
This is a postprint version of the following published document:

Pena-Fernandez, M., Lindoso, A., Entrena, L. & Garcia-
Valderas, M. (2020). Error Detection and Mitigation of
Data-Intensive Microprocessor Applications Using SIMD
and Trace Monitoring. IEEE Transactions on Nuclear
Science, 67(7), pp. 1452–1460.

DOI: 10.1109/tns.2020.2992299

 © 2020, IEEE. Personal use of this material is permitted. Permission
from IEEE must be obtained for all other uses, in any current or
future media, including reprinting/republishing this material
for advertising or promotional purposes, creating new collective
works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

https://doi.org/10.1109/tns.2020.2992299

1


Abstract— This work proposes a software error mitigation

approach that uses the SIMD coprocessor to accelerate
computation over redundant data. In addition, an external IP
connected to the microprocessor’s trace interface is used to detect
errors that are difficult to cover with software-implemented
techniques. The proposed approach has been implemented in an
ARM microprocessor and an irradiation campaign with neutrons
has been carried out at Los Alamos National Laboratory.
Experimental results demonstrate the high error coverage (more
than 99.9%) of the proposed approach. The neutron cross section
of errors that were not corrected nor detected was reduced by
more than three orders of magnitude.

Index Terms— ARM, SIMD, NEON, microprocessor,
microprocessor trace, error mitigation, error detection.

I. INTRODUCTION

HE progress of semiconductor manufacturing technology
has made microprocessors cheap and affordable for a huge

variety of applications, including safety-critical and high
availability ones. For these applications, radiation-induced soft
errors are becoming an increasing concern. As a consequence,
there is a demand for error mitigation techniques that can be
adapted to the requirements of different types of systems. High-
end systems have often used redundant hardware to detect or
correct errors [1]. However, hardware solutions may be
prohibitively expensive and difficult to justify in many cases.
Alternatively, Software Implemented Fault-Tolerance
(SWIFT) techniques are often seen as a viable solution.

Software error detection and correction techniques are
generally based on duplicating or triplicating program
instructions and data [2]. The goal is to create redundant
execution streams or threads, so that errors can be detected or
corrected by comparing or voting, respectively, the results of
the redundant execution streams. This approach may effectively
protect against data errors, but it introduces significant
performance penalties. Furthermore, replicating data is not
sufficient, because errors may also corrupt the control flow.
Pure software control-flow checking techniques are typically

This work has been supported in part by project ESP-2015-68245-C4-1-P

(Spanish MINECO) and by the Community of Madrid under grant
IND2017/TIC-7776.

M. Peña-Fernández is with Arquimea Ingenieria SLU., Leganes, Madrid,
Spain (email: mpena@arquimea.com)

based on dividing the code into basic blocks and computing
signatures for each basic block [3], which are checked
whenever there is a change in the control flow. The computation
and checking of signatures is another overhead that negatively
affects performance. To sum up, reducing the performance
overhead of software-implemented fault-tolerance techniques
without compromising error detection and mitigation
capabilities is a challenge.

From a general point of view, the drawbacks of software-
based fault-tolerant techniques can be reduced by making a
smart use of existing microprocessor resources. Building upon
this idea, in this work we propose a solution based on the use of
SIMD (Single Instruction Multiple Data) co-processor to
accelerate the computation over replicated data. Control-flow
errors are also covered by including control signatures in the
execution flow. However, covering all possible types of errors
with a pure software approach is generally very difficult.
Therefore, the proposed approach is combined with Trace
Monitoring to additionally support the detection of control-flow
errors. Without loss of generality, the proposed approach has
been developed and evaluated for an ARM Cortex-A9
processor [4].

The suitability of SIMD microprocessor extensions in
radiation environments has been analyzed in [5]. Experimental
results have shown that the use of the ARM SIMD co-
processor, known as NEON™, notably improves performance
but can also increase cross section. However, the performance
increase is generally higher than the cross section increase, so
that the Mean Work To Failure improves when NEON™
coprocessor is used. SIMD co-processors are very well suited
for data-intensive applications, as they can accelerate
processing when operations are repeated over large data sets.

Trace Monitoring reuses the debug infrastructure that is
commonly included in modern microprocessors for on-line
error detection. The use of Trace Monitoring for error detection
in an ARM microprocessor has recently been demonstrated in
[6]. This approach uses two trace macrocells that are included
by default in the commercial version of the microprocessor: the
Program Trace Macrocell (PTM) and the Instrumentation Trace

A. Lindoso, L. Entrena and M. García-Valderas are with the Department of
Electronic Technology, Universidad Carlos III de Madrid, Avda. Universidad
30, E-28911 Leganes, Madrid, Spain (e-mail: alindoso@ing.uc3m.es;
entrena@ing.uc3m.es; mgvalder@ing.uc3m.es).

Error Detection and Mitigation of Data-
Intensive Microprocessor Applications using

SIMD and Trace Monitoring

M. Peña-Fernandez, A. Lindoso, L. Entrena, M. Garcia-Valderas

T

2

Macrocell (ITM). The PTM reports the flow of instructions
executed by the microprocessor while the ITM can check
selected data.

In this work, we propose an error detection and mitigation
approach that combines an SIMD-based data hardening
technique with the detection capabilities of an external IP
connected to the trace interface. The proposed approach has
been tested with neutrons at Los Alamos National Laboratory.
Experimental results show that the combination of both
techniques achieves a high error coverage.

