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Abstract—This paper considers short-term power constrained
cell-free massive multiple-input multiple-output (MIMO) scenar-
ios where a large set of multi-antenna access points (APs) provide
service to a group of single-antenna mobile stations (MSs) on a
spatially correlated multipath environment. Based on a proba-
bilistic approach, the spatially correlated propagation links are
modeled using either Ricean or Rayleigh fading channel models
that combine a deterministic line-of-sight (LOS) propagation path
with a small-scale fading caused by non-line-of-sight (NLOS)
multipath propagation. Assuming the use of minimum mean
square error (MMSE) channel estimates, closed-form expressions
for the downlink (DL) achievable spectral efficiency of a cell-free
massive MIMO network with short-term power constraints (i.e.,
a vector normalized conjugate beamformer (NCB)) is derived
and benchmarked against that provided by the conventional
cell-free massive MIMO network with long-term power con-
straints (i.e., the conventional conjugate beamforming (CB)).
These expressions, encompassing the effects of spatial antenna
correlation, Ricean/Rayleigh fading and pilot contamination, are
then used to devise both pragmatic and optimal max-min per-
user power allocation strategies and to gain theoretical insight
on the performance advantage provided by the use of short-term
power constraints instead of the conventional long-term power
constrained approach.

I. INTRODUCTION

MASSIVE multiple-input multiple-output (MIMO) has
emerged as one of the key physical layer pillars of the

so-called 5G and beyond-5G cellular networks [1], [2]. De-
ploying tens, or even hundreds, of antennas at the base station
(BS) to support multiple users on the same time-frequency
resource, this technology has the potential to provide very high
spectral and energy efficiencies by relying on rather simple
signal processing and without the need for any BS cooperation
[3]. Massive MIMO antenna arrays at the BSs have been tra-
ditionally arranged in compact collocated setups, but they can
also be organized in spatially distributed configurations [1],
[2], [4]. Distributed massive MIMO configurations are remi-
niscent of concepts such as distributed antenna system (DAS)
[5], network MIMO [6], [7], coordinated multipoint (CoMP)
transmission [8] or cloud radio access network (C-RAN) [9],
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but all of these arrangements can be essentially considered as
different incarnations of a cooperative cellular infrastructure.
Conceptually similar to the C-RAN and distributed massive
MIMO architectures, but explicitly renouncing to the cellular
network philosophy, an alternative distributed massive MIMO-
based setup has been recently termed as cell-free massive
MIMO [4], [10]. The underlying idea is that a massive number
of access points (APs) distributed across the coverage area are
connected to a central processing unit (CPU) and, as in the
cellular collocated massive MIMO schemes, use very simple
signal processing schemes to coherently serve a large number
of mobile stations (MSs) on the same time-frequency resource.
The distribution of APs over a large coverage area comes at the
price of increased fronthaul capacity requirements but allows
for an efficient exploitation of large-scale diversity and user
proximity to offer a much higher coverage probability than
collocated massive MIMO architectures [1], [2], [4], [10], [11].

The achievable spectral efficiency of cell-free massive
MIMO systems has been rigorously characterized and opti-
mized in papers such as, for instance, [4], [12]–[15]. Most
of these research works, however, consider the use of single-
antenna APs and the transmission over Rayleigh fading chan-
nels. Multi-antenna APs and communication over either spa-
tially correlated Rayleigh fading channels or spatially uncor-
related Ricean fading channel models have also been dealt
with in [16]–[21], just to name a few. As far as we know,
however, none of these publications consider the analysis and
optimization of the achievable spectral efficiency of a cell-
free massive MIMO network using multi-antenna AP where
the channels are characterized by spatially correlated Ricean
fading. Moreover, when determining the power control coeffi-
cients to be used in the downlink (DL) segment, all previous
research papers assume that the APs are constrained by a long-
term average power requirement. It is well-known that power
allocation strategies can be implemented assuming that power
is constrained by either long-term or short-term average power
constraints [22]. In the former strategy, averages are taken over
both codewords and small-scale channel fading, whereas in the
latter, averages are only taken over the codewords. According
to regulatory bodies, such as the International Telecommuni-
cations Union (ITU) or the Federal Communications Commis-
sion (FCC), the transmit power in any time duration should not
exceed a certain amount that depends on a large set of factors
including, among many others, the application, the carrier
frequency, the height of the antennas, or the population density.
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Although these transmit power regulations can be captured by
long-term power constraints, they are better suited, in practice,
to short-term power constraints [22]. In [23], Interdonato et al.
proposed a DL precoding scheme for cell-free massive MIMO
scenarios with single-antenna APs, denoted as normalized con-
jugate beamforming, satisfying short-term power constraints
at the APs, and they also derived an approximate closed-form
expression for the DL achievable spectral efficiency. These
researchers also showed that one of the main advantages of
this precoding scheme over the conventional scheme based
on long-term power constraints (i.e., conjugate beamforming)
is the reduction of the beamforming gain uncertainty and,
thus, the improvement of the well-known hardening ratio.
This precoding scheme has been subsequently used in, for
example, [24]–[26]. In [24], [25], however, Zhang et al.
assume again the use of single-antenna APs, thus obviating the
analytical complexity associated with multi-antenna spatially
correlated Ricean fading channel models. In [26], Femenias
et al. analyze the performance of a cell-free millimeter-wave
(mmWave) massive MIMO network assuming the use of
low-complexity hybrid digital-analog precoding filters where,
aiming at simplifying the mmWave-based front-end, the analog
precoding part implements a (constrained) statistical eigen
beamformer that turns the multi-antenna APs into equivalent
single-antenna equipment. The intrinsic analytical complexity
of multi-antenna spatially correlated fading channels is thus,
once more, avoided. This channel model has been previously
considered by Özdogan et al. in the context of collocated
massive MIMO scenarios [27], and by Álvarez-Polegre et al.
in [28] in the context of cell-free massive MIMO with long-
term power constraints.

Our main aim in this paper is to address some of the
limitations shown by previous research work on this topic.
In particular, the main contributions and novelty of this paper
can be summarized as follows:

• As an important step forward with respect to previous
research work on this topic, a novel closed form expression
for the DL achievable spectral efficiency of a cell-free
massive MIMO network based on normalized conjugate
beamforming (NCB) (i.e., adhering to short-term average
power constraints) is obtained in this paper. Notably, this
expression is suitable for scenarios in which the APs are
equipped with antenna arrays subject to spatially correlated
fading channels. Previous works targeting this problem
solely focused on the single-antenna case, a restriction
that while greatly simplifying any performance analysis,
precludes its application to the far more realistic multi-
antenna AP considered here. Furthermore, depending on
environmental factors, these channels are modeled as either
Ricean or Rayleigh using a probabilistic approach. That
is, compared to existing literature, a far more ellaborated
analytical procedure is proposed that is able to cater for the
realistic scenarios likely to be found in practical deploy-
ments (i.e., multi-antenna APs with spatial correlation, line-
of-sight (LOS)/non-line-of-sight (NLOS) mixed propagation
conditions).

• The closed-form expression for the DL achievable spectral

efficiency, encompassing the effects of spatial antenna cor-
relation, Ricean/Rayleigh fading and pilot contamination,
is benchmarked against that provided by the conventional
long-term power constrained cell-free massive MIMO net-
work using conjugate beamforming (CB) and serves to
gain theoretical insight on the performance advantage of
using short-term power constraints in terms of achievable
rate. The re-arrangement of the different terms in the rate
expression further enables the derivation of closed-form
metrics for the channel hardening effect and the favourable
propagation condition (termed here, the channel hardening
ratio and the favourable propagation ratio) that generalize
previously known ones that were only applicable to simple
propagation environments and ideal network assumptions
(i.e., perfect channel state information (CSI), no pilot con-
tamination). Moreover, by considering some special cases,
valuable analytical insight is gained on how the different
network parameters influence the both the channel hard-
ening and favourable propagation metrics. Note that the
channel hardening ratio metric is of capital importance to
gain knowledge about how tight the achievable rates are
to the true system performance and, in fact, the significant
increase in hardening ratio NCB brings along implies that
the optimization procedures governing the power and/or
pilot allocation strategies can rely on tighter achievable rate
closed-form expressions than in the CB counterpart. It is
worth noting at this point that centralized beamforming
techniques such as zero-forcing (ZF), regularized zero-
forcing (RZF) or minimum mean square error (MMSE)
have been shown to potentially outperform the CB-based
distributed beamforming schemes [12], [18], [29]. Central-
ized beamformers, however, require that the APs invest a
part of the capacity of the fronthaul links to transfer the
CSI to the CPU and, moreover, that the CPU performs
much more complex joint processing steps than those im-
plemented at the APs when using a distributed beamforming
strategy. Consequently, for conciseness, this paper focuses
on distributed precoding architectures (NCB and CB) while
leaving centralized precoders (ZF, RZF and MMSE) as a
topic for further research.

