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ABSTRACT

Millimeter-wave and THz spectroscopy is nowadays a huge research
field largely focused on the development of new and improved
instruments and techniques for practical applications such as medical
diagnostics, security screenings, and industrial control processes; mainly
due to its non-invasive and remote scope for matter elucidation and
characterization. Such instruments are based on spectroscopic techniques
that, broadly speaking, irradiate a target sample using electromagnetic
radiation at different frequencies (wavelengths) to measure its optical
properties as frequency-dependent functions. Thus, the wuse of
spectroscopic techniques leads to the acquisition of spectral data
containing the information about the interaction between the sample
under evaluation and the applied electromagnetic radiation. In this
situation, the processing and analysis of the spectral data are important
tasks when developing new instruments based on spectroscopic
techniques (applied spectroscopy systems), and one of the most
challenging scenarios appears in applications in which the sample includes
multiple species with very similar optical properties, as often happens in
biomedical applications. Consequently, statistical methods ate required,
not only to extract the desired information from the spectral data, but also
as part of the calibration process of the technique/instrument.

In this doctoral thesis, a novel non-invasive approach using mm-
wave spectroscopy for in-vivo detection and monitoring of sustained
hyperglycemia, typically associated with Diabetes Mellitus (DM), is
evaluated through several experimental tests including the use of animal
models and a pilot clinical study on humans (Type 1 DM patients). The
experimental tests were carried out using a W-band spectrometer built
specifically for this study, capable of acquiring the reflection and
transmission spectra from in-vivo and non-invasive measurements
performed on the animals and humans. The spectral data collected from
these tests have been processed and analyzed using Functional Data
Analysis (FDA) methods due to their suitability for the abovementioned
challenging spectroscopic scenarios in the framework of biomedical
applications. FDA techniques have allowed us to study the spectral
response measured within the W-band in unsupervised and supervised
settings, providing an interpretation of the different interrogation
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frequencies contribution at all the analysis stages, even for a longitudinal
analysis performed on spectral data collected at different times during the
pilot clinical study with type 1 DM patients. It is important to note that in
the conception of the diagnostic we have used a non-targeted spectral
profiling approach that allowed us to consider collectively the spectral
features of all the sample constituents (avoiding the necessity of individual
metabolites identification) thus providing with a wider perspective about
the applicability of the proposed spectroscopic technique for in-vivo
sensing of hyperglycemia.

The experimental results of this thesis demonstrate that simple
transmission-type spectrometers in the W-band in combination with the
right statistical analysis tools show great potential for the further
development of a non-invasive diagnostic tool for in-vivo sensing of
sustained glycemia in humans. This would mean a clear breakthrough in
Diabetes Mellitus diagnostic and management as it could substitute the
current standard tool in medical practice for DM diagnosis and
monitoring, as it is the invasive HbAlc test.
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RESUMEN

Hoy en dfa, la espectroscopia de ondas milimétricas y THz
comprenden un gran campo de investigacién que se enfoca en gran parte
al desarrollo de técnicas e instrumentos nuevos y mejorados en
aplicaciones practicas, tales como: diagndsticos médicos, controles de
seguridad y el control de procesos industriales; esto se debe principalmente
a su alcance para elucidar y caracterizar la materia de forma remota y no
invasiva. Dichos instrumentos se basan en técnicas espectroscopicas que,
en términos generales, irradian una muestra objetivo utilizando radiacién
electromagnética a diferentes frecuencias (longitudes de onda), para medir
sus propiedades Opticas en funcién de las frecuencias utilizadas. Siendo
ésta la razén por la que el uso de técnicas espectroscopicas resulta en la
adquisicion de datos espectrales, los cuales contienen la informacién sobre
la interaccion entre la muestra evaluada y la radiacién electromagnética
aplicada. En esta situacion, el procesamiento y analisis de los datos
espectrales son tareas importantes a la hora de desarrollar nuevos
instrumentos basados en técnicas espectroscOpicas (sistemas de
espectroscopia aplicada), y uno de los escenarios mas desafiantes se
encuentra en aplicaciones donde la muestra incluye multiples especies con
propiedades Opticas muy similares entre si, como suele ocurtir en las
aplicaciones biomédicas. En consecuencia, se requieren métodos
estadisticos, no solo para extraer la informacién deseada de los datos
espectrales, sino también como parte del proceso de calibracién de la
técnica o el instrumento.

En esta tesis doctoral, se evalia un enfoque novedoso que utiliza
espectroscopia de ondas milimétricas para la deteccién y monitorizacién
in vivo y de forma no invasiva de la hiperglucemia sostenida, tipicamente
asociada a la Diabetes Mellitus (DM), en donde se incluyen varias pruebas
experimentales realizadas con modelos animales y un estudio clinico piloto
en los seres humanos (pacientes con DM tipo 1). Las pruebas
experimentales se realizaron mediante un espectrometro de banda W que
se construyo especificamente para esta investigacion, capaz de adquirir los
espectros de reflexion y transmisioén a partir de las mediciones in vivo y
no invasivas realizadas sobre las muestras biologicas. Todos los datos
espectrales obtenidos durante estas pruebas, fueron procesados y
analizados utilizando métodos de Analisis de Datos Funcionales (ADF)
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debido a su idoneidad para abordar los escenarios espectroscopicos
complejos que se encuentran muy comunmente en el marco de
aplicaciones biomédicas. Las técnicas del ADF nos permitieron estudiar la
respuesta espectral medida en la banda W bajo los entornos de aprendizaje
supervisado y no supervisado, proporcionando una interpretacién de la
contribucién de las frecuencias medidas en todas las etapas del analisis,
incluso para un analisis longitudinal realizado con datos espectrales que
fueron observados a diferentes tiempos durante el estudio clinico piloto
con pacientes de DM tipo 1. También es importante sefialar que referente
a la concepcion de los diagnosticos presentados, se utilizé un enfoque de
perfilamiento espectral no especifico, el cual nos permitié considerar de
forma colectiva las caracteristicas espectrales de todos los constituyentes
de la muestra (sin tener que identificar metabolitos individualmente).
Ademas, este enfoque nos proporciond una perspectiva mas amplia a la
hora de estudiar la aplicabilidad de la técnica espectroscopica propuesta
para la deteccién in vivo de hiperglucemia.

Los resultados experimentales obtenidos en esta tesis, demuestran que un
simple espectrometro capaz de medir la transmitancia de la muestra
biolégica en la banda W, combinado con las herramientas de analisis
estadistico adecuadas, proporciona un enfoque potencial para el desarrollo
de una herramienta de diagndstico no invasiva enfocada a la deteccién in
vivo de la glucemia sostenida en humanos. Esto significarfa un claro
avance en el manejo y en el diagnéstico de la diabetes, ya que podria
sustituir la prueba invasiva de HbAlc, que es la herramienta estandar
utilizada actualmente en la prictica médica para el diagndstico y
seguimiento de la Diabetes.
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1. INTRODUCTION




1.1. THE SPECTROSCOPY: FUNDAMENTALS AND
CHALLENGES IN BIOMEDICAL ENGINEERING

The origins of the spectroscopy dates from the 17% century, being
the systematic studies made by Isaac Newton about the white light
decomposition (rainbow effect) considered as the first main contribution
in this field [1]. Early in the 19 century, Joseph von Fraunhofer invented
the first spectroscope and discovered a set of datk lines in the visible
spectrum (~400 THz - ~790 THz), known as Fraunhofer lines [2].
Subsequently, Gustav Robert Kirchhoff and Robert Wilhelm Bunsen
constructed a flame spectroscope to study the light emission properties of
chemical components [3], [4], and their experiments allowed them to relate
the Fraunhofer lines to the absorption properties of some gases in the
atmosphere of the sun. Kirchhoff and Bunsen stated that each chemical
element has a set of characteristic spectral lines (fixed frequencies) in
which can either emit or absorb energy [5]. In 1913, Niels Bohr analyzed
the hydrogen spectrum combining the quantum theories proposed by
Albert Einstein and Max Planck with the Rutherford model, resulting in
the Bohr model [6], [7]. The Bohr model postulates that electrons exist
only in quantified energy orbitals (states of constant energy) and they can
be promoted to higher energy orbitals (excited state) through photon
absorption. Similarly, the electrons fall back to lower energy orbitals
(electron relaxation) by emitting photons, with the lowest possible energy
orbital called ground state. But the electrons only can absorb or emit
photons carrying an amount of energy exactly equal to the energy
difference between the initial and final state of the transition. This theory
provided an explanation to the already observed characteristic spectral
lines associated to chemical components (absorption and emission
spectrum) since the photon energy is determined by the frequency of the
electromagnetic wave as follows (Planck-Einstein relation)

E = hv, (1-1)

where E is the photon energy, h is the Planck’s constant (6.625X10-3]-s),
and v is the frequency. Thus, the transition of an electron from an initial
state £y to a higher energy state E; by the photon energy absorption
satisfies the relation



E, — E; = nhy, n € N. 1-2)

Let us to note that the frequency v and the wavelength A4 of an
electromagnetic wave are related as follows

v=-—, 1-3

7 1-3)
where ¢ is the speed of light in vacuum (3X108 m/s). The electromagnetic
waves (electromagnetic radiation) include all types of energy travelling
through space at the constant velocity of ¢, being the visible light a portion
of the electromagnetic spectrum [8].

In other words, when a molecule interacts electromagnetic waves
only the frequencies satisfying Eq. (1-2) will produce molecular electronic
transitions resulting in a partial or complete absorption of the radiant
energy. This wavelength dependent absorption coefficient is seen every
day on the characteristic colors of matter; the observed color corresponds
to the not absorbed wavelengths by the chromophores of molecules
within the visible light. Then, as illustrated in Figure 1-1 where the
absorption spectra for several gases are shown, an absorption spectrum is
a wavelength dependent function with its peaks matching with the
absorbing frequencies of a determined chemical compound observed over
a frequency range.

Let us note that besides the molecular electronic transitions
(electronic energy), there are other rotational and vibrational molecular
energy levels (related to the absorption of photons) that are also
characterized by their dependence on the wavelength [9, Ch. 1]. The
energy absorption by molecules within the millimeter-wave and THz
radiations is determined by the rotational and vibrational energy levels
rather than molecular electronic transitions.



500p

—CO2 — CH4 —NH3

400p

w
o
o

8 =

200p

Absorption

4‘8 4.82 4.84 4.86
Wavelength (um)

Figure 1-1. Absorption spectrums of several gases: carbon dioxide (CO2), methane
(CH4) and ammonia (NH3) in the 4.8 pm to 49 um range [10]. Different

concentrations were considered for viewing purposes.

The relationship between a chemical specie and the amount of
energy absorbed when is irradiated by electromagnetic waves
(absorbance) was studied by Johann Heinrich Lambert in 1760 and later
by August Beer in 1852 providing the Beer-Lambert law [11], [12, Ch. 1].
This law demonstrated (under certain conditions) that absorbance A is
directly related to the concentration of the chemical specie as follows

A=¢elp =at, (1-4)

where ¢ is the wavelength dependent molar extinction coefficient, € is the
length crossed by the electromagnetic wave, p is the concentration of the
given chemical specie, and & is known as the absorption coefficient. Thus,
the absorption coefficient indicates the number of photons (amount of
energy) absorbed per unit distance. In cases in which there are multiple
species (without chemical reactions between them) absorbing at a given
wavelength, the total absorbance equals to the sum of the individual
absorbances [12, Ch. 1]. The relation shown in Eq. (1-4) was empirically
determined by measuring the attenuation of the intensity of an
electromagnetic wave (at a specific frequency) travelling through an
absorbing media (known as transmittance). The transmittance T and the
absorbance A are related by the Beer-Lambert law as follows

I out
I; in

A=— 10g10 T loglo (1_5)
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where I, is the intensity (radiant energy) of the electromagnetic wave that
reaches the absorbing media, and Iy is the radiant energy that passes
through it without being absorbed.

Over the years more precise theories have been formulated
describing the absorption phenomenon and providing solutions for cases
in which Eq. (1-4) is no longer valid (e.g. due to stronger intermolecular
interactions or scattering effects described below), but, those findings
were fundamental pieces in the development of the spectrochemical
analysis (absorption and emission spectroscopy) [7], [13], [14]. The
characteristic and unique behavior of chemical species observed from
their interaction with electromagnetic radiation, making identifiable most
of the chemical species (as a fingerprint), has attracted increasing attention
to the spectroscopy field for the development of non-invasive exploratory
tools (spectroscopic techniques) of matter. Today, the spectroscopy field
spreads over the whole electromagnetic spectrum involving different types
of radiation such as microwaves, Terahertz (THz), infrared (IR),
ultraviolet (UV), X-Rays, among others [15]—[19]. The linear spectroscopic
techniques are commonly focused to measure the spectrum resulting from
the irradiation of a sample under study (gaseous, liquid, or solid) by
electromagnetic waves at different frequencies within a frequency interval
of interest (spectral interrogation).

In addition to the atomic absorption and emission of energy, there
are other natural phenomena associated to the interaction of
electromagnetic radiation with matter such as reflection, refraction, and
scattering, among others [20]—[25]. These phenomena are widely studied
and used in the spectroscopy field because they are related to the natural
properties of the matter and are wavelength dependent too [26]—[32]. In
Figure 1-2 are shown simply examples of absorption, reflection, refraction
and scattering phenomena above mentioned. (A) Absorption: the light
beam enters the liquid and is strongly attenuated until it fades. (B)
Reflection: the light is returned when hits the water surface retaining the
imaging geometry (specular reflection), when the light is reflected in all
directions is called diffuse reflection. (C) Refraction: the pencil seems to
have two different positions (appears to be broken) because the speed and
direction of the light change into the water. Another example of refraction
is the rainbow effect (light dispersion). (D) Scattering: the photons of the
light beam are deviated (scattered) from its straight trajectory in random
directions when hits the particles, when the photon is repeatedly scattered
by different molecules is called multiple scattering. This phenomenon is
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also observed in the sky; the electromagnetic waves corresponding to
those frequencies that human eye perceives like blue light are scattered
(more than the other wavelengths) by gases in Earth atmosphere (Rayleigh
scattering). Let us observe here that specular reflection and refraction are
considered as particular cases of coherent scattering from a large number
of molecules when the incident wave interacts with “optically smooth”
surfaces [25], [32], [33].

Figure 1-2. Photographs illustrating in the simplest way the absorption (A), reflection
(B), refraction (C), and scattering (D) phenomena.

The reflection, refraction and scattering effects are inherently related
to the refractive index 1 of matter [24], [34] which is commonly defined
as follows

n=—, (1-6)



where ¢ is the speed of the electromagnetic waves in vacuum and u; is the
phase velocity (speed of propagation) of the electromagnetic wave in a
given medium, being u; dependent on the natural properties of the
medium. As shown by Fresnel laws [35], [36, Ch. 1] (Augustin-Jean
Fresnel; 1821) the refractive index is strongly related to the reflection and
transmission coefficients of matter, and it can be also used to determine
the change in direction of the incident wave when it passes from one
medium to another (transmitted wave) according to its angle of incidence
on the interface surface between both mediums (generally true for
optically smooth surfaces). Such relation between the refractive index and
the change in wave direction was stated in the Snell’s law [36, Ch. 1], [37]
(Willebrord Snel van Royen; 1637) which in its most basic form (non-
absorbing media) is given by

N, Sin8; =n,sin6,, -7

wherte n4 and n;, are the respective refractive indices of each medium, 64
is the angle of incidence, 8, angle of refraction. Let us obsetve that the
refractive index is complex valued, with the imaginary and real parts
determined by the molar extinction coefficient and the refractive
properties of the medium, respectively [38]. Both properties (absorption
and refraction) are intetlinked by the Kramers-Kronig relations (Ralph de
Laer Kronig, 1926; Hendrik Anthony Kramers, 1927) [39]—[42], which
demonstrate that the refractive properties of matter are directly associated
with its characteristic absorption spectral lines. For some cases, the
Kramers-Kronig analysis has been proposed to characterize the complex
refractive index from reflectance spectra [43], [44]. However, the
mathematically modelling of complex refractive index becomes a
challenging task for highly absorbent and scattering media [45]—[48]. The
spectroscopy applied to biomedical engineering is an example of such
cases, where the samples usually involve a large number of components
with strong interactions between molecules (liquids) and exhibiting similar
absorption properties, as illustrated in Figure 1-3. As it can be seen,
absorption spectrums from oxyhemoglobin and deoxyhemoglobin show
a continuum level of absorption over the frequency interval with wider
and less pronounced peaks compared to the narrow spectral features
observed in Figure 1-1 for gases. This kind of spectral responses are very
characteristic for biological tissues. In particular, the spectral interrogation
of in-vivo biological samples will be the target of the applied spectroscopic
technique addressed throughout this thesis.
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Figure 1-3. Absorption spectrums of oxyhemoglobin (red line) and deoxyhemoglobin
(blue line) blood in the 300 nm to 1000 nm range [49]

In addition to the absorption coefficient, the propagation of
electromagnetic radiation through biological media is also determined by
scattering effects (scattering coefficient) due to their inhomogeneities. The
scattering coefficient indicates the number of photons scattered per unit
distance. There are many factors influencing the measured characteristics
of scattering such as the wavelength, complex refractive index,
concentration, geometrical thickness of the medium, and the size, shape
and orientation of molecules, among many others. It has been proven that
scattering measurements provide structural and functional information
about tissue and cells that can be used to detect and monitor pathologies
in humans [50], [51], being the detection and monitoring of cancer cells
one of the more promising biomedical spectroscopic applications.

The strong absorption of many biological tissues (poor penetration
depth in tissue) makes many spectroscopic techniques only possible for
in-vivo measurements by reflectance approaches (reflection and
backscattering). However, it has been shown that transmittance
measurements provide much more information about absorption and
scattering characteristics of tissue [52]. This issue is addressed in chapter
4 by comparing reflection and transmission profiles from in-vivo
measurements of different metabolic conditions in mice.

As shown by the Radiation Transfer Equation (RTE) theory [53],
[54], the propagation of electromagnetic radiation through biological
media is mainly determined by the combination of the abovementioned
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effects, this is, the absorption coefficient 8, (4), and a transport scattering
coefficient g(A) = §5(1 — g) with §s being the wavelength dependent
scattering coefficient and g an anisotropy factor of scattering which is
defined as the average cosine of the scattering angles. However, the great
diversity and structural complexity of biological tissues make quite difficult
to mathematically modelling the cooperative effects of absorption and
scattering therefore, in practice, many assumptions have to be done to
simplify the mathematics, with exact solutions achieved only in a small
number of particular cases [50], [53], [55], [56]. New methods based on
Monte Catlo simulations have been proposed for the numerical solution
of the radiation transfer problems, allowing to incorporate more real
conditions in the model plus other advantages over analytical methods
[50], [54], [50], [57], but, usually they require high computational resources
with large simulation times, they are not valid for high accuracy problems,
and are impractical for high in-depth tissue optical analysis. An extensive
review of the theoretical background and current spectroscopic methods
for biomedical diagnostics, and optical properties of tissues among other
biological objects can be found in [50], [55], [58].

In general, modelling the interaction between electromagnetic
radiation and biological systems is an extremely hard task, and this thesis
does not intend to address the above-mentioned radiation transfer
theories and the current analytical or numerical methods commonly used
to address such issue. On the contrary we will follow the also very
common approach of new spectroscopy systems applied to biomedical
engineering that rely on performing the spectral interrogation on the
biological media (within a frequency range of interest), and then, try to
correlate the spectral responses measured at each frequency with a specific
biological component (or components) of interest. Such approach is
hindered due to the superposition of similar spectral responses from
different components (as shown in Figure 1-3), besides instrumental noise
and other interferences associated to environmental and physiological
factors (depending on the spectroscopic technique). Therefore, statistical
methods are often needed for modelling and classification of measured
spectral data. This thesis focuses to the analysis and interpretation of
spectral data obtained from multi-species structures exhibiting complex
spectral features. As described in chapter 4, a non-targeted spectral



profiling approach is proposed to explore and evaluate new applied
spectroscopic techniques in biomedical engineering.

1.2. THE SPECTRAL DATA ANALYSIS IN THE
DEVELOPMENT PROCESS OF APPLIED
SPECTROSCOPY SYSTEMS

As introduced in previous section, there are numerous spectroscopic
techniques focused to measure the relative energy that is whether emitted,
absorbed, reflected (including backscattering) or transmitted (affected by
refraction, scattering and absorption) by a sample as a function of
frequency (wavelength). The use of spectroscopic techniques for spectral
interrogation of such sample under study leads to the acquisition of
spectral data for further processing and analysis. The measured spectral
data usually correspond to the intensity (amplitude) or phase (phase shift
with respect to the incident wave) of the reflected and/or transmitted
signals resulting from the spectral interrogation. Then, amplitude and
phase parameters are used to find a characteristic relationship that allows
for modelling one or more sample constituents (or other sample
properties). The eventual goal is to obtain a complete spectroscopy system
(incorporating the spectroscopic interrogation technique, the electronics
and the software for data acquisition and processing) capable of
autonomously carrying out measurements and automatically provide
precise results (like a medical diagnosis or estimate the concentration of
one or more sample constituents).

However, to achieve this, the realization of experimental tests for the
evaluation and calibration of the spectroscopic technique ate necessary, as
shown in Figure 1-4, which illustrates the general process for the
development of applied spectroscopy systems. The difficulty of this
process can be coined to the complexity of the sample, relatively simpler
for samples exhibiting sharp spectral responses (easy to model and
without superposition effects), and to the spectroscopic technique
(robustness against external factors and the signal-to-noise ratio). In this
sense, the application of spectroscopic techniques to biomedical
engineering leads to the more complex multi-species scenarios in which
spectral responses of many sample constituents are overlapped and there
are strong interferences from instrumental, environmental and
physiological factors. Consequently, statistical tools are needed for the
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processing and analysis of spectral data in order to make the development
process of applied spectroscopy systems as efficient as possible.