The remaining of this paper is as follows. Section II
summarizes related work. Section III describes the proposed
approach. Section IV shows the experimental results. Finally,
Section V summarizes the conclusions of this work.

II. BACKGROUND AND RELATED WORK

Microprocessor hardening techniques are usually divided
into software and hardware techniques. Software techniques
modify the software to harden the microprocessor while
hardware techniques modify the hardware [2]. Hybrid
techniques are a combination of the benefits of both software
and hardware techniques. Errors produced in a microprocessor
are generally classified into two categories: control-flow errors
and data errors.

Control-flow errors affect to the correct order of code
execution and data errors affect to the data handled by the
executed software. Even if errors are usually classified this way,
some data errors can trigger control-flow errors and vice versa.
For example, if wrong data affects the condition of a conditional
instruction, it could trigger a control-flow error.

Traditionally, software-based control-flow error detection
techniques are mainly based on signatures [3] or assertions [7].
Signature-based techniques assign unique signatures to parts of
the code so that it is possible to check them to detect control-
flow errors. The code fragments are named Basic Blocks (BBs).
A BB is a set of consecutive instructions with no branches
except for possibly the last instruction. A unique signature is
assigned to each BB. When a BB is executed, its signature is
computed on-line and compared with the assigned signature.
Errors are triggered whenever a discrepancy is found. Signature
techniques usually present large overheads in terms of storage
and performance. Not only do they require additional memory
to store signatures but also additional computations have to be
inserted in the code to compute signatures and to check them.

Assertion techniques modify software by inserting additional
instructions that check the correctness of the executed code.
Their success depends on the application designer ability to
locate them in the code and the data that is checked. Assertions
are application-dependent. Assertions can be combined with
other techniques to increase the fault coverage. In [7], the
CEDA technique is proposed which combines assertions and
signatures.

Control-flow error techniques cannot achieve full error
coverage because data errors are not covered. However, it must
be noted that control-flow errors frequently lead to execution
misbehavior that can trigger a microprocessor hang
(microprocessor cannot return to normal execution state).

Software hardening techniques to detect or correct data errors
are commonly based on introducing data and code redundancy

with different levels of granularity (instruction, blocks,
function, program, etc.) [2], [8], [9], [10], [11]. The deeper the
replication level applied, the smaller the error detection latency
but the higher the overhead in terms of memory usage and
performance decrease. Duplication is used when error detection
is sufficient. However, error mitigation requires triplication in
order to restore the erroneous copy. The concept of Sphere of
Replication (SoR) [1] is often used to compare replication
approaches. The SoR defines the logical replication boundary
inside which faults can be detected. Data are replicated when
entering the SoR and are checked before leaving the SoR.

EDDI [9] and SWIFT-R [11] are representative examples of
data replication techniques. EDDI duplicates instructions and
data to create two redundant, intertwined execution streams.
Each redundant stream uses separated registers and memory
addresses to avoid interfering with each other. Thus, the
memory is part of the SoR. SWIFT-R extends this idea to error
correction. The SWIFT-R transformation can be seen as TMR
implemented in software at the instruction level. Two redundant
copies of all data are created and processed by replicated
instructions along with the original data and instructions in the
same execution thread. SWIFT-R thus creates three redundant,
intertwined execution streams. At certain synchronization
points, software majority voting is inserted in the program to
correct errors.

At higher levels of granularity, two or more identical copies
of the same program can be run as independent threads and their
outputs are compared. This type of techniques is named
Redundant MultiThreading (RMT) [1]. RMT can be efficiently
implemented on top of a simultaneous multithreaded (SMT)
processor or on a multicore processor (Chip-level
Multiprocessing, CMP). However, these techniques need a
processor that specifically supports multithreading.

To achieve a complete solution with high coverage, it is
necessary to address both data and control-flow errors.
Software approaches can be used for both types of errors, but it
has been demonstrated that external hardware approaches can
be more effective for control-flow errors [13]. The trace
interface is an infrastructure that is available in most modern
microprocessors and its use is only intended for debugging
purposes. Once the design cycle is completed, it is no longer in
use. Some works have proposed the use of this infrastructure
for error detection [14]. A hardened LEON3 soft-core
microprocessor is proposed in [15]. This hardened LEON3 uses
a hybrid technique based on software duplication for data errors
and an external IP connected to the trace interface for control-
flow errors. The use of the trace interface for error detection in
ARM microprocessors has recently been proposed and
demonstrated, showing good error detection [6]. The
capabilities of the trace interface as an observation point for
error detection have also been adapted to multicore systems in
[12].

The main contribution of the present work is to combine the
use of the SIMD coprocessor and the trace interface for error
detection and mitigation. The SIMD coprocessor is used to
accelerate computation over redundant data by parallel
processing. In addition, the SIMD coprocessor is also used to
compute control signatures. Trace Monitoring is used to detect
control-flow errors that are difficult to handle from a pure
software approach.

3

III. PROPOSED APPROACH

In this work we propose an approach that can mitigate data
errors and detect control-flow errors. Our software-based data-
flow hardening technique relies on the use of the SIMD co-
processor, which is used to perform operations over replicated
data. This technique is complemented by Trace Monitoring to
detect control-flow errors that are difficult to handle from a pure
software approach, such as memory exceptions. To this
purpose, we use an external IP connected to the trace interface
that observes the program execution. The Trace Monitor is also
used during the experiments to check the results of the
computations and validate the executions. Each of these
techniques is described in the following subsections.

