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 
Abstract— This work proposes a software error mitigation 

approach that uses the SIMD coprocessor to accelerate 
computation over redundant data. In addition, an external IP 
connected to the microprocessor’s trace interface is used to detect 
errors that are difficult to cover with software-implemented 
techniques. The proposed approach has been implemented in an 
ARM microprocessor and an irradiation campaign with neutrons 
has been carried out at Los Alamos National Laboratory. 
Experimental results demonstrate the high error coverage (more 
than 99.9%) of the proposed approach. The neutron cross section 
of errors that were not corrected nor detected was reduced by 
more than three orders of magnitude. 
 

Index Terms— ARM, SIMD, NEON, microprocessor, 
microprocessor trace, error mitigation, error detection.  
 

I. INTRODUCTION 

HE progress of semiconductor manufacturing technology 
has made microprocessors cheap and affordable for a huge 

variety of applications, including safety-critical and high 
availability ones. For these applications, radiation-induced soft 
errors are becoming an increasing concern. As a consequence, 
there is a demand for error mitigation techniques that can be 
adapted to the requirements of different types of systems. High-
end systems have often used redundant hardware to detect or 
correct errors [1]. However, hardware solutions may be 
prohibitively expensive and difficult to justify in many cases. 
Alternatively, Software Implemented Fault-Tolerance 
(SWIFT) techniques are often seen as a viable solution. 

Software error detection and correction techniques are 
generally based on duplicating or triplicating program 
instructions and data [2]. The goal is to create redundant 
execution streams or threads, so that errors can be detected or 
corrected by comparing or voting, respectively, the results of 
the redundant execution streams. This approach may effectively 
protect against data errors, but it introduces significant 
performance penalties. Furthermore, replicating data is not 
sufficient, because errors may also corrupt the control flow. 
Pure software control-flow checking techniques are typically 
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based on dividing the code into basic blocks and computing 
signatures for each basic block [3], which are checked 
whenever there is a change in the control flow. The computation 
and checking of signatures is another overhead that negatively 
affects performance. To sum up, reducing the performance 
overhead of software-implemented fault-tolerance techniques 
without compromising error detection and mitigation 
capabilities is a challenge. 

From a general point of view, the drawbacks of software-
based fault-tolerant techniques can be reduced by making a 
smart use of existing microprocessor resources. Building upon 
this idea, in this work we propose a solution based on the use of 
SIMD (Single Instruction Multiple Data) co-processor to 
accelerate the computation over replicated data. Control-flow 
errors are also covered by including control signatures in the 
execution flow. However, covering all possible types of errors 
with a pure software approach is generally very difficult. 
Therefore, the proposed approach is combined with Trace 
Monitoring to additionally support the detection of control-flow 
errors. Without loss of generality, the proposed approach has 
been developed and evaluated for an ARM Cortex-A9 
processor [4]. 

The suitability of SIMD microprocessor extensions in 
radiation environments has been analyzed in [5]. Experimental 
results have shown that the use of the ARM SIMD co-
processor, known as NEON™, notably improves performance 
but can also increase cross section. However, the performance 
increase is generally higher than the cross section increase, so 
that the Mean Work To Failure improves when NEON™ 
coprocessor is used. SIMD co-processors are very well suited 
for data-intensive applications, as they can accelerate 
processing when operations are repeated over large data sets. 

Trace Monitoring reuses the debug infrastructure that is 
commonly included in modern microprocessors for on-line 
error detection. The use of Trace Monitoring for error detection 
in an ARM microprocessor has recently been demonstrated in 
[6]. This approach uses two trace macrocells that are included 
by default in the commercial version of the microprocessor: the 
Program Trace Macrocell (PTM) and the Instrumentation Trace 
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Macrocell (ITM). The PTM reports the flow of instructions 
executed by the microprocessor while the ITM can check 
selected data. 

In this work, we propose an error detection and mitigation 
approach that combines an SIMD-based data hardening 
technique with the detection capabilities of an external IP 
connected to the trace interface. The proposed approach has 
been tested with neutrons at Los Alamos National Laboratory. 
Experimental results show that the combination of both 
techniques achieves a high error coverage. 

The remaining of this paper is as follows. Section II 
summarizes related work. Section III describes the proposed 
approach. Section IV shows the experimental results. Finally, 
Section V summarizes the conclusions of this work. 

II. BACKGROUND AND RELATED WORK 

Microprocessor hardening techniques are usually divided 
into software and hardware techniques. Software techniques 
modify the software to harden the microprocessor while 
hardware techniques modify the hardware [2]. Hybrid 
techniques are a combination of the benefits of both software 
and hardware techniques. Errors produced in a microprocessor 
are generally classified into two categories: control-flow errors 
and data errors.  