Experimental tests

Spectral interrogation ‘ Data acqguisition

ofthe -amoie (signals sampling)
Proposed H Spectral data
spectroscopic Reflection and processing and
technique Incident . transmission detectors analysis
electromagnetic L

wave .

Sample under study

Information
Experimental extraction for
test design feedback

Spectroscopic
technique
calibration

Figure 1-4. Scheme illustration of the general process for development and evaluation
of applied spectroscopy systems.

As depicted in Figure 1-4, the statistical analysis of the spectral data
can be used not only to validate and calibrate the spectroscopic technique,
but also to improve the design of the experimental tests. Furthermore, as
it will be seen throughout this doctoral thesis, the spectral data analysis
can provide useful information to optimize the spectral interrogation
process and setup of the spectroscopic technique. This thesis focuses on
showing the relevance of such feedback process and how the use of
adequate statistical methods can maximize the information extracted from
the spectral data analysis, especially in the early stages of the development
process of an applied spectroscopy system.

The first step in the experimental evaluation of a spectroscopic
technique is to explore the spectral response of the sample in the
frequency interval of interest. As highlighted above, in the case of
biomedical applications, the ovetlap of the spectral features from sample
constituents prevents their direct isolation and quantification. The
complexity of the spectral features of multi-species structures (such as
biological tissues) force the spectral interrogation of broader frequency
intervals. Besides this, the high resolution in frequency (and time) of
modern spectroscopic instruments and currently available technologies
for data collection and storage have made that spectral interrogation
usually collects a large number of frequencies (ot time points).

Consequently, a common feature in the structure of spectral data
sets is that the number of measured frequencies p is much larger compared

N11N



to the number of observations 1 (small sample populations), for example
in biological experiments in which access to the sample is quite limited.
Nowadays, the standard methods used in the analysis of spectral data
consist of Multivariate Data Analysis (MDA) that analyzes the measured
frequencies as individual variables [59]—[62]. The analysis of spectral data
under the MDA framework, considering the structure features previously
mentioned, have two important consequences that appear immediately.
The first one is that the spectral data analysis results in high-dimensional
statistical problems such as the so called “large p, small n”” problem [63]—
[65], basically, as the number of variables increases (measured frequencies)
much more observations are required. The second is the well-known
multicollinearity problem [66], [67], [68, Ch. 37] since the variables of
spectral data sets might be highly linearly correlated, depending on the
frequency resolution and the spectral features of the sample. Such
correlation is originated, for example when multiple measured frequencies
are comprising the same spectral peak (highly likely for broad spectral
peaks), which results in strong dependencies between frequencies. These
multicollinearity and high-dimensional problems cause that many classical
statistical methods for regression analysis become inadequate or not
feasible (over-fitted or inefficient regression models, inaccurate
computations or without solution, etc.), requiring more dedicated
statistical analysis [69]—[72]. Dimension reduction methods [73]-[70] ate
often used prior to any modelling efforts, but since frequencies
contribution is somehow summarized, the resulting regression analysis are
not directly interpretable in terms of the original measured frequencies.
An alternative approach that has been also proposed to deal with both
high-dimensional and multicollinearity without losing original semantics
of measured variables consist of variable selection methods [77]—[80]. The
variable selection methods are focused on finding specific wavelengths
(within the whole frequency range) that provide the best regression results
without redundant information (uncorrelated wavelengths), however, in
spectroscopy applications, this is still a challenging task (leading to high
computational loads in many cases) and selecting optimal intetval variables
(frequency sub-intervals) [81]—[83] has been proposed as a more practical
and stable approach. In fact, functional representation, which is the first
step in Functional Data Analysis (FDA), has been proposed as a pre-
processing step to facilitate the variable selection problem and to improve
the statistical significance of the obtained results [84]. In any case, as will
be seen in chapter 2, summary statistics are required in multivariate
statistical analysis of spectral data for longitudinal settings (the samples are
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measured repeatedly over a period of time), losing a lot of available
information within the measured frequency range and interpretation
capacity.

As seen before, a spectrum contains a set of values measured
describing the evolution of a parameter (amplitude or phase) over a
frequency range. This underlying continuous nature of spectral
interrogation process generating the spectral data is completely bypassed
when measured frequencies are treated as “independent variables” (MDA
framework). In this sense, an alternative and more adequate statistical
approach for spectral data analysis has emerged from the statistic field,
called Functional Data Analysis (FDA) [85], [86] already mentioned above.
As illustrated in Figure 1-5 the FDA framework, described in detail in
chapter 2, deals with spectral data as continuous trajectories (discretized
at a sequence of frequency points) of a wavelength dependent function
being advantageous in many ways: it solves high-dimensional problems,
handles multicollinearity problems without losing interpretability of
regression analysis in terms of the original measured frequencies, allows
to consider all the available information in longitudinal analysis, and
enhances visualization of spectral data.

MDA framework FDA framework

Measured frequency range Measured frequency range

Figure 1-5. On the left, a spectrum consisting of a set of values measured at different
frequencies (as acquired in practice) is illustrated; the MDA considers the measured
frequencies as a set of independent variables. In contrast, the FDA analyzes the
continuous trajectories (functional data) over the whole frequency range, estimated
from the measured spectra (on the right).

The greatest strength of FDA is the perspective used to address the
spectral data analysis. Spectral data modelling is based on trends within
the approximated continuous trajectories (the shape of the wavelength
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dependent function) instead of a set of values corresponding to the
discretely measured frequencies that are easily affected by undesirable
interferences. As will be seen, the estimation of the continuous trajectories
(functional data) from the measured spectra (vectors) is based on very
flexible approximation methods that can be used in spectroscopy to
reduce the effects of undesirable interferences on spectroscopic
measurements. Furthermore, the estimated continuous  trajectories
facilitate the study of dynamics of the spectral responses within the
frequency range of interest, such as their derivative functions [87]—[89],
that in some cases can be used to annihilates noise factors in measured
spectra. The spectral data analysis carried out throughout this thesis is
addressed under the FDA framework since provides a set of more suitable
and powerful statistical tools for spectral data analysis, can be applied to a
wide range of spectroscopy applications and being particularly promising
in biomedical engineering and applications [89].

1.3. THESIS OVERVIEW AND OBJECTIVES

The work presented in this thesis dissertation stems from two main
objectives: firstly to assess the applicability of a novel non-invasive
approach, based on millimeter-wave (mm-wave) spectroscopy, for the
diagnosis and follow-up of Diabetes Mellitus (DM) through the in-vivo
sensing of sustained hyperglycemia and, secondly, to motivate and boost
the use of FDA methods for spectral data analysis in the development,
assessment and calibration of new applied spectroscopy systems,
especially for biomedical applications. Regarding to the first objective, the
proposed spectroscopic technique was initially tested by performing
spectral interrogation on animal models of different glycemic states, and
subsequently, a pilot diagnostic validation study was carried out on
humans, referred to as “pilot clinical study” in the remainder of the
document. All the spectral data collected from the in-vivo measurements
were processed and analyzed under the framework of the FDA to show
the current available FDA methods and their potential for spectral data
modelling and interpretation. The introduced FDA methods can be
applied to any spectroscopy application in which the collected data is
measured over a continuum, which is the most common scenario in
spectroscopy field, e.g. spectral data measured over time or frequency
domains.
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The remainder of this thesis dissertation is organized in five more
chapters as described below.

First, the theoretical background and basic concepts needed in the
framework of the FDA are introduced in chapter 2. A set of statistical
tools for continuous trajectories approximation from measured spectra
(functional data estimation) are described in detail and their applications
in spectroscopy approaches are discussed. Different FDA methods based
on unsupervised and supervised approaches, which will be applied in the
analysis carried out in chapters 4 and 5, are also introduced.

In chapter 3, the relevant clinical concepts associated to DM are
introduced, and a brief review of the state of the art in DM diagnosis and
monitoring is done. The need for new non-invasive technologies to
improve current medical procedures in diagnosis and follow-up of DM,
enhancing patients' quality of life and reducing the global incidence rate,
is motivated. Then, the potential of Terahertz (THz), microwave, and
mm-wave spectroscopy for biomedical applications is discussed and the
mm-wave spectroscopic technique proposed for in-vivo sensing of
sustained hyperglycemia is described. Considering that there is no a prioti
information of the spectral features of biological sample constituents
within the measured frequency range and mathematical modelling is for
now impractical, the in-vivo measurements were performed under a non-
targeted spectral profiling approach [90], [91] focused to characterize the
clinical pathology (DM) in terms of the classification of the spectral
response from the biological samples (healthy and diabetic animals) over
the whole frequency range, thus, the sum of the spectral features from all
sample constituents are considered instead of targeting a specific
metabolite (non-targeted metabolomics).

In chapter 4, the most relevant experimental results obtained from
the assessment and validation of the proposed spectroscopic technique
using animal models are presented. The content of this chapter includes
the published results in papers A, B and C. The animal experiments were
conducted on different mice strains involving healthy cases (controls) and
two different mice models representing sustained hyperglycemic cases:
mild and full-blown diabetes. The in-vivo measurements consist of
spectral interrogation over the W-band, within the mm-wave range,
directly performed on a fold of skin from the back of the mice. The
experimental protocols and the mice models employed in each
experimental test for in-vivo measurements using the W-band
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spectrometer are described in detail. All this research work was carried out
in collaboration with the Epithelial Biomedicine Division of the Centro
de Investigaciones Energéticas, Medioambientales y Tecnoldgicas
(CIEMAT) and following the European and Spanish laws and regulations
for housing and cate of laboratory animals. This chapter shows how the
extraction of information from the spectral data analysis interpretation not
only allows to reformulate a simpler design of the spectroscopic technique
but also to design the next experimental tests with clear and specific
objectives.

In chapter 5, the spectroscopic technique proposed for in-vivo non-
invasive sensing of hyperglycemic metabolism is tested on humans. The
excellent performance of the proposed approach achieved during animal
experiments encourage the realization of a pilot clinical study focused on
type 1 DM patients. The in-vivo measurements using the W-band
spectrometer were directly performed on a skin fold in the first interdigital
space (between the thumb and index finger) of the right hand. All this
research work was carried out in collaboration with the Instituto de
Investigacién ~ Sanitaria Fundaciéon Jiménez Diaz (Servicio de
Endocrinologia y Nutricién) and following the International and
European ethical and safety principles regarding human experimentation.
This chapter validates the results obtained from animal experiments on
humans and studies the relation between the non-invasive measure and
the mean value of the Blood Glucose Level (BGL) in body for most recent
three months. Therefore, the pilot clinical study was designed as a
longitudinal study and lasted about twelve months, with seven months
between the first and the last measurements. The longitudinal spectral data
collected throughout the entire pilot clinical study (subjects were measured
at three times with three months at least between each time) were analyzed
using novel FDA methods to show the scope and advantages of FDA
framework in spectroscopy applied to biomedical applications.

In chapter 6, the main conclusions extracted from this doctoral thesis
are listed. The use of FDA methods in spectral data analysis and the
obtained results from experimental assessments of the proposed
spectroscopic technique are discussed. Future considerations for
following experimental assessments in the development and calibration of
the proposed spectroscopic approach for non-invasive sensing of
sustained hyperglycemia in diabetics are also revised.
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Finally, the corresponding section including all cited references
throughout this thesis dissertation and an appendix including the ethical
issues corresponding to the animal experiments and the pilot clinical trial,
and the informed consents containing all the relevant information
provided to the volunteers prior they participation in the pilot clinical
study are shown.
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2. STATISTICAL TOOLS FOR
SPECTRAL DATA ANALYSIS
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We have previously stressed the intrinsic continuous nature
underlying the spectral data raised from spectral interrogation throughout
a continuous frequency interval, although experimental and practical
constrains allow only for the obtaining of spectral information at given
sampling points. One of the main objectives of this thesis is to show the
challenges and exciting possibilities of addressing these measured spectral
data (at discrete sampling points) by using Functional Data Analysis
(FDA), which is a current topic in statistical mathematics of continuous
signals. In FDA, the sample trajectories discretized in frequency (vectors
containing the sampling information points) are converted into
continuous curves over the measured frequency range, obtaining a
functional data set. It is important to note that the set of sampling points
in which spectral data is observed does not need to be regular and can
differ between observations. However, the spectral data sets analyzed in
this thesis were measured on a set of equally spaced frequencies. In
contrast to a finite collection of sampled values, the continuous
representation (functional data) obtained from the spectral data is a rich
source of information that permits us to evaluate many aspects of the
spectral response in the whole measured frequency band (trends,
derivatives, etc.). Other advantages of the use of FDA are data noise
reduction by curve smoothing methods, improves the intrinsic patterns
detection in data throughout the continuous domain, and better flexibility
for longitudinal and high dimensional spectral data analysis.

In this chapter, the necessary FDA theory and basic concepts needed
for further statistical analysis of spectral data used in this work are firstly
introduced. Subsequently, some functional data approximation
approaches and FDA methods for unsupervised and supervised spectral
data analysis will be briefly described.

The spectral data collected from different experiments designed to
assess the proposed non-invasive approach for detection and monitoring
of hyperglycemic metabolism will be analyzed using both supervised and
unsupervised FDA methods. The aim is to extract relevant information
from the spectral data analysis allowing for a feedback between the
spectroscopic technique and the measured spectral response. Such
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feedback from the measured spectral response is essential for assessment
and optimization of the applied spectroscopic technique.

2.1. FUNCTIONAL DATA ANALYSIS (FDA)

FDA is a very active branch of research in the Statistics field, devoted
to solving statistical problems involving functional variables. In a
functional variable its observations are functions that represent the
evolution of a scalar variable over a continuum. The aim of this research
topic is to provide statistical tools for the analysis and modelling of
functional data sets (curves), defined and sampled on a continuous
domain, that represents a population. As we shall see throughout this
thesis, many of the statistical methods developed in the FDA framework
are extended versions of well-established Multivariate Data Analysis
(MDA) methods. A very comprehensive collection of information about
FDA basic methods, computational aspects, and some practical
applications can be found in the pioneer books of Ramsay and Silverman
[92], [93] and Ramsay et al. [94].

A functional data set x4 (t), 25(t), ..., 2, (t) can be seen as a set of
observations of a functional variable. Usually, such observations atre
sample functions (also called realizations, sample paths, trajectories,
among other names) of a stochastic process {X (t):t € T'}. A stochastic
process is formally defined (95, pp. 201-202] as a family of random variables
{X(t,w):t € T, w € 0} indexed by some real set T (discrete or continnons) and
defined on a common probability space (0, A, P). If all the random variables of
the random process take only real values, then, it is known as a real
stochastic process. The sample function x;(t) is an observation
(outcome) of the stochastic process and contains a single value of each of
the indexed random variables of the stochastic process. Thus, the sample
functions represent different states of the stochastic process. Usually, the
sample functions describe the evolution of a property or characteristic of
a system under study, which is observed over T, a frequency interval in
our case, but can also be time, geographic location, probability, etc.

Throughout this thesis, and for the purposes of the FDA, only
stochastic processes holding the three following hypotheses will be
considered: (A1) the stochastic processes are of second order, (/2) they
are continuous in quadratic mean, and (/) their trajectories ate square-
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integrable functions. The corresponding definitions implicated by these
assumptions on the stochastic processes are detailed below.

2.1.1. DEFINITIONS AND THEORETICAI ASSUMPTIONS

Let us consider a probability space (Q, A, P), and let L2(Q) be the
space of real random variables X on () with finite second order moments,
so that

E[1]2] = fﬂ|x<w)|2dy>(w) <0V X € L2(Q). o)

Thus, the natural scalar product associated to the space L2(Q) is given by
the bilinear form

L2(Q) X L?(Q) - R

22
@Y - EXY]= fﬂx(w)wmd?(w).

providing to £2(Q) with a Hilbert space structure.

A stochastic process {X (t):t € T} defined on T X Q, with their
observations given by the function

Xw): T - R

2-3
t - X(Lw) =), =
is of second order if X (t) € L2(€), i.e. a real stochastic process.

Related to a second order stochastic process, the following functions
can be defined:

Mean function

u I - R

£ - u) = EX®] = f Xtw)dP(w). Y
Q
Covariance function
C: TxT - R 25

(t,s) - C(t5),

where
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C(ts) = fﬂ (20t w) — u(®) (X (5, w) — u()|dP(w). o)

Then, a second order stochastic process is continuous in quadratic
mean if

lim £ [(x(t +h) — X(t))z] —0vte T, @7

which implies the continuity of the covariance functionin I X T'.

On the other hand, the continuity in quadratic mean of the stochastic
process it is not a sufficient condition for the continuity of their sample
functions. Therefore, the Kolmogorov continuity theorem is considered,
which implies that if a second order stochastic process is continuous in
quadratic mean there exists another process stochastically equivalent,
whose sample paths are square-integrable functions.

A stochastic process {X (t): t € T} verifying these three hypotheses:
H; The stochastic process is of second order,
H, The stochastic process is continuous in quadratic mean,

H; The trajectories of the stochastic process are square-
integrable functions, ie. belongs to the Hilbert space
L),

may be seen as a random functional variable defined on L2 (T):

X: Q - L%
w - Xw): T - R (2-8)
t - X(tw),

with an associated covariance operator defined as
C: L2(T) - L2
f - ci)

29)
verifying that
IO = f Ct,)f(s) ds. 210
T

Let us observe that C is a Hilbert-Schmidt operator, whose kernel is
the covariance function C(t, s) of the process. Furthermore, since C(t, s)
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is a continuous function in I X T, the covariance operator C is both
bounded and continuous in the Hilbert space L2 (7). The main properties
of the covatiance operator C as defined here are [96]:

i.  C is a compact operator on L2(T).

ii. C is a self-adjoint operator (also called Hermitian operator),
ie(C(Ng) = (flC(g)V f.g € LAT).

iii. € is a positive-definite operator, i.e.

(CHIfY =0V f e LT).

The theoretical framework introduced untl now paves the
formulation for the statistical methods that will be used in further analysis
of the spectral data. Therefore, in the remaining of this thesis, we will
consider a functional variable X, whose observations are realizations of a

second otrder stochastic process X = {X(t):t € T}, continuous in
quadratic mean, and with their sample functions belonging to the Hilbert

space L2(T) defined by

L2(T) = {f:T - R: ffz(t)dt < oo}, (2-11)
T
with the usual scalar product given by

(f.9)= [ F0g@dcvf.g e 2. e
T

2.2. MAIN SUMMARY STATISTICS FOR
FUNCTIONAL DATA

As in the MDA, summary statistics such as sample mean, sample
covariance, between others, can be defined for functional data [92, pp. 11—
10] in the framework described above. Let us consider a random sample
{x;(t):t€T,i=1,...,n} of a functional variable X as a set of
independent and equally distributed realizations of a continuous second
otder stochastic process {X (t):t € T}. Then, the sample mean function
is defined as follows

n

E[X(D)] = £(t) = n~! Z GOVEE T, @-13)

i=1
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providing the mean value estimated for all sample functions at every t €
T (pointwise). Likewise, the variance function is given by

var[X ()] = (n— 1) Z[xi(t) — 7D (2-14)

and the square root of the variance function is the known standard
deviation function.

Other widely used concept is the sample covariance function, which
provides a measutre of dependence of the sample cutves across different
argument values and is defined as follows

C(t,5) = (=D Y (x:(0) = HO) (x(s) — F(5)),
i=1

(2-15)
Vt,se T,
and the associated correlation function is
C(t,s)
corr[X (t),X(s)] = (2-16)
\/var[X(t)]var [X(s)]

2.3. APPROXIMATION OF FUNCTIONAL DATA

Although during the last decades resolution for measuring systems
has been considerable improved, natural phenomena (that can almost
always considered as continuous in space and time) can only be recorded
at discrete times and positions (digital acquisition), i.e. sample curves are
observed (measured) at a finite number of points {xij:i =1,...,nj=
1,..., mi}, being nn the number of observations and m; the total number
of points in which the i-th sample curve has been measured
{tl, ta, .o tm; € .‘T}. Therefore, the first step in the FDA is converting
the discrete measured values (xil, Xigyee) ximi) for the observations (raw

functional data) into a true functional form x;(t) of the sample curves.
This leads to the first challenge for the researcher performing FDA, rising
important questions about the raw data (measured data): Were data
measured with error? How big is the error introduced by the measuring
system? Is the measurement process expected to have a smooth or rough
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response throughout J'?. These questions ate key for the researcher to
make necessary and important decisions during the functional data
approximation. As we shall see throughout this thesis, the smoothness
degree in the approximated sample curves has a big influence in the
statistical analysis and data interpretation. Therefore, the “smoothness” in
the approximate sample curves should be defined by the researcher
according to the goal of the experiment and his a priori knowledge about
the nature of the measure.