A. Data hardening with NEON SIMD co-processor

As SWIFT-R, the proposed data error mitigation approach
uses three redundant copies of data to correct errors. However,
it must be noted that in SWIFT-R the SoR does not include the
memory. Data are loaded once from memory and the redundant
copies are created in the processor. This approach may benefit
performance but it increases vulnerability, because a load error
may propagate to all copies [11]. For this reason, in our
implementation the copies are created in memory.

The performance overhead produced by data replication
techniques can be reduced by exploiting the parallel processing
capabilities of SIMD co-processors, which are commonly
found in modern microprocessors. SIMD acceleration for
replicated data computation has been proposed previously in
[16]. An SIMD co-processor has its own register file made of
wide registers that can store multiple data to be processed in
parallel. To this purpose, the instruction set is also extended
with parallel instructions that perform the very same operation
over several data stored in the co-processor register file. In
particular, the ARM SIMD coprocessor, NEONTM [17], has
sixteen 128-bit wide registers (Q0-Q15). Each of these registers
can be used as a vector of elements of the same data type, also
called lanes. Supported data types include 8, 16, 32 and 64 bit
signed and unsigned integer as well as single precision floating
point. A NEON instruction performs the same operation over
all lanes in parallel. Fig. 1 shows the NEON register file and
also an example that illustrates the behavior of SIMD
instructions. The operation shown performs four 32-bit
additions simultaneously (every NEON register is able to
allocate four 32-bit lanes).

In our approach, data are replicated into the lanes of NEON
registers. One single NEON register stores the original data and
its two copies, and the required operation over replicated data
can be implemented with a single NEON instruction. However,
the executed parallel instruction can be a single point of failure,
because an error in the instruction can provoke a wrong result
in all lanes. To solve this problem, an additional lane is used for
control data. Thus, in the proposed approach, each scalar
variable is transformed into a vector of 4 elements. Element 0
contains the control data, while elements 1 to 3 contain
redundant data. All elements are processed in parallel by NEON
instructions.

Fig. 1. NEON register file and instruction example

Fig. 2 shows the SIMD-based hardened data structure used

in this work. All lanes from one SIMD register are devoted to
one single data: 3 lanes for original data and its two copies, and
one lane for control data. An example of the computation with
this data structure is shown in Fig. 1. Lanes 1, 2 and 3 perform
the computation with the same data (original data and two
copies) and lane 0 performs the computation with the control
data value.

Fig. 2. SIMD-based hardened data.

Control data are subject to the same operations as regular

data. However, control data are static and the final results on
the control data lanes can be predicted. From this point of view,
control data work as control signatures of the sequence of
instructions executed on the data. At a synchronization point,
data errors are corrected by majority voting and control errors
are detected by comparing the control signature with the
expected one.

A correct control signature indicates that the sequence of
executed instructions was correct. Control data checking must
be performed at least before any dynamic branch, i.e., when the
program flow may vary depending on the values of the
variables. The concept of Basic Block (BB) has been used in
the past for this purpose [3]. In our approach, we extend this
concept to Static Blocks.

A Static Block (SB) is a set of instructions that are executed
in a sequence that can be determined at compile time. For
instance, consider a loop with no branches inside the loop body.
The loop body can be considered as a BB. The loop iterates over
this BB and the signature is checked at the end of every
iteration. However, if the number of iterations in the loop is
static, the signature can be computed for the entire loop. In this
case, the loop, including all iterations, is considered a SB.

Most data-flow hardening approaches work at instruction
level and require specialized compilers to transform the original
code into the hardened code. This is troublesome from a
practical point of view. On the contrary, the proposed NEON-

4

based mitigation approach can be easily implemented by using
object-oriented programming (C++). The NEON coprocessor
can be programmed in three different ways [18]:
 Assembly. This is the recommended mode for high

performance, but it is complex to handle. With assembly,
application developers can completely control the
implementation: SIMD instructions, registers, load and
store, etc.

 Automatic NEON code generation. Compiler flags and
data structures can be selected so that the compiler
automatically detects parallelization in the code. It must
be noted that compilers will not be able to detect all
possible parallelization unless application developers help
them by slightly adapting their code. Even then, ARM
recommends to carefully check the generated assembly
code to make sure the compiler has used SIMD
instructions correctly.

 Intrinsics. Intrinsics can be seen as special functions that
implement NEON instructions. They can be considered as
an intermediate level of detail between high level
language and assembly. For the application developer,
they can be considered as regular functions that are called
in the application. However, when they are executed, no
function call takes place. The compiler will directly
translate intrinsics to NEON instructions and insert them
in the generated assembly code. The main advantage of
intrinsics is that the developer can control the SIMD
instructions that are in use, but some low level decisions
are handled by the compiler to reduce the complexity. For
instance, register allocation is performed automatically
when intrinsics are used. Also, the compiler can reorder
instructions to achieve higher performance. The main
disadvantage is that there is not complete control of the
generated code and the performance may be reduced with
respect to assembly. Intrinsics represent a good tradeoff
between controlling the SIMD instructions usage and the
required abstraction level.