Control-flow errors affect to the correct order of code 
execution and data errors affect to the data handled by the 
executed software. Even if errors are usually classified this way, 
some data errors can trigger control-flow errors and vice versa. 
For example, if wrong data affects the condition of a conditional 
instruction, it could trigger a control-flow error. 

Traditionally, software-based control-flow error detection 
techniques are mainly based on signatures [3] or assertions [7]. 
Signature-based techniques assign unique signatures to parts of 
the code so that it is possible to check them to detect control-
flow errors. The code fragments are named Basic Blocks (BBs). 
A BB is a set of consecutive instructions with no branches 
except for possibly the last instruction. A unique signature is 
assigned to each BB. When a BB is executed, its signature is 
computed on-line and compared with the assigned signature. 
Errors are triggered whenever a discrepancy is found. Signature 
techniques usually present large overheads in terms of storage 
and performance. Not only do they require additional memory 
to store signatures but also additional computations have to be 
inserted in the code to compute signatures and to check them. 

Assertion techniques modify software by inserting additional 
instructions that check the correctness of the executed code. 
Their success depends on the application designer ability to 
locate them in the code and the data that is checked. Assertions 
are application-dependent. Assertions can be combined with 
other techniques to increase the fault coverage. In [7], the 
CEDA technique is proposed which combines assertions and 
signatures.  

Control-flow error techniques cannot achieve full error 
coverage because data errors are not covered. However, it must 
be noted that control-flow errors frequently lead to execution 
misbehavior that can trigger a microprocessor hang 
(microprocessor cannot return to normal execution state).  

Software hardening techniques to detect or correct data errors 
are commonly based on introducing data and code redundancy 

with different levels of granularity (instruction, blocks, 
function, program, etc.) [2], [8], [9], [10], [11]. The deeper the 
replication level applied, the smaller the error detection latency 
but the higher the overhead in terms of memory usage and 
performance decrease. Duplication is used when error detection 
is sufficient. However, error mitigation requires triplication in 
order to restore the erroneous copy. The concept of Sphere of 
Replication (SoR) [1] is often used to compare replication 
approaches. The SoR defines the logical replication boundary 
inside which faults can be detected. Data are replicated when 
entering the SoR and are checked before leaving the SoR.  

EDDI [9] and SWIFT-R [11] are representative examples of 
data replication techniques. EDDI duplicates instructions and 
data to create two redundant, intertwined execution streams. 
Each redundant stream uses separated registers and memory 
addresses to avoid interfering with each other. Thus, the 
memory is part of the SoR. SWIFT-R extends this idea to error 
correction. The SWIFT-R transformation can be seen as TMR 
implemented in software at the instruction level. Two redundant 
copies of all data are created and processed by replicated 
instructions along with the original data and instructions in the 
same execution thread. SWIFT-R thus creates three redundant, 
intertwined execution streams. At certain synchronization 
points, software majority voting is inserted in the program to 
correct errors.  

At higher levels of granularity, two or more identical copies 
of the same program can be run as independent threads and their 
outputs are compared. This type of techniques is named 
Redundant MultiThreading (RMT) [1]. RMT can be efficiently 
implemented on top of a simultaneous multithreaded (SMT) 
processor or on a multicore processor (Chip-level 
Multiprocessing, CMP). However, these techniques need a 
processor that specifically supports multithreading. 

To achieve a complete solution with high coverage, it is 
necessary to address both data and control-flow errors. 
Software approaches can be used for both types of errors, but it 
has been demonstrated that external hardware approaches can 
be more effective for control-flow errors [13]. The trace 
interface is an infrastructure that is available in most modern 
microprocessors and its use is only intended for debugging 
purposes. Once the design cycle is completed, it is no longer in 
use. Some works have proposed the use of this infrastructure 
for error detection [14]. A hardened LEON3 soft-core 
microprocessor is proposed in [15]. This hardened LEON3 uses 
a hybrid technique based on software duplication for data errors 
and an external IP connected to the trace interface for control-
flow errors. The use of the trace interface for error detection in 
ARM microprocessors has recently been proposed and 
demonstrated, showing good error detection [6]. The 
capabilities of the trace interface as an observation point for 
error detection have also been adapted to multicore systems in 
[12]. 