• Using the mathematical expressions for the DL achievable
rates, both pragmatic and optimal max-min per-user rate
power allocation strategies are devised and their perfor-
mance assessed. In particular, the closed-form expression
for the DL achievable spectral efficiency, encompassing
the effects of spatial antenna correlation, Ricean/Rayleigh
fading and pilot contamination, is benchmarked against that
provided by the conventional long-term power constrained
cell-free massive MIMO network using CB and serves to
gain theoretical insight on the performance advantage of
using short-term power constraints in terms of achievable
rate, channel hardening and favourable propagation under
a large set of network configurations and propagation sce-
narios. In particular, results clearly show the performance
advantage that Rice propagation brings along when com-
pared to Rayleigh channels, while revealing the deleterious
effects that spatial antenna correlation has on the network
performance.
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The rest of this paper is organized as follows. In Section II
we describe the proposed system model, including the spatially
correlated Ricean fading channel, the uplink (UL) channel
estimation process, and the DL payload data transmission
phase. Section III presents the theoretical analysis of the DL
achievable rate for the NCB-based cell-free massive MIMO
networks. Heuristic and max-min per-user rate power alloca-
tion strategies are proposed in Section IV. Heuristic power
control is used to mathematically show that NCB hardens the
effective channel gains at the MSs and, consequently, clearly
outperforms the conventional CB strategy in terms of achiev-
able spectral efficiency. Numerical results and discussions are
provided in Section V and, finally, concluding remarks are
summarized in Section VI.

Notation: Vectors and matrices are denoted by lower-case
and upper-case boldface symbols. The q-dimensional identity
matrix is represented by Iq . The operator det(X) represents
the determinant of matrix X , whereas X−1, XT , X∗ and
XH denote its inverse, transpose, conjugate and conjugate
transpose (also known as Hermitian), respectively. The Eu-
clidean norm of a vector x is denoted as ‖x‖. The expectation
operator is denoted by E{·}. Finally, CN (m,R) denotes
a circularly symmetric complex Gaussian vector distribution
with mean m and covariance R, and N (0, σ2) denotes a
real valued zero-mean Gaussian random variable with standard
deviation σ.

II. SYSTEM MODEL

Let us consider a cell-free massive MIMO system where M
APs, each equipped with an array of N antennas, have been
deployed over a large coverage area to simultaneously serve K
single-antenna MSs on the same time-frequency resource. It
is assumed that both APs and MSs are uniformly distributed
over the coverage area and that all APs are connected to a
CPU via error-free infinite-capacity fronthaul links. DL and
UL transmissions are organized in a time division duplex
(TDD) operation whereby each coherence interval1 is split
into an UL training phase, a DL payload data transmission
phase and an UL payload data transmission phase. Note that
assuming a perfect calibration of the hardware chains, the TDD
operation guarantees UL/DL channel reciprocity. In the UL
training phase, all MSs transmit UL training pilots allowing
the APs to estimate the propagation channels to every MS in
the network. Subsequently, these channel estimates are used
to compute the precoding filters governing the DL payload
data transmission and to detect the signals transmitted from
the MSs in the UL payload data transmission phase. In this
paper, sharing of CSI among APs will be avoided by using
non-cooperative beamforming in the DL and matched filtering
in the UL. Furthermore, and as it is commonly the case in
most sub-6GHz setups, it will also be assumed that each
antenna is connected to its own RF chain and, hence, that
fully digital precoders/decoders can be implemented at the
APs. For obvious reasons, the combined duration/bandwidth

1The coherence interval is a time-frequency window of duration and
bandwidth equal to the coherence time and coherence bandwidth of the
channel, respectively. This is the largest time-frequency window within which
the channel response can be reasonably considered to be as invariant.

of the training, DL and UL phases, denoted as τp, τd and τu,
respectively, should not exceed the coherence time/frequency
of the channel, denoted as τc, that is, τp + τd + τu ≤ τc, with
all these parameters specified in samples (or channel uses)
on a time-frequency grid. Note that, as we are interested in
analyzing the effects a short-term power constraint at the APs
may have on the performance of the cell-free massive MIMO
architecture under spatially correlated fading channels, only
the UL training phase and the DL payload data transmission
phase will be explicitly considered in this paper.

A. Channel model

As we consider spatially correlated Ricean fading, the vector
gmk ∈ CN×1 characterizing the channel between the mth AP
and MS k is modeled as

gmk = gmk +R
1/2
mkhmk, (1)

where gmk is the LOS component, hmk ∼ CNN (0, IN ),
and Rmk is a positive semi-definite covariance matrix that
describes the spatial correlation of the NLOS components. As
usual, the standard block fading model is assumed where gmk
is considered to be constant within a particular coherence in-
terval and to vary independently between successive coherence
intervals [30].

B. UL training phase: channel estimation

In each coherence interval, τp time/frequency samples (or
channel uses) are reserved to perform UL pilot-based channel
estimation at the APs. During this UL training phase, all K
MSs simultaneously transmit pilot sequences of τp samples to
the APs and thus, the N×τp received UL signal matrix at the
mth active AP is given by

Y pm =
√
τpPp

K∑
k′=1

gmk′ϕ
T
k′ +Npm, (2)

where Pp is the transmit power of each pilot symbol, ϕk
denotes the τp × 1 training sequence assigned to MS k,
with ‖ϕk‖2 = 1, and Npm ∈ CN×τp is a matrix of
independent identically distributed (iid) zero-mean circularly
symmetric Gaussian random variables with standard deviation
σu. Ideally, training sequences should be chosen to be mu-
tually orthogonal, however, since in most practical scenarios
it holds that K > τp, a given training sequence is assigned
to more than one MS, thus resulting in the so-called pilot
contamination, a widely studied phenomenon in the context
of collocated massive MIMO systems [2], [31]. In this work
it is assumed that training sequences are assigned to MSs using
the following procedure:
• In scenarios where K ≤ τp, MSs are always assigned

mutually orthogonal sequences.
• In scenarios where K > τp, the fingerprinting training

introduced in [26] is applied. This technique ensures that
pilot sequences are reused only among users which are
located far apart from each other, hence reducing the pilot
contamination effects (see [26, Section V] for details).
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Considering scenarios where MSs move slowly, it is reason-
able to assume that the LOS components gmk, and the scatter
fading spatial correlation matrices Rmk can be accurately
estimated and tracked in practice [17], [27], [30], [32]. In fact,
the statistical distributions of the channel can be assumed to
remain unchanged along with the active user population during
multiple coherence intervals and, as suggested by Özdogan et
al. in [27], they can be estimated in practice by using the
sample mean and sample covariance matrices (see also [33],
[34]). Furthermore, the same authors advocate that phase shifts
of the LoS component resulting from small changes in the
MS location will be identical for all BS antennas, and may
therefore be accurately tracked2. Under these assumptions, we
can define

y̆pmk =
(
Y pm − E

{
Y pm

})
ϕ∗k

=
√
τpPp

K∑
k′=1

R
1/2
mk′hmk′ϕ

T
k′ϕ
∗
k +Npmϕ

∗
k

(3)

and
ğmk = gmk − E {gmk} = R

1/2
mkhmk, (4)

and then derive the MMSE estimate for the channel between
the mth AP and the kth MS as [17], [35]