In this work, we have mostly used automatic NEON code
generation, complemented by intrinsics in some particular
cases. Using C++, data and operations can be easily replicated
by defining appropriate data types that can encapsulate the
redundant data and the control data. In fact, some data types
already exist that can support this approach in a transparent
manner. NEON libraries include NEON extensions of most
common data types. For instance, int32x4_t data type is the
extension of int32_t to 4 data, and it includes the definition of
typical integer operations extended to 4 lanes, such as addition
and multiplication. Fig. 3 illustrates this concept for a matrix
multiplication example. The original declarations of the
unhardened matrices are shown on the left. In the hardened
version, these declarations are substituted by the ones shown on
the right, which use the NEON data types. The code shown at
the bottom of Fig. 3 works in both cases and it does not require
any particular adaptation for the hardened case. However, in the
hardened case each operation is executed in parallel for all
lanes. This way, the extension of most operations to the x4 data
type is transparent to the user.

Fig. 3. Code example of data hardening using NEON data types

For a given SoR, the implementation of the proposed
approach is summarized in the following steps. First, the SoR
input variables must be created and initialized with redundant
data. Then, the data types of variables in the SoR must be
substituted by their respective hardened data types. This step
just affects the declaration of the variables, as shown in Fig. 3.
The control data lanes must be assigned when entering a SB and
checked when leaving the SB. Finally, the SoR output variables
must be checked when leaving the SoR. Checking can be
implemented in the program or using the trace monitor, as
described in the next section. With the use of object oriented
programming (C++), initialization and checking are supported
by appropriate functions that are defined for each data type, so
the designer just needs to call them where applicable in the
code.

The NEON-based approach described in this section can
mitigate data and control-flow errors. However, software
techniques are limited to the accessible microprocessor’s parts
in the programmers’ model, thus limiting error coverage,
especially in the case of control-flow errors. To broaden the
error scope, we have combined the proposed technique with the
trace monitoring technique described in the next section.

B. Trace monitoring

The second microprocessor built-in feature that has been
reused in the scope of this work is the trace interface. Trace
resources are generally conceived to provide application
development support like code coverage, performance analysis,
timing requirements supervision and execution profiling. For
that purpose, trace components provide execution- and data-
related information at low level. This information is usually
gathered by specific equipment along with computer-based
software to provide useful statistics to the developer.
Depending on the specific equipment and the system overall
design, some analysis can be done online during processor
execution while others must be processed offline. With that in
mind, it is possible to extend the use of the trace information to
different purposes by using the same low-level information. In
the case of this work, trace information has been used to detect
radiation-induced processor errors.

The use of the trace interface for error detection is an
extension that is not specifically supported by the processor
providers. In addition, the use of computer-based tools may not
be suitable for detecting errors caused by radiation in an
embedded system. For that reason, the Trace Monitoring

// Loop
for(k = 0; k < DIM; k++){

C[i][j] += A[i][k] * B[k][j];
}

// Unhardened data type
int32_t A [DIM] [DIM];
int32_t B [DIM] [DIM];
int32_t C [DIM] [DIM];

// Hardened data type (NEON)
int32x4_t A [DIM] [DIM];
int32x4_t B [DIM] [DIM];
int32x4_t C [DIM] [DIM];

5

technique proposes to design a custom IP based on the trace
interface protocol specification, putting special attention in
those features of the trace interface which are helpful to detect
errors. Low power and small area are requirements for this IP,
so that it can be embedded in an application with minimum
penalties. With respect to performance, the IP is specifically
optimized to process trace information at high speed with the
aim to reduce error detection latency.

The microprocessor used in this work includes a trace
subsystem based on the ARM CoreSight technology [19].
CoreSight is a family of components which are commonly
found in almost all ARM microprocessor implementations,
providing tracing and debug functionalities. Particularly, for
this application, two modules have been used: the PTM
(Program Trace Macrocell) [20], to obtain trace information
related with program execution flow, and the ITM
(Instrumentation Trace Macrocell) [21], to obtain trace
information related with program data. Trace information is
managed by CoreSight components and transferred to an
external IP to be checked.

Trace monitoring with a custom external IP for ARM
microprocessors was introduced in [22] and extended in [6].
With this technique, control-flow errors are detected by an
external IP called Program & Data Trace Checker (PDTC) that
observes and analyzes the trace information provided by the
PTM. For instance, the PDTC can detect errors in memory
addresses that are difficult to detect with a pure software
approach. Even if an address is checked before issuing a
memory access instruction, the address can get corrupted when
the instruction is executed, resulting in a memory exception.
Errors concerning execution out of expected code regions can
be detected with very low latency, as Program Counter (PC)
addresses are observed through the trace interface just a few
clock cycles after they are executed [6]. In addition to the PDTC
error detection capabilities presented in [22], a new feature has
been implemented to enhance control-flow error detection,
which we called loop watchdog. Many applications execute a
main loop running indefinitely, so it is possible to compute the
maximum time for that loop to be executed. The PDTC can be
configured with the Program Counter value of the first
instruction of the loop and with the maximum execution time.
If the configured address is not received within the expected
time, the PDTC will raise an error signal. With this approach,
the maximum error detection latency of the PDTC for control-
flow errors is one loop cycle. The PDTC can detect these
situations and could trigger rollback actions in a more reliable
manner and with lower performance penalty than software
techniques.