The main contribution of the present work is to combine the 
use of the SIMD coprocessor and the trace interface for error 
detection and mitigation. The SIMD coprocessor is used to 
accelerate computation over redundant data by parallel 
processing. In addition, the SIMD coprocessor is also used to 
compute control signatures. Trace Monitoring is used to detect 
control-flow errors that are difficult to handle from a pure 
software approach. 
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III. PROPOSED APPROACH 

In this work we propose an approach that can mitigate data 
errors and detect control-flow errors. Our software-based data-
flow hardening technique relies on the use of the SIMD co-
processor, which is used to perform operations over replicated 
data. This technique is complemented by Trace Monitoring to 
detect control-flow errors that are difficult to handle from a pure 
software approach, such as memory exceptions. To this 
purpose, we use an external IP connected to the trace interface 
that observes the program execution. The Trace Monitor is also 
used during the experiments to check the results of the 
computations and validate the executions. Each of these 
techniques is described in the following subsections. 

A. Data hardening with NEON SIMD co-processor 

As SWIFT-R, the proposed data error mitigation approach 
uses three redundant copies of data to correct errors. However, 
it must be noted that in SWIFT-R the SoR does not include the 
memory. Data are loaded once from memory and the redundant 
copies are created in the processor. This approach may benefit 
performance but it increases vulnerability, because a load error 
may propagate to all copies [11]. For this reason, in our 
implementation the copies are created in memory. 

The performance overhead produced by data replication 
techniques can be reduced by exploiting the parallel processing 
capabilities of SIMD co-processors, which are commonly 
found in modern microprocessors. SIMD acceleration for 
replicated data computation has been proposed previously in 
[16]. An SIMD co-processor has its own register file made of 
wide registers that can store multiple data to be processed in 
parallel. To this purpose, the instruction set is also extended 
with parallel instructions that perform the very same operation 
over several data stored in the co-processor register file. In 
particular, the ARM SIMD coprocessor, NEONTM [17], has 
sixteen 128-bit wide registers (Q0-Q15). Each of these registers 
can be used as a vector of elements of the same data type, also 
called lanes. Supported data types include 8, 16, 32 and 64 bit 
signed and unsigned integer as well as single precision floating 
point. A NEON instruction performs the same operation over 
all lanes in parallel. Fig. 1 shows the NEON register file and 
also an example that illustrates the behavior of SIMD 
instructions. The operation shown performs four 32-bit 
additions simultaneously (every NEON register is able to 
allocate four 32-bit lanes). 

In our approach, data are replicated into the lanes of NEON 
registers. One single NEON register stores the original data and 
its two copies, and the required operation over replicated data 
can be implemented with a single NEON instruction. However, 
the executed parallel instruction can be a single point of failure, 
because an error in the instruction can provoke a wrong result 
in all lanes. To solve this problem, an additional lane is used for 
control data. Thus, in the proposed approach, each scalar 
variable is transformed into a vector of 4 elements. Element 0 
contains the control data, while elements 1 to 3 contain 
redundant data. All elements are processed in parallel by NEON 
instructions.  
 

 
Fig. 1. NEON register file and instruction example 

 
Fig. 2 shows the SIMD-based hardened data structure used 

in this work. All lanes from one SIMD register are devoted to 
one single data: 3 lanes for original data and its two copies, and 
one lane for control data. An example of the computation with 
this data structure is shown in Fig. 1. Lanes 1, 2 and 3 perform 
the computation with the same data (original data and two 
copies) and lane 0 performs the computation with the control 
data value. 

 

 
Fig. 2. SIMD-based hardened data. 

 
Control data are subject to the same operations as regular 

data. However, control data are static and the final results on 
the control data lanes can be predicted. From this point of view, 
control data work as control signatures of the sequence of 
instructions executed on the data. At a synchronization point, 
data errors are corrected by majority voting and control errors 
are detected by comparing the control signature with the 
expected one.  

A correct control signature indicates that the sequence of 
executed instructions was correct. Control data checking must 
be performed at least before any dynamic branch, i.e., when the 
program flow may vary depending on the values of the 
variables. The concept of Basic Block (BB) has been used in 
the past for this purpose [3]. In our approach, we extend this 
concept to Static Blocks.  

A Static Block (SB) is a set of instructions that are executed 
in a sequence that can be determined at compile time. For 
instance, consider a loop with no branches inside the loop body. 
The loop body can be considered as a BB. The loop iterates over 
this BB and the signature is checked at the end of every 
iteration. However, if the number of iterations in the loop is 
static, the signature can be computed for the entire loop. In this 
case, the loop, including all iterations, is considered a SB. 

Most data-flow hardening approaches work at instruction 
level and require specialized compilers to transform the original 
code into the hardened code. This is troublesome from a 
practical point of view. On the contrary, the proposed NEON-
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based mitigation approach can be easily implemented by using 
object-oriented programming (C++). The NEON coprocessor 
can be programmed in three different ways [18]: 
 Assembly. This is the recommended mode for high 

performance, but it is complex to handle. With assembly, 
application developers can completely control the 
implementation: SIMD instructions, registers, load and 
store, etc. 