ĝmk = gmk + E
{
y̆pmkğ

H
mk

}(
E
{
y̆pmky̆

H
pmk

})−1
y̆pmk

= gmk +
√
τpPpRmkΨ

−1
mky̆pmk,

(5)

where

Ψmk = τpPp

K∑
k′=1

Rmk′
∣∣ϕHk′ϕk∣∣2 + σ2

uIN . (6)

The channel estimate ĝmk and the MMSE channel estimation
error g̃mk = gmk − ĝmk are uncorrelated random vec-
tors distributed as ĝmk ∼ CNN (gmk,Φmk) and g̃mk ∼
CNN (0,Rmk −Φmk), respectively, where

Φmk = τpPpRmkΨ
−1
mkR

H
mk. (7)

C. DL payload data transmission phase

During the DL payload data transmission phase, the signal
transmitted from AP m is given by

xm =
√
Pd

K∑
k=1

η
1/2
mk$

T
mksk, (8)

where Pd is the transmit power available at the APs, $mk ∈
CN×1 is the beamforming vector for MS k, sk is the symbol
transmitted to the kth MS, which satisfies E

{
|sk|2

}
= 1, and

ηmk is the DL (long-term) power allocation coefficient, chosen
to meet the power constraint at the mth AP

E
{
‖xm‖2

}
≤ Pd, (9)

2Note that all these assumptions, jointly with the block fading one, allow
the analysis of the average (over time and frequency) performance of the
network to be conducted by considering the one-shot probability distribution
provided in (1).

where the expectation is taken over both the transmitted
symbols (i.e., codewords) and the beamforming filters. For the
specific case of the classical CB, the beamformer is defined
as

$mk = ĝ∗mk. (10)

As this beamformer is not subject to a short-term normal-
ization, averaging over it is tantamount to average over the
estimated small-scale fading, Pd can only denote the average
available transmit power, and (9) must represent an average
(i.e., long-term) power constraint at the mth AP. The NCB for
MS k, instead, is defined as

$mk =
ĝ∗mk
‖ĝmk‖

. (11)

Owing to the normalization, after averaging over the trans-
mitted symbols, the small-scale channel fading effects vanish.
As a result, there is no need to average over the fast fading,
thus allowing Pd to denote the available instantaneous transmit
power, and (9) to represent a short-term power constraint at
the mth AP. We note that, indeed, short-term transmit power
constraints are most likely the ones to be required in practical
deployments.

The received data signal at the kth MS can be expressed as

yk =
M∑
m=1

gTmkxm + wk

=
√
Pd

M∑
m=1

gTmk

K∑
k′=1

η
1/2
mk′$mk′sk′ + wk,

(12)

where wk ∼ CN (0, σ2
d) accounts for the receiver thermal

noise. Assuming that only statistical CSI is available at the
MSs, the received signal can be rewritten as [4]

yk = DSk sk + BUk sk +
K∑
k′ 6=k

UIkk′ sk′ + wk, (13)

where

DSk =
√
Pd

M∑
m=1

η
1/2
mkE

{
gTmk$mk

}
, (14)

BUk =
√
Pd

M∑
m=1

η
1/2
mk

(
gTmk$mk − E

{
gTmk$mk

})
, (15)

and

UIkk′ =
√
Pd

M∑
m=1

η
1/2
mk′g

T
mk$mk′ (16)

represent the strength of the desired signal, the beamforming
gain uncertainty, and the strength of the interference term
caused by the transmission to the k′th MS, respectively.

III. ACHIEVABLE RATES

DL achievable rates can be derived by using an analytical
approach similar to those applied, for instance, in [2], [4],
[23]. In particular, the sum of the second, third, and fourth
terms in (13) is treated as effective noise (this is related to the
well-known Gaussian assumption [36]). In fact, as the data
symbols and thermal noise samples are zero-mean mutually
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uncorrelated random variables (i.e., E{sk} = E{wk} = 0, for
all k, and E{sks∗k′} = E{sk′w∗k} = 0, for all k and k′, it is
straightforward to show that the additive terms constituting the
effective noise are mutually uncorrelated (but not necessarily
independent), and uncorrelated with the desired signal term.
Consequently, recalling the fact that uncorrelated Gaussian
noise represents the worst case, capacity bound described by
Marzetta et al. in [2, Section 2.3.4] can be directly applied
to obtain the DL achievable rate (measured in bits per second
per Hertz) for MS k as

RBF
k =

τd
τc

log2

(
1 + γBF

k

)
, (17)

where BF ∈ {NCB,CB} is a token used to represent either
the normalized conjugate or the conjugate beamformer, and

γBF
k =

|DSk|2

E
{
|BUk|2

}
+
∑
k′ 6=k

E
{
|UIkk′ |2

}
+ σ2

d

. (18)

In the following subsections we will elaborate on the math-
ematical analyzes related to the calculation of γBF

k . We will
begin by introducing some useful results that will subsequently
be used to obtain either approximate or exact closed-form
expression for the DL achievable rates of short- and long-
term power constrained cell-free massive-MIMO networks
over spatially correlated Ricean fading.

A. Useful results
Lemma 1. Given a circularly symmetric complex Gaussian
vector v ∼ CNN (0, IN ) and an arbitrary matrixA ∈ CN×N ,
the first and second (non-central) moments of the complex
quadratic form Q = vHAv can be obtained as

E{Q} = tr(A) (19)

and
E{|Q|2} = |tr(A)|2 + tr(AAH), (20)

respectively.

Lemma 2. Given a complex Gaussian random vector x ∼
CNN (µ,R) and an arbitrary matrix M ∈ CN×N , the first
and second (non-central) moments of the complex quadratic
form Q = xHMx can be obtained as

E{Q} = µHMµ+ tr(RM) (21)

and

E{|Q|2} =
∣∣µHMµ

∣∣2 + 2<
{
µHMRMHµ

}
+ 2<

{
µHMµ tr

(
RMH

)}
+ |tr (RM)|2 + tr

(
RMRMH

)
,

(22)

respectively.

Lemma 3. Given a complex Gaussian random vector x ∼
CNN (µ,R) and a Hermitian matrix H ∈ CN×N , the frac-
tional (1/2)st (non-central) moment of the Hermitian quadratic
form δ = xHHx can be accurately approximated as

E{δ1/2} ≈ σδ√
µδ

Γ
(
µ2
δ

σ2
δ

+ 1
2

)
Γ
(
µ2
δ

σ2
δ

) , (23)

where, using Lemma 2,

µδ = E {δ} = µHHµ+ tr(RH) (24)

and

σ2
δ =E

{
|δ − E{δ}|2

}
= E{|δ|2} − |E{δ}|2

=2µHHRHµ+ tr
(

(RH)
2
)
.

(25)

Proof. The proof is given in Appendix A.

B. DL spectral efficiency of NCB

Let us define the Hermitian quadratic form δmk , ‖ĝmk‖
2.

As shown in Lemma 2 in Subsect. III-A, the first and second
(non-central) moments of this quadratic form can be expressed
as

µδmk = E {δmk} = ‖gmk‖
2

+ tr (Φmk) (26)

and

σ2
δmk

= E
{
|δmk − µδmk |

2
}

= 2gHmkΦmkgmk + tr
(
Φ2
mk

)
.