To provide a valuable feedback of the proposed data
mitigation technique, a double check was performed externally
through the trace interface. Replicated data and control data are
checked in the program, but they are also checked in the PDTC
and reported during the experiments. This external double
check is feasible because data values can also be traced through
the ITM . The PDTC data checking capabilities presented in [6]
have been extended to handle triplicated data. In the case the
three values received are not equal, the PDTC raises an error.

Fig. 4. Program and Data Trace Checker (PDTC) architecture

Fig. 4 illustrates the architecture of the PDTC showing the
modules in use: Program Checker and Data Checker. The
Program Checker contains configurable address range registers
and watchdog registers. These registers can be configured by
the user to specify the valid code regions and the expected loop
start address and execution time, respectively. Then, the PC
addresses provided by the PTM are compared with the
configured address range registers to determine if execution has
reached a forbidden or unexpected region. The PC address is
also compared with the watchdog start address to clear the
watchdog. The Data Checker contains a set of data registers that
are associated to specific checks, including dual and triple equal
comparison. To check hardened output data, the user just needs
to write the data into the appropriate registers and the checker
performs the comparison. To use trace monitoring in a
particular application, the following actions are generally
required: (1) configure and enable the microprocessor trace port
[6], [22]; (2) configure the PDTC with the allowed instruction
address ranges [22] and the address of the main loop(s); and (3)
export desired data values to be checked by the PDTC [6].
These actions are supported by the PDTC driver in high-level
code (C++), so they can be implemented with simple function
calls. Instruction addresses are referenced by tags that can be
added to the code. Data to be checked are referenced by variable
names. More detailed information about the configuration of
the trace components can be found in [6] and [22].

The PDTC is a small piece of hardware (about 6% of a rather
small device, XC7Z010, [6]). Most of it is actually used for the
configuration and trace interfaces with the microprocessor. The
impact of the enhancements introduced in this work in the size
of the trace monitor is negligible. With respect to performance,
the use of the trace interface does not introduce any delay
penalty. The only overhead is caused by exporting data values
to be checked, but the checks are performed by the trace
monitor in parallel with the processor.

IV. EXPERIMENTAL RESULTS

The proposed approach was tested with neutrons at Los
Alamos National Laboratory in 2018.

6

A matrix multiplication benchmark was selected to perform
the tests. This is a very data-intensive benchmark, so the data
hardening is suitable to be accelerated with the proposed
technique. Matrices were composed of 32-bit integer elements.
On every power cycle, both input matrices, A and B, were
initialized with random values. For the control data, we used
randomly selected values that were also initialized on every
power cycle. After the initialization of the matrices, a first
matrix multiplication computation is performed to obtain the
golden matrix, Gold. Then, the code enters an infinite loop
where three steps are performed sequentially: 1) matrix A and
B are multiplied to obtain result matrix, C; 2) redundant values,
if present, in matrix C are checked between them and the control
value, if present, is checked against the Gold control value; and
3) matrices C and Gold are compared value by value. Three
error signals were provided to report correctable data error at
step two, or control data error at step two, or Silent Data
Corruption (SDC) error at step three, respectively. The code
was optimized for performance using maximum optimization
option (-O3) in the compiler settings. The benchmark was run
on bare metal without operating system.

The described benchmark was running on one of the cores of
a dual core ARM CORTEX™-A9 processor. The Device Under
Test (DUT) was a Zynq XC7Z010 from Xilinx [23] mounted
on a commercial board (Zybo) [24]. The PDTC was
implemented in the programmable logic of the device and
connected to the trace interface of the processor via Trace Port
Interface Unit (TPIU) through Extended Multiplexed Input
Output (EMIO) interface. Errors in the programmable logic that
may affect the PDTC are corrected or detected by the Soft Error
Mitigation (SEM) Controller IP [26], which is included in the
system for this purpose. The SEM is monitored by the external
host to record errors in the programmable logic.

A picture of the experimental setup is shown in Fig. 5. In
order to maximize the number of events gathered during the
experiment, we used 16 Zybo boards (on the left of Fig. 5) that
were exposed simultaneously to the neutron beam. The fluence
per board was 1.08×1011 n/cm2. The boards are controlled by 4
external hosts (right side of Fig. 5) that are able to collect the
results and can reset each of the DUTs in the case of a
misbehavior during the experiment. Particularly, the external
host can power cycle each DUT in the case any error is reported
by a DUT. In addition, the external host has a watchdog timer
for each DUT, so if no status information is received from the
DUT in a specified period of time, a timeout is logged and a
power cycle is triggered. Every external host controls four
DUTs. The controllers are located near the DUTs but they are
not exposed to the neutron beam. The results gathered by the
external hosts are sent to a computer located outside the beam
influence and processed offline.

Fig. 5. Experimental setup

A. Performance comparison

To analyze the performance of the proposed technique, we
measured the time required to execute the matrix multiplication
benchmark with a timer, running the benchmark several times
until the measure stabilizes. Table I shows the performance
overhead of a conventional software-implemented fault
tolerance (SWIFT) approach and the implementation of the
proposed approach using NEON (NEON-SWIFT) for several
matrix sizes and cache options. The results are normalized to
the execution of the original unhardened code for each case, so
that each value shown in the table is the number of times the
execution of the unhardened code using the same cache option.