 Automatic NEON code generation. Compiler flags and 
data structures can be selected so that the compiler 
automatically detects parallelization in the code. It must 
be noted that compilers will not be able to detect all 
possible parallelization unless application developers help 
them by slightly adapting their code. Even then, ARM 
recommends to carefully check the generated assembly 
code to make sure the compiler has used SIMD 
instructions correctly. 

 Intrinsics. Intrinsics can be seen as special functions that 
implement NEON instructions. They can be considered as 
an intermediate level of detail between high level 
language and assembly. For the application developer, 
they can be considered as regular functions that are called 
in the application. However, when they are executed, no 
function call takes place. The compiler will directly 
translate intrinsics to NEON instructions and insert them 
in the generated assembly code. The main advantage of 
intrinsics is that the developer can control the SIMD 
instructions that are in use, but some low level decisions 
are handled by the compiler to reduce the complexity. For 
instance, register allocation is performed automatically 
when intrinsics are used. Also, the compiler can reorder 
instructions to achieve higher performance. The main 
disadvantage is that there is not complete control of the 
generated code and the performance may be reduced with 
respect to assembly. Intrinsics represent a good tradeoff 
between controlling the SIMD instructions usage and the 
required abstraction level.  

In this work, we have mostly used automatic NEON code 
generation, complemented by intrinsics in some particular 
cases. Using C++, data and operations can be easily replicated 
by defining appropriate data types that can encapsulate the 
redundant data and the control data. In fact, some data types 
already exist that can support this approach in a transparent 
manner. NEON libraries include NEON extensions of most 
common data types. For instance, int32x4_t data type is the 
extension of int32_t to 4 data, and it includes the definition of 
typical integer operations extended to 4 lanes, such as addition 
and multiplication. Fig. 3 illustrates this concept for a matrix 
multiplication example. The original declarations of the 
unhardened matrices are shown on the left. In the hardened 
version, these declarations are substituted by the ones shown on 
the right, which use the NEON data types. The code shown at 
the bottom of Fig. 3 works in both cases and it does not require 
any particular adaptation for the hardened case. However, in the 
hardened case each operation is executed in parallel for all 
lanes. This way, the extension of most operations to the x4 data 
type is transparent to the user.  

 

Fig. 3. Code example of data hardening using NEON data types 
 

For a given SoR, the implementation of the proposed 
approach is summarized in the following steps. First, the SoR 
input variables must be created and initialized with redundant 
data. Then, the data types of variables in the SoR must be 
substituted by their respective hardened data types. This step 
just affects the declaration of the variables, as shown in Fig. 3. 
The control data lanes must be assigned when entering a SB and 
checked when leaving the SB. Finally, the SoR output variables 
must be checked when leaving the SoR. Checking can be 
implemented in the program or using the trace monitor, as 
described in the next section. With the use of object oriented 
programming (C++), initialization and checking are supported 
by appropriate functions that are defined for each data type, so 
the designer just needs to call them where applicable in the 
code.  

The NEON-based approach described in this section can 
mitigate data and control-flow errors. However, software 
techniques are limited to the accessible microprocessor’s parts 
in the programmers’ model, thus limiting error coverage, 
especially in the case of control-flow errors. To broaden the 
error scope, we have combined the proposed technique with the 
trace monitoring technique described in the next section. 

B. Trace monitoring 

The second microprocessor built-in feature that has been 
reused in the scope of this work is the trace interface. Trace 
resources are generally conceived to provide application 
development support like code coverage, performance analysis, 
timing requirements supervision and execution profiling. For 
that purpose, trace components provide execution- and data-
related information at low level. This information is usually 
gathered by specific equipment along with computer-based 
software to provide useful statistics to the developer. 
Depending on the specific equipment and the system overall 
design, some analysis can be done online during processor 
execution while others must be processed offline. With that in 
mind, it is possible to extend the use of the trace information to 
different purposes by using the same low-level information. In 
the case of this work, trace information has been used to detect 
radiation-induced processor errors. 

The use of the trace interface for error detection is an 
extension that is not specifically supported by the processor 
providers. In addition, the use of computer-based tools may not 
be suitable for detecting errors caused by radiation in an 
embedded system. For that reason, the Trace Monitoring 

// Loop 
for(k = 0; k < DIM; k++){

C[i][j] += A[i][k] * B[k][j];
}

// Unhardened data type
int32_t A [DIM] [DIM];
int32_t B [DIM] [DIM];
int32_t C [DIM] [DIM];

// Hardened data type (NEON)
int32x4_t A [DIM] [DIM];
int32x4_t B [DIM] [DIM];
int32x4_t C [DIM] [DIM];
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technique proposes to design a custom IP based on the trace 
interface protocol specification, putting special attention in 
those features of the trace interface which are helpful to detect 
errors. Low power and small area are requirements for this IP, 
so that it can be embedded in an application with minimum 
penalties. With respect to performance, the IP is specifically 
optimized to process trace information at high speed with the 
aim to reduce error detection latency. 