(27)

These results can be used to state an approximate closed-form
expression for the DL achievable rate of a cell-free massive
MIMO network using short-term (i.e., NCB) power constraints
over spatially correlated Ricean fading channels as:

Theorem 1 (Normalized Conjugate Beamforming). If NCB
with $mk = ĝ∗mk/δ

1/2
mk is used based on the MMSE channel

estimation derived in (5), then γNCB
k can be accurately approx-

imated as in (28), shown at the top of next page, with the
token BF set to NCB, where ρd = Pd/σ

2
d,

ANCB
mk =

σδmk√
µδmk

Γ

(
µ2
δmk

σ2
δmk

+ 1
2

)
Γ

(
µ2
δmk

σ2
δmk

) , (29)

BNCB
mk =

tr
(
(Rmk −Φmk)

(
gmkg

H
mk + Φmk

))
µδmk

+ µδmk −
(
ANCB
mk

)2
,

(30)

CNCB
mkk′ =

1

µδmk′

[
gHmkΦmk′gmk + tr (RmkΦmk′)

+ 2<
{
gHmk′gmk tr

(
RmkΦmk′R

−1
mk′

)}
ϕHk ϕk′

+
∣∣gHmkgmk′ ∣∣2 +

∣∣tr (RmkΦmk′R
−1
mk′

)∣∣2 ∣∣ϕHk ϕk′ ∣∣2
+
∣∣∣gHmkR1/2

mkgmk′
∣∣∣2 + gHmk′Rmkgmk′

]
−
∣∣DNCB

mkk′

∣∣2 ,
(31)

and

DNCB
mkk′ =

gHmkgmk′ + tr
(
RmkΦmk′R

−1
mk′

)
ϕHk ϕk′

ANCB
mk′

. (32)

Proof. The proof is given in Appendix B.
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γBF
k =

ρd

(
M∑
m=1

η
1/2
mkA

BF
mk

)2

ρd

M∑
m=1

ηmkB
BF
mk + ρd

K∑
k′=1
k′ 6=k

 M∑
m=1

ηmk′C
BF
mkk′ +

∣∣∣∣∣
M∑
m=1

η
1/2
mk′D

BF
mkk′

∣∣∣∣∣
2
+ 1

, (28)

C. DL spectral efficiency of the benchmarking precoder

Results in (26) and (27) can also be used to restate in the
form of a theorem the exact closed-form expression for the
DL achievable rate of a cell-free massive MIMO network using
long-term (i.e., CB) power constraints over spatially correlated
Ricean fading channels as [28]:

Theorem 2 (Conjugate Beamforming). If CB with $mk =
ĝ∗mk is used based on the MMSE channel estimation derived
in (5), then γCB

k can be expressed as in (28) with the token BF
set to CB, where

ACB
mk = E {δmk} = µδmk , (33)

BCB
mk = σ2

δmk
+ tr ((Rmk −Φmk) Φmk) , (34)

CCB
mkk′ =gHmkΦmk′gmk + gHmk′Rmkgmk′

+
∣∣∣gHmkR1/2

mkgmk′
∣∣∣2 + tr (RmkΦmk′) ,

(35)

and

DCB
mkk′ = gHmkgmk′ + tr

(
RmkΦmk′R

−1
mk′

)
ϕHk ϕk′ . (36)

Proof. The proof can be readily obtained using [27] and [28]
(see also derivations in the proof of Theorem 1).

IV. POWER CONTROL STRATEGIES

A. Heuristic power control scheme

In this set-up, as it was done by Interdonato et al. in [23],
it is assumed that data signals are always transmitted with full
average power (i.e., the power constraint in (9) is satisfied with
equality). Furthermore, a fair comparison between NCB and
CB is guaranteed by choosing the power control coefficients
as

ηmk =


µδmk∑K

k′=1
µδ
mk′

, NCB
1∑K

k′=1
µδ
mk′

, CB,
(37)

for all k ∈ {1, . . . ,K}. Using the power control coefficients
defined in (37), as was stated by Interdonato et al. in [23],
ensures that the mth AP allocates the same amount of power
to MS k under both NCB and CB strategies.

As a byproduct, the use of this pragmatic power control
strategy can be very helpful in gaining some theoretical insight
when comparing the performance of long-term and short-term
power constrained precoding schemes under some particular

scenarios. For instance, let us define the channel hardening
ratio experienced by MS k as [37, Equation (10)]

%BF
k = Var

{ ∑M
m=1 η

1/2
mkg

T
mk$mk∑M

m=1 η
1/2
mkE

{
gTmk$mk

}}

=
Var

{∑M
m=1 η

1/2
mkg

T
mk$mk

}
(∑M

m=1 η
1/2
mkE

{
gTmk$mk

})2
=

E
{
|BUk|2

}
|DSk|2

=

∑M
m=1 ηmkB

BF
mk(∑M

m=1 η
1/2
mkA

BF
mk

)2 .
(38)

Note that the term
∑M
m=1 η

1/2
mkg

T
mk$mk represents the equiv-

alent joint propagation channel (including the power control
coefficient and the precoding filter) between the whole set
of APs in the cell-free massive MIMO network and MS k.
Hence, the lower the value of the channel hardening ratio,
the higher the convergence of the instantaneous equivalent
propagation channel to its mean (i.e., the higher the channel
hardening experienced by MS k). Using (33) and (34), or (29)
and (30), in (38), closed-form expressions for the channel
hardening ratio of a generic MS k can be obtained for the
CB, or NCB, schemes, respectively. Assuming the general
spatially correlated Ricean fading channel model, however, it
is very difficult to draw clear mathematical insight from the
analysis of these expressions. Thus, let us explore the channel
hardening ratio for both the NCB and CB schemes assuming a
spatially uncorrelated Rayleigh fading channel model. In this
particular case, gmk = 0, Rmk = βmkIN , with βmk denoting
the large-scale propagation gain between the mth AP and MS
k, and Φmk = γmkIN , where

γmk =
τpPpβ

2
mk

τpPp
∑K
k′=1 βmk′

∣∣ϕHk′ϕk∣∣2 + σ2
u

. (39)

The channel hardening ratio for the CB scheme can then be
expressed, using (37), as

%CB
k =

∑M
m=1

βmkγmk∑K
k′=1

γmk′

N

(∑M
m=1

γmk√∑K
k′=1

γmk′

)2 , (40)

which is a decreasing function of N and M . In order to obtain
a similarly manageable closed-form expression for the NCB
scheme, let us assume that µ2

δmk
/σ2

δmk
� 1. This is a fairly

accurate assumption because we are assuming the use of a
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high number of multiple-antenna APs. Under this assumption,
as limx→∞ Γ(x+ α)/Γ(x) = xα, it holds that

ANCB
mk =

σδmk√
µδmk

Γ

(
µ2
δmk

σ2
δmk

+ 1
2

)
Γ

(
µ2
δmk

σ2
δmk

) ≈ √µδmk (41)

and, consequently, the channel hardening ratio for the NCB
scheme, assuming the pragmatic power control strategy pro-
posed in (37), can be expressed as

%NCB
k ≈

∑M
m=1

(γmk−βmk)γmk∑K
k′=1

γmk′

N

(∑M
m=1

γmk√∑K
k′=1

γmk′

)2

= %CB
k −

∑M
m=1

γ2
mk∑K

k′=1
γmk′

N

(∑M
m=1

γmk√∑K
k′=1

γmk′

)2 .

(42)

That is, the channel hardening experienced by a generic
MS k in a cell-free massive MIMO network using a short-
term power constrained NCB is, for this particular pragmatic
power control strategy, better than that experienced when
using a long-term power constrained CB. Although this is
only analytically shown for the Rayleigh case, Monte Carlo
simulations presented in Section V show that this is also true
for the Ricean scenario.

Tightly related to the favourable propagation concept de-
scribed by Marzetta et al. in [2, Section 7.1], we define the
favourable propagation ratio between MSs k and k′ 6= k as

φBF
kk′ =

E
{
|UIkk′ |2

}
|DSk|2

=

M∑
m=1

ηmk′C
BF
mkk′ +

∣∣∣∣∣
M∑
m=1

η
1/2
mk′D

BF
mkk′

∣∣∣∣∣
2

(∑M
m=1 η

1/2
mkA

BF
mk

)2 .