For cases in which data is assumed to be measured without error:
xl-j=xi(tij),i=1,...,n,j=1,...,mi, 2-17)

where x;; is the j-th measured value for the i-th observation, and x; (ti j)
is the true function observed at the sampling point t;;, the functional data
can be estimated using polynomial interpolation methods, among others
[97]. In practice, however, and especially in applications with many
external factors introducing noise to the measurement, such as in
spectroscopy, it is mostly assumed that data is observed with an error. In
this thesis, data analysis will be performed by assuming that measurement
data includes some error, adding an error €;; term, representing noise, to
Eq. (2-17) follows:

xij =xi(tij)+6ij,1,...,n,j= 1,...,ml-. (2-18)

In Figure 2-1, the interpolation (Eq. (2-17)) and smoothing (Eq.
(2-18) approaches are illustrated by fitting a set of random values
simulated within the continuous interval ' = [0,20]. As can be seen, the
interpolated curve (dashed blue line) cross exactly at the raw data points
(measured values). The interpolation can lead to overfitting of data, and
for spectroscopic techniques where usually some noise is introduced in
measurements, the interpolated spectral data result in rough curves
exhibiting strong frequency oscillations. This kind of approximations not
only hinder the spectral data interpretation, but also the affects the
robustness in regression analysis due to the included random noise in the
fitted curves. On the other hand, the smoothing approach (green line)
provides a flexible approximation of the raw data points that allows to
reduce the noise contribution in measurements and highlight the main
trends in the fitted curves.
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Figure 2-1. Illustration of an interpolated function vs a smooth function from a set of
values discretely observed over continuum (raw data).

For both cases, interpolation and smoothing, the functional form can

be estimated by considering the sample curves as linear combinations of a
basis of functions, which is known as basis expansion methods.

2.3.1. BASIS EXPANSION

Let us consider a set of sample functions {x;(t):t€T,i=
1,...,n}, which are related to a functional variable X, belonging to a finite

dimension space generated by an orthogonal basis
{(l)l(t), b, (t),..., (I)p(t)}, in this case we can express X;(t) as follows:
m
() = ) andi(®),t€T,i=1,..m, 2-19)
k=1

where x;(t) is the estimated sample cutve, a;, are the basis coefficients
and ¢y (t) are the basis functions considered for the basis expansion.

This is the fundamental equation for FDA but there are two further
points that must be addressed: How to estimate the basis coefficients? and,
which basis functions should we use? Regarding to the second question,
basis functions should be considered according to the data characteristics.
Then, once the appropriate basis is chosen, the simplest approach to
estimate the basis coefficients is by Ordinary Least Squares (OLS), but we
will come back to this later.
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This thesis focuses to those approaches based on B-spline bases,
since they provide with easy computability of polynomials with great
flexibility and fit for changing local behaviour. B-splines will be addressed
in more detail below, but a more complete review and comparison of
existing methods for the approximation of smooth curves with B-spline
bases can be found in [98]-[100]. Other basis functions commonly used
in practice are the Fourier basis for periodic data, and wavelet bases for
data with discontinuities or strong local behavior. For more detailed
information about these basis functions, among others, the reader can
refer to [92], [101].

2.3.1.1. B-SPLINE BASES

A B-spline bases of degtee h and order h + 1 generates a space of
splines with the same characteristics (order and degree). A spline of degree
h is a function that is basically constructed by joining smoothly
polynomials of the same degree end-to-end (piecewise polynomials) at a
set of defined points T; € T called knots (also known as break points or
nodes), so that the adjacent polynomials must match in their derivatives

up to order h — 1.

Let us consider a set of knots (Tg, Ty, ..., Ts—1, Tg) such that T;_; <
7; for I = 0,..., s, such that the interval T is divided into s subintervals,
with the two outside knots (g, Ts) defining the interval T and the internal
knots (Tq,...,Ts—1) defining the s subintervals. Then, for an extended
partition T_3 < T_p < Ty <Tp <...<Tg < Tgyg < Tgpz < Tg4z Of
T, the B-spline basis of order h + 1 is defined iteratively defined by [102]

t— T Ti+h-1 — L
Bipi1(t) = Byp(t) + B1i1p(t)
Ti+h—2 — T1-2 Ti+h-1 — T1-1 (2-20)
h=12,...;1=-1,0,...,s — h + 4,
with

1 15, <t<T1_
B, . (t :{ -2 =0T
11(®) 0 in other case

In Figure 2-2, two examples of B-spline bases defined on the

,l=-1,01,...,s + 4. (2-21)

continuum [0,1] with a basis dimension equals 10 are shown: B-spline
basis functions of order 2 (at the top), and a B-spline basis functions of
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order 4 (at the bottom). The basis dimension and the number of knots of
a B-spline bases are related by the following formula [102]

number of

j j = ord b knots —2. (222
basis functions order + number of knots (2-22)

In particular, the Cubic B-spline bases provides us with the expected
smoothness fit for our data. A cubic B-spline bases generates the space of
splines of order 4, with piecewise polynomials of degree 3 joining up
smoothly in a set of knots with continuity in their derivatives up to order
2. Let us observe that, according to Eq.(2-22), the dimension of the cubic
B-spline bases equals to the number of internal knots plus 4 (order) or
equivalently s + 3.

1

0.8
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0.4
0.2

0

1

0.8
0.6
0.4

0.2

-
0 - - - - £ .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
t

Figure 2-2. B-spline basis of order 2 and 4 are shown at the top and bottom,
respectively.

2.3.2. REGRESSION SPLINES

As mentioned above, once the basis functions are defined, the
simplest approach to estimate the basis coefficients a; of Eq.(2-19) is by
least square criterion. For the case of B-spline bases, such approximation
is known as Regression splines.

Let us rewrite Eq. (2-19) in its matrix form x;(t) = a;¢(t), where
a; = (ay1,.-.,Q;m)" are a vector containing the basis coefficients and
() = (Pp1(t),..., Pm(t))" are the basis functions, which in our case,
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will be a cubic B-spline bases. In the simplest way, the basis coefficients
a; are obtained by OLS method, minimizing the Mean Squared Error
(MSE) [103]

MSE (a;|x;) = (x; — ®ia;)" (x; — Piay), 2-23)

!
where x; = (xil: . "'ximi) are the measured values of the i-th
observation, and ®; = (¢k(tij))m-><m is a matrix comprising the basis
i
functions observed at arguments ¢;;. Thus, taking partial derivatives of

Eq. (2-23) with respect to a;, and setting derivative equals to zero as
follows

d
%(xi - ®;a;) (x; — P;a;) = 0, (2-24)
L

the estimate of @; which minimizes the mean squared error is given by
a; = (P;P;) 1 djx;. (2-25)
Then, the fitted values for the x; measured values are given by the vectors
X = @;8; = Oy(P; D) Dix;, (2-26)
and the fitted curves (functional form) are given by
Z@®)=apt) vi=1,...,n (2-27)

An important observation working with the regression splines, is that
smoothness of the fitted curve is directly determined by the number m of
basis functions (dimension of the orthogonal basis), which is related to the
number of knots by Eq. (2-22). The influence of the number of knots in
the smoothness of the fitted curves is illustrated in Figure 2-3, which
shows the fitted curves from a set of measured values using different
number of knots. If the number of knots is too large, an overfitting of the
data might occur, introducing noise in the fitted curve. In contrast, if too
few knots are provided, relevant information could be omitted by the
fitted curve, which is known as underfitting.
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Figure 2-3. Fitted curves by regression splines using cubic B-spline basis defined on 0,
8, 15 and 18 equally spaced knots.

Therefore, defining the number of knots is a very important decision
applying regression splines. In this sense, researcher must define the
number of knots according the desired fit for the data under study. For
cases in which researcher does not want to highlight a specific shape for
estimated curves or has no prior knowledge about the data, the number
of knots can be chosen by using the Leave-One-Out Cross Validation
(LOOCV) method (see below).

2.3.2.1. LEAVE-ONE-OUT CROSS VALIDATION (LOOCYV)

The LOOCYV is a resampling method very helpful for choosing the
ideal number of knots which best fits the data. The LOOCYV provides with
an error measure based on the estimation of the Root Mean Square Error
(RMSE) for the fitted curves at each measured point t; as follows

n
1
CV(g) == CViCa), e
i=1
where
m;
s—i)?
V@) = | (xy-2)) [+, 229
=0
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with g as the number of knots, m; as the total number of points ¢;; in

which the i-th observation has been measured, and x; ]] being the values
of the corresponding fitted curve for the i-th observation at points t;;

avoiding the j-th point in the iterative estimation process.

The LOOCYV method is computationally expensive and for cases in which
data is observed in a large set of points t; might not be the best choice.
This problem is alleviated by an alternative approach for sample curves
approximation called Penalized splines (P-splines).

2.3.3. PENALIZED SPLINES (P-SPLINES)

The P-splines are an alternative approach to regression splines
reducing the dependency between the number of knots and the
smoothness of the fitted curve. The P-splines comes from a discrete
penalty approach based on d-order differences between adjacent B-splines
coefficients [104]. It is also important to note that for P-splines estimation,
unlike the regression splines, the knots must be equally distributed along
the continuum J'. The basis coefficients a; for P-splines are estimated by
adding a penalty term, involving a smoothing parameter, in the least
square’s formula shown in Eq. (2-23). Hence, the basis coefficients are
computed to minimize the Discrete Penalized Mean Squares Error
(DPMSE) as

DPMSEd(ai|xL-) = (xl- - Cbial-)’(xl- - CI)l-al-) + Aa{Pdai, (2-30)

where A is the smoothing parameter, and Py = (Ad)’Ad with A% as the

matrix of d-order differences. In practice, d = 2 is the most usual value,
and then, the matrix of 2-order differences is given by [98]

1 -2 1 0 0

-0 1 -2 1 0

0 0 1 -2 1 @b
: : : : : (m-2)xm
Finally, the basis coefficients a; are estimated by
&i = (CD:CDL + APd)_ICD{xl-. (2-32)

Let us observe that the smoothness of the fitted curve according to
Eq. (2-32) is controlled and directly proportional to the smoothing
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parameter A, and the number and location of the knots are not so
determinant factors as in regression splines case. In practice, Ruppert’s law
of thumb is usually considered to select the number of knots: one knot for
every 4 or 5 observations up to a maximum of 40 knots [105].
Nevertheless, working with a small sample size, the Ruppert’s law it is not
always the best way to define the number of knots. On the other hand, if
we want to highlight characteristic shapes at specific points t;, the
flexibility provided by the regression splines for the arbitrary location of
the knots, might represent a desired scenario. In this sense, the knots can
be strategically fixed at the most contributing frequencies in terms of
sample curves variability. Regarding the smoothing parameter, we will
introduce the Generalized Cross Validation (GCV) method to find the
optimal value of A.

2.3.3.1. GENERALIZED CROSS VALIDATION (GCV)

The GCV method [106] will be considered in this thesis as selection
criteria choosing the optimal value for the smoothing parameter A. The
GCV method estimate 4 so that minimizes the following expression [98]

n
1
GCV(A) = ;Z GCV,(D), (2-33)
i=1

where

GCV )[ _ (ml- + 1)_1MSEl' (2_34)
D = Do — HO?

m;
1 2
MSE; = ;Z(xi i— %) (2-35)
j=0
and H; = @;(D]®; + APy) 1D,

Both methods LOOCYV and GCV can be used estimating the A value,
being the last one simpler in computational terms. A simulation study
comparing both approaches was developed in [98, pp. 30-34]. The P-
spline approach as well as LOOCV and GCV are useful when researcher
does not seek to highlight any special feature or tend by the fitted curves.
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2.4. FUNCTIONAL PRINCIPAL. COMPONENT
ANALYSIS

A challenge developing new applied spectroscopic techniques in
biomedical engineering is that experimental tests usually involve small
sample size due to high costs, limit access or difficult handling of the
sample (in our case, mice). The sample size is an important factor to take
into account in the statistical analysis, and for a small sample size
regression models are not feasible. An alternative approach is to
addressing this kind of studies as unsupervised learning problems, being
the Blind Signal Separation (BSS) techniques such as Independent
Components Analysis (ICA) [107] and Principal Component Analysis
(PCA) [108], the most commonly used working with a set of mixed signals.
The unsupervised techniques are characterized by providing a
mathematical modelling of data without a priori information of the sample
population.

The Functional Principal Component Analysis (FPCA) is the
extended version of the well-suited multivariate PCA to the framework of
the FDA [92, Ch. 6]. The FPCA provides an easy way of looking the main
sources of variance contained in the sample curves by synthesizing such
variability into a small set of uncorrelated functions, known as Functional
Principal Components (FPCs). Obtaining a reduced set of uncorrelated
variables that efficiently summarize the contained variance in original data
allows for dimension reduction and can be wused to prevent
multicollinearity problems in regression analysis.

For the FPCA formulation, we will consider a set of sample
functions {x;(t): t € T,i = 1,...,n} of a random functional variable X,
meeting the three hypothesis (Hy, H, and H3) stablished in section 2.1.1,
and it will be assumed without loss of generality that the sample functions
are centered, implying that X(t) = 0, i.e. the sample mean, defined in Eq.
(2-13), equals 0. Working with the centered sample functions ensures that
maximizing the variance of the principal component is equivalent to
maximizing their sample variance. Then, the FPCs are estimated as
generalized linear combinations of the sample curves, uncorrelated and
with maximum variance. In general, the j-th principal component scores
are given by
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¢ = J x; ();(H)dt, (2-36)
T

where f; is the weight function or loading associated to the j-th principal
component. The loadings are computed such that maximize the most
important modes of variation of the sample functions under
orthonormality conditions as follows

md:jlx var [in(t)l/)(t)dt]

s.tlYll? = Land (W), ;) =0,V j # 1

with the estimated principal components scores & verifying that

E[¢]1=0, war[§]=4, cov[¢;,é]=0. (2-38)

As demonstrated in [109, pp. 15-19], the solution for Eq. (2-37) is
given by the eigenfunctions associated to the spectral decomposition of
the sample covariance operator, defined on Eq. (2-9). The Spectral
Theorem provides a spectral decomposition of the sample covariance
operator (compact, self-adjoint and positive linear operators), such that

[e(£)]@® = A9 (0), (2-39)

with {/1]-} being a sequence of positive non-null numbers in decreasing

(2-37)

)

order, known as eigenvalues, and {1,[)]} being an orthonormal basis
associated to the eigenvalues, known as eigenfunctions. Then, the
estimated eigenvalues and eigenfunctions of C, are the corresponding
variances and loadings of the FPCs.

As will be seen further on, the scores of the FPCs can be used for
clustering analysis on the sample curves ecither by scatterplots, in the
simplest way, or using clustering algorithms based on partitioning or
hierarchical methods, among others [110]. The data clustering occurs
when some observations are somehow related, and such relation is not
shared by all the observations in the population. The relations between
resulting clusters using the scores of the FPCs can be studied by
interpreting their corresponding loadings.
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2.4.1. APPROXIMATION OF THE FPCA SOLUTION

The FPCA until now has been developed in terms of continuous
functions, but it is well known that in practice, involved computations
must be performed in matrix form. To this end, the FPCA will be
estimated by expressing the loadings of the FPCs in terms of the basis
functions employed in the basis expansion of the sample cutrves (see
section 2.3). Thus, as shown in Eq. (2-19), the corresponding loading to
the j-th FPC can be expressed as a linear combination of the basis
functions

[0 =) bi(®), e4)
k=1

where bji are the corresponding basis coefficients. Considering basis
expansion of both sample cutves Eq. (2-19) and the loadings Eq. (2-40) in
their matrix form as shown in Eq. (2-27), the variance of the FPCs defined
in Eq. (2-36) can be expressed as follows

var[é] = var U xi(t)f(t)dt] = b'PVW¥b, (2-41)
T

where V. =n"14'A, being A = (aij)nxm a matrix containing the basis
coefficients of the sample curves and Wy xm = fT ¢i(t)¢;(t) dt a matrix

containing the inner products between the basis functions. Consequently,
as formulated in [111], the FPCA problem defined in Eq. (2-37) is

equivalent to the multivariate PCA problem on the matrix AWY2 and the
basis coefficients of the loading functions associated to the estimated

FPCs are given by F = W12y with F being the matrix comprising the
basis coefficients of the loading functions and U is a matrix whose
columns are the associated eigenvectors to the sample covariance matrix

of ALP1/2, estimated as follows:
nTIWL2Q AW/ 2y = u. (2-42)

See [111] for more details.

N35N



2.4.2. ORTHOGONAL REPRESENTATION OF A
STOCHASTIC PROCESS

Other relevant result is that the theoretical framework behind the
FPCA allows the applicability of the Karhunen-Loeve (K-L) expansion
presented in [96] as an harmonic analysis technique for functional data.
The K-L expansion supports that the sample functions can be expressed
in terms of the FPCs, and in fact, it can be realized using a truncated
number q of the FPCs as follows:

q
206 = %(O) + ) £y(O). e
=1

wherte £;(t) is the approximated function by the K-L expansion, and X (t)
is the sample mean function (Eq. (2-13)). Such reconstruction will be the
best linear approximation of the sample cutves X;(t), in the least squares
sense, and the total explained variance corresponds to the sum of the
contributed variances by the q first FPCs used

q
var (xiq ) = Z A;. (2-44)
i=1

Such K-L reconstruction is illustrated in Figure 2-4, where two
interpolated sample curves, corresponding to two spectrums chosen
arbitrarily from a spectral data set, are accurately approximated, as shown
in Eq. (2-43), using the first two principal components accumulating a
99.69% of explained variance of the spectral data set.

The K-L reconstruction is an interesting and powerful statistical tool
that can be used for generating (limitless) synthetic sample functions [112],
[113]. In this way, new sample data can be simulated without the need to
experimental replications. This approach can be implemented, from a
moderate size sample, by fitting a probability model (distribution of
probability) to the corresponding scores of the principal components used
in the K-I. reconstruction. Then, new score values can be simulated,
considering the fitted probability model, to synthetize sample functions
according to Eq. (2-43). In this sense, the generated curves will preserve
the original variability captured by the FPCs from the measured sample
data.
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Figure 2-4. Two interpolated sample curves (black lines) with their corresponding K-L
reconstruction using the first two principal components with an accumulative explained
variance of 99.69%.

2.5. FUNCTIONAL LINEAR REGRESSION

As in the MDA framework, linear regression models have been
constructed in the FDA framework (functional regression) for relating one
or more variables (as covariates or predictors) to a response variable. The
Functional Linear Model (FLM) can be generally categorized into three
types of functional regression depending on the nature of the predictors
or the response variable [94], [114]: modeling a functional response
variable by functional predictors (Function-on-function regression),
modeling a functional response variable by scalar predictors (Function-
on-scalar regression), and modeling a scalar response variable by
functional predictors (Scalar-on-function regression). The Scalar-on-
function regression is the most common scenario in functional regression
problems and can be addressed by linear, non-linear, and non-parametric
approaches [115]. In particular, the supervised statistical analysis
performed on the spectral data presented in this thesis is based on Scalat-
on-function linear regression.

Let us consider a sample data consisting on an independent and
identically distributed (iid) sample of random pairs (x;(t),¥;),i =
1,...,n, where {x;(t): t € T,i = 1,...,n} are a set of observations of a
random functional variable X' = {X(t):t € T}, meeting the three
hypothesis (Hq, H, and Hj) stablished in section 2.1.1, and {y;:i =
1,...,n} the associated sample of the continuous (Gaussian) scalar
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response variable Y. Then, the FLM for Scalar-on-function regression is
expressed as

yi=a+ fxi(t)ﬁ(t)dt +e¢, i=1,...,n, (2-45)
T

where @ is a scalar intercept, B(t) is the functional parameter of the
regression model, and €; are iid errors with zero mean. As observed in
[115], the functional parameter f can be naturally interpreted, being the
locations t with largest | 8 (t)| the most influential to the response variable.
The FLM is also extended for the case of non-Gaussian response
variables, known as Generalized Functional Linear Model (GFLM) [116],
relating the functional predictor and the response variable by using a link
function g(+), modelled as follows

HEGD) = a+ f x(OBDL. 246
T

A classic example of a link function g(*) is the logistic link commonly
used modelling a Bernoulli variable (binary response variable) by the
Functional Logit Model. The Functional Logit Model will be addressed in
more detail below.

In order to estimate the FLM, a common general approach is
assuming the basis expansions, as defined in Eq. (2-19), of both the sample
functions x; (t) and the functional parameter (t) in Eq. (2-45) such that

Y =a+ f X(®OB(t)dt = al + APD, 2-47)
T

where 1 is a unit vector of length 1, Ay xm is the matrix containing the
basis coefficients of the sample functions, Wy, xm @ matrix containing the
inner products between the basis functions, and bpxq is a vector
containing the basis coefficients of the functional parameter. Let us
observe here that the number of basis functions used in the basis
expansion of sample functions and the functional parameter do not
necessatily need to be the same. Then, Eq. (2-47) implies that the FLM
can be reduced in a standard multiple regression problem with [1 AW] as
the design matrix and (@, by, ..., by,) as the regression parameters.
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2.5.1. FUNCTIONAL LLOGIT MODEL

A very common approach developing new spectroscopic techniques
for medical diagnosis is the statistical classification problem. This kind of
problems are widely modeled by logistic regression in many research fields
such as sociology [117]-[119], finance [120]-[122] and medicine [123]-
[126], since allows to model the probability of occurrence of an event from
a set of predictors, and the predictors contribution can be quantitatively
studied in terms of the odds ratio [127], as will be shown later.