For the proposed approach, the performance overhead is
around 4 in all cases. This result is explained by the
transformation of each original data into 4 data (3 redundant
copies plus control data). Memory access dominates and the
arithmetic computational effort is similar to the original code.
The peak overhead for cache-enabled, 64x64 matrix size is
because in this case the original data fits in the cache while the
hardened data exceeds the cache size. On the contrary, for the
conventional SWIFT implementation the overhead is generally
much larger. In addition to the memory access overhead (only
3 times in this case) there is the overhead due to replicated
instructions. The performance benefits will increase for
applications with a higher ratio of arithmetic operations to
memory accesses.

TABLE I: PERFORMANCE OVERHEAD

 Cache Disabled Cache Enabled
Size SWIFT NEON-SWIFT SWIFT NEON-SWIFT
8x8 9.43 3.36 3.21 3.75
16x16 10.83 3.85 3.68 4.10
32x32 7.93 3.82 5.13 4.31
64x64 7.93 4.00 8.36 5.42
128x128 7.74 4.11 6.90 4.48

The relatively large performance overhead of the SWIFT

cases with cache disabled is due to two main factors: the amount
of redundant data and operations, and the optimization
performed by the compiler. The second factor is very relevant

7

in the case of complex processors, such as ARM Cortex A9,
which include out-of-order execution, branch prediction, etc.
Thus, the structure of the code has a strong impact on the
performance. In our case, we used a default coding and
compilation for maximum optimization (-O3). The original
code of the matrix multiplication is very regular and the
compiler makes a good job at optimizing it. However, the
SWIFT code uses three times the data and requires and
additional inner loop to repeat operations. We have also
repeated the analysis using optimization level 2 (-O2), although
the results are not shown here for the sake of brevity.
Interestingly, the performance overhead figures are similar for
the SWIFT case and much better for the SWIFT-NEON case
(between 1.71 and 1.91). This result shows that SWIFT code is
hard to optimize. On the other hand, as the general optimization
level is reduced, the performance benefits of NEON are more
relevant.

It must be noted that the proposed approach is intended for
data intensive applications. For control intensive applications,
i.e., with many conditional changes in the control flow, this
approach may produce poor results if used in a straightforward
manner. This is because the SIMD coprocessor produces
performance benefits once data is loaded into the SIMD register
file and has limited support for conditional instructions. In
general, taking full advantage of SIMD co-processor
performance generally requires specific algorithm
restructuring. This is true for redundant computations as well.
However, the use of ad-hoc coding techniques to optimize the
use of the SIMD co-processor is beyond the scope of this paper.

B. Neutron radiation results

The neutron radiation experiments were performed with
cache-enabled versions of the matrix multiplication benchmark
for 32x32 and 128x128 matrix sizes. For each matrix size, we

tested three code versions: original version with no software-
implemented fault tolerance (Unhardened); software-
implemented fault tolerance (SWIFT); and the proposed
approach using NEON (NEON-SWIFT). The total fluence per
benchmark was 2.15×1011 n/cm2 collected in approximately 2
days of effective exposure time. Trace error detection using the
PDTC was enabled in all cases, as it does not affect the
execution.

Table II summarizes the results of the experiments. The
errors were classified into the following categories:
 Det. Hang: A control-flow error detected by the PDTC.

These errors typically result in an unexpected exception
that makes the processor hang or crash.

 Corr. Data: Detected and corrected data error in
triplicated data.

 Det. Control: Detected error in control data.
 Det. Trace: Error detected by the PDTC that could not

be confirmed by any other means.
 SDC (Silent Data Corruption): unmasked data error.
 Hang: undetected timeout or exception.
The last two categories (SDC and Hang) are the errors that

are not detected nor corrected. The last two rows in Table II
show the cross sections and their 95% confidence intervals for
each case, considering all errors and considering only the
undetected errors (SDC and Hang), respectively. For
convenience, a bar graph of the cross sections is also shown in
Fig. 6.

Most of the errors were in the category of Det. Hang, except
for the case of 32x32 matrix with unhardened code. Recent
work with the same device [25] has reported that Hang errors
dominate when L2 cache is used. The particular case of 32x32
matrix with unhardened code is because in this case all matrices
fit in the L1 data cache, so that no L2 cache access is produced
during the execution.

TABLE II: NEUTRON RADIATION RESULTS

 32 x 32 (cache enabled) 128 x 128 (cache enabled)

Error category Unhardened SWIFT NEON-SWIFT Unhardened SWIFT NEON-SWIFT

Det. Hang 22 (7.46%) 1,508 (85.7%) 1,459 (84.7%) 4,699 (98.7%) 5,056 (88.9%) 4,687 (86.0%)

Corr. Data 0 (0.00%) 152 (8.64%) 135 (7.84%) 0 (0.00%) 597 (10.50%) 510 (9.36%)

Det. Control 0 (0.00%) 0 (0.00%) 56 (3.25%) 0 (0.00%) 0 (0.00%) 201 (3.69%)

Det. Trace 23 (7.80%) 97 (5.51%) 72 (4.18%) 17 (0.36%) 25 (0.44%) 50 (0.92%)

SDC 250 (84.75%) 3 (0.17%) 1 (0.06%) 41 (0.86%) 7 (0.12%) 0 (0.00%)

Hang 0 (0.00%) 0 (0.00%) 0 (0.00%) 1 (0.02%) 1 (0.02%) 0 (0.00%)