(43)

The lower the value of the favourable propagation ratio, the
lower the interference produced by the transmissions to MS k′

on the signal received by MS k and hence, the more orthog-
onal can be considered to be the equivalent channels between
the APs and MSs k and k′. As with the channel hardening
ratio, using (33), (35) and (36), or (29), (31) and (32), in (43),
closed-form expressions for the favourable propagation ratio
between two generic MSs k and k′ can be obtained for the CB,
or NCB, schemes, respectively. Useful mathematical insight,
however, can only be obtained by resorting to simplified
scenarios such as the spatially uncorrelated Rayleigh fading
channel model. In this particular case, it can easily be shown
that both CB and NCB schemes provide identical exact (in
the CB case) and approximate (in the NCB case) favourable

propagation ratios, which can be expressed as

φCB
kk′ = φNCB

kk′ =

∑M
m=1

βmkγmk′∑K
l=1 γml

N

(∑M
m=1

γmk√∑K
l=1 γml

)2

+


∑M
m=1

γmk′βmk/βmk′√∑K
l=1 γml∑M

m=1
γmk√∑K
l=1 γml


2 ∣∣ϕHk ϕk′ ∣∣2 .

(44)

The first term of this ratio is a decreasing function of N and
M . The second term, however, which is only different from
zero when MSs k and k′ share the same pilot sequence, does
not depend on N and does not vanish with increasing M .
Then, we can assert that both CB and NCB schemes provide
favourable propagation among MSs that do not share the same
pilot sequence. However, those MSs that share the same pilot
training sequence will suffer from pilot contamination that
ought to be combated by resorting to proper pilot and power
allocation algorithms.

B. Max-min user rate power control

Max-min DL power allocation aims at finding the vector of
power control coefficients η = [ηT1 . . . ηTM ]T , with ηm =
[ηm1 . . . ηmK ]T for all m ∈ {1, . . . ,M}, that maximizes
the minimum of the achievable rates (or, equivalently, the
minimum of the achievable signal-to-interference-plus-noise
ratios (SINRs)) of all MSs while satisfying the transmit
power constraint at each AP [4], [10], [12]. This optimization
problem can be generically formulated as

max
η�0

min
k
γBF
k ,

subject to
K∑
k′=1

ηmk′E
{
‖$mk′‖2

}
≤ 1 ∀m,

(45)

where

E
{
‖$mk′‖2

}
=

{
1, NCB,
µδmk , CB.

(46)

Using (18), problem (45) can be reformulated as

max
{ς,λ}

min
k

(
M∑
m=1

ςmkA
BF
mk

)2

M∑
m=1

K∑
k′=1

ς2mk′κ
BF
mkk′ +

K∑
k′=1
k′ 6=k

|λBF
kk′ |

2
+ 1

ρd

,

subject to
M∑
m=1

ςmk′D
BF
mkk′ ≤ λkk′ ∀k′ 6= k,

K∑
k′=1

ς2mk′E
{
‖$mk′‖2

}
≤ 1 ∀m,

ςmk ≥ 0 ∀mk,

(47)

where we have introduced the slack variables λkk′ and have
used the definitions ςmk = η

1/2
mk and

κBF
mkk′ =

{
BBF
mk, k′ = k

CBF
mkk′ , k′ 6= k.

(48)



SUBMITTED TO IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY 8

TABLE I: Summary of default simulation parameters

Parameter Value
Carrier frequency: f0 2 GHz
Bandwidth: B 20 MHz
Side of the square coverage area: D 1000 m
Number of APs: M 100 APs
Noise figure (AP and MS): NF 9 dB
Available average power at the AP: Pd 200 mW
Available average power at the MS: Pp 100 mW
AP antenna height: hAP 12.5 m
MS antenna height: hMS 1.65 m
Coherence interval length: τc 200 samples
Training phase length: τp 20 samples
Payload phase length: τd = τu (τc − τp)/2 samples
LOS reference distance: d0 20 m
Pathloss parameters: α, β, σχ
- Case LOS, 10m < dmk ≤ 150m 34, 2.2, 3
- Case LOS, dmk > 150m -5.17, 4, 3
- Case NLOS 30, 3.67, 4

Shadow fading decorrelation distance: ddcorr 9 m
Shadow fading correlation among APs: 0.5
Ricean K-factor distribution: µK , σK 9 dB, 5 dB
Distribution of the AoA deviation ζ ∼ N (0, σ2

ζ )

Angular standard deviation (ASD): σζ 10◦

As shown by Ngo et al. in [4, Appendix B], problem (47) is
a quasi-concave optimization program that can be expressed
in an equivalent form as

max
{ς,λBF,x}

x

s. t.
√
x

∥∥∥∥[ϑBF
1k . . .ϑ

BF
Mk λ

BF
k

1
√
ρd

]∥∥∥∥ ≤ M∑
m=1

ςmkA
CB
mk ∀ k,

M∑
m=1

ςmk′D
BF
mkk′ ≤ λBF

kk′ ∀k′ 6= k,

K∑
k′=1

ς2mk′E
{
‖$mk′‖2

}
≤ 1 ∀m,

ςmk ≥ 0 ∀mk,
(49)

where ϑBF
mk =

[
ςm1

√
κBF
mk1 . . . ςmK

√
κBF
mkK

]
and λ

BF
k =[

λBF
k1 . . . λ

BF
k(k−1)λ

BF
k(k+1) . . . λ

BF
kK

]
. Problem (49) is a second

order cone (SOC) program that can be efficiently solved
by using a conventional iterative bisection search algorithm.
Specific details on the optimality, complexity and feasibility
of these algorithms were fully commented by Ngo et al. in the
seminal paper [4]. In particular, it is worth pointing out that the
optimization of the power coefficients depends only on large-
scale fading parameters, whose rate of variation is on the order
of many coherence times (at least 40-50 according to [4]).
Consequently, given its low rate of execution, the complexity
of this optimization procedure becomes relatively unimportant.

V. NUMERICAL RESULTS

Similar to the simulation scenario setups typically used in
most of the relevant literature on cell-free massive MIMO
networking (see, for instance, [4], [10], [12], [14]–[16], [18],
[23]), APs and MSs are uniformly distributed at random within

a square coverage area of size D×D m2. Furthermore, in order
to simulate the effects of operating an infinite coverage area
network, this square area is wrapped-around at the edges.

The link between the mth AP and the kth MS will be
considered to be either in LOS or NLOS, with the LOS
probability being given by [38]

pLOS(dmk) = min

(
1,

d0
dmk

+

(
1− d0

dmk

)
e−

dmk
2d0

)
, (50)

where d0 is a reference distance and dmk is the distance
between AP m and MS k. The propagation losses (measured
in dB) characterizing the propagation link between the mth
AP and the kth MS will be modelled as

Lmk = α+ 10β log10(dmk) + χmk, (51)

where χmk ∼ N
(
0, σ2

χ

)
is the shadow fading component, and

the values of parameters α, β and σχ depend on whether the
corresponding link is in LOS or NLOS. The spatial correlation
model for the shadow fading experienced by the different
propagation links is described in [4, (54)-(55)].

Each AP will be assumed to be equipped with a uniform
linear array (ULA) with half-wavelength antenna spacing.
Hence, defining βmk = 10−Lmk/10, the LOS component of
the propagation channel between MS k and AP m can be
expressed as

gmk =

√
Kmk

Kmk + 1
βmk

[
1 ejζmk . . . ej(N−1)ζmk

]T
, (52)

where Kmk is the Ricean K-factor, with Kmk = 0 for NLOS
propagation links and 10 log10(Kmk) ∼ N

(
µK , σ

2
K

)
for LOS

propagation links, and ζmk = π sinψmk, with ψmk denoting
the angle of arrival (AoA) of the signal transmitted by MS k
seen from the mth AP. The covariance matrix characterizing
the NLOS small-scale fading will be obtained by using the
well-known local scattering spatial correlation model [30, 2,
Sec. 2.6]. In particular, the (p, q)th component of the Toeplitz
matrix Rmk will be computed as [30, 2, eq. (2.23)]

[Rmk]p,q =
βmk

Kmk + 1

∫ +∞

−∞
ejπ(p−q) sin(ψmk+ζ)fζ(ζ)dζ,

(53)
where fζ(ζ) is the probability density function (pdf) of the
angular deviation of the different propagation paths of the
local scatterer around the MS with respect to the nominal
AoA. Typical distributions for the angular deviation that can
be found in the literature (see [30, 2, Sec. 2.6] and references
therein) are the Gaussian distributed deviations ζ ∼ N (0, σ2

ζ ),
the Laplace distributed deviations ζ ∼ Lap (0, σζ/2) or the
uniformly distributed deviations ζ ∼ U

[
−
√

3σζ ,
√

3σζ
]
, with

σζ representing the angular standard deviation (ASD) around
the nominal AoA. In spite of its simplicity, this channel
model captures the key characteristics of spatial correlation
in massive MIMO scenarios and provides qualitative results
that are fully consistent with those obtained using other state-
of-the-art channel models [30], [39].