The Functional Logistic Regression (FLoR) is the extended version
of the multivariate logit model in the FDA context, and it is a particular
case of the GFLM in which the sample functions x;(t) ate related to a
qualitative variable with two possible outcomes y; € {0,1}, with 1
indicating the occurrence of the event. Let us consider, without loss of
generality, a set of sample functions {x;(t):t €T,i=1,...,n} of a
centered random functional vatriable X, and a binary scalar response
{yi:i=1,...,n} associated to them. Then, the FLoR model is
formulated as follows

yi=7'[l'+€l', i= 1,...,71, (2-48)

where y; € {0,1} is the corresponding outcome to the i-th observation
x;(t) of the centered functional variable X (t), €; are iid errors with zero
mean, and 7; is the expectation of Y given x;(t) modelled as

m; = PIY =1|{x;(t):t € T}]
expla + [ x, (OB dt} (2-49)
,i=1,...,n,
1+ exp{a + [, x,()B(t) dt}

with @ a real parameter (intercept) and B(t) a functional parameter.
Equivalently, considering Eq. (2-49), the FLoR model can be seen as a
FGLM with the logit transformation as the link function as follows

L o= 1 ”i]
Lo nl—TL'l'

a'+fxi(t)ﬂ(t)dt, i=1,...,n
T

(2-50)
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2.5.1.1. FLOR MODEL ESTIMATION BY FPCSs

As stated eatlier, a common approach estimating Eq. (2-50)
considers the basis representation of the sample functions x;(t) and the
functional parameter B(t), resulting in standard multivariate regression on
the design matrix [1 AW], however, the way in which the matrix AW is
obtained leads to multicollinearity problems in the FLoR [128]. This
problem is alleviated by using the K-L expansion (see Eq. (2-43)) for the
sample functions and estimating the functional parameter in terms of the
loadings associated to the FPCs. This alternative approach, proposed in
[128] as Functional Principal Component Logistic Regression (FPCLoR),
is based on introducing a set of FPCs as predictors for the FLoR model
estimation. Considering a reduced number of FPCs, estimated according
to Eq. (2-36) and Eq. (2-37), as uncorrelated predictors not only prevents
multicollinearity between covariates of the FLLoR model but also reduces
the dimensionality of the regression problem.

In the FPCLoR model, Eq. (2-50) can be equivalently expressed in
terms of a multivariate logit model with the scores of the first ¢ FPCs as
predictors as follows

q
li = (Z+ZEUYJ, i=1,...,n, (2-51)
j=1

with its matrix form given by
L= al+Ty, (2-52)

where L = (Iy,...,1), 1 is a unit vector of length n, @ is the intercept,
= (fl f)an is a matrix comptising the columns of the first ¢ FPCs, and

y is the vector containing the model coefficients.

Regarding the estimation of the functional parameter [(t), let us
replace &;; in Eq. (2-51) by Eq. (2-36) as follows
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li = a+

q
]j=

( fT xi(t)w,-(t)dt> v,

q
a+fxl-(t) zwj(t)yj dt, i=1,...,n,
T =

1
(2-53)

and according to Eq. (2-50), an expression of B(t) is obtained in Eq.
(2-53), in terms of the loading functions 1;(t) associated to the first q
FPCs, and the model coefficients ;. Then, considering the basis
expansion of f(t) and fj(t), the basis coefficients f = (cq,...,¢p)" of
the basis expansion of the functional parameter can be estimated by g =
F imxq)Y (qx1)> Where F is a matrix whose columns correspond to the basis

coefficients of the loading functions associated to the first ¢ FPCs (see
2.4.7).

The number q of the FPCs to be taken into account in the FPCLoR
model estimation is a fundamental question addressed in [128], with the
variance of the estimated functional parameter as the criterium for model
selection. In [98, Ch. 3], a double-GCV procedure for selection of
optimum number q is presented and studied for different estimation
approaches of the FPCLoR model.

2.5.1.2. FUNCTIONAL PARAMETER INTERPRETATION

A significant additional contribution of the FLoR model, compared
to other regression models, is the interpretation of the functional
parameter B(t), which is also achieved in the FPCLoR model. The
estimated functional parameter represents the discriminating relation
between the response variable Y and the functional predictor X (t),
providing a qualitative interpretation of such relation. Furthermore, as
mentioned above, such relation can be also quantitatively studied in terms
of the odds ratio [127]. The odds of a determined outcome “A” is
interpreted as the chances of A occurs and is defined as the ratio between
the probability of occutrence of P (A) and its complement 1 — P (A), i.c.
the probability of absence of A. Then, the odds ratio is used as a measure
of the relationship between the odds of two outcomes [129], and can be
used to quantify the influence of a factor associated to the outcome A, e.g.
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considering that A is the probability of being diagnosed as diabetic and
the sugar consumption is a determining factor (predictor), then, the odds
ratio can be used to compare the odds of being diabetic according to the
sugar consumption.

Let us consider the logit transformation [; for a specific sample
observation x;(t) as shown in Eq. (2-50), and [ be the resulting logit
transformation for the same x; (t) increased in a constant way by a factor
K within a period [tq, to+n] S T as follows x;(t) = x;(t) = x;(t) +
IA(t)=h(t) ' K, with

1 sit€ [t tosnl
Izty=n(t) = ) (2-54)
0 other wise

such that
I} =a+ L[xi(t) + (IA(t)=h(t) : K)]ﬁ(t) dt. (2-55)

Then, the odds ratio for [; and [; is given by

*

T[l
11—~ to+h
ln[ ni”‘L f K - B(t) dt. (2-56)
| T=m] ™

This means, that a constant increment in K units in a fixed interval for
x;(t) increases the odds of y = 1 against y = 0 by a factor of the same
magnitude. In spectroscopy applications, the factor K may concern to a
variation in the response of the optical properties such as reflection and
transmission of the sample under study either in the whole measured
frequency band or at specific sub frequency intervals. The interpretation
of the functional parameter of the FPCLoR model B(t) in terms of the
odds ratio is very useful since allows to quantitatively study the impact of
the measured spectral response in diagnosis of a disease when developing
new biomedical spectroscopic techniques. Furthermore, interpretation
can be used to detect major contributing frequencies for diagnosis since
can be estimated for specific frequency intervals within the measured
frequency band.
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As it can be inferred, the smoothness of the fitted sample curves,
addressed in section 2.3, can have important effects on the regression
relation, and consequently, influences the interpretability of the FPCLoR
model. This issue will be discussed later during the spectral data analysis.

2.6. LONGITUDINAIL FUNCTIONAL DATA
ANALYSIS

So far, only statistical methods for analysis of functional data
involving independent sample functions has been introduced. The
functional data becomes structurally dependent between observations
when sample population is repeatedly observed during the study. This
scenatio naturally emerges in longitudinal studies, based on spectroscopic
techniques, in which the sample population is repeatedly assessed at
different times over a period. A common approach in longitudinal studies
is to understand better the evolution of chronic diseases, their risk factors,
and find indicators for their progress prediction. Some examples of the
applications of longitudinal studies are Alzheimer’s disease [130], [131],
Diabetes Mellitus [132], [133] and Multiple Sclerosis [134], [135]. In this
sense, the longitudinal spectral data usually consist of profiles or images
collected on the same subjects over several visits.

Traditionally, the longitudinal spectral data is analyzed by combining
summary statistics and mixed effects models [136]—[138] but this strategy
may miss important sources of variability within subjects profiles or
images. Similarly, the FDA methods described above ignores the
longitudinal structure in the collected spectral data from longitudinal
studies. These two aspects have led to the development of novel FDA
methods for Longitudinal Functional Data Analysis (LFDA).

In the LFDA, the longitudinal spectral data is addressed as
longitudinal functional data by considering the time variable associated to
the sample functions. The LFDA focuses not only on the study possible
of relations between the measured spectral response and the target
pathology, but also on the variations or trends of the measured spectral
response within dependent observations, that may be related to different
states of the target pathology at the evaluation times.

In this section, some statistical methods for LFDA will be briefly
described. Firstly, a variance decomposition method for longitudinal
functional data, called Longitudinal Functional Principal Component
Analysis (LFPCA), based on mixed effects model and eigenanalysis is
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introduced. Then, different approaches for longitudinal scalar-on-
function regression, in which the scalar response variable and the
functional predictor are measured longitudinally, will be mentioned.
Additionally, the regression approaches will allow to consider both
functional and scalar predictors simultaneously.

2.6.1. LONGITUDINAL FPCA (LFPCA)

As can be deduced, the LFPCA extends the FPCA to the LFDA.
The main idea behind the LFPCA, introduced in [139], is to extract the
main differences between subjects’ average profiles (between-subjects
variation) and the subjects profiles evolution over time.

Let us consider a set of sample functions {xij t):teT,i=
1,....nj=1,.. .,]i}, with 1 as the total of subjects and J; the number
of visits recorded for the i-th subject. Let us observe that LFPCA
addresses the case in which longitudinal functional data involves some
subjects with at least three visits, and cases in which J; < 2 were fully
addressed by the multi-level case [140], [141]. A significant advantage of
LFPCA working with experimental measurements such as clinical trials is
that subjects has not to be necessarily assessed at the same number of
visits or at the same visits (unbalanced data). Other advantage is that
LFPCA allows to work with sample curves that have missing values.

In order to estimate the LFPCA, the longitudinal functional data is
modelled by a functional random intercept and random slope model [139]
as follows

x;j(t) = n(t, Tij) + Bio(6) + B (T + Uy (6) + &;(1), 25D

where r](t, T; j) is an overall fixed mean surface, Tj; is the standardized
time of visit j for subject i, B; o(t) and B; ; (t) ate the functional intercept
and functional slope for subject i, respectively, U;;(t) is a visit-specific
functional deviation from the functional trend of subject i, and &;; (1) is
white noise error with variance ¢?2. In addition, B;(t) =
{Bi,o (t)'Bi,l(t)}> U;;(t) and &;(t) are assumed to be centered square-
integrable and mutually uncorrelated random processes on J'. Thus, the
bivariate process B;(t) captures the between-subjects variation, U;;(t)
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captures the within-subject variation among visits and &;(t) captures
random uncorrelated variation within each sample curve.

Then, the principal components scores are estimated as zero-mean
uncorrelated random variables using the eigen decomposition of the
corresponding covariance operators Cy and Cp to the random processes
U(t) and B(t) respectively. In general, the principal component scores
related to the between-subjects variability, captured by the B(t) process
are given by

i = f Bio(O(0)dt + f Bo1(Dh(dt, @55
T T

where YE(t) = {Il),g(t), Iﬁ,}f(t)}, are the ordered eigen functions of Cg,
corresponding to the non-null decreasing eigenvalues {A;}. Similarly, the
principal component scores related to the within-subject variability,
captured by the U(t) process are given by

ijk = LUij(t)llecj(t)dt' (2-59)

where P (t) are the eigen functions of Cyy corresponding to the non-null
decreasing eigenvalues {vy }.

Similatly to the FPCA, the functions % (t) = {1/),2 (), Y (t)},and
YY(t) can be seen as the loadings of the principal components and
correspond to the largest variation modes in processes B(t) and U(t),
respectively. The estimated subject-specific scores § and {jji allow to
study the possible relations between the measured spectral and the status
of the target pathology over visits or other collected variables during the
clinical trial.

Estimates of the principal component scores & and jjj are
obtained by considering finite-dimensional approximations of the B(t)
and U(t) processes (K-1. decomposition) as follows
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Np
Bio(t) = ) &uthi(®),
k=1
Np
Bia(0) = ) &ahk(®), 260)
k=1

Ny
Uy(®) = ) G ().
k=1

Thus, the functional random intercept and random slope model shown in
Eq. (2-57) can be expressed as a linear mixed model as follows

Ny

Np
xy(© = n(6Ty) + ) EaVGwk(©) + ) Gl © +ey(0, 6
k=1 k=1

with Vl] = (1, Tl]),

The number of principal components Np and Ny used in Eq. (2-60)
are chosen by considering the total proportion of explained variability
captured by the K-L reconstruction. The explained variance can be

interpreted in terms of the estimated eigen values {4 } and {9}, only if
the time variable Tj; is standardized to have zero mean and unit variance
as follows

N 3 N ~ PN
Zkgl /1k + Zkgl Uk + 02
1
/s var|x;;(t)] dt

For simplicity, and as stated in [139], the LFPCA approximation
process for principal component scores estimation according to Eq. (2-61)
is summarized in five steps:

(2-62)

1. 'The overall fixed mean surface n(t, Tij) is estimated using a
bivariate smoother in t and T under the independence assumption
x;(t) = n(t, Tl-j) + &;(t) considering P-splines smoothing with
Restricted Maximum Likelthood (REML) estimating for the
smoothing parameter [142].
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2. The covariance functions associated to the random processes
B;(t) = {Bi,o (v), Bi,l(t)} and U;;(t) are estimated from the
residuals x;; () — A(t, T;;) using linear multiple regression on the
cross-products x;;(£)x; ;7 (s) with interaction effects to consider
the time variable T.

3. Bivariate smoothing is applied to the “raw” covariance functions
estimated from previous step and, the estimate of 2 is based on
the residuals between the raw and smoothed covariance functions
from U process.

4. Spectral decomposition of smoothed Cy and Cp are obtained by
eigenanalysis, and their estimated eigenfunctions are used as the
basis functions for K-L reconstructions of Bjo(t), B;1(t) and
U;j(t) processes as shown in Eq. (2-60).

5. Finally, the principal component scores &;x and {jjy are estimated
as the Best Linear Unbiased Predictors (BLUPs) of the linear
mixed model shown in Eq. (2-61).

For more details about the LFPCA theory and estimation, the reader
can refer to [139].

2.6.2. LONGITUDINAL SCALAR-ON-FUNCTION
REGRESSION ANALYSIS

In this section, two novel models for longitudinal scalar-on-
functions regression will be briefly introduced: Longitudinal Penalized
Functional Regression (LPFR) and Longitudinal Functional Principal
Components Regression (LFPCR), with two different approaches for the
LFPCR model. These models address the regression problem in which a
scalar variable is related to a functional variable, and both are measured
longitudinally. Additionally, it allows to consider more than one functional
predictor, that can be observed on different domains, and multivariate
scalar predictors can be included in the model’s estimation. This is a very
useful and interesting approach analyzing data from clinical studies in
which both spectral data and clinical variables can be related to the
response variable. The LPFR and LFPCR models estimation is based on
the mixed-model framework [143]—[146].
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Let us consider a sample data set with following structure
[yij,xl-jl,xijz,...,xl-jK,Wl-j], i=1,....,n,j=1,...,]J;, where n is the
total of subjects, J; the total of visits recorded for subject i, x;j;(t) €
L£2[0,1], 1 < | < K are functional predictors (not necessarily observed
over the same domain), W;; is a row vector of scalar predictors, and y;;
the associated scalar response. Then, the LPFR model [147] is given by

K 1
Q{E(yij)} = Wiy + Zijb; + Zf xij1 () B (t)dt (2-63)
1=1"0

where y is a vector containing the standard fixed-effects coefficients
related to the scalar predictors Wyj, Z;j is a vector modelling random
intercepts (accounting for repeated observations), b; is a vector containing
the standard random-effects coefficients, and [; are the functional
coefficients related to the functional predictors. Thus, the scalar
coefficients y and the functional coefficients [§; are fixed effects that do
not vary among visits and the subject-specific effects are modelled by the
component Z;;b;.

The approximation process for LPFR model, shown in Eq. (2-63), is
summarized in two steps:

1. K-L reconstruction of the functional predictors is obtained by
using the spectral decomposition of their corresponding
covariance operators C; as follows

Ny
xi(®) = 1O + ) Eyubu(O)dt eoh
k=1

where p; (t) is the mean function estimated for the [-th functional
predictor, {l/)ll(t), oY, (t)} are the eigenfunctions
corresponding to the spectral decomposition of C; with associated
eigenvalues Ay = Ay 2.2 Ay, and agjp = fol(xl-ﬂ(t) -
,ul(t))l,blk (t)dt are the principal component scores
corresponding to the [-th functional predictor.
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2. Then, basis expansions (see section 2.3.1) of the functional

coefficients 3 (t) using spline basis {(,‘bll ), pr2(0), ..., ¢lNB (t)}

are considered, such that
Bu(®) = ¢1(Dcy, (2-65)

!
with ¢; = (cll,...,cu\,ﬁ) .

Thus, the functional term in Eq. (2-63) can be rewritten as follows

1 1
J;) xip(Op()dt = ap + 1T Uo ¢l(t)¢{(t)dt] 2! (2-66)
= qa + Fll‘PlCl

where a; = fol w B ()dt, I; = (";iﬂ)lxNx with I = Y7L, J; is 2 matrix
comprising the principal component scores for all observations, [
corresponding to the [-th functional predictor, and W} is a (N, X Ng)-
dimensional matrix containing the inner products between the
eigenfunctions ; and the basis functions ¢;.

Thus, the LPFR model can be estimated by using standard mixed
effects models, with the terms «; incorporated in the overall model
intercept. For more details the reader can refer to [147].

As can be seen in Eq. (2-64), the LPFR model basically decompose the
functional predictors X;(t), as in the FPCA case, without consider the
longitudinal information associated to the sample functions x;j; (t) that

may lead to omit relevant sources of variation. Therefore, two alternative
approaches for LFPCR were proposed in [148] based on LFPCA for
variability decomposition of the functional predictors.

The first approach, which is the more intuitive case, directly uses the
functional principal components scores estimated by LFPCA, with the
LFPCR model given by

K K
Q{E()’U)} = a(Tij) + Wijy + Zijbi + z FIBQl + Z FIU61, (2-67)
l l

where components W;jy and Z;jb; are the same introduced in Eq. (2-63),

[ and T are the principal components scores estimated for B(t) and
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U(t) processes from the [-th functional predictor, and a(Tl- j) is a time-
varying intercept estimated by considering n(t, T; j) (see (2-57)).
The second approach directly replaces the components in Eq. (2-67),

associated to the principal component scores, with the B(t) and U(t)
processes as follows

zK:FlBBl = ZK:fUijl(t)ﬁlu(f)
] ;

K K ’
Ds = Y BuBF®
l l

with B;(t) = {Bi,o (t),Bijl(t)} and U;j(t) processes obtained by K-L
reconstruction, as shown in Eq. (2-60), and the functional coefficients
Bl (t) and BE(t) estimated using P-splines expansions with the
smoothing parameter estimated via REML.

(2-68)

The LFPCR approaches are studied and compared together with the
LPFR model in [148]. One of the LFPCR model advantages over the
LPFR model is that it adds the natural interpretation provided by the
LFPCA on the functional predictors. Other advantage is that LFPCR
model can be applied when the response variable does not change from
visit to visit, for instance, when y;; indicates the presence or absence of a
disease that does not change among visits. Both LFPCR models can be
estimated analogously to the LPFR model using the generalized additive
mixed models. For more details see [147], [148].
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3. MILLIMETER-WAVE
SPECTROSCOPY FOR NON-
INVASIVE SENSING OF
SUSTAINED
HYPERGLYCEMIA
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As briefly introduced in the first chapter, applied spectroscopy takes
advantage of the spectral fingerprint of molecules to characterize the
spectral response of one or more targeted components in a sample under
study. In particular, such characterization is a hard task in high-complexity,
multi-species, scenarios where there is no a-priori information about the
sample or its constituents in terms of their spectral response (absorption,
reflexion and transmission properties), and accurate mathematical
modelling is practical impossible due to their so complex integration. This
kind of scenarios are commonly found when developing applied
spectroscopic techniques in biomedical engineering in which the spectral
interrogation is performed on biological samples with numerous
metabolites and substances resonating at different partially overlapping
frequencies when probed with electromagnetic waves. Additionally, there
are always interferences associated to natural physiological process (body
temperatutre, body fluid shifts and transpiration, among others) affecting
adversely the spectral response.

The superposition of the spectral features from metabolites and
other substances such as water and fat, besides several interferences such
as physiological processes, environmental factors, and intrinsic
spectroscopic instrument noise, make it very difficult to isolate and
quantify (i.e. to estimate the concentration) a specific metabolite within
the biological sample accurately, especially in in-vivo applications.
Therefore, a non-targeted spectral profiling approach is proposed in this
thesis for the evaluation of applied spectroscopic techniques in biomedical
engineering, being particulatly useful at first stages of the development
process. As will be seen, a non-targeted spectral profiling approach can
have great potential to explore and evaluate the applicability of a
spectroscopic technique within a frequency range in which the target
sample has not been characterized, as often happens in biomedical
engineering.

Thus, in this work, and similarly to the principle applied in non-
targeted metabolomics (see [149]—[151]), the biological sample is to be
interrogated throughout a widely frequency range of interest, and the
collected spectral data is to be analysed to study possible relations between
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the measured spectral response and a targeted clinical pathology
(comparing the spectra associated to the target pathology with control
cases), without the necessity to quantify an specific metabolite involved in
the biological sample. This approach is exploited under the FDA
framework, that allows to address the spectral profiles as single entities,
highlighting their main trends, and provides flexible handling of undesired
factors contributions (noise) in the measured spectral response.

Under this two-fold approach (non-targeted spectral profiling
combined to FDA), in this thesis, a mm-wave spectroscopic technique is
proposed and experimentally assessed as a novel non-invasive approach
for in-vivo detection and monitoring of DM. Basically, the proposed
system interrogates the biological sample with a tunable source spanning
the W-band (75 GHz — 110 GHz) using a Continuous Wave (CW)
spectrometer. Thus, a W-band spectral profile is obtained from the
biological sample under study involving the spectral features of all
components of the biological sample that will be processed, analyzed, and
interpreted by using FDA methods.

In this chapter, we briefly describe the current state-of-the-art in DM
and sustained hyperglycemia non-invasive detection. Subsequently some
advantages of the use of THz and mm-wave radiation for biomedical
engineering are described and, finally, the proposed mm-wave
spectroscopic instrument for in-vivo and non-invasive, detection and
monitoring of sustained hyperglycemic metabolism is described in detail.