Total 295 (100%) 1760 (100%) 1,723 (100%) 4,758 (100%) 5,686 (100%) 5,448 (100%)

Cross section
(all errors)

cm2

1.37 × 10-9

(1.22 × 10-9,
1.54 × 10-9)

8.17 × 10-9

(7.80 × 10-9,
8.56 × 10-9)

8.00 × 10-9

(7.63 × 10-9,
8.39 × 10-9)

2.21 × 10-8

(2.15 × 10-8,
2.27 × 10-8)

2.64 × 10-8

(2.57 × 10-8,
2.71 × 10-8)

2.53 × 10-8

(2.46 × 10-8,
2.60 × 10-8)

Cross section
(undet. errors)

cm2

1.16 × 10-9

(1.02 × 10-9,
1.31 × 10-9)

1.39 × 10-11

(0.29 × 10-11,
4.07 × 10-11)

4.64 × 10-12

(0.12 × 10-12,
2.59 × 10-11)

1.95 × 10-10

(1.41 × 10-10,
2.64 × 10-10)

3.71 × 10-11

(1.60 × 10-11,
7.32 × 10-11)

0

(0,
1.71 × 10-11)

8

The results in Table II show that a bigger matrix suffers more
errors. Both Data and Hang errors increase. The particular
effect in the case of Hang errors is due to the much larger
amount of memory accesses required to multiply bigger
matrices. In the case of Data errors, the bigger the matrix, the
higher the number of operations that must be performed to
obtain a result, so the probability to get an error on the result
increases. As a consequence, the cross section, considering all
errors, increases with matrix size. However, for a given matrix
size, the cross sections considering all errors of SWIFT and
NEON-SWIFT approaches are similar. The unhardened cross
section is also similar, except in the case of 32x32 matrix size
for the reasons explained in the previous paragraph.

Both the SWIFT and the NEON-SWIFT versions are able to
correct a significant amount of data errors. It is noticeable the
contribution of the control data to the complete error detection
figure in the case of NEON-SWIFT approach, which shows the
lowest SDC error count for both matrix sizes. Moreover, the
NEON-SWIFT hardened benchmarks present less undetected
errors (SDC or Hang) than the conventional SWIFT approach.

The small number of undetected Hang errors in all
benchmarks demonstrates the great contribution of trace
monitoring to the effectiveness of the proposed approach.
Finally, referring to errors that are only detected by the PDTC,
it is not possible to confirm if they were actual errors or errors
that only affected the detection logic. Anyhow, they are a low
proportion and it is generally advisable to consider them as real
errors in a conservative approach.

These results also demonstrate the high error detection and
mitigation capabilities of the proposed approach. Fig. 6 shows
the cross sections in a bar graph. For the 32x32 matrix
multiplication benchmark, 99.94% error coverage is achieved
and the cross section is reduced from 8.00×10-9 cm2 to 4.64×10-

12 cm2. In the case of 128x128 matrix size, 100.00% error
coverage is obtained, reducing the cross-section from 2.53×10-

8 cm2 to less than 1.71×10-11 cm2. In comparison, the
conventional SWIFT implementation also produces good error
coverage when combined with trace monitoring, but it always
produces more undetected errors and lower performance.

Fig. 6. Cross section bar graph

The data shown in Table II also demonstrates that both data
errors and control-flow errors need to be addressed to achieve a
high error coverage.

V. CONCLUSIONS

This work presents an error detection and correction
approach for microprocessors that combines the use of the
SIMD coprocessor and the trace interface. Data error correction
is achieved by using software-implemented redundancy and the
SIMD coprocessor is used to accelerate computation over
redundant data by parallel processing. To increase the error
coverage, a control data lane is added to each replicated data set
and checked at synchronization points. Control data work as
control signatures of the sequence of instructions executed on
the data. This technique is complemented by Trace Monitoring
to detect control-flow errors that are difficult to handle from a
pure software approach, such as memory exceptions. To this
purpose, we use an external IP connected to the trace interface
that observes the program execution.

Experimental results with neutron irradiation demonstrate
the high coverage of the proposed method. The neutron cross
section of errors that were not corrected nor detected was
reduced by more than three orders of magnitude. Such a
reduction was possible because both data errors and control-
flow errors were efficiently covered. Furthermore, the use of
the SIMD coprocessor increases performance and error
coverage with respect to a conventional SWIFT
implementation.

The proposed approach is intended for data-intensive
applications. For control-intensive applications, with many
conditional changes in the control flow, a straightforward
implementation may not produce significant performance
benefits. In this case, code optimization and restructuring
approaches need to be investigated to take full advantage of the
SIMD co-processor.

ACKNOWLEDGMENT

The authors would like to acknowledge the support of Los
Alamos Neutron Science Center (LANSCE) at Los Alamos
National Laboratory (LANL) to perform the neutron irradiation
experiment.

REFERENCES
[1] S. Mukherjee, “Architecture Design for Soft Errors”, Elsevier, 2008.
[2] M. Rebaudengo, M. Sonza Reorda, M. Violante, “Software-level soft-

error mitigation techniques,” in Soft errors in modern electronic systems,
M. Nicolaidis (Ed.), Springer, pp. 253-285, 2011.

[3] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Control-flow checking by
software signatures,” IEEE Transactions on Reliability, vol. 51, no. 2, pp.
111–122, Mar. 2002.