Default parameters used to set-up the simulation scenarios
under evaluation are summarized in Table I and are inspired
by prior research works on this topic (see, for instance, [4],
[18], [38] and references therein). Moreover, except otherwise
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stated, the dissimilarity cluster-based pilot assignment (DCPA)
scheme described in [26] is used to allocate the available
training sequences to MSs. In words, the CPU has perfect
knowledge of vector βk = [β1k . . . βMk] for any MS k in the
network. This vector, containing the large-scale propagation
gains of the channels linking MS k to the M APs, can be
regarded as a fingerprint characterizing MS k. The DCPA
scheme uses the cosine similarity measure to ensure that pilot
sequences are only reused, in a balanced manner, by MSs
showing the most dissimilar large-scale propagation patterns
to the APs.

Figure 1 shows the cumulative distribution function (CDF)
of the achievable per-user rate obtained using NCB and CB
for the specific case of K = 25 MSs and M = 100 APs when
using either pragmatic (see Fig. 1a) or max-min (see Fig. 1b)
power allocation under two different channel environments,
the correlated Rayleigh fading model (previously reported in
the literature and shown here in dashed lines) and the more
realistic spatially correlated channel subject to Ricean fading
(solid lines). The upper subplots correspond to a configuration
where APs are equipped with N = 2 antennas whereas the
lower subplots represent the case when N = 8 antennas are
available at each AP. Most notably, and irrespective of any
other parameter, large differences are observed between the
Rayleigh and Ricean fading scenarios, thus revealing the im-
portance of considering the use of spatially-correlated Ricean
fading channel models when analyzing ultradense networks
such as those postulated by the cell-free massive MIMO
paradigm. Assuming the use of the pragmatic power allocation
strategy, per-user achievable rate performance when APs are
equipped with few antennas (N = 2, upper subplot in Fig.
1a) always favours the existence of the LOS component thus
making the Ricean environment preferable over the Rayleigh
one. In contrast, when APs are equipped with a large number
of antennas (e.g., N = 8, lower subplot in Fig. 1a), worst
users (lowest 15%-ile and 35%-ile ranges, for CB and NCBs,
respectively) benefit from NLOS propagation as the large
number of antennas per AP already provides a considerable
degree of channel hardening with lower correlation (i.e., more
diversity) than the Ricean propagation counterpart. It is worth
noting, also, that the NCB, using short-term power constraints,
clearly outperforms the CB, using long-term power constraints,
regardless of the channel model or the number of antennas
at the APs. The superiority of the NCB precoder is further
reinforced by results presented in Fig. 1b where the use of
max-min power allocation is assessed. As it always occurs
with max-min power allocation, the per-user rate CDF curves
present a much steeper shape than those obtained using other
power allocation strategies owing to the fact that, for each
channel realization, all MSs in the network attain a common
rate. Furthermore, note how NCB offers a very significant
advantage over CB irrespective of the number of antennas and
propagation conditions. In particular, and unlike the pragmatic
power allocation case, max-min performance in spatially cor-
related Ricean fading is always beneficial irrespective of the
rate-percentile under evaluation.

The average per-user rate of NCB and CB is now assessed
in Fig. 2a as a function of the number of MSs in a cell-free

massive MIMO network with M = 100 APs all equipped
with N = 4 antennas. Results obtained under spatially
correlated Rayleigh (upper subplot) and Ricean (lower subplot)
propagation conditions are presented when relying on the
pragmatic power allocation strategy. For both NCB and CB
precoders, each plot shows the theoretical achievable rate per
user (lower bound) derived in previous sections (solid lines),
their simulated counterparts using (17)-(18) (markers) and the
estimated true rates given by

R̂BF
k =

τd
τc
E

log2

1 +
|DSk|2

|BUk|2 +
∑
k′ 6=k

|UIkk′ |2 + σ2
d


 .

(54)
The latter two have been computed using Monte Carlo simu-
lation over 1000 scenarios with 500 fast fading channel real-
izations/scenario. Several key facts are worth noting. Firstly,
and as somewhat expected, a perfect agreement between
the analytical and simulated achievable rate is observed for
the CB whereas the approximations incurred when deriving
theoretical expressions for NCB are found to be very tight
(in fact, virtually perfect for the case of Ricean fading).
Secondly, and irrespective of the propagation model, the
significantly smaller gap between the achievable and the true
rates for the case of NCB in comparison to those observed
for CB, are already indicative that NCB precoding results in
a much more pronounced channel hardening effect. Finally,
contrasting the upper and lower plots of Fig. 2a, it can be
concluded that LOS propagation is a key factor towards the
improvement of the hardening coefficient, thus implying that
the achievable rate bounds are indeed more representative of
the truly achieved rate in a Ricean environment than in the
Rayleigh counterparts. To further confirm the insights drawn
from Fig. 2a, the hardening ratio is depicted in Fig. 2b for
both precoders under the spatially correlated Rayleigh and
Ricean propagation conditions using the analytic expressions
proposed in (40) and (42) and contrasting them via Monte
Carlo simulations. It can indeed be observed how Ricean
propagation and NCB precoding entail a much larger degree
of hardening, and in fact, when these two conditions con-
cur, the resulting hardening ratio (well below 0.01) provides
an indication that the achievable per-user rate is indeed a
tight approximation of the per-user rate achieved in practice.
Interestingly, the channel hardening observed under Ricean
propagation conditions is almost independent of the network
load whereas when Rayleigh fading is assumed, increasing
the number of MSs in the network seriously compromises the
hardening assumption, most notably for the CB precoder. In
fact, in light of these results, the application of the widely used
achievable rate bounds appear to be rather inadequate when as-
sessing Rayleigh propagation as it considerably underestimates
the true network performance. In contrast, realistic scenarios
where LOS condition prevails, specially when using the short-
term power constrained precoding scheme, can be accurately
assessed by the proposed closed-form bounds. Even though the
qualitative result that channel hardening is much consequential
in Ricean fading channels is not that surprising, quantifying
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Fig. 1: CDF of the achievable per-user rate for NCB and CB under Rayleigh and Ricean channels for K = 25 MSs and
M = 100 APs and assuming either pragmatic or max-min power allocation.
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Fig. 2: Spectral efficiency metrics and hardening ratio as a function of the number of MSs in a cell-free massive network with
M = 100 APs all equipped with N = 4 antennas.

up to what extent increasing the Rice-K factor improves the
hardening ratio in a realistic environment and, even more
important, up to what extent improving the hardening ratio also
serves to reduce the gap between the closed-form achievable
rates and the true rates provided by these systems is of
capital importance. Note that, for instance, the max-min power
allocation strategies can only be implemented by resorting
to closed-form achievable rate expressions and, for obvious
reasons, it is highly desirable that these be as close as possible
to the true-rates.