3.1. DIABETES MELLITUS: TECHNOLOGICAL
ADVANCES AND CHALLENGES FOR NON-
INVASIVE SENSING OF BLOOD GLUCOSE
LEVEL

DM is a very complicated metabolic disorder affecting a great part
of the world population, with almost 500 millions of cases around the
wortld and an expected rate of increase of 51% in the years to come [152].
This chronic disease encompasses a group of complex metabolic
conditions characterized by the continuous presence of high blood
glucose levels (BGL), known as sustained hyperglycemia, due to the
inability of diabetic patients to produce or use insulin adequately [153]. So
far, there is not any kind of cure for DM, and diabetic patients follow-up
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is based on the continuous monitoring of BGL. It is well known that
medium/long-term exposure to sustained hyperglycemia on the body
leads to the formation of Advanced Glycation End-products (AGEs)
[154], [155], resulting from non-enzymatic chemical bonding of free sugars
to proteins or lipids (glycation), which plays an important role in the
development of several and irreversible physiological consequences such
as early aging, cardiomyopathy, nephropathy, retinopathy, and
neuropathy, among others [156]—-[161]. The AGEs are irreversible
compounds that accumulate in the body, but the generation of these
metabolomic end-products go through two previous main stages: the
Schiff base (eatly stage) and Amadori products (intermediate stage), being
both reversible steps in the AGEs formation process [154]. Therefore,
sustained hyperglycemia detection in its earliest stages is critical not only
for DM diagnostics, but also for metabolomic control and supervision of
the patients, facilitating an early intervention to regulate the carbohydrate
metabolism, and consequently, reducing health complication risks.

Nowadays, the well-stablished methods used for diagnosis and
follow-up of DM are invasive (blood samples are required) based on
enzymatic reactions [162]. Some common procedures performed at
hospitals include Fasting Plasma Glucose (FPG) measurements, Oral
Glucose Tolerance Tests (OGTT), and glycohemoglobin tests (Alc or
HbA1c) [163]-[166], that are conducted under well-defined protocols and
standards for diagnostic criteria [167]. These methods involve the two
physiological parameters currently used in medical practice for diabetes
treatment: the instantaneous BGL indicating the concentration of free
glucose in blood at the time of the measurement (FPG and OGTT), and
glycated hemoglobin (HbAlc) presence providing an indicator of the
average blood glucose content over the preceding three months [164]. The
glycated hemoglobin is an example of AGEs resulting from the glycation
of red blood cells (erythrocytes), with an average lifespan of three months.
The HbAlc test was approved in 2010 by the American Diabetes
Association as a diagnostic criteria for DM [168]. In contrast to the
instantaneous BGL,, the HbAlc measure is a more stable and reliable
parameter in diabetes treatment practice because it is not significantly
affected by peaks of glucose presence in blood associated to many
physiological processes such as digestion, exercise, or strong emotions
[169]. However, HbAlc test can be only used for long-term glycemic
control due to his poor time resolution (depends on the lifespan of red
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blood cells) and requires complex equipment only available at specialized
laboratories, being less accessible in low- and middle-income countties.

The instantaneous BGL is the most common parameter used in DM
control introduced in 1962 with the first glucose enzyme electrode [170],
thus paving the way for development of conventional glucometers [171].
The glucometers are widely used at hospitals and allow diabetic patients
to non-continuous self-monitoring of BGLs through finger pricking with
a lancet to extract full blood drops. Other recent minimally invasive
technologies currently available in the market are the continuous glucose
monitoring devices consisting on a wireless receiver, a transmitter, and a
tiny subcutaneous sensor that estimate the BGL by the glucose content in
the interstitial fluid [172]. Some disadvantages of continuous glucose
monitoring devices are that requires frequent calibration using standard
glucometers and provides shifted-in-time BGL measurements of
approximately 5 minutes [173]. In general, these invasive and minimally-
invasive methods for the BGL sensing have significant drawbacks such as
discomfort, they are time-consuming, are based on consumable materials
(resulting in high follow-up costs in long-term use), can be painful (tissue
damage), and may cause infections. All the drawbacks mentioned above
explain somehow the unwillingness of an important number of diabetic
patients to follow completely medical recommendations in DM care [174].

Therefore, there is a worldwide effort to develop new non-invasive
technologies with the aim to provide more efficient methods for
instantaneous BGL monitoring, improve the patients’ comfort and to
alleviate the drawbacks mentioned above. An extensive tevision of current
proposed technologies for non-invasive sensing of BGL, involving
thermal, electrical, and optical methods, can be found in [175]-[177].

Some of these non-invasive techniques are based on transdermal
approaches (considered also for some authors as minimally invasive), such
as bioimpedance spectroscopy and reverse iontophoresis, their actual
performance being considerable affected by variations in tissue water
content and perspiration. Side effects as skin irritation has been also
shown by reverse iontophoresis. Besides interstitial fluid evaluation, which
is the target of these minimally invasive technologies for BGL monitoring
including reverse iontophoresis, there are other proposed technologies of
wearable sensors focused to continuous BGL monitoring (or other DM
biomarkers) by using different biological fluids such as sweat, breath,
saliva, aqueous humour, etc. [178].
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Among the most studied and developed non-invasive optical
approaches are the infrared technologies. The near-infrared spectroscopy
(~215 THz - ~400 THz) offers relatively low-cost materials and allows
for deeper detection of glucose concentrations (low water absorption of
near-infrared radiation) but shows high scattering in tissue and significant
interferences by proteins, fat, hemoglobin, among others biological
substances that have similar absorption properties to glucose molecule
[177], [179]. On the other hand, even though the mid-infrared
spectroscopy (~30 THz - ~120 THz) exhibits less scattering and more
specific absorption bands, the strong water absorption coefficient in mid-
infrared band (poor penetration depth of tissue) makes necessary the use
of powerful sources such as quantum cascade lasers, resulting in more
complex and expensive implementations [180]. Some other approaches
such as photoacoustic, photothermal, occlusion, and Raman techniques
has been proposed to improve infrared technologies deficiencies [181]—
[186]. Other proposed methods ate fluorescence [187], [188], optical
polarimetry [189], [190], optical coherence tomography [191], [192] and
metabolic heat conformation [193], [194].

In general, all the non-invasive technologies proposed for BGL
sensing are influenced by physiological variability and environmental
conditions, affecting their accuracy and consistency, and although the
extent of the problem varies among these technologies, there is still no
completely viable solution compared to current enzyme-based standard
methods, especially for cases in which accurate and frequent monitoring
of BGL is a setious mattet.

Besides the research lines above mentioned, more recent approaches
for non-invasive sensing of BGL has been emerging based on THz time-
domain spectroscopy [195], [196] and microwaves spectroscopy [197]—
[199]. These approaches are motivated by their good interaction properties
with biological media mentioned above, but they are still far from an
operational diagnostic. In particular, the mm-wave spectroscopy (30 GHz
- 300 GHz) has shown great potential for the non-invasive sensing of
BGL, with in-vivo blood glucose monitoring in animal models reported
using Ka-band frequencies (27 GHz - 40 GHz) [200], [201], and the
detection of glucose spikes in humans during an intravenous glucose
tolerance test using transmission measurements at 60 GHz [202].

In this thesis the application of mm-wave spectroscopy (W-band
frequencies: 75 GHz — 110 GHz) is studied as an alternative approach for
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non-invasive sensing of hyperglycemia. It is important to note here that
the actual target of the thesis is not to obtain a diagnostic for the
instantaneous value of the BGL (as most of the diagnostics enumerated
before), but to evaluate sustained hyperglycemia conditions associated to
the physiological changes that eatly accumulation of AGEs have on the
tissues. In this sense, the system performance will be ultimately tested
against HbAlc measurements that, as discussed before, it is a more stable
and reliable parameter in diabetes treatment practice.

Finally, it is worth mention that the selection of the W-band for this
diagnostic is associated to some of the attractive advantages of such
frequencies for this kind of diagnostics as they are that the interaction
region is well defined, the probing location is small due to tighter focusing
capabilities or smaller waveguide dimensions, the dispersion effects are
less pronounced, and can lead to very compact sensing equipment.

3.2. THz, MICROWAVE AND MILLIMETER- WAVE
RADIATION IN BIOMEDICAL ENGINEERING

Nowadays, the development of new technologies in biomedical
industry is a huge research field with a substantial growth, aiming not only
to provide more efficient tools for medical diagnosis, treatments, and
procedures, but also to enhance patients’ quality of life and well-being,
However, a complete settlement of new techniques to develop minimally
or non-invasive medical procedures in diagnosis and follow-up of existing
diseases is a current barrier to break in the twenty-first century. In this
sense, increasing attention is being paid to microwave [197], [203]-[2006],
millimeter-wave [207]—[209] and THz [210]—[214] spectroscopy as very
promising non-invasive approaches for biomedical applications.

The microwaves tegion refers to the frequencies from 300 MHz to
30 GHz, millimeter waves (mm-waves) correspond to frequencies from
30 GHz to 300 GHz, and the THz region lies between the millimeter
waves and infrared band, being typically defined as 100 GHz — 10 THz.

Among the unique properties that make microwave, mm-wave and
THz regions well-suited for health-care systems applications is their non-
ionizing character. In both cases, the electromagnetic radiation implies
very low photon energy below 10 meV, which is known not to be capable
of modifying atoms structure or cause other kind of chemical damages to
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molecules, unlike X Rays. However, biosafety of THz and microwaves
radiation is still a controversial question since some studies have reported
evidence of chromosome lesions, among other physiological hazards
using specific modes of irradiation [205], [212], [214], [215].

The THz radiation is characterized for exhibiting strong absorption
by water, which is a double-edged sword: biological substances are mainly
composed of water, limiting THz waves penetration depth biologic media,
but such high absorption also provides THz radiation with a very effective
contrast capacity to differentiate tissues with different water content,
which usually happens between diseased and normal tissue. An example
of such contrast capacity is the interest in THz imaging for cancer
diagnosis since presence of tumors often implies an increased blood
supply and water content in the affected tissues. Besides that, it has been
also proven that structural changes in affected tissues can be also identified
using THz radiation by eliminating water content in tissue [210]. Other
advantages of THz radiation are that scattering losses in biological tissues
are negligible, offers excellent time and spatial resolutions, and the photon
energy of THz waves coincides with rotational and vibrational transitions
of biomolecules. An overview of THz radiation and several
biological /biomedical applications such as vessel imaging, corneal tissue
sensing, identification of different pathogenic bacteria, detection of dental
caties, detection of DNA fragments in aqueous solutions, among others
can be found in [212]-[214]. However, the development of compact and
cost-effective  mm-wave and THz systems with good operating
performance is still a common current challenge to make them suitable
for healthcare application and clinical practice.

Similarly, microwaves can also polarize biological substances, can
achieve greater penetration depth in biological tissue than THz radiation,
and many microwaves modalities are better suited for reliable, compact,
and relatively cost-effective implementations. The microwaves have also
shown great potential for biomedical applications taking advantage of the
different electrical properties (permittivity and conductivity) of biological
substances and tissues (primarily related to water content), with several
applications such as microwave imaging of the heart, brain, bones and
breast cancer diagnostics, blood glucose monitoring, brain stroke and
heartbeat detection, sensing of blood flow and pressure, etc. [197], [203],
[216]. Other applications of microwaves in medicine are based on
hyperthermia induction and ablation for medical therapies such as the
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treatment of cardiac arrythmias, liver, benign prostate hypertrophy,
angioplasty, brain tumors, etc. [205], [217]-[220].

In general, microwaves, mm-waves, and THz radiation are very
promising developing spectroscopic techniques in biomedical approaches
with good sensibility to differentiate biological tissues and substances,
offering different balances between penetration depth and resolution.
However, there is still much work to be done to achieve the complete
settlement of effective technologies, based on THz, microwave and mm-
wave radiations, in the medicine field.

3.3. MM-WAVE SPECTROSCOPY INSTRUMENT
USED FOR EXPERIMENTS

This work focuses on the assessment of an alternative approach for
non-invasive sensing of hyperglycemia, typically associated to DM, by
spectral interrogation using mm-waves (W-band). As mentioned above,
high frequencies such as mm-waves and THz radiation reduce dispersion
effects in tissue and are very potential developing compact spectroscopic
devices, besides their biosafety, which is very attractive in biomedical
applications. The small waveguide dimensions and the small dispersion in
tissue allows for small probing areas. However, frequencies closer to THz
radiation exhibit poor penetration depth in tissue due to the water
absorption and poor signal-to-noise ratio requiring longer measurement
times that are usually not compatible with in-vivo monitoring. In this
sense, the W-band offers a good balance between penetration depth in
tissue, interaction volume, and signal-to-noise ratio.

In order to study the capabilities of W-band for non-invasive sensing
of hyperglycemia, a CW mm-wave spectrometer spanning the whole W-
band from 75 GHz to 111 GHz was put together specifically for this
project in collaboration with Professor Viktor Krozer’s research group at
Goethe University in Frankfurt. The spectrometer, designed and mounted
in Frankfurt, uses different multiplication chains to reach the W-band
frequencies from a Ku-band generator (12 GHz - 18 GHz). The
spectrometer allows to collect transmission and reflection signals from
spectral interrogation performed to the biological media.

A simplified block diagram of the setup used in the measurements is
shown in Figure 3-1, and explained in the following lines. A frequency
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sweep from 12.5 GHz to 18.5 in steps of 0.25 GHz is generated using a
synthetized signal generator APSIN20G (AnaPico, Zurich, Switzerland)
with 0.3 MHz frequency difference between the outputs SG1 and SG2.
The output signal SG1 is directly connected (SMA) to an AFM6 Active
Frequency Multiplier (Radiometer Physics GmbH, Meckenheim,
Germany) that increase the frequency signal by a factor of six, resulting in
a frequency sweep from 75 GHz to 111 GHz in steps of 1.5 GHz. The
AFMG6 Frequency Multiplier is realized in a waveguide housing and
exhibits a WR10 waveguide output, which is fed to a dual directional
coupler. The coupled arms of the dual directional coupler define the
reference and reflection channels, respectively, with two HMRG
subharmonic mixer receivers (Radiometer Physics GmbH, Meckenheim,
Germany) one at each coupled port. The thru branch of the coupler is
connected to a waveguide probe and the incident wave is sent through the
biological media (sample). Then, the signal that traveled through the
biological media is directed towards a subharmonic mixer receiver,
similarly as in the reference and reflection ports, by using a second
rectangular waveguide probe positioned after the sample. The probes are
straight cuts of a WR10 waveguide tapered on the outside directly in
contact with the sample. The outputs of the subharmonic mixer receivers
deliver an intermediate frequency of IF = 1.8 MHz and are connected to
a data acquisition unit (Handyscope HS4-10, TiePie engineering, Sneek,
Netherlands), which digitizes the measured signals (reference, reflection,
and transmission) with a sampling rate of 10 MHz for further filtering and
processing using LabVIEW software [221]. All the acquisition routines
were developed in the Sensors and Instrumentation Techniques Group of
the Universidad Carlos 111 de Madrid.

12.5-18.5 GHz —— ===75-111 GHz ——+ ==1.8 MHz (IF)

Reflection

Figure 3-1. Block diagram of the mm-wave spectroscopy system used for non-invasive
assessment of biological media. See text for details.
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A photography of the mm-wave spectroscopic instrument involved
in the spectroscopy system described above is shown in Figure 3-2,
identifying the different components enumerated above. The mm-wave
instrument can be made very compact and it is based on potentially low-
cost electronic technology.

18,1 in

@ Power divider ® Dual directional coupler

@ Active Frequency Multiplier (AFM6-110) @ WR10 waveguide probes

@ W-Band Receiver — Reflection (HMR-110-6) @ W-Band Receiver — Transmission (HMR-110-6)
@ W-Band Receiver — Reference (HMR-110-6)

Figure 3-2. Photography of the mm-wave spectroscopic instrument used for spectral
interrogation within the W-band.

A flowchart summarizing the LabVIEW routine used for that
acquisition and pre-processing is shown in jError! No se encuentra el
origen de la referencia.. All the reference, reflection, and transmission
signals measured at each frequency point (spectral data acquisition) are
averaged (18 periods sampled) to reduce the effects of random noise in
the sampled signal. Then, all the signals are filtered through a narrow band
filter with the intermediate frequency (1.8 MHz) as the center frequency.
The LabVIEW program runs in real-time and implements a multi-channel
lock-in amplifier for the estimation of the amplitude of the sampled signals
improving the signal-to-noise ratio [222], [223]. Simultaneously, the phase
of the sampled signals is estimated by tone identification using the fast
Fourier Transform. The obtained phase from the signals is used to
estimate the phase shift of the transmitted and the reflected waves with
respect to the reference signal (measured from incident wave). The
measurement is repeated 5 times at each frequency point and the mean
value and the standard deviation are estimated for the amplitude and phase
parameters. The collected spectral data, including the corresponding
standard deviations, are exported as a .txt file.
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The complete measurement process, covering 25 frequencies equally
distributed over the W-band takes around 45 seconds. The measurement
time is mainly limited by the control electronics (signal generator and
LabVIEW program for signal acquisition and processing) rather than the
mm-wave instrument.
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4. USE OF W-BAND
SPECTROSCOPY FOR IN-
VIVO NON-INVASIVE
ASSESSMENT OF
HYPERGLYCEMIC STATES
USING ANIMAL MODEFEILS
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In this thesis dissertation, a non-invasive approach for in-vivo
detection and monitoring of DM by spectral interrogation in the W-band
is assessed using the system described in the previous chapter. The aim is
to study possible relations between the measured W-band spectral
response and sustained hyperglycemia condition, typically associated to
DM. To this end, three experiments were carried out using mice as animal
models representative of normoglycemia and different sustained
hyperglycemic conditions. As outlined in chapter 3, the experiments were
designed under a non-targeted spectral profiling approach, adopting a
strategy of comparison between the W-band profiles to detect variations
in the measured spectral response that qualitatively differ between the
glycemic states involved in the sample population. The spectral data sets
collected from the experiments will be processed using FDA methods
introduced in chapter 2. In this way, the W-band spectral profiles are
analyzed as single continuous responses, which contains all the spectral
features of biological components constituting the sample.

In this fourth chapter, all the experiments related to the animal
models and the corresponding statistical analysis developed for the
assessment of the applied spectroscopic technique will be presented.
Firstly, the sample populations and the experimental protocols common
to the three experiments, that were carried out sequentially, will be
described. Later, the most relevant findings obtained from the
experiments by the FDA performed on the collected spectral data sets will
be shown. In the first experiment, from now on referred to as
“Experiment A”, the diagnostic technique is assessed by exploring the
contained variability in the spectral response measured achieved by FPCA.
The obtained results from the spectral data sets, corresponding to
amplitude and phase of both transmission and reflection measurements,
are compated to find the indicator that best discriminates the sustained
hyperglycemia condition. Then, the FPCA results are interpreted with two
aims in mind: first, to study possible influences of known variables
involved in the experiment on the measured spectral response and,
second, to characterize the spectral response associated to the sustained
hyperglycemia discrimination. A second experiment, herein after referred
to as “Experiment B”, was carried out after the first one with the aim to
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evaluate the consistency and robustness of the diagnostic by a validation
test and a multi-test analysis using a classification model. The classification
model is estimated by FPCLoR on the measured spectral data. Then, the
FPCLoR model is interpreted to study, qualitatively and quantitatively, the
relation between the spectral response and the sustained hyperglycemia
discrimination. Additionally, two different approximations of continuous
spectral profiles using regression splines and P-splines are compared. Both
approaches, with a different smoothness degtee, are used to show the
main trade-off between the classification rate and interpretation of the
fitted model. The idea behind this scenario is to highlight typical choices
and decisions to be made by the researcher in the FDA, and the exciting
possibilities working with functional data. Finally, a third experiment,
referred to as “Experiment C”, was carried out to evaluate the feasibility
of the applied spectroscopic technique for DM monitoring. To achieve
this, diabetes was induced on a group of healthy mice to observe their
evolution over a period of two weeks. A classifier obtained from the first
experiment (different sample population) is used to predict the condition
of diabetized mice at each measurement day separately, to test the
sensitivity of the proposed approach to detect different glycemic states.

4.1. DESCRIPTION OF THE EXPERIMENTS USING
ANIMAL MODELS

The experiments presented in this chapter were carried out in
collaboration with the Epithelial Biomedicine Division of the Centro de
Investigaciones ~ Energéticas, Medioambientales y  Tecnoldgicas

(CIEMAT).

All the experimental procedures involved in the mice experiments
were carried out according to European and Spanish laws and regulations
(see Appendix for more details on the corresponding Ethical Issues in
section 8.1). The animals were purchased from Elevage-Janvier (Le
Genest-Saint-Isle, France), treated and housed individually in pathogen-
free conditions at the Laboratory Animals Facility (Spanish registration
number 28079-21 A) of the CIEMAT.
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4.1.1. ANIMAL MODELS USED IN THE EXPERIMENTS

In the experiments different mice strains exhibiting varied physical
features between them such as hair color and skin types were used, as
illustrated in Figure 4-1. The C57BL6/] mouse has a dark brown hair and
it is widely used for genetic modifications to model human diseases (being
diabetes on of such diseases). The BALB/C is an albino mouse and is one
of the most popular inbred strains used in animal experimentations. The
NMRI-Foxnlm/Foxnl™ is a haitless mouse, commonly known as
“nude”, and it is an immunodeficient animal model (T cell deficient)
widely used in biomedical research.

\?“-‘_4 =
C57BL6/] BALB/C

NMRI-Foxn1™/Foxnl™

Figure 4-1. Images of the main mice strains showing their physical features.