[4] “Cortex A9 Technical Reference Manual” (r4p1), ARM Ltd., Cambridge,
U.K., 2012.

[5] A. Lindoso, M. García-Valderas, L. Entrena, Y. Morilla and P. Martín-
Holgado, "Evaluation of the Suitability of NEON SIMD Microprocessor
Extensions Under Proton Irradiation," IEEE Transactions on Nuclear
Science, vol. 65, no. 8, pp. 1835-1842, Aug. 2018.

[6] M. Peña-Fernandez, A. Lindoso, L. Entrena, M. Garcia-Valderas, Y.
Morilla, P. Martín-Holgado, “Online Error detection through trace
infrastructure in ARM microprocessors”, IEEE Transactions on Nuclear
Science, vol. 66, no:7, pp. 1457-1464, Jul. 2019.

9

[7] R. Vemu and J. A. Abraham, “CEDA: Control-flow error detection
through assertions,” Proc. 12th IEEE Intl. On-line Testing Symp.
(IOLTS), pp. 151–158, 2006.

[8] L. Parra et al., "Efficient Mitigation of Data and Control Flow Errors in
Microprocessors," in IEEE Transactions on Nuclear Science, vol. 61, no.
4, pp. 1590-1596, Aug. 2014.

[9] N. Oh, P. P. Shirvani, and E. J. McCluskey, “Error Detection by
Duplicated Instructions in Super-Scalar Processors,” IEEE Transactions
on Reliability, vol. 51, vo. 1, pp. 63–75, Mar. 2002.

[10] G. A. Reis, J. Chang, N. Vachharajani, R. Rangan, and D. I. August,
“SWIFT: Software Implemented Fault Tolerance,” Proc. 3rd Intl Symp.
on Code Generation and Optimization (CGO), pp. 243–254, Mar. 2005.

[11] G. A. Reis, J. Chang, and D. I. August, “Automatic Instruction-Level
Software-Only Recovery,” IEEE Micro, vol. 27, no. 1, pp. 36–47, Jan.
2007.

[12] M. Peña-Fernández, A. Serrano-Cases, A. Lindoso, M. García-Valderas,
L. Entrena, A. Martínez-Álvarez, S. Cuenca-Asensi, “Dual-Core
Lockstep enhanced with redundant multithread support and control-flow
error detection”, Microelectronics Reliability, vol. 100–101, article no.
113447, Sept. 2019.

[13] L. Parra et al., “A new hybrid nonintrusive error-detection technique using
dual control-flow monitoring,” IEEE Transactions on Nuclear Science,
vol. 61, no. 6, pp. 3236–3243, Dec. 2014.

[14] L. Entrena, A. Lindoso, M. Portela-Garcia, L. Parra, B. Du, M. Sonza-
Reorda, L. Sterpone, “Fault-tolerance techniques for soft-core processors
using the Trace Interface”, In “FPGAs and Parallel Architectures for
Aerospace Applications. Soft Errors and Fault-Tolerant Design”, F.
Kastensmidt, P. Rech, Paolo (Eds.), Springer Switzerland, pp. 293-306,
2016.

[15] A. Lindoso, L. Entrena, M. García-Valderas and L. Parra, "A Hybrid
Fault-Tolerant LEON3 Soft Core Processor Implemented in Low-End
SRAM FPGA," IEEE Transactions on Nuclear Science, vol. 64, no. 1, pp.
374-381, Jan. 2017.

[16] A. Lindoso, M. Garcia-Valderas, L. Entrena, “Analysis of neutron
sensitivity and data-flow error detection in ARM microprocessors using
NEON SIMD extensions”, Microelectronics Reliability, vol. 100–101,
article no. 113346, Sept. 2019.

[17] “Cortex™-A9 NEON™ Media Processing Engine, Technical Reference
Manual”, (r3p0), ARM Ltd., Cambridge, U.K., 2011.

[18] “NEON Programmer’s Guide”, ARM Ltd., Cambridge, U.K., 2013.
[19] “CoreSight Architecture Specification”, ARM Ltd., Cambridge, U.K.,

IHI0029D, 2013.
[20] “CoreSight Program Flow Trace. Architecture Specification”, ARM Ltd.,

Cambridge, U.K., IHI0035B, 2011.
[21] “CoreSight Components. Technical Reference Manual”, ARM Ltd.,

Cambridge, U.K., DDI0314H, 2009.
[22] M. Peña-Fernandez, A. Lindoso, L. Entrena, M. Garcia-Valderas, Y.

Morilla, P. Martín-Holgado, “PTM-based hybrid error-detection
architecture for ARM microprocessors”, Microelectronics Reliability,
vol. 88–90, pp. 925–930, 2018.

[23] “Zynq-7000 All Programmable SoC: Technical Reference Manual”,
Xilinx Inc, document UG585, 2016.

[24] “Zybo Reference Manual”, Digilent Inc, Pullman, DC, USA, 2014.
[25] M. Peña-Fernandez, A. Lindoso, L. Entrena, M. Garcia-Valderas. "The

Use of Microprocessor Trace Infrastructures for Radiation-Induced Fault
Diagnosis". IEEE Transactions on Nuclear Science, vol. 67, no. 1, pp.
126-134, Jan. 2020.

[26] “Soft error mitigation controller v4.1 Product guide,” Xilinx Inc., White
Paper PG036, Nov. 2014.

