE-RBM relevance maps.
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(a) Aggregated map. (b) High relevance map.

Figure 8: Correlation Filter relevance maps.

(a) Aggregated map. (b) High relevance map.

Figure 9: PLS relevance maps.

(a) Aggregated map. (b) High relevance map.

Figure 10: PCA relevance maps.
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(a) Aggregated map. (b) High relevance map.

Figure 11: Lasso relevance maps.

(a) Aggregated map. (b) High relevance map.

Figure 12: BS-FS model relevance maps.

6. Conclusions

In this work we have presented a detailed study of the effectiveness of several

automatic dimensionality reduction algorithms when applied to the context of

solar radiation prediction. An important aspect of automatic dimensionality

reduction is its ability to improve our understanding of the input-variable space

by pointing out those sets of variables that increase the power of the prediction

task, thus increasing the problem’s interpretability. Therefore, in this work we

have not only analyzed the increase in accuracy provided by dimensionality re-

duction algorithms, but also the resulting variable subsets and their relationship

with the radiation problem.

To achieve this goal, three innovative dimensionality reduction algorithms,

the BS-FS, RE-RBM and BS-RBM models described in Section 4, have been
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tested alongside a battery of classic dimensionality reduction strategies, includ-

ing feature selection as well as feature extraction algorithms: PCA and PLS

models, a Lasso model, an RFE algorithm and a Variance and Correlation filter.

These models have been applied to a Weather Research and Forecasting model

consisting of 25 nodes, each of them containing a set of 423 variables related to

weather conditions, along one year (from May 1st, 2013 to April 30th, 2014) of

hourly sampled data. This results in a high dimensionality problem that is well

suited to the application of feature selection and extraction strategies.

We have found that dimensionality reduction, be it through feature selec-

tion or extraction, proves to be a useful tool in this context since all the ap-

plied algorithms have produced an increase in predictive accuracy (see Section

5). Specifically, the Lasso feature selection algorithm and the PLS extraction

method achieve the highest increases in performance.

However, if we pay attention to the gain in interpretability, approaches such

as PCA, the BS-FS algorithm have lead to feature selections of great relevance,

leading to the automatic discovery of strong and intuitive selections of input

variables. This shows that automatic variable selection is an effective way of

improving a problem’s interpretability, as it can lead to feature sets that agree

with an intuitive understanding of the problem.

If we focus on the non standard methods presented in this work, the BS-FS

offers the most intuitive and interpretable results both in the node and variable

domains (selecting approximately 10% of the variables centered around three

nodes), as well as achieving high performance levels in terms of R2. Of the RBM

based methods, the RE-RBM model achieves somewhat interpretable results,

yet its performance is unremarkable; the BS-RBM model on the other hand

offers slightly better performance, but it’s selection capabilities are noisy and

uninformative.

Future work proposals include the use of mesoscale models at a larger scale

in order to produce solar forecast in the range of 24 hours ahead. To this end,

we will apply Multi-Input Multi-Output (MIMO) structures, that allow a block

prediction of all set points of the forecast. Also of interest is the estimation of
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confidence intervals of the forecast solar radiation values, that can be computed

using MIMO versions of Gaussian Process regressors, in combination with the

above introduced feature selection methods.

Acknowledgments

This work has been partially supported by the projects TIN2014-54583-

C2-2-R, TEC2014-52289-R and TEC2016-81900-REDT of the Spanish Minis-

terial Commission of Science and Technology (MICYT), and by Comunidad

Autónoma de Madrid, under project PRICAM P2013ICE-2933.

References

[1] C. Voyant, N. G., S. Kalogirou, M. L. Nivet, C. Paoli, F. Motte, and

A. Fouilloy, “Machine learning methods for solar radiation forecasting: A

review,” Renewable Energy, vol. 105, pp. 569 – 582, 2017.

[2] T. Khatib, A. Mohamed, and K. Sopian, “A review of solar energy modeling

techniques,” Renewable and Sustainable Energy Reviews, vol. 16, no. 5,

pp. 2864–2869, 2012.

[3] M. Bilgili and M. Ozoren, “Daily total global solar radiation modeling

from several meteorological data,” Meteorology and Atmospheric Physics,

vol. 112, no. 3-4, pp. 125–138, 2011.

[4] W. Skamarock, J. Klemp, J. Dudhia, D. Gill, D. Barker, W. Wang, and

J. Powers, “A description of the advanced research wrf version 2,” tech.

rep., National Center for Atmospheric Reserach, Mesoscale and Microscale

Meteorology Division, 2005. Technical Note.

[5] B. V. Dasarathy, “Information fusion as a tool for forecasting/prediction–

an overview,” Information Fusion, vol. 12, no. 2, pp. 71–73, 2011.

[6] M. Benghanem and A. Mellit, “Radial basis function network-based predic-

tion of global solar radiation data: Application for sizing of a stand-alone

27



photovoltaic system at al-madinah, saudi arabia,” Energy, vol. 35, no. 9,

pp. 3751–3762, 2010.

[7] C. Paoli, C. Voyant, M. Muselli, and M. Nivet, “Forecasting of prepro-

cessed daily solar radiation time series using neural networks,” Solar En-

ergy, vol. 84, no. 12, pp. 2146 – 2160, 2010.

[8] C. Burges, “A tutorial on support vector machines for pattern recognition,”

Data Mining and Knowledge Discovery, vol. 2, no. 2, pp. 1–32, 1998.
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