Figure 3 shows the favourable propagation ratio defined in
(43) for both CB (left) and NCB (right) schemes. In order
to highlight the effects pilot contamination might produce

on this metric, two different pilot allocation schemes are
considered, namely, the aforementioned DCPA strategy, and
a naive scheme in which, on the one hand, for those cases
in which K ≤ τp each MS is allocated an orthogonal pilot
sequence and, on the other hand, for those cases in which
K > τp there are τp MSs that are allocated the τp orthogonal
pilot sequences, and each of the remaining K − τp MSs is
allocated a pilot sequence randomly selected from the pool
of available orthogonal ones. Results presented in this figure
have been generated for a correlated Ricean channel with
ASD = 10◦ and assuming APs equipped with N = 4 antennas
and serving K = 30 MSs. Since τp = 20, there are 10 MSs
that do not share their allocated pilot sequence whereas each
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Fig. 3: Favourable propagation ratio as a function of the
number of APs, all equipped with N = 4 antennas, in a cell-
free massive network with K = 30 MSs.

of the remaining 20 MSs share their training sequence with
at least another MS thus suffering from pilot contamination
(i.e., there are 10 MSs with differentiated pilots and 20 MSs
with shared pilots). The first important remark that can be
drawn from these results is that irrespective of the precoder or
pilot allocation strategy under use, increasing the number of
APs leads to an improvement of the favourable propagation
ratio, which in turn implies that orthogonality among channels
experienced by different MSs is effectively ameliorated when
increasing the number of APs. As anticipated by the analytical
results, MSs with differentiated pilot sequences exhibit a
better favourable propagation ratio than those sharing training
sequences. This issue, which is tightly related to pilot contam-
ination, can somehow be partially addressed by using a robust
form of pilot allocation technique such as the DCPA (black
curves) instead of the naive scheme (red curves) that does
not take into account the large-scale propagation fingerprints
of MSs when assigning pilots. As hinted from analytical
results derived for the particular case of spatially uncorrelated
Rayleigh fading, no significant differences are appreciated
between the favourable propagation ratios obtained using CB
or NCB strategies, thus confirming that this property is also
valid for spatially correlated Ricean fading scenarios and
suggesting that the normalization undergone in NCB does
not compromise the favourable propagation effect observed
as the number of APs increases in a cell-free massive MIMO
network.

A recurring dilemma in the cell-free massive MIMO lit-
erature is whether it is more advantageous to deploy fewer
APs with more antennas or more APs with fewer antennas.
Figure 4 shows the spectral efficiency (user achievable rate
in solid lines and true rates in dashed lines) for different
combinations of N and M always subject to the constraint
that M×N = 400 (i.e., 400 transmit antennas in the network)
for both NCB and CB precoders. Clearly, when using the
NCB strategy (see Fig. 4a), increasing the number of APs

at the cost of reducing their complexity (less antennas) is
beneficial from the point of view of spectral efficiency. This is
indeed indicative of the intrinsic benefit of cell-free systems,
namely, bringing the antennas physically closer to the users
is always beneficial, a goal that is effectively implemented
by distributing the RF front ends as uniformly as possible
throughout the coverage area. A potential caveat of the fully
distributed configuration (M = 400 APs, N = 1 antenna/AP)
when confronted with the less distributed one (M = 50 APs,
N = 8 antennas/AP), however, is the growing gap between
achievable and true rates, a fact already hinted in Fig. 2b.
Recall that achievable rates are of paramount importance
for governing various optimization procedures, including the
power allocation and the pilot assignment processes, hence
the importance in having them in the form of tight closed-
form expressions. Remarkably, as Fig. 4a reveals, achievable
rates for the NCB-case lie within a 5% of the true rate for
even the most distributed form. In contrast, the same results
are presented in Fig. 4b for the CB-case where the effect of
AP distribution is shown to have a devastating effect on the
accuracy of the lower bounds based on the achievable rate, as
already predicted by results presented in Fig. 2b. Although not
shown here, fixing the overall network power and dividing it
by the number of APs, a decision that seems to be somehow
reasonable when comparing network scenarios with different
number of APs, does not alter the results in Figs. 4a and 4b
given that acceptable performance levels are always attained
in the interference-limited regime.

In order to further explore the advantages of cell-free
massive MIMO networks using short-term power constraints,
Fig. 5 shows the performance of NCB and CB when varying
the number of APs for a fixed number of K = 25 MSs in the
system. The results help visualizing two facts. Firstly, adding
APs to the system is always beneficial irrespective of the
particular precoding strategy under use. Secondly, the relative
difference (i.e., measured as a percentage of variation) between
true and achievable rates shrinks with increasing number of
APs, thus confirming that a large number of APs improves
channel hardening. As expected, NCB outperforms CB in
terms of per-user rate and accuracy of the lower bounds based
on the achievable rate analytical expressions. As a concluding
remark about hardening that further highlights the advantages
of NCBs, we note that results shown in Figs. 4a-5 correspond
to the case of Ricean fading, a condition that, as it has
been mentioned, is far more favourable in terms of channel
hardening ratio than the Rayleigh environment. In particular,
the hardening ratio attained by the CB strategy suggests that
the corresponding achievable rates will greatly underestimate
the true ones up to the point of making it questionable the
convenience of using the CB achievable rate expressions for
system optimization.

Finally, Fig. 6 explores the effect the ASD around the
AoA has on the spectral efficiency performance for the NCB-
based scenario (qualitatively similar results are obtained for
the CB case) when evaluating different number of serving
APs and a fixed number of K=15 MSs. As (53) shows, the
ASD σζmk conditions the spatial correlation of the AoA,
with increasing angular deviation implying diminishing spa-
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Fig. 4: Spectral efficiency as a function of the number of MSs in the network for various configurations of M and N subject
to M ×N = 400.
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Fig. 5: Spectral efficiency as a function of the number of APs
in the network for NCB and CB precoding with Heuristic
power allocation and K = 25 MSs.

tial correlation. Results are shown for Rayleigh and Ricean
propagation conditions and, for benchmark purposes, results
for spatially uncorrelated antenna arrays are also shown. As
expected, decreasing spatial correlation leads to a consistent
and considerable improvement in performance for the case of
the Rayleigh channel. For instance, a cell-free massive MIMO
network with M = 90 APs each equipped with N = 4
antennas can provide an average per-user rate of approximately
30 Mbit/s to only K = 15 active MSs under very strong
spatially correlated Rayleigh fading (i.e., σζ = 5o). The same
spectral efficiency can be provided by a network of M = 55
active APs under weak spatially correlated Rayleigh fading
(i.e, σζ = 40o). When channel fading conforms to a spatially
correlated Ricean model, the same effect is observed although
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Fig. 6: Spectral efficiency versus the number of APs (equipped
with N = 4 antennas) as a function of the angular spread for
NCB precoding with Heuristic power allocation and K = 15
MSs.

to a milder extent. Note that in this latter case, angular spread
plays a less decisive role since the LOS component, which
is assumed to be perfectly known at both the transmitter and
receiver sides, is unaffected by the spatial correlation matrix.

VI. CONCLUSION

In this paper, the effects a spatially correlated Ricean fading
channel may have on the performance metrics of a cell-free
massive MIMO network have been explored. Rigorous exact
and approximate closed-form expressions for the downlink
achievable rate have been derived assuming the use of both
long- and short-term power constraints. These analytical ex-
pressions have then been used to evaluate power allocation
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strategies based on both pragmatic and optimal max-min per-
user rate criteria and have served to gain theoretical insight
on the performance advantage provided by the use of short-
term power constraints when designing the MIMO precoding
strategies.

Large differences observed between the performance met-
rics obtained under spatially correlated Rayleigh and Ricean
fading scenarios have revealed the importance of considering
the use of Ricean fading channel models when designing
ultradense networks such as those postulated by the cell-free
massive MIMO paradigm. Furthermore, the conventional CB
scheme, which is based on long-term power constraints, has
been shown to be clearly outperformed by the proposed NCB
strategy, which uses short-term power constraints. Indeed, the
concurrence of spatially correlated Ricean propagation and the
use of NCB precoding has been shown to provide a large
degree of channel hardening and favourable propagation, thus
clearly indicating that closed-form analytical expressions of
the achievable rates can be safely assumed to be tight approx-
imations of the rates achieved in practice. The superiority of
the NCB precoder has been evidenced under pragmatic power
control strategies but it has been even more substantiated when
implementing power allocation policies based on the max-min
per-user rate criterion. Finally, it has been shown that decreas-
ing spatial correlation leads to a consistent and considerable
improvement in performance for the case of the Rayleigh
channel model. However, when channel fading conforms to
a spatially correlated Ricean model, results revealed that the
spatial correlation of the fading seems to have a milder effect
on the performance of the system.