Regarding to the non-targeted spectral profiling approach, different
normal/pathological conditions were considered in the expetiments and
implemented using the abovementioned animals. The two main groups
used in the experiments involved all the mice models: normoglycemia and
hyperglycemia conditions. The normoglycemia condition is represented
by healthy mice exhibiting normal and stable BGLs, with an expected
glucose level of 100 mg/dl. Within the hyperglycemia condition two types
of pathologies with different associated sustained hyperglycemic states
were considered: overweight mice by overeating, hereinafter referred to as
“obese mice”, representing mild diabetes, and diabetic mice representing
a full-blown diabetes (“diabetic mice”). To achieve these two conditions,
mice were genetically modified to has spontaneous mutations leading to
deficiency of Leptin (Lep°®/Lep°b), the “obese mice” and Insulin
resistance (Lepd®/Lepdb) [224], the “diabetic mice”. Additionally, a third
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type of hyperglycemic animals were obtained through drug-induced
diabetes on healthy mice, hereinafter referred to as “diabetized mice”. This
third condition was considered as an alternative and complementary
condition of full-blown diabetes due to its strongest effects in mice
(compared to genetically modified “diabetic mice”). The induction process
for the diabetized mice consisted of three intraperitoneal injections of
Streptozotocin = (Sigma-Aldrich, Inc., St. Louis, MO, USA) with
concentrations of 0.1 mg/g, 0.1 mg/g, and 0.15 mg/g on alternate days
during a period of 5 days. The Streptozotocin (STZ) is a compound
designed to be especially toxic to pancreatic islet insulin-producing 8-cells
[225]. These obese, diabetic and diabetized mice are widely recognized
animal models undergoing sustained hyperglycemia [226], i.e. they exhibit
higher BGL than normoglycemic mice under normal conditions (meals,
exercise, sleep, etc.), being the less aggressive condition for the obese mice.

4.1.2. EXPERIMENT A

The first experiment was designed to explore the influences of
different glycemic states and varied physical features on the W-band
measured spectra. Therefore, all animal models introduced in section 4.1.1
were considered in the experiment.

The non-invasive assessments of hyperglycemia in the first
experiment was performed on a sample population of twenty mice with
ten normoglycemic cases and ten hyperglycemic cases. The group of
hyperglycemic cases involves five obese mice, two diabetic mice, and three
diabetized mice. The group of normoglycemic cases consist of eight
healthy mice, and two obese mice treated with precise and continuous
doses of human leptin using implantable 28-day-lasting micro osmotic
pump (ALZET Osmotic Pumps, California, USA) [227]. The mice strain
among other characteristics of the sample population are detailed in Table
4-1.
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Table 4-1. Sample population measured in experiment A.

Expected
Condition Mice strain Variation Treatment  Glucose Age Qty.
level
NMRI- 100 1
Foxnlnu/ - - /dl th 4
Foxnln mg mon
100 6
Normoglycemia Canl sl : : mg/dl months 2
Leptin- 100 6
ob ob
C57BL6/] Lepe®/ Lep e - months 2
100 6
BALB/C - - mg/dl months Z
>150 6
ob ob i
C57BL6/] Lepe®/ Lep - months 5
>250 6
db db i
Hyperglycemia S Lz lbag mg/dl months 2
NMRI- A STZ- <400 1
Foxnlm/ - induced /dl h
Foxnlm diabetes mg mon

Let us to note that the mice with hair were not shaved for the non-
invasive assessment by the mm-wave spectroscopic instrument. Instead,
mice hair at the measurement location was regularly cut off to ensure and
facilitate the positioning of the skin between the probes. Besides this, no
additional special treatments of the skin were considered. Prior to the
non-invasive assessment, mice were anesthetized to prevent excessive
movement and self-harm risks during the measuring process, which takes
around 45 seconds. The mice were induced into a skeletal muscle
relaxation state (around 30 minutes) using a standard rodent anesthesia
(ketamine-medetomidine), administered by an intraperitoneal injection
five minutes before taking the measurement.

The spectroscopic measurements were carried out directly on a fold
of the skin on the mice back, as shown in Figure 4-2. The probes of the
spectrometer instrument are brought into direct contact with the skin fold,
without applying to much pressure, to ensure the propagation of the signal
through the skin and underlying layers, resulting in an interaction between
the generated waves and the skin fold during the spectroscopic
measurement. As seen in section 3.3, the probes of the spectrometer
instrument consist of previously aligned standard rectangular WR10
waveguides tapered on the outside to hold the skin fold. A separation of
~1 mm between probes was carefully adjusted as the minimum required
to hold the skin of the mice without infringing damage or pain on them.
It should be noted that the pressure of the two waveguide straights on the
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mice skin was not of prime importance in the non-invasive assessment
procedure.

The measuring process for spectral interrogation consists of a
frequency sweep across the W-band (75 GHz - 111 GHz) in steps of 1.5
GHz by using the mm-wave instrument described in section 3.3. The
amplitude and phase measurements of both reflection and transmission
coefficients of the biological sample were continuously acquired during
the whole measuring process.

strains.

It is important to note that no special calibration procedures were
performed to the spectroscopy instrument previous the measurements.
One of the most important challenges was adjusting an appropriate
reference of the signal power generator to ensure both a good dynamic
range for the measured signals at harmonic receivers and to avoid
receiver's saturation. To this end, several tests were cartied out using a
quartz cuvette (5 mm) containing water to simulate the expected high
absorption level of the biological tissue. The reference level for
transmission signal was dictated by the highest absorption level and the
receiver noise floor. Then, the output power of the signal generator was
adjusted to obtain a frequency response as flat as possible at the
transmission port.

Additionally, almost simultaneously to the non-invasive assessment,
the BGL was measured on the mouse tail by an Accu-Chek Aviva Nano
(Hoffmann-La Roche, Basilea, Switzerland), as shown in Figure 4-3, and
the skin-fold thickness used in the measurement was determined by a
Mitutoyo Digital Caliper (Mitutoyo Corp., Kanagawa, Japan).
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Figure 4-3. Photograph taken during the BGL measurement by blood extraction from
the tail of the mouse.

4.1.3. EXPERIMENT B

The second experiment was focused to validate the obtained results
from Experiment A, and to assess the robustness of the applied
spectroscopic technique. Therefore, a new sample population of thirty-
three mice was measured using the proposed non-invasive approach. In
this experiment, only one mice strain was considered (C57BLG6/J). The
new sample population consisted of eighteen healthy mice as
normoglycemic cases, and fifteen hyperglycemic cases: nine leptin
deficient (Lep°®/Lep°P) mice undergoing a mild diabetes, and six insulin
resistant (Lepdb/Lepd®) mice undergoing a full-blown diabetes. The sample
population measured in Experiment B is detailed in Table 4-2.

Table 4-2. Sample population measured in experiment B.

Expected
Condition Mice strain Variation Treatment  Glucose Age Qty.
level

. 100 8
Normoglycemia C57BL6/] - - gl weeks 18

>150 5

ob ob :

A C57BL6/] Lepe®/ Lep - weeks 9

Hyperglycemia =350 6
C57BL6/] Lep®®/ Lep - 6

mg/dl weeks
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As in the previous experiment (Experiment A), the non-invasive
assessment was performed directly on a skin fold on the back of the mice
(see Figure 4-2) and the mice hair was regularly cut off to facilitate the
handling of their skin, but no special procedures were conducted on the
measurement skin area prior the non-invasive assessment. The BGL was
measured on the mouse tail by an Accu-Chek Aviva Nano (Hoffmann-La
Roche, Basilea, Switzerland), almost simultancously to the non-invasive
assessment (see Figure 4-3).

Let us to note that Experiment A and Experiment B were conducted
separately with sixteen months elapsed between them and using a totally
different sample of mice. During that time, many changes in hardware and
software of the mm-wave spectroscopy system were made to improve its
functionality. Therefore, the output power of the signal generator,
previously calibrated in experiment A (see section 4.1.2), had to be
recalibrated to obtain a flat frequency response at the transmission port
without the biological sample. This is an important issue as that even
changes were incorporated in the hardware and software the results
obtained were consistent and allowed proper comparison of the results
between the two experiments as discussed below.

Also, considering the harmful effects of the injected anesthesia
(ketamine-medetomidine) on mice observed in previous experiment
(experiment A), the experimental protocol was modified to replace the
injected anesthesia with other less aggressive method. In this second
experiment, excessive movement of the mice during the non-invasive
assessment was prevented by using inhaled anesthesia. As shown in Figure
4-4, previous to the measurement process, each mouse was introduced
into an induction chamber with isoflurane mixed with oxygen (3% - 4%
of isoflurane concentration) until anesthetic takes effect. Once the mouse
is “sedated”, it was placed on a table with its snout into a supplying mask
to continuously inhale a lower anesthesia concentration (1.5% - 3% of
isoflurane concentration) during the whole measurement process.
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Figure 4-4. Photograph of the mouse into the anesthetic induction chamber (at the
top), and of the same mouse placed on the table for continuous administration of the
anesthesia via a mask during the measuring process (at the bottom).

4.1.4. EXPERIMENT C

The third experiment focused on the feasibility of the proposed non-
invasive approach to detect gradual changes in the glycemic state of the
mice. The experiment included the study of the measured spectral
response from over time on transition cases from normoglycemia to
hyperglycemia. This experiment was performed under the same
conditions and proceedings described for Experiment B (see 4.1.3). The
sample population used in the experiment is detailed in Table 4-3. Let us
observe that most of the mice employed in the experiment were taken
from the sample population measured in Experiment B, including the
diabetized mice that were identified as normoglycemic cases before the
diabetes induction process.
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Table 4-3. Sample population measured in Experiment C.

Expected
Condition Mice strain Variation Treatment  Glucose Age Qty.
level
. 100 8

Normoglycemia C57BL6/] L weeks
STZ-

Transition cases  C57BLG/J - induced 00 ¥ 16
. mg/dl weeks

diabetes
Hyperglycemia ~ C57BL6/]  Lep®/ Lep® : =250 6 6

mg/dl weeks

The experiment lasted nineteen days and a total of 4 measurements
were performed. The measurements started on the last day of the
treatment (animals receiving the final dose) and finished 14 days hereafter.
The six diabetic mice and six healthy mice were also measured
simultaneously to diabetized mice as references. During the experiment,
six diabetized mice died before the third measurement day (ten days after
treatment) due to the adverse effects of the STZ drug [228].

4.2. BLIND EXPLORATION AND
CHARACTERIZATION OF THE MEASURED
SPECTRAIL RESPONSE

In this section, the measured spectral data obtained from the non-
invasive assessment of hyperglycemia on the sample population employed
in Experiment A (see 4.1.2), will be analyzed using FPCA. The sample
information for each measurement consists of four sets of twenty
observations containing the complex information of amplitude and phase
for the reflection at the top skin layers and the transmission through the
biological media (fold of skin). Each observation was measured at twenty-
five frequencies equally spaced across the W-band (75 GHz - 111 GHz).
In Figure 4-5, the measured spectra (raw data) for examples of each of the
glycemic cases from sample population of Experiment A are shown, with
normoglycemia and hyperglycemia conditions identified by doted blue
lines and dashed red lines, respectively. It is apparent how the
transmittance of the fold of skin of the hyperglycemic mice is considerably
higher than normoglycemic mice, providing with a relatively good “a
priori” classification. However, FPCA was estimated for each of the
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spectral data sets to explore all the captured variability by the non-invasive
assessment.
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Figure 4-5. Amplitude and phase spectra measured from both reflected waves by the
top skin layers (left column) and transmitted waves through the fold of skin (right
column). Normoglycemic and hyperglycemic cases are identified by doted blue lines
and dashed red lines, respectively.

In spectroscopy applications, as shown at the bottom of the Figure
4-5, the instantaneous phase is typically wrapped within the interval 7 and
—1. The phase unwrapping is a very common problem due to the 27
discontinuities, that occurs when an extreme value of the interval [T, —T]
is reached. Basically, phase unwrapping is a process for solving problems
of ambiguity in the measured phase of the signals (instantaneous phase).
Then, in its simplest way, reconstructing the continuous phase variation
can be done by adding or subtracting multiples of 27 to the instantaneous
phase at the frequencies in which discontinuities occurs. The unwrapped
phase, shown in Figure 4-6, was estimated before performing FPCA to
remove the periodic behavior exhibited by the spectral data corresponding
to the instantaneous phase. In this way, we prevent influence the FPCA
by the excessive vatiability in the spectra associated to the 2m
discontinuities in the instantaneous phase spectra.
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Figure 4-6. Unwrapped phase of reflected (left panel) and transmitted (right panel)
waves. Normoglycemic and hyperglycemic cases are identified by doted blue lines and
dashed red lines, respectively.

All the data processing and analysis were developed using the
statistical free software R [229], and the FPCA was estimated by using the
package “fda” available in the library of R [230]. The fda packages includes
a wide range of tools for functional data analysis and processing, such as
the basis representation, curves registration, functional linear models, etc.

(see [94]).

The functional data sets obtained from amplitude and phase of the
reflected and transmitted waves are shown in Figure 4-7. The functional
data was approximated by cubic regression splines, as shown in Eq. (2-19),
with the basis coefficients estimated as shown in Eq. (2-23). The cubic B-
splines were defined on 7 and 18 equally spaced knots, for amplitude and
unwrapped phase spectra, respectively.
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Figure 4-7. Approximated sample curves from amplitude and phase of both reflected
waves by the top skin layers (left column) and transmitted waves through the fold of
skin (right column). Normoglycemic and hyperglycemic cases are identified by doted
blue lines and dashed red lines, respectively.

4.2.1. INTERPRETING FPCS’ SCORES

A FPCA was performed separately on each of the approximated
functional data sets shown in Figure 4-7. The percentages of the explained
variance by the estimated FPCs for each functional data set are
summarized in Table 4-4.. In all cases, the cumulative explained vatiance
by the first two FPCs is above the 97%, i.e. more than the 97% of the
contained variability in the sample curves is retained and explained by the
first two FPCs. Here is important to note that, in some cases, the captured
variance by the first FPCs might be related with no significant information
about the current study. Let us observe that the loading functions
associated to the FPCs are estimated as the orthonormal set that best
describes variance in the data, but, this does not mean that there is no
other orthonormal set meeting the same objective less efficiently, i.e. no
largest variability is captured by the first FPC. The VARIMAX rotation is
a widely used tool in multivariate PCA, also extended to the FPCA, which
allows to find other orthonormal sets (loading functions) decomposing
variability in the sample curves in different proportions than the estimated
by the original FPCA [92, pp. 95-99]. This is a very useful approach that
allows to look for different sources of variation in data that might be
initially overshadowed by the largest variance estimated in terms of the
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FPCA problem, especially when the first FPC originally accounts for large
proportion of explained variance. In our case, VARIMAX rotation did not
provide additional relevant information than the one obtained directly by
the FPCA.

Table 4-4. Explained variance by the FPCs estimated on the
approximated functional spectral data sets.

Parameter FPC1 FPC2

g 0 o
Reflected Amplitude 9491 %  2.74 %

wave Unwrapped g9 650, 0,09 %
Phase
1 0 0
Transmitted Izj\mphtudz 99.69 %  0.18 %
wave OWEPPEd 99 92 04, 0.06 %
Phase

In Figure 4-8, the estimated scores of the first FPC are plotted versus
the estimated scores of the second FPC for each functional data set
obtained from Experiment A. The scatterplots of the scores provide an
easy way to look for natural clustering of the sample curves according to
the captured variance by the estimated FPCs. From this figure, we can see
how the zero axis of the first FPC potentially discriminates normoglycemia
from hyperglycemia, as discrimination rule, using the amplitude of the
reflected wave and both parameters (amplitude and phase) of the
transmitted wave. Then, as expected, the amplitude of the transmitted
wave provides a clearer separation between both conditions with no
misclassified cases. It is also equally worth noting that, other clusters can
be glimpsed from the measured parameters of the transmitted wave, which
implies the second FPC is providing additional information about the
sample. In general, we can say that the transmitted wave provides a
potentially better indicator than the reflected wave. This is predictable
because transmitted wave propagates through deeper skin layers as
compared to the reflected wave, travelling throughout the whole biological
media. Therefore, hereinafter, the analysis will be focused only on the
transmitted wave.
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Figure 4-8. Scatterplots of the scores of the first FPC vs scores of the second FPC
estimated for amplitude (top line) and unwrapped phase (bottom line) of reflected (left
column) and transmitted (right column) waves. Hyperglycemic and normoglycemic
cases are identified by red triangles and blue circles, respectively.

In Figure 4-9, the different mice strains and pathologies involved in
the sample mice population are identified. In general, we can observe the
scores of the phase parameter exhibits strong clustering related to the
different mice strains. This implies that the phase parameter is affected (it
is more sensitive) by the anatomic varieties between the mice strains: type
of skin, hair density, hair color, skin-fold thickness, etc. Unlike the phase
parameter, the second FPC estimated from the amplitude separates obese
mice from diabetic and diabetized mice, and all normoglycemic mice are
grouped together. As before, considering the zero axis of the second FPC
as the discrimination rule, obese mice are potentially discriminated
between diabetic cases (either genetically diabetic or diabetized) with no
misclassified cases. This is very interesting because, as depicted in Table
4-1, diabetic and diabetized mice are expected to have higher BGL than
obese mice. This result implies that the amplitude parameter is not only
capable to discriminate hyperglycemia condition from normoglycemia
condition, but it is also able to distinguish between different hyperglycemic
states.
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Figure 4-9. Scatterplots of the scores of the first FPC vs scores of the second FPC
estimated for amplitude (left panel) and unwrapped phase (right panel) of the
transmitted wave. Hyperglycemic and normoglycemic cases are identified by triangles
and circles, respectively, and the different types of mice has been identified by colors.

Let us remark that, as shown in Figure 4-9, the obese mice treated
with human leptin in Experiment A (see section 4.1.2) were successfully
detected as normoglycemic by both FPCs, being grouped together to the
healthy mice. This also implies that the non-invasive assessment is capable
of detecting changes taking place in obese mice associated to the leptin
treatment, which normalize their glycemia.

Then, amplitude of the transmitted wave, directly related to the
transmission coefficient of the biological media, has shown to be less
sensitive to the outer skin layers among other physical features between
mice strains, and provides a potential indicator for the non-invasive
discrimination of hyperglycemic states.

Additionally, the skin-fold thickness (um) of the mice employed in
Experiment A (see section 4.1.2) was measured, and the instantaneous
BGL (mg/dl) was measured almost simultaneously to the non-invasive
assessment during all experiments (Experiment A, B and C). In Figure
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4-10, we evaluate the influence of the BGL and skin-fold thickness
measurements on the measured spectral response by using the scores
associated to the first two FPCs. Itis worthwhile to note that the measured
BGL values of normoglycemic mice are higher compared to the expected
BGL, as shown in Table 4-1. Such increment in the BGL values of
normoglycemic mice was attributed to the stress caused on the animals
during the measuring process and the effect of the injected anesthesia (see
section 4.1.2). Then, we can observe that obese mice are discriminated as
hyperglycemic by the first two FPCs, even though they have similar BGL
values to the healthy mice during the non-invasive assessment. In fact,
obese mice treated with human leptin were detected as normoglycemic
since their BGL values were normalized during the last 28 days previous
the non-invasive assessment. This means that hyperglycemia
discrimination depends on the sustained glycemic state rather than the
instantaneous BGL value at the time of the measurement (as provided by
a glucometer). From Figure 4-10, it can be also noted that, in some cases,
the fold of skin of obese mice is twice as thick as the diabetic mice, which
implies that hyperglycemia discrimination by the first FPC is not affected
by the skin-fold thickness. On the other hand, an inverse relation may be
noted between the skin-fold thickness and the clusters obtained by second
FPC. However, we can observe that such relation is poor between
observations since strong clustering is present in the scores even though
the measured values of the skin-fold thickness are homogeneously
distributed.

All the obtained results until now, from analyzing the scores
variability estimated by the FPCA, are clear evidence that the amplitude
parameter, related to the transmission coefficient of the biological sample,
is strongly affected by the hyperglycemia condition in mice. From the
same analysis, we experimentally prove that such parameter provides a
clear and robust indicator for the hyperglycemia discrimination, being not
affected by the biological varieties between the mice strains such as the
hair types, skin types or the skin-fold thickness.
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Figure 4-10. Scatterplots of the BGL (mg/dl) and skin-fold thickness (um) plotted
versus the scores of the first two FPCs are shown at the top line and bottom line,
respectively. Hyperglycemia and normoglycemia conditions are identified by triangles
and circles, respectively. Diabetic cases (genetically diabetic and diabetized mice), obese
mice, healthy mice and obese mice treated with leptin are identified by red, green, blue,
and black, respectively.

Moreover, no correlations were found between the instantaneous
BGL of the mice, measured simultancously to the non-invasive
assessment, and the indicator obtained from the amplitude parameter.
This supports that such indicator is sensitive to sustained glycemic states
in the mice rather than their instantaneous BGL.

Once we have demonstrated that the proposed spectroscopic
approach can discriminate the pathology under study, we move one step
further and start asking ourselves how to build and actual diagnostic from
this system. In this sense one of the main issues is what is the actual
frequency range that is needed for proper classification, i.e. Which are the
frequencies that contribute most to discrimination? and, Which is the
minimum frequency interrogation span that is needed for proper
discrimination? These questions are paramount to obtain a compact and
low-cost instrument and will be addressed qualitatively by interpreting the
corresponding loading functions of the FPC’s. In this sense, the potential
of the statistics techniques described in chapter 2 for biomedical
instrument design is demonstrated.
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4.2.2. INTERPRETING FPCS’ LOADING FUNCTIONS

A significant advantage working with FPCA is the interpretation of
the loading functions f;(t) associated to the FPCs. Until now, all the
information obtained has been deduced by comparing the computed
scores of the FPCs (see Eq. (2-30)), and the available information of the
sample mice population, but additional and more detailed information
about the achieved discrimination can be obtained by interpreting the
corresponding loading functions. The loading functions allows for
qualitatively study the relation between the spectral response and the
scores variability, which is very useful to understand the relation between
clusters.