The microprocessor used in this work includes a trace 
subsystem based on the ARM CoreSight technology [19]. 
CoreSight is a family of components which are commonly 
found in almost all ARM microprocessor implementations, 
providing tracing and debug functionalities. Particularly, for 
this application, two modules have been used: the PTM 
(Program Trace Macrocell) [20], to obtain trace information 
related with program execution flow, and the ITM 
(Instrumentation Trace Macrocell) [21], to obtain trace 
information related with program data. Trace information is 
managed by CoreSight components and transferred to an 
external IP to be checked. 

Trace monitoring with a custom external IP for ARM 
microprocessors was introduced in [22] and extended in [6]. 
With this technique, control-flow errors are detected by an 
external IP called Program & Data Trace Checker (PDTC) that 
observes and analyzes the trace information provided by the 
PTM. For instance, the PDTC can detect errors in memory 
addresses that are difficult to detect with a pure software 
approach. Even if an address is checked before issuing a 
memory access instruction, the address can get corrupted when 
the instruction is executed, resulting in a memory exception. 
Errors concerning execution out of expected code regions can 
be detected with very low latency, as Program Counter (PC) 
addresses are observed through the trace interface just a few 
clock cycles after they are executed [6]. In addition to the PDTC 
error detection capabilities presented in [22], a new feature has 
been implemented to enhance control-flow error detection, 
which we called loop watchdog. Many applications execute a 
main loop running indefinitely, so it is possible to compute the 
maximum time for that loop to be executed. The PDTC can be 
configured with the Program Counter value of the first 
instruction of the loop and with the maximum execution time. 
If the configured address is not received within the expected 
time, the PDTC will raise an error signal. With this approach, 
the maximum error detection latency of the PDTC for control-
flow errors is one loop cycle. The PDTC can detect these 
situations and could trigger rollback actions in a more reliable 
manner and with lower performance penalty than software 
techniques. 

To provide a valuable feedback of the proposed data 
mitigation technique, a double check was performed externally 
through the trace interface. Replicated data and control data are 
checked in the program, but they are also checked in the PDTC 
and reported during the experiments. This external double 
check is feasible because data values can also be traced through 
the ITM . The PDTC data checking capabilities presented in [6] 
have been extended to handle triplicated data. In the case the 
three values received are not equal, the PDTC raises an error.  

 
 

Fig. 4. Program and Data Trace Checker (PDTC) architecture 
 

Fig. 4 illustrates the architecture of the PDTC showing the 
modules in use: Program Checker and Data Checker. The 
Program Checker contains configurable address range registers 
and watchdog registers. These registers can be configured by 
the user to specify the valid code regions and the expected loop 
start address and execution time, respectively. Then, the PC 
addresses provided by the PTM are compared with the 
configured address range registers to determine if execution has 
reached a forbidden or unexpected region. The PC address is 
also compared with the watchdog start address to clear the 
watchdog. The Data Checker contains a set of data registers that 
are associated to specific checks, including dual and triple equal 
comparison. To check hardened output data, the user just needs 
to write the data into the appropriate registers and the checker 
performs the comparison. To use trace monitoring in a 
particular application, the following actions are generally 
required: (1) configure and enable the microprocessor trace port 
[6], [22]; (2) configure the PDTC with the allowed instruction 
address ranges [22] and the address of the main loop(s); and (3) 
export desired data values to be checked by the PDTC [6]. 
These actions are supported by the PDTC driver in high-level 
code (C++), so they can be implemented with simple function 
calls. Instruction addresses are referenced by tags that can be 
added to the code. Data to be checked are referenced by variable 
names. More detailed information about the configuration of 
the trace components can be found in [6] and [22]. 

The PDTC is a small piece of hardware (about 6% of a rather 
small device, XC7Z010, [6]). Most of it is actually used for the 
configuration and trace interfaces with the microprocessor. The 
impact of the enhancements introduced in this work in the size 
of the trace monitor is negligible. With respect to performance, 
the use of the trace interface does not introduce any delay 
penalty. The only overhead is caused by exporting data values 
to be checked, but the checks are performed by the trace 
monitor in parallel with the processor. 