APPENDIX A
PROOF OF LEMMA 3

The complex Gaussian random vector x ∼ CNN (µ,R)
can be expressed in terms of a circularly symmetric Gaussian
random vector v ∼ CNN (0, IN ) as x = µ +R1/2v. Thus,
the Hermitian quadratic form δ = xHHx can be decomposed
as

δ =
(
µ+R1/2v

)H
H
(
µ+R1/2v

)
=
(
R−1/2µ+ v

)H
RH/2HR1/2

(
R−1/2µ+ v

)
.

(55)

As the matrix C = RH/2HR1/2 is Hermitian, it can be
diagonalized as C = UΛUH , where U is unitary and
Λ = diag

(
[λ1 . . . λN ]

T
)

is a diagonal matrix containing the
eigenvalues of C in its main diagonal. Hence, the Hermitian
quadratic form δ can be rewritten as

δ =
(
R−1/2µ+ v

)H
UΛUH

(
R−1/2µ+ v

)
= (µ+ z)

H
Λ (µ+ z) =

N∑
i=1

λiwi,
(56)

where µ = UHR−1/2µ = [µ1 . . . µN ]T , z = UHv =
[z1 . . . zN ]T , and wi = |µi + zi|2. Since U is unitary, then
z ∼ CNN (0, IN ) and, thus, the Hermitian quadratic form

has been expressed as a weighted sum of independent complex
chi-square random variables wi ∼ Cχ2

1

(
|µi|

2
)

.
Although there is no known closed-form expression for the

probability density function of a weighted sum of independent
complex chi-square random variables, there are many good
approximations providing different tradeoffs on the accuracy
versus computational efficiency/maneagibility plane (see, for
instance, [40] and references therein). As we are only in-
terested in obtaining a good approximation to the fractional
(1/2)st (non-central) moment of the Hermitian quadratic form
δ, the Patnaik’s two moment central chi-square approximation
[41] will be considered in this paper. Based on Patnaik’s
approach, δ is approximated by an adjusted random variable
δ = aξ, where ξ ∼ Cχ2

ω , with the parameters a and ω being
chosen so that the first two moments of δ and δ coincide. The
first two moments of δ can be obtained using Lemma 2 as µδ
and σ2

δ , defined in (24) and (25), respectively. Furthermore, as
the pdf of δ = aξ can be expressed as [42]

pδ(x) =
1

aΓ(ω)

(x
a

)ω−1
e−x/au(x), (57)

where u(x) represents the unit step function, the first and
second moments of δ can be obtained as

µδ = E{δ} = ωa, (58)

and

σ2
δ

= E{
∣∣δ − µδ∣∣2} = ωa2, (59)

respectively. Now, fitting the first two moments of δ and δ
yields

a =
σ2
δ

µδ
, ω =

µ2
δ

σ2
δ

, (60)

and the fractional (1/2)st moment of δ can then be approxi-
mated as

E
{
δ1/2

}
≈ E

{
δ
1/2
}

=

∫ ∞
−∞

x1/2pδ(x)dx

=
√
a

Γ(ω + 1/2)

Γ(ω)
.

(61)

APPENDIX B
PROOF OF THEOREM 1

Assuming the use of the normalized conjugate beamformer
defined in (11), the desired term can be obtained by substitut-
ing

ANCB
mk = E

{(
ĝTmk + g̃Tmk

) ĝ∗mk
‖ĝmk‖

}
= E {‖ĝmk‖} = E

{
δ
1/2
mk

} (62)

in (14). As δmk = ‖ĝmk‖
2 is a Hermitian quadratic form,

Lemma 3 can be applied to accurately approximate this
constant as in (29).
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The fact that gmk = ĝmk + g̃mk can be used to expand the
interference term due to beamforming gain uncertainty as

E
{
|BUk|2

}
= Pd

[
M∑
m=1

M∑
n=1

√
ηmkηnk E

{
gHmk

ĝmk
‖ĝmk‖

ĝHnk
‖ĝnk‖

gnk

}

−

∣∣∣∣∣
M∑
m=1

√
ηmk E

{
gHmk

ĝmk
‖ĝmk‖

}∣∣∣∣∣
2


= Pd

M∑
m=1

ηmk

(
E

{
g̃HmkE

{
ĝmkĝ

H
mk

‖ĝmk‖
2

}
g̃mk

}

+ E {δmk} −
(
E
{
δ
1/2
mk

})2)
.

(63)

The major difficulty in obtaining a closed-form expression for
this term is the calculation of the expectation of the matrix
ĝmkĝ

H
mk/ ‖ĝmk‖

2. In order to circumvent this issue, the first
order Taylor approximation of the expectation of this quotient
will be exploited3. That is,

E

{
ĝmkĝ

H
mk

‖ĝmk‖
2

}
≈

E
{
ĝmkĝ

H
mk

}
E
{
‖ĝmk‖

2
} =

gmkg
H
mk + Φmk

E {δmk}
. (64)

Now, using Lemma 2 and the definitions of E {δmk} and
E
{
δ
1/2
mk

}
, the constant BNCB

mk in (30) can be directly obtained.

The interuser interference terms can be obtained as

E
{
|UIkk′ |2

}
= Pd

M∑
m=1

M∑
n=1

√
ηmk′ηnk′ E

{
gHmk

ĝmk′

‖ĝmk′‖
ĝHnk′

‖ĝnk′‖
gnk

}

= Pd

[
M∑
m=1

ηmk′ E

{
gHmkĝmk′ ĝ

H
mk′gmk

‖ĝmk′‖
2

}

+
M∑
m=1

M∑
n=1
n6=m

√
ηmk′ηnk′ E

{
gHmkĝmk′

‖ĝmk′‖

}
E

{
ĝHnk′gnk
‖ĝnk′‖

}
(65)

and, again, the expectations of quotients can be approximated

3Note that using higher order Taylor approximations has its own issues
when trying to obtain closed-form expressions. Furthermore, as shown in
the numerical results section, analytical results obtained using the first order
Taylor approximation are so accurate, when compared to Monte Carlo
simulation results, that make it superfluous the analytical burden associated
to higher order approximations.

by resorting to the use of first order Taylor approximations as

E
{
|UIkk′ |2

}
≈ Pd

 M∑
m=1

ηmk′
E
{
gHmkĝmk′ ĝ

H
mk′gmk

}
E
{
‖ĝmk′‖

2
}

+
M∑
m=1

M∑
n=1
n6=m

√
ηmk′ηnk′

E
{
gHmkĝmk′

}
E {‖ĝmk′‖}

E
{
ĝHnk′gnk

}
E {‖ĝnk′‖}

 .
(66)

Using (1) and (5), applying Lemma 2, and exploiting the
mathematical expressions of E{δmk′} and E{δ1/2mk′}, these
terms can be expressed as

E
{
|UIkk′ |2

}
= Pd

M∑
m=1

ηmk′

µδmk′

[∣∣gHmkgmk′ ∣∣2 + gHmkΦmk′gmk

+
∣∣∣gHmk′R1/2

mkgmk

∣∣∣2 + gHmk′Rmkgmk′

+
∣∣tr (RmkΦmk′R

−1
mk′

)∣∣2 ∣∣ϕHk ϕk′ ∣∣2 + tr (RmkΦmk′)

+ 2<
{
gHmk′gmk tr

(
RmkΦmk′R

−1
mk′

)}
ϕHk ϕk′

]
+ Pd

M∑
m=1

M∑
n=1
n6=m

√
ηmk′ηnk′

ANCB
mk′A

NCB
nk′

×
(
gHmkgmk′ + tr

(
RmkΦmk′R

−1
mk′

)
ϕHk ϕk′

)
×
(
gHnk′gnk + tr

(
R−1nk′Φnk′Rnk

)
ϕHk′ϕk

)
.

(67)

A straightforward rearrangement of terms leads to the interuser
interference terms in (28), where the constants CNCB

mkk′ and
DNCB
mkk′ in (31) and (32) can be readily identified.
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