In Figure 4-11, the loading functions corresponding to the estimated
FPCs are shown on the top line, and the same loading functions are
plotted as perturbation of the sample mean function on the bottom line.
In order to show more clearly the effects of the loading functions on the
sample mean, the loading functions were multiplied by the standard
deviation of their associated scores and added (+) and subtracted (=) to
the mean function of the measured spectral response.
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Figure 4-11. (Top) Loading functions associated to the first FPC (left column) and
second FPC (right column), and the mean function % the corresponding loading
function multiplied by standard deviation of their associated scores are shown
(bottom).

N83N



As we could see, the second FPC allows for discrimination between
hyperglycemic states (mild diabetes and full-blown diabetes), and such
discrimination is directly related to those frequencies in which the loading
function takes negative values, being more determining the frequency
interval between 84 GHz - 93 GHz. The observed behavior in the loading
function remarks a slope change in the spectral response between obese
and diabetic mice, as shown by the loading effect on the sample mean
function. Thus, interpreting the loading functions of the FPCs allows to
characterize the spectral response for normoglycemic, obese and diabetic
mice.

Furthermore, considering the frequencies contribution, observed in
Figure 4-11, for the discrimination achieved by the FPCs, we can deduce
that the frequency interval between 84 GHz - 93 GHz not only provides
a clear discrimination between normoglycemia and sustained
hyperglycemia conditions, but also allows to discriminate a mild diabetes
from a full-blown diabetes. Then, interpreting the loading functions we
are able to identify those frequencies as the main contributions for the
discrimination between all the sustained glycemic states involved in the
mice sample population.

Identifying major contributing frequencies is a very important issue
when developing actual spectroscopic medical diagnostics. As mentioned
in chapter 1, the wavelength selection problem has been widely studied in
the MDA with the aim to reduce the number of variables involved in the
regression model, and to optimize the frequency interval for spectral
interrogation [231]-[234]. In this way, the noisy frequencies can be
eliminated, reducing the dimension of the learning problem, and
simplifying the spectroscopic instrument.

4.3. EVALUATION OF THE CONSISTENCY AND
ROBUSTNESS OF THE MEASURED SPECTRAL
RESPONSE

In this section, a classification model for sustained hyperglycemia
prediction is obtained and analyzed to study the consistency and
robustness of the W-band measured transmission spectra. A second
experiment described in section 4.1.3 (Experiment B) was carried out to
assess normoglycemia and hyperglycemia conditions on a new sample of
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mice (independent from sample population employed in Experiment A)
using the diagnostic technique. The classification model, based on
FPCLoR introduced in 2.5.1, is estimated and tested by a multi-test
analysis with hundreds of iterations using the spectral data obtained from
Experiment B. As will be shown later, the multi-test analysis allows to
evaluate the performance and robustness of the fitted model. Additionally,
the results obtained from both approximations, regression splines and P-
splines of the sample curves will be compared. Then, the estimated
FPCLoR model is used to predict sustained hyperglycemia on the sample
population measured in Experiment A (described in 4.1.2). In this way, we
are able to validate the consistency of the W-band measured transmission
spectra for sustained hyperglycemia detection, which is important to
support the claim that the non-invasive assessment by the mm-wave
spectrometer provides a characteristic response associated to the sustained
hyperglycemia condition in mice.

From now on, exclusively spectral data corresponding to the
transmission amplitude measurements will be considered since has been
previously proved that such parameter is less sensitive to the outer skin
layers among other biological features associated to the different mice
strains involved in the sample mice population (see section 4.1.1).

The measured spectra (raw data) from sample mice population of
Experiment B is shown in Figure 4-12, identifying normoglycemia and
hyperglycemia conditions by doted blue lines and dashed red lines,
respectively.

Transmission
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Figure 4-12. Amplitude spectra of the transmitted wave through the fold of skin.
Normoglycemic and hyperglycemic cases are identified by doted blue lines and dashed
red lines, respectively.
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In contrast to Experiment A, hyperglycemic and normoglycemic
mice shows the same absorption level at several frequencies. This fact is
attributed to the age difference; hyperglycemic mice from Experiment B
are almost five months younger than hyperglycemic mice from
Experiment A (see Table 4-1 and Table 4-2). The presence of sustained
medium/long-term hyperglycemia led to dehydration problems and could
reduce the thickness of the skin layers, resulting in higher transmittance
levels for older mice. Then, considering the different absorption levels of
the hyperglycemic mice between experiments, and that output power of
signal generator was recalibrated due to hardware and software changes in
the mm-wave spectroscopy system between experiments (see section
4.1.3), the transmission amplitude was normalized according to the mean
of each sample previous the statistical analysis. This fact also demonstrated
the robustness of the instrument because, as we can see in this section, we
will be able to propetly classify the different metabolic states regarding
these aspects.

For comparison purposes, two functional data sets with different
smoothness degree were estimated using regression splines and P-splines.
Figure 4-13 shows the approximated curves for a normoglycemic and
hyperglycemic case using both approaches. The cubic regression splines
(top panel) were defined on 17 knots strategically positioned to reproduce
most of the variability in raw data. On the other hand, the P-splines
(bottom panel) were defined on the same number of knots (17 knots),
equally spaced over the W-band, with the smoother parameter A = 0.11
selected by the GCV method (see section 2.3.3.1).
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Figure 4-13. Estimated sample curves from the measured transmission amplitude for a
normoglycemic (left panel) and a hyperglycemic mouse (right panel) by cubic regression
splines (at the top) and P-splines (at the bottom).

4.3.1. MULTI-TEST ANALYSIS: PERFORMANCE AND
ROBUSTNESS OF THE PROPOSED APPROACH

As mentioned above, the mice sample population of thirty-three
mice corresponding to the Experiment B was used for the multi-test
analysis. The multi-test analysis consisted of estimate a FPCLoR model
using the 80% of the sample curves (training sample) and predict the
condition (outcome) on the remaining 20% (test sample) repeatedly for
one hundred times. Both subgroups, the training and test sample, were
selected randomly at each iteration preserving the original proportion of
the classes within the global group: 54% of the cases are normoglycemic
and 46% are hyperglycemic.

In the literature on logit regression, measures such as the Area Under
Curve (AUC), the True Positive Rate (TPR), the True Negative Rate
(INR), and the Correct Classification Rate (CCR) are very useful
parameters to quantify the goodness of fit and predictive capability of the
classification model. The TPR and TNR, also known as sensitivity and
specificity, respectively, are commonly used in medical diagnostics [235].
The TPR, TNR and CCR values are estimated taking into account the
confusion matrix, shown in Table 4-5, as follows:
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TP+TN

TPR = ——+,TNR = ———,CCR = .
TP+ FN TN + FP TP+TN+FP+FN
Table 4-5. Confusion matrix
True condition
Hyperglycemia Normoglycemia
Hyperglycemia Nr(zlzm(l)glﬁzergla
Hyperglycemia | correctly classified SCASSITIC
(T'tue Positive TP) (False Positive
Predicted I) -
i . Normoglycemia
condition Hyperglycemia o
. misclassified correctly
Normoglycemia . classified
(False Negative .
FN) (True Negative
TN)

The Receiver Operating Characteristic (ROC) curve [236] shows the
inverse relation between the sensitivity and the specificity (sensitivity vs
1—specificity) varying the diagnostic criterion (cut-off value to assigny =
1) of the test, and the AUC (which refers to the atea under the estimated

ROC curve defined by the integral equation f; f(x)dx), can be

approximated by numerical integration algorithms [237], provides an
effective measure of the diagnostic accuracy of the predictive model.

In are summarized the obtained results of the multi-test analysis for
both approximations: regression splines and P-splines (see Figure 4-13).
As it can be seen, the mean value of AUC is above 0.95 for both cases,
being slightly higher for the model based on regression splines. The
achieved AUC values indicate an excellent discrimination capability of the
inter-condition (normoglycemia and hyperglycemia), with very robust
results since the estimated standard deviation is under 0.02. Also, a very
good classification rate on new observations (prediction) was achieved for
both cases, evaluated by the CCR value, with a mean value of 82% of
correctly predicted cases by the FPCLoR model based on P-splines and
increased in a 10% by the regression splines. These results suggest that the
FPCLoR model obtained from regression splines is the best in terms of
the prediction capabilities, being considerable more accurate to detect the
sustained hyperglycemia in mice, as depicted by the TPR values shown in

Table 4-6.
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Table 4-6. Summary of the multi-test analysis.

Regression splines P-splines
Parameter Mean Std. Mean Std. Dev.
Dev.
AUC 0.99 0.01 0.96 0.02
CCR 0.92 0.08 0.82 0.11
TPR 0.91 0.18 0.74 0.23
TNR 0.93 0.11 0.87 0.18

Nevertheless, as mentioned above, a significant advantage of
working with the FPCLoR is the interpretation of the estimated functional
parameter B (t), which is a potential soutce of information to calibrate and
optimize the applied spectroscopic technique. Here, we can emphasize
that the lack of smoothness in approximated sample cutves is reflected in
the discriminating functional parameter. Figure 4-14 shows one of the
functional parameters estimated for both approaches, based on regression
splines (left panel) and P-splines (right panel). Comparing both beta
functions, we can see that the corresponding to the FPCLoR model based
on regression splines exhibits strongest oscillation versus frequency and
such variability makes its interpretation very difficult. As shown in
Functional parameter interpretation, the FPCLoR is interpreted in terms
of the odds ratio, which is estimated by the integral of the beta function
(see Eq. (2-56)). The odds ratio, previously introduced in section 2.5.1.2,
is a statistic tool that allows us to measure the influence of the W-band
measured transmission spectra in diagnosis by introducing variations in
the beta function estimated by the FPCLoR model.

5 Beta function: Reg. splines Beta function: P-splines
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Figure 4-14. Functional parameter f(t) estimated for FPCLoR on the functional data
approximated by regression splines (left panel) and P-splines (right panel)
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Then, for a noisy beta function, as the obtained from regression
splines, the odds ratio must be estimated considering very short frequency
intervals so that the integral of the beta function does not tends to zero,
which implies an estimated odds ratio close to one. This minimizes the
frequencies contribution for discrimination and a lot of information is lost
since too few frequencies are considered in the estimation of the odds
ratio. In contrast, a smoother beta function, as the obtained from P-
splines, allows to identify wider frequency intervals estimating the odds
ratio, and consequently, an easier and clearer interpretation from the
FPCLoR model can be obtained. Therefore, we will work with the P-
splines since the resulting functional parameter offers a much better
interpretation of the FPCLoR model, being such feedback very important
when developing applied spectroscopic techniques, and both FPCLoR
models provide excellent multi-test results.

4.3.2. VALIDATION OF THE CONSISTENCY OF THE
APPLIED SPECTROSCOPIC TECHNIQUE AND
ANALYSIS OF THE FPCILLOR MODEL

Two sample mice populations evaluated separately at different
experiments were employed to validate the consistency of the spectral
response, measured by the mm-wave spectroscopic instrument, for the
non-invasive detection of sustained hyperglycemia. This time, the
FPCLoR model was estimated using all the spectral data from Experiment
B as the training sample, consisting on eighteen normoglycemic mice plus
fifteen hyperglycemic mice, and a group of twenty mice with
normoglycemia and hyperglycemia conditions proportionately distributed
(see section 4.1.2) were used as the test sample. Functional data from both
spectral data sets were estimated by using P-splines defined on seventeen
equally spaced knots as shown in Figure 4-13 (bottom line). The ROC
curve computed for the fitted FPCLoR model is shown in Figure 4-15,
with the AUC = 0.95. Furthermore, testing the predictive capabilities of
the fitted on the test sample, we obtain a CCR of 100% with all the new
observations correctly classified. These results probe the consistency of
the proposed non-invasive approach for sustained hyperglycemia
detection in mice, supporting the reliability of the mm-wave spectroscopic
technique.
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Figure 4-15. ROC cutrve of the fitted FPCLoR model.

Then, as one of the main objectives of this work, the next step is to
show how to analyze the functional parameter estimated for the fitted
FPCLoR model in terms of the odds ratio so we can extract information
to optimize the diagnostic system for its eventual use in clinical practice.
From Figure 4-16, it can be notice that the beta function varies from
negative to positive values versus frequency with a zero crossing at 86
GHz, indicated by the red line. Then, the W-band is subdivided into two
frequency intervals, which inversely relates the measured spectral response
and the sustained hyperglycemia discrimination. This effect is illustrated
by computing and interpreting the odds ratio for both sub-frequency
intervals, considering a constant increase in the transmission amplitude of
0.3 mV (K = 0.3) for the measured spectral response, as shown in Eq.
(2-56). For the first frequency interval the estimated odds ratio
ORY2 g¢ = 0.516 indicates that such a constant increment in the
transmitted amplitude for the frequencies under 86 GHz reduce the
possibilities of being diagnosed with sustained hyperglycemia to one half.
In contrast, the estimated odds ratio for the second frequency interval
OR33_111 = 6.52 indicates that the possibilities of being diagnosed with
sustained hyperglycemia is six-fold. In this way, we are able to measure the
relationship between the measured spectral response and the diagnosis.
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Figure 4-16. Disctiminating function f§(t) for sustained hypetglycemia discrimination
estimated by the FPCLoR model. The red line indicates a sign change for the function
at the frequency of 86 GHz. The green lines indicate the frequencies, chosen arbitrarily,
as the lower and upper limits for a reduced frequency interval.

Then, considering the observed relation between the spectral
response and the discrimination of sustained hyperglycemia, we will
consider a reduced frequency band around the frequency (~86 GHz) in
which the beta function crosses zero, with the lower and upper frequency
limits chosen arbitrarily to be 78 GHz and 93 GHz, respectively, indicated
by the green lines in Figure 4-16. The delimited frequency range 78 GHz
- 93 GHz provides two regions inversely relating the spectral response to
the sustained hyperglycemia condition, which enhance the achieved
discrimination. The reduction of an operating frequency range represents
a drastic improvement in measurement time, and it can also have an
important impact in the spectroscopic instrument complexity,
demonstrating the utility of these tools for biomedical instrumentations
design.

However, since less frequencies are considered, less information is
provided to the regression model, and that may affect the achieved
discrimination. Therefore, the sustained hyperglycemia detection was re-
valuated by repeating the multi-test analysis shown in previous section,
and the validation test, considering only the contribution of the reduced
frequency range (78 GHz - 93 GHz). All the sample curves were
approximated by P-splines defined on eleven equally spaced knots with A
= 0.528 chosen by GCV method (see section 2.3.3.1). Table 4-7
summarizes the obtained results re-evaluating the multi-test analysis and
validation test using the measured spectral response corresponding to the
reduced frequency range.
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Table 4-7. Obtained results for multi-test analysis and validation test considering only
frequencies from 78 GHz and 93 GHz.

Parameter
AUC CCR TPR TNR
Std. Std. Std. Std.
Mean Dev. Mean Dev. Mean Dev. Mean Dev
WA 0 091 01 094 014 092 0.16
analysis
Validation 1 0.95 0.90 1
test

The results of the multi-test analysis were improved when compared
to those shown in Table 4-6, and the CCR of the validation test decreased
only 5% compared to the used of the whole frequency range, even though
the frequency band was reduced to the half. These results show that the
reduced frequency band originates the major contribution for sustained
hyperglycemia discrimination within the W-band, and the remaining
frequencies introduce some noise to the discrimination analysis.

4.4, SENSITIVITY OF THE NON-INVASIVE
APPROACH TO DETECT CHANGES IN
SUSTAINED GLYCEMIA

As shown in section 4.2, the non-invasive approach for in-vivo
hyperglycemia detection was capable to differentiate between a mild
diabetes and a full-blown diabetes, suggesting that the measured spectral
response in the W-band can be used to monitor different glycemic states.
Such results motivate the realization of a third experiment focused to test
the sensitivity of the proposed non-invasive approach to detect changes
in metabolism of mice related to gradual increments in glycemia due to an
uncontrolled diabetes, i.e. to be able to study the temporal evolution of
the metabolomic condition (longitudinal study).

In this section, the evolution of the spectral response from a group
of sixteen diabetized mice (see section 4.1.1) measured in Experiment C
(see section 4.1.4) is studied during their transition from normoglycemia
to hyperglycemia condition. The condition of the diabetized mice is
predicted at each measurement day using a classifier based on the first
FPC estimated from the FPCA performed on section 4.2. Using the
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classifier, which is obtained from a different sample population, allows to
test the capability of the proposed approach for prediction of different
glycemic states on new cases, besides the sustained hyperglycemia
detection proved in section 4.3. Additionally to the diabetized mice, six
diabetic mice with full-blown diabetes and six healthy mice were measured
simultaneously as reference for hyperglycemia and normoglycemia
conditions respectively (see Table 4-3). As described in section 4.1.4
(Experiment C), the sample population (sixteen diabetized mice, six
healthy mice, and six diabetic mice) was evaluated at four different days
along fourteen days between the first and last measurement. Due to the
fast metabolomic processes in mice, a duration of fourteen days should
give a clear indication of glycemic conditions in the animals.
Measurements had started when the diabetes induction process was
completed, hence, the first measurement corresponded to the final dose
day (the fifth day after the applications of the first dose of STZ).

As in previous section, the sample curves were estimated using P-
splines defined on 17 equally spaced knots over the W-band, with the
smoother parameter A = 0.11. The obtained functional data sets at each
day are shown in Figure 4-17. As depicted in the figure, transmittance level
of diabetized mice increase over time until reach similar values to those
measured for diabetic mice.

Diabetized Healthy - - Diabetic
Final dose day 4 days after

Amplitude (mV) Amplitude (mV)

85 90 95 100 105 11075 80 85 90 95 100 105 110
Frequency (GHz) Frequency (GHz)

Figure 4-17. Approximated sample curves from amplitude of the transmitted waves
through the fold of skin at the four measurement days. Healthy, diabetic and diabetized
cases are identified by doted blue lines, dashed red lines, and orange lines, respectively.
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The hyperglycemic state in diabetized mice at each measurement day
was blindly predicted using the loading function associated to the first FPC
estimated from the FPCA performed on amplitude spectra in section 4.2
(which explains 99% of the total variance of the data). As before, the
transmitted amplitude was normalized according the mean of each sample
data set to compensate for variations in amplitude ranges of spectral data
sets between experiment A and experiment C. The mean value of the
predicted scores by groups, with the corresponding standard deviation, for
all measurement days are shown in Figure 4-18. In this figure, we can
clearly see that the diabetized mice evolved from scores between the
diabetic and healthy mice towards the diabetic region of the positive
scores. Such an evolution was confirmed by the evolution of the measured
blood glucose levels for the diabetized mice at the same days, shown in
the Figure 4-19. Comparing the described trajectories for diabetized mice
by the scores and BGLs, it can be cleatly deduced that the sensing
approach can closely follow the evolution from normoglycemia to
hyperglycemia condition right from the beginning of the test.

15
10
% A Type
o A A Diabetic
o 9 B Diabetized
g I ® Healthy
g n Condition
T g Hyperglycemia
o
o A1 )
Normoglycemia

) + 3

-10
Final dose day 4 days after 10 days after 14 days after

Figure 4-18. The mean score determined for each group with the corresponding
standard deviation are shown as a function of the measurement days. The healthy,
diabetized, and diabetic group are identified by circle, square, and triangle, respectively.
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Figure 4-19. The mean value of the instantaneous BGLs measured for each group with
the corresponding standard deviation are shown as a function of the measurement days.
The healthy, diabetized, and diabetic group are identified by circle, square, and triangle,
respectively.

It is important to remark that the biological response of each mouse
to the diabetes induction process may vary as some mice are more resistant
to the drug (STZ). This biological variation is also captured by the
proposed non-invasive approach, with some diabetized mice already
identified as hyperglycemic at the final dose day, even though the
measured BGL is still very similar to the healthy mice. This suggests that
the proposed non-invasive approach allows for the prompt detection of
diabetes effects in sustained hyperglycemia. The remaining cases have a
slower transition accounting for different speeds of development of the
induced diabetes in mice. Nevertheless, most of the diabetized mice wete
predicted as hyperglycemic four days after the final dose day, and the
average predicted scores of diabetized and diabetic mice at the last two
days were very similar, specially at day fourteen.

The obtained results indicate that the measured spectral response in
the W-band allows to the detect changes in mice metabolism with four
days or less of sustained hyperglycemia, and a full-blown diabetes in mice
two weeks after the induction. Moteover, normal BGLs measured on the
diabetized mice at the final dose day support the obtained results in section
4.2 demonstrating that the proposed non-invasive approach is sensitive to
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the effects of sustained hyperglycemia in metabolism rather to the
instantaneous BGLs.

4.5. DISCUSSION AND CONCLUSIONS

In this chapter, a new non-invasive approach for hyperglycemia
detection, based on spectral interrogation in the W-band, has been tested
on animal models using the FDA methods introduced in chapter 2. A first
experiment was carried out by non-invasively assessing a sample of twenty
mice of different strains representing three glycemic states
(normoglycemia, mild diabetes and full-blown diabetes). The
measurements were performed directly on a fold of skin in their back, and
the instantaneous BGL and the skin-fold thickness were measured almost
simultaneously. The amplitude and phase parameters of the reflection at
the top skin layers and the transmission through the fold of skin were
analyzed separately. The sample curves estimated from the measured
spectra were analyzed by interpreting the FPCA results. The computed
FPC’s scores from the reflection and transmission parameters allows to
detect hyperglycemia condition, and to distinguish other biological
features associated to the different mice strains involved in the
experiment. However, it could be concluded that the amplitude parameter
from transmission is more adequate for hyperglycemia discrimination
since appears to be not affected by the biological varieties of the different
mice strains involved in the sample mice population. The FPCA on
amplitude parameter of transmission provides a robust indicator not only
for hyperglycemia detection, but also for discrimination between a mild
diabetes and full-blown diabetes in mice. In addition, it was experimentally
proven that such disctimination of the hyperglycemic states does not
depend on the instantaneous BGL or the skin-fold thickness. Another
interesting observation in the achieved discrimination is that obese mice
suffering hyperglycemia condition for five months were detected has
normoglycemic after on month of having normoglycemia by a human
leptin treatment. At the view of all the obtained results, it is clear that the
proposed approach is rather robust against surface skin properties, in
contrast to optical methods, which are strongly affected by the skin
characteristics such as the hair, subepidermal fat, skin thickness or melanin
content, among others. Besides that, the fact that the proposed approach
is not directly monitoring the instantaneous BGL points to other
metabolites associated to sustained hyperglycemia in metabolism, such as
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the AGEs. This supports that the non-invasive assessment is sensitive to
detect metabolic changes related to sustained hyperglycemic states.