IV. EXPERIMENTAL RESULTS 

The proposed approach was tested with neutrons at Los 
Alamos National Laboratory in 2018.  
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A matrix multiplication benchmark was selected to perform 
the tests. This is a very data-intensive benchmark, so the data 
hardening is suitable to be accelerated with the proposed 
technique. Matrices were composed of 32-bit integer elements. 
On every power cycle, both input matrices, A and B, were 
initialized with random values. For the control data, we used 
randomly selected values that were also initialized on every 
power cycle. After the initialization of the matrices, a first 
matrix multiplication computation is performed to obtain the 
golden matrix, Gold. Then, the code enters an infinite loop 
where three steps are performed sequentially: 1) matrix A and 
B are multiplied to obtain result matrix, C; 2) redundant values, 
if present, in matrix C are checked between them and the control 
value, if present, is checked against the Gold control value; and 
3) matrices C and Gold are compared value by value. Three 
error signals were provided to report correctable data error at 
step two, or control data error at step two, or Silent Data 
Corruption (SDC) error at step three, respectively. The code 
was optimized for performance using maximum optimization 
option (-O3) in the compiler settings. The benchmark was run 
on bare metal without operating system. 

The described benchmark was running on one of the cores of 
a dual core ARM CORTEX™-A9 processor. The Device Under 
Test (DUT) was a Zynq XC7Z010 from Xilinx [23] mounted 
on a commercial board (Zybo) [24]. The PDTC was 
implemented in the programmable logic of the device and 
connected to the trace interface of the processor via Trace Port 
Interface Unit (TPIU) through Extended Multiplexed Input 
Output (EMIO) interface. Errors in the programmable logic that 
may affect the PDTC are corrected or detected by the Soft Error 
Mitigation (SEM) Controller IP [26], which is included in the 
system for this purpose. The SEM is monitored by the external 
host to record errors in the programmable logic. 

A picture of the experimental setup is shown in Fig. 5. In 
order to maximize the number of events gathered during the 
experiment, we used 16 Zybo boards (on the left of Fig. 5) that 
were exposed simultaneously to the neutron beam. The fluence 
per board was 1.08×1011 n/cm2. The boards are controlled by 4 
external hosts (right side of Fig. 5) that are able to collect the 
results and can reset each of the DUTs in the case of a 
misbehavior during the experiment. Particularly, the external 
host can power cycle each DUT in the case any error is reported 
by a DUT. In addition, the external host has a watchdog timer 
for each DUT, so if no status information is received from the 
DUT in a specified period of time, a timeout is logged and a 
power cycle is triggered. Every external host controls four 
DUTs. The controllers are located near the DUTs but they are 
not exposed to the neutron beam. The results gathered by the 
external hosts are sent to a computer located outside the beam 
influence and processed offline. 

 

 
 

Fig. 5. Experimental setup 
 

A. Performance comparison 

To analyze the performance of the proposed technique, we 
measured the time required to execute the matrix multiplication 
benchmark with a timer, running the benchmark several times 
until the measure stabilizes. Table I shows the performance 
overhead of a conventional software-implemented fault 
tolerance (SWIFT) approach and the implementation of the 
proposed approach using NEON (NEON-SWIFT) for several 
matrix sizes and cache options. The results are normalized to 
the execution of the original unhardened code for each case, so 
that each value shown in the table is the number of times the 
execution of the unhardened code using the same cache option. 

For the proposed approach, the performance overhead is 
around 4 in all cases. This result is explained by the 
transformation of each original data into 4 data (3 redundant 
copies plus control data). Memory access dominates and the 
arithmetic computational effort is similar to the original code. 
The peak overhead for cache-enabled, 64x64 matrix size is 
because in this case the original data fits in the cache while the 
hardened data exceeds the cache size. On the contrary, for the 
conventional SWIFT implementation the overhead is generally 
much larger. In addition to the memory access overhead (only 
3 times in this case) there is the overhead due to replicated 
instructions. The performance benefits will increase for 
applications with a higher ratio of arithmetic operations to 
memory accesses. 

 
TABLE I: PERFORMANCE OVERHEAD 

 Cache Disabled Cache Enabled 
Size SWIFT NEON-SWIFT SWIFT NEON-SWIFT 
8x8 9.43 3.36 3.21 3.75 
16x16 10.83 3.85 3.68 4.10 
32x32 7.93 3.82 5.13 4.31 
64x64 7.93 4.00 8.36 5.42 
128x128 7.74 4.11 6.90 4.48 

 
The relatively large performance overhead of the SWIFT 

cases with cache disabled is due to two main factors: the amount 
of redundant data and operations, and the optimization 
performed by the compiler. The second factor is very relevant 
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in the case of complex processors, such as ARM Cortex A9, 
which include out-of-order execution, branch prediction, etc. 
Thus, the structure of the code has a strong impact on the 
performance. In our case, we used a default coding and 
compilation for maximum optimization (-O3). The original 
code of the matrix multiplication is very regular and the 
compiler makes a good job at optimizing it. However, the 
SWIFT code uses three times the data and requires and 
additional inner loop to repeat operations. We have also 
repeated the analysis using optimization level 2 (-O2), although 
the results are not shown here for the sake of brevity. 
Interestingly, the performance overhead figures are similar for 
the SWIFT case and much better for the SWIFT-NEON case 
(between 1.71 and 1.91). This result shows that SWIFT code is 
hard to optimize. On the other hand, as the general optimization 
level is reduced, the performance benefits of NEON are more 
relevant.  

It must be noted that the proposed approach is intended for 
data intensive applications. For control intensive applications, 
i.e., with many conditional changes in the control flow, this 
approach may produce poor results if used in a straightforward 
manner. This is because the SIMD coprocessor produces 
performance benefits once data is loaded into the SIMD register 
file and has limited support for conditional instructions. In 
general, taking full advantage of SIMD co-processor 
performance generally requires specific algorithm 
restructuring. This is true for redundant computations as well. 
However, the use of ad-hoc coding techniques to optimize the 
use of the SIMD co-processor is beyond the scope of this paper.  

B. Neutron radiation results 

The neutron radiation experiments were performed with 
cache-enabled versions of the matrix multiplication benchmark 
for 32x32 and 128x128 matrix sizes. For each matrix size, we 

tested three code versions: original version with no software-
implemented fault tolerance (Unhardened); software-
implemented fault tolerance (SWIFT); and the proposed 
approach using NEON (NEON-SWIFT). The total fluence per 
benchmark was 2.15×1011 n/cm2 collected in approximately 2 
days of effective exposure time. Trace error detection using the 
PDTC was enabled in all cases, as it does not affect the 
execution. 

Table II summarizes the results of the experiments. The 
errors were classified into the following categories: 
 Det. Hang: A control-flow error detected by the PDTC. 

These errors typically result in an unexpected exception 
that makes the processor hang or crash.  

 Corr. Data: Detected and corrected data error in 
triplicated data. 

 Det. Control: Detected error in control data. 
 Det. Trace: Error detected by the PDTC that could not 

be confirmed by any other means. 
 SDC (Silent Data Corruption): unmasked data error. 
 Hang: undetected timeout or exception. 
The last two categories (SDC and Hang) are the errors that 

are not detected nor corrected. The last two rows in Table II 
show the cross sections and their 95% confidence intervals for 
each case, considering all errors and considering only the 
undetected errors (SDC and Hang), respectively. For 
convenience, a bar graph of the cross sections is also shown in 
Fig. 6.  

Most of the errors were in the category of Det. Hang, except 
for the case of 32x32 matrix with unhardened code. Recent 
work with the same device [25] has reported that Hang errors 
dominate when L2 cache is used. The particular case of 32x32 
matrix with unhardened code is because in this case all matrices 
fit in the L1 data cache, so that no L2 cache access is produced 
during the execution. 

 
 

TABLE II: NEUTRON RADIATION RESULTS 

 32 x 32 (cache enabled) 128 x 128 (cache enabled) 

Error category Unhardened SWIFT NEON-SWIFT Unhardened SWIFT NEON-SWIFT 

Det. Hang 22 (7.46%) 1,508 (85.7%) 1,459 (84.7%) 4,699 (98.7%) 5,056 (88.9%) 4,687 (86.0%) 

Corr. Data 0 (0.00%) 152 (8.64%) 135 (7.84%) 0 (0.00%) 597 (10.50%) 510 (9.36%) 

Det. Control 0 (0.00%) 0 (0.00%) 56 (3.25%) 0 (0.00%) 0 (0.00%) 201 (3.69%) 

Det. Trace 23 (7.80%) 97 (5.51%) 72 (4.18%) 17 (0.36%) 25 (0.44%) 50 (0.92%) 

SDC 250 (84.75%) 3 (0.17%) 1 (0.06%) 41 (0.86%) 7 (0.12%) 0 (0.00%) 

Hang 0 (0.00%) 0 (0.00%) 0 (0.00%) 1 (0.02%) 1 (0.02%) 0 (0.00%) 

Total 295 (100%) 1760 (100%) 1,723 (100%) 4,758 (100%) 5,686 (100%) 5,448 (100%) 

Cross section  
(all errors)  

cm2 

1.37 × 10-9 

(1.22 × 10-9, 
1.54 × 10-9) 

8.17 × 10-9 

(7.80 × 10-9, 
8.56 × 10-9) 

8.00 × 10-9 

(7.63 × 10-9, 
8.39 × 10-9) 

2.21 × 10-8 

(2.15 × 10-8, 
2.27 × 10-8) 

2.64 × 10-8 

(2.57 × 10-8, 
2.71 × 10-8) 

2.53 × 10-8 

(2.46 × 10-8, 
2.60 × 10-8) 

Cross section  
(undet. errors) 

cm2 

1.16 × 10-9 

(1.02 × 10-9, 
1.31 × 10-9) 

1.39 × 10-11 

(0.29 × 10-11, 
4.07 × 10-11) 

4.64 × 10-12 

(0.12 × 10-12, 
2.59 × 10-11) 

1.95 × 10-10 

(1.41 × 10-10, 
2.64 × 10-10) 

3.71 × 10-11 

(1.60 × 10-11, 
7.32 × 10-11) 

0 

(0, 
1.71 × 10-11) 
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The results in Table II show that a bigger matrix suffers more 
errors. Both Data and Hang errors increase. The particular 
effect in the case of Hang errors is due to the much larger 
amount of memory accesses required to multiply bigger 
matrices. In the case of Data errors, the bigger the matrix, the 
higher the number of operations that must be performed to 
obtain a result, so the probability to get an error on the result 
increases. As a consequence, the cross section, considering all 
errors, increases with matrix size. However, for a given matrix 
size, the cross sections considering all errors of SWIFT and 
NEON-SWIFT approaches are similar. The unhardened cross 
section is also similar, except in the case of 32x32 matrix size 
for the reasons explained in the previous paragraph. 

Both the SWIFT and the NEON-SWIFT versions are able to 
correct a significant amount of data errors. It is noticeable the 
contribution of the control data to the complete error detection 
figure in the case of NEON-SWIFT approach, which shows the 
lowest SDC error count for both matrix sizes. Moreover, the 
NEON-SWIFT hardened benchmarks present less undetected 
errors (SDC or Hang) than the conventional SWIFT approach.  

The small number of undetected Hang errors in all 
benchmarks demonstrates the great contribution of trace 
monitoring to the effectiveness of the proposed approach. 
Finally, referring to errors that are only detected by the PDTC, 
it is not possible to confirm if they were actual errors or errors 
that only affected the detection logic. Anyhow, they are a low 
proportion and it is generally advisable to consider them as real 
errors in a conservative approach. 

These results also demonstrate the high error detection and 
mitigation capabilities of the proposed approach. Fig. 6 shows 
the cross sections in a bar graph. For the 32x32 matrix 
multiplication benchmark, 99.94% error coverage is achieved 
and the cross section is reduced from 8.00×10-9 cm2 to 4.64×10-

12 cm2. In the case of 128x128 matrix size, 100.00% error 
coverage is obtained, reducing the cross-section from 2.53×10-

8 cm2 to less than 1.71×10-11 cm2. In comparison, the 
conventional SWIFT implementation also produces good error 
coverage when combined with trace monitoring, but it always 
produces more undetected errors and lower performance.  

 

 
 

Fig. 6. Cross section bar graph 
 

The data shown in Table II also demonstrates that both data 
errors and control-flow errors need to be addressed to achieve a 
high error coverage.  

V. CONCLUSIONS 

This work presents an error detection and correction 
approach for microprocessors that combines the use of the 
SIMD coprocessor and the trace interface. Data error correction 
is achieved by using software-implemented redundancy and the 
SIMD coprocessor is used to accelerate computation over 
redundant data by parallel processing. To increase the error 
coverage, a control data lane is added to each replicated data set 
and checked at synchronization points. Control data work as 
control signatures of the sequence of instructions executed on 
the data. This technique is complemented by Trace Monitoring 
to detect control-flow errors that are difficult to handle from a 
pure software approach, such as memory exceptions. To this 
purpose, we use an external IP connected to the trace interface 
that observes the program execution. 

Experimental results with neutron irradiation demonstrate 
the high coverage of the proposed method. The neutron cross 
section of errors that were not corrected nor detected was 
reduced by more than three orders of magnitude. Such a 
reduction was possible because both data errors and control-
flow errors were efficiently covered. Furthermore, the use of 
the SIMD coprocessor increases performance and error 
coverage with respect to a conventional SWIFT 
implementation.  

The proposed approach is intended for data-intensive 
applications. For control-intensive applications, with many 
conditional changes in the control flow, a straightforward 
implementation may not produce significant performance 
benefits. In this case, code optimization and restructuring 
approaches need to be investigated to take full advantage of the 
SIMD co-processor. 
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