On the other hand, we were able to show that the relation between
the spectral response and the discrimination achieved can be quantitatively
studied by interpreting the loading functions of the FPCs. In this way, the
FPCA was able to characterize the spectral responses associated to the
discrimination of the sustained hyperglycemic states.

The obtained results from the first experiment encouraged us to
perform two more experiments with the aim to validate the hyperglycemia
detection on mice, and to study the sensitivity of the proposed approach
to detect different sustained hyperglycemic states.

In the second experiment, a new sample population of mice
consisting on eighteen normoglycemic mice and fifteen hyperglycemic
mice was non-invasively assessed by the applied spectroscopic technique.
The measured amplitude, related to the transmission coefficient of the
biological sample, was used to estimate a predictive model for
classification of sustained hyperglycemia by using FPCLoR. A multi-test
analysis, with hundred iterations, was developed to test the performance
of the predictive model. During the multi-test analysis two different
smoothness degrees were considered for the fitted sample curves to show
the tradeoffs between them in the FDA and highlight the importance of
obtaining smooth sample curves. The multi-test analysis shows that the
FPCLoR models estimated from both approaches provide excellent
performance in terms of the goodness of fit and prediction capabilities,
with an AUC of the ROC curve > 0.95 and a CCR > 80%. It should be
noted here that, regarding on the sustained hyperglycemia discrimination,
the obtained results from the multi-test analysis demonstrates that such
discrimination do not depend on the choice of a particular splines or
fitting function. On the other hand, we show that the lack of smoothness
in the fitted sample curves affects the interpretations and analysis of the
discriminating functional parameter estimated by the FPCLoR model.
Then, the non-invasive assessment for sustained hyperglycemia detection
was validated using the estimated FPCLoR model to predict the condition
of the twenty mice measured in the first experiment, with a 100% of
correct classification rate. Such results prove that the amplitude of the
coefficient transmission in the W-band provides a robust and reliable
indicator for sustained hyperglycemia prediction, with no prior calibration
required for the amplitude parameter.
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On the other hand, to remark the great potential of the presented
statistical methods in the development of applied spectroscopy systems to
build medical diagnostics, the estimated functional parameter of the
FPCLoR model was analyzed and interpreted in terms of the odds ratio.
This analysis allows to obtain a quantitative measure relating the measured
spectral response and the sustained hyperglycemia detection. Such
measure can be considered for further calibration of the applied
spectroscopic technique. Moreover, by the same analysis, we were able to
identify a narrow frequency interval between 78 GHz and 93 GHz as the
potential contributing frequencies for the achieved discrimination of
sustained hyperglycemic states, previously highlighted by interpreting the
FPCA performed in the first experiment. From the obtained feedback by
the statistical analysis we experimentally prove that the operating
frequency band of the spectroscopic instrument can be substantially
reduced without affects the performance of the predictive model. This is
very important not only for optimization of the applied spectroscopic
technique, but also for further in deep analysis of the condition because it
could lead to identify novel biomatkers indicative of metabolic alterations
related to the development of diabetes.

Finally, it was experimentally proven that the proposed non-invasive
approach is able to monitor temporal changes in sustained glycemia
associated to uncontrolled diabetes in a group of sixteen mice with a drug-
induced diabetes. Using a classifier obtained from the first experiment we
were able to clearly track the evolution of diabetized mice from
normoglycemia to hyperglycemia, enabling the prompt detection of
hyperglycemia condition. These results support the great potential of the
proposed approach not only for sustained hyperglycemia detection but
also for its early detection and monitoring with a temporal resolution of
few days. Although the minimum length of time required for the method
to detect changes in metabolism associated to different sustained glycemic
states is still not determined, the results indicate that different sustained
hyperglycemic states related to uncontrolled diabetes can be detected with
only four days of occurrence.

In summary, using the FDA to study the measured spectral response
by the spectroscopic instrument we were able to extract significant
information of the tested non-invasive approach for hyperglycemia
detection. We experimentally probe that the amplitude parameter of
transmission provides a robust indicator (not affected by skin thickness,
subepidermal fat or other biological varieties among the mice strains) with

N99N



high potential for the detection of sustained glycemic states in mice. This
simplifies the overall spectroscopy system resulting in a simple
transmission-type spectrometer with limited frequency bandwidth of
operation, which significantly reduces the complexity and cost
implementation of the spectroscopic instrument. These results show the
great potential of FDA in spectral data analysis for characterization and
optimization of applied spectroscopic techniques. It was also
demonstrated that the proposed approach can be potentially used to
monitor changes in sustained glycemia associated to diabetes with a
resolution of four days between measurements. The spectroscopic system
provides results in seconds, do not require frequent calibration, it is not
based on consumable materials, and can be made very compact and
realized cost-efficiently. Therefore, we consider that the proposed
approach has great potential in developing a new non-invasive technique
for diabetes monitoring not depending on the instantaneous BGL.
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5. USE OF W-BAND
SPECTROSCOPY FOR IN-
VIVO AND NON-INVASIVE
ASSESSMENT OF
HYPERGLYCEMIC STATES IN
HUMANS: PILOT CLINICAL
STUDY
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As described in section 3.1, sustained hyperglycemic metabolism
leads to the irreversible formation of AGEs, (free sugars in blood that
bind permanently to proteins and lipids), that have strong effects on many
body organs and tissues. This pathological condition is typical in diabetic
patients and is the underlying cause of all the complications associated to
DM. In this sense, the appearance of the HbAlc test, which provides a
measure of the glycated hemoglobin associated to sustained
hyperglycemia, is a recent indicator that has improved the diagnosis and
monitoring of DM (since 2010). The HbAlc measurement is a more stable
indicator than BGL measurement, and consequently, more convenient for
medical treatment decisions in diabetes care. Nevertheless, the HbAlc test
can only be used for long-term diabetes monitoring and control due to the
fact that the general consensus is that the HbAlc is a good indicator of
the average hyperglycemic metabolism over a period three months [238].

The observed characteristics of the non-invasive sustained
hyperglycemia measurement approach, described and experimentally
assessed using animal models in chapter 4, indicate that the proposed
system offers a comparable measure of the metabolomic state of the
animal to that provided by the HbAlc test, but the lead times required to
detect the sustained hyperglycemia condition are much shorter compared
to the periods required for the HbAlc test. For this reason, a preliminary
clinical study with human patients was proposed to compare the non-
invasive measure of sustained hyperglycemia using mm-wave
spectroscopy and the HbAlc standard measurement protocol in type 1
DM patients. The objective of this study, in collaboration with the
Instituto de Investigacién Sanitaria Fundacién Jiménez Diaz (Servicio de
Endocrinologia y Nutricién) was to validate the actual performance of the
developed diagnostic in humans.

In this chapter the spectral profiles in the W-band corresponding to
type 1 DM patients obtained from a pilot clinical test will be analyzed. The
sample population was assessed repeatedly during three different visits
over a period of seven months. In line with the previous work, the spectral
data analysis is performed using FDA methods, but with the HbA1lc value
as the response variable of interest.
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The collected data sets will be firstly analyzed separately (by visit)
using scalar-on-function regression to study the linear relation between
the W-band spectral response and the HbAlc value. Then, the spectral
data obtained from all visits will be analyzed simultaneously using LFDA
methods. More detailed information about the sample population and the
measurement protocol, as well as the obtained statistical results related to
the pilot clinical test, will be presented throughout this chapter.

5.1. DESIGN OF THE PILOT CLINICAL TEST

The clinical study protocol was developed in conformity with
international and national standards stablished for realization of human
experiments, and safeguarding confidentiality of participants (see section
8.1.2). All the participants gave written informed consent after having
understood about the objectives and protocol of the clinical study in the
recruitment stage (see section 8.2).

A total of thirty subjects were included in the sample population: ten
healthy volunteers (non-diabetics subjects) and twenty volunteer patients
with clinically diagnosed type 1 DM. Only type 1 DM was considered in
the pilot clinical study since affects homogeneously to the population, in
contrast to type 2 DM which is more frequent in older adults. The study
subjects recruited for the pilot clinical study were adults ranging from 25
to 79 years old and the gender distribution was 60 % women and 40 %
men.

The diagnostic criteria considered for inclusion of type 1 DM
patients in the pilot clinical study are the following:

a. The presence of carinal signs of DM such as polyuria,
polydipsia, and unexplained weight loss, with plasma glucose
> 200 mg/dl or diagnosis of diabetic ketoacidosis.

b. FPG (= 8 hrs) > 126 mg/dl.

c. Plasma glucose = 200 mg/dl after two hours in the OGTT
(75g of glucose).

d. HbAlc = 6.5 % (according to the National Glycohemoglobin
Standardized Program and standardized by the Diabetes
Control and Complications Trial).
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The exclusion criteria were diagnosis of type 2 DM or monogenic
diabetes, pregnancy, severe renal or hepatic insufficiency, poor short-term
prognosis (< 6 months), treatment with glucocorticoids or
immunosuppressive medications, or who have been hospitalized in the
past three months. Two different types of metabolic control were
equivalently included within the diabetic group: patients with good
metabolic control (HbAlc < 7 %) and patients with poor metabolic
control (HbAlc > 8 %), according to their clinical records at the time of
the recruitment. The sample population related to the pilot clinical test is
summarized in Table 5-1.

Table 5-1. Sample population evaluated in the pilot clinical test.

Condition HbAlc Quantity
Non-diabetic - 10
Diabetics with good 0
metabolic control ST 10
Diabetics with poor > 70 10

metabolic control

The general outline of the pilot clinical test is shown in Table 5-2
indicating the tests carried out at each visit. The evaluation process was
repeated at three visits within a period of seven months, with three months
between visits 1 and 2, and four months between visits 2 and 3. All the
evaluations were scheduled to match with regular medical appointments
at the Hospital Universitario Fundacién Jiménez Diaz.

At each visit, subjects were non-invasively assessed using the mm-
wave spectroscopy system (see section 3.3) to obtain their spectral
response within the W-band. The frequency step was halved to increase
the measured frequencies (49 frequencies), resulting in a frequency sweep

from 75 GHz to 111 GHz in steps of 0.75 GHz.
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Table 5-2. General outline of the pilot clinical test.

. « Recruitment (compliance assessment of selection
Visit 0 criteria).

« Supplementing informed consent forms.

« Blood analysis (hemogram and general biochemistry).
« Non-invasive assessment using the mm-wave
Visit 1 spectroscopic instrument.
o Fasting BGL (FBGL) measurement.
. Skin-fold thickness (SFT) measutement.

« Blood analysis (hemogram and general biochemistry).

- Non-invasive assessment using the mm-wave
Visit 2 spectroscopic instrument.
. Fasting BGL (FBGL) measurement.
. Skin-fold thickness (SFT) measurement.
- Blood analysis (hemogram and general biochemistry).
 Non-invasive assessment using the mm-wave
Visit 3 spectroscopic instrument.
. Pasting BGL (FBGL) measurement.
« Skin-fold thickness (SFT) measutement.

As shown in Figure 5-1, the non-invasive measure was performed on
a skin fold located in the first interdigital space (between the thumb and
index finger) of the right hand. The first interdigital space was chosen
because it is highly vascularized [239], [240], the skin is relatively thin and
is a comfortable location to perform the measurement. Additionally, an
elbow support was incorporated to the structure of the mm-wave
spectroscopic instrument for subjects’ comfort during the non-invasive
assessment and reduce arm movements and fatigue. No special indications
concerning the non-invasive assessment were given to the participants,
and all the patients continued their medical treatments at all times.
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Figure 5-1. Photographs taken during the non-invasive assessment of sustained
hyperglycemia using the mm-wave spectroscopic instrument installed at the Hospital
Fundacién Jiménez Diaz.

Besides the non-invasive assessment, other relevant physiological
variables were collected such as age, weight, height, Body Mass Index
(BMI), Skin-fold thickness (SFT), Systolic Blood Pressure (SBP) and
Diastolic Blood Pressure (DBP). The clinical variables considered in the
blood analysis are total hemoglobin (HGB), Glycated Hemoglobin
(HbAlc), Triglycerides (TG), total Cholesterol (Chol), High-density
Lipoprotein (HDL), Low-density Lipoprotein (LDH), Glomerular
Filtration Rate (GFR), Thyroid-stimulating Hormone (TSH), Aspartate
Transaminase (AST), and Alanine Transaminase (ALT). All the clinical
variables considered during the statistical analysis of spectral data collected
for pilot clinical test are listed and briefly described in Table 5-3.
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Table 5-3. Clinical/physiological variables considered in the statistical analysis of spectral

Index (BMI)

Systolic Blood
Pressure (SBP)

and the square of height
(m?).
Pressure within arteries
during active cardiac
contraction.

Diastolic Blood
Pressure (DBP)

Glycated
Hemoglobin
(HbAlc)

Fasting Blood
Glucose Level
(FBGL)

Creatinine (Cr)

Glomerular
Filtration Rate
(GFR)
Aspartate
Transaminase

(AST)

Alanine
Transaminase

(ALT)

Total
Cholesterol
(Chol)

Pressure within arteries
during heart relaxation
(between heart beats).

Hemoglobin chemically
linked to sugar.

Free sugar in blood after an
overnight fast.

Waste product generated by
the daily function of
muscles.

The glomerular filtration is
the process of blood
filtering by kidneys.
Important enzymes in the
amino acid metabolism, and
are found in many organs
and tissue such as liver,
hearth, kidneys, muscle
tissue, etc. The ALT
enzymes are found
primarily in liver.
Organic substance
necessary for many body
processes.
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data.
Variable Description Medical Relevance
Age - =
Weight - -
Height - -
Body Mass Rate berween weight (Kg) Overweight (fatness)

indicator.

Associated to
cardiovascular diseases,
arterial aneurysm, kidney
failure, hormonal
abnormalities, sepsis,
cardiogenic shock, among
others.
Indicator of mean BGL of
the last three months used
for sustained
hyperglycemia detection
and DM diagnosis and
control.

Indicator for DM
diagnosis and control.

Biomarker associated to
renal insufficiency and
kidney failure.

Used as biomarker to test
kidneys function.

Commonly used as
biomarkers to test liver
function by estimating the
AST/ALT ratio.

Associated to
cardiovascular diseases
and kidneys failure.




Lipoproteins which
High-density transport cholesterol to the
Lipoprotein liver from different body
(HDL) tissues. Commonly known
as “good” cholesterol.
Lipoprotein which
Low-density transport and deliver fats
Lipoprotein around the body.
(LDL) Commonly known as “bad”
cholesterol.
Triglycerides They are the main form of
(TG) fats in body.
”ljhyr(nfl- Glycoprotein hormone that .
stimulating . Used as biomarker for
hormone regulates the thyrf)ld thyroid disorders.
hormone production. y
(TSH)
Protein contained in red
Total blood cells which transports Used as biomarker for
Hemoglobin oxygen, and other gases, anemia, lungs and hearth
(HGB) between lungs and the rest diseases, among others.
of the body.

As could be expected, the first test using the mm-wave spectrometer
described in chapter 3 in human tissue exhibited higher absorption
(thicker skin and higher water content) than the observed during the mice
experiments, therefore, an amplifying stage for the transmitted signal was
required. The average SFT value measured for mice was 394 = 83 um and
for humans was 1.85 £ 2 mm. The transmission signal was amplified using
a W-LNA low noise amplifier (Radiometer Physics GmbH, Meckenheim,
Germany) connected at the input of the subharmonic mixer receiver
corresponding to the transmission measure. The W-LNA provides a
typical gain of 40 dB with a noise figure of around 4 dB. Then, the output
power of the signal generator was calibrated to obtain a flat frequency
response at the transmission port (around 250 mV * 5 mV) using a RF
attenuator (17 dB) at the input of the active frequency multiplier (see
Figure 3-2) to compensate for human tissue absorption. A separation of
1.8 mm between the probes of the mm-waves spectroscopic instrument
was fixed for calibration tests and to hold the skinfold of the participants
during the non-invasive assessments at the visits (see Figure 5-1).

~108 ~



5.2. FIRST RESULTS IN HUMANS: SCALAR-ON-
FUNCTION REGRESSION

As described above, a sample population of 30 subjects was recruited
and non-invasively measured using the mm-wave spectroscopic
instrument described in section 3.3 at three different visits, as detailed in
previous section. The collected spectral data include measurements from
twenty type 1 DM patients and ten controls (participants without DM).
After the 3 visits a total of eighty-three measurements were obtained
distributed as shown in Table 5-4 where some absences are indicated.

Table 5-4. Record of visits during the pilot clinical test.

Visit 1 Visit 2 Visit 3
Total
30 27 26
attendance
3 months 4 months
1 control 3 controls
Absences 0 . .
2 patients 1 patient

The approximated sample curves from amplitude spectra of
transmission collected at each visit are shown in Figure 5-2 identifying the
control cases, type 1 DM patients with good metabolic control, and type
1 DM with poor metabolic control by dotted blue lines, dashed orange
lines and red lines, respectively. The sample curves were approximated
using P-splines defined on 35 equally spaced knots over the W-band, with
the smoother parameter A = 0.3 chosen by the GCV method (as
discussed in section 2.3.3). As seen in Figure 5-2, spectra from all cases
(non-diabetics, diabetics with good and poor metabolic control) are mixed
and, in contrast to the transmittance observed in animal models, there is
no apparent differentiation between the spectra for the different
populations. Unlike the case for the animal models used previously,
glycemia in human subjects is continuously controlled (medication)
reducing the effects of sustained hyperglycemia in tissue and metabolism,
therefore, similar transmission properties were expected between subjects,
whether diabetics or non-diabetics. In fact, no differentiation in the W-
band measured transmission spectra between diabetics with good and
poor metabolic control is appreciated at first sight.
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Figure 5-2. Approximated sample curves from amplitude spectra of the transmitted
wave through the fold of skin of all the subjects at each visit. Non-diabetic subjects,
type 1 DM patients with good metabolic control, and type 1 DM patients with poor
metabolic control are identified by dotted blue lines, dashed orange lines and red lines,
respectively.

When dealing with this type of measurements in spectroscopy the
typical approach uses summary statistics for analyzing the spectral data
without consider repeated observations and the intrinsic longitudinal
nature of the observations. In this approach the relation between the W-
band measured transmission spectra and the HbAlc value would be
studied at each wvisit separately, without consider all the available
information (longitudinal data) of the sample population into the statistical
analysis. However, when dealing with such complex experimental
scenarios, such as biological ones, there are too many parameters
(biological vatiability, environmental, or, even, instrumental) affecting the
measured spectral response and it is extremely difficult to control them
completely (if eventually possible). Therefore, usually different results are
obtained when spectral data sets are analyzed separately (each visit
independently), even though all measurements come from repeated
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observations done under the same circumstances (sample individuals,
spectroscopic instrument and experimental protocol), leading to an
inconclusive or poor interpretation of spectral data analysis.

To illustrate this point, a scalar-on-function regression model (see
section 2.5) was estimated for each visit recorded during the pilot clinical
test. Thus, the W-band measured transmission spectra measured at each
visit is used to predict the corresponding HbAlc values. The R-squared
coefficient, also known as determination coefficient, is a goodness-of-fit
summary statistic that measures the proportion of variability of the
response variable (HbAlc value) explained by the fitted model [241],
[242]. As shown in Eq. (2-47), the number of basis functions used for the
estimation of the functional parameter by scalar-on-function regression
can differs to the number of basis functions used in the sample curves
approximation. In order to compare the analysis results of the three visits,
the functional parameter of the regression models was estimated
considering the same number of basis functions, and the best fit for
HbA1lc values at the three visits was achieved using seventeen cubic B-
spline basis functions.

The scatter plots of predicted HbAlc values by the scalar-on-
function regression model versus the measured HbAlc values at each visit
are shown in Figure 5-3. Let us observe that, as depicted by the HbAlc
values of diabetics, the initial distinction of good (HbAlc < 7%) and poor
(HbA1lc > 7%) metabolic control, according to their medical records, was
not continued during the pilot clinical test. Therefore, such distinction
between diabetics will be not considered for further analysis.

As shown in Figure 5-3, different results were obtained from the
estimated regression models, with the best fit (R-squared = 0.88) achieved
on the last visit. The results of the last visit indicate that a good linear
relation can be achieved between the W-band measured transmission
spectra and the HbAlc value. Nevertheless, the inconsistent results
between visits shows that there are uncontrolled factors involved in the
non-invasive assessment that strongly affects the HbAlc value prediction.
Such variation in the obtained results might be caused by changes in the
calibration of the spectroscopic instrument or changes in metabolism of
subjects between visits (within-subject variation among visits). Besides
this, other interferences in the non-invasive assessment such as
physiological, environmental or instrumental noise cannot be dismissed.
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Figure 5-3. HbAlc values versus predicted values by the regression model at each visit.
Non-diabetics, diabetics with good metabolic control and diabetics with poor metabolic
control are identified by blue circles, orange down-pointing triangles and red triangles,
respectively.

The changes in the W-band measured transmission spectra among
visits can be cleatly seen in the functional parameter B (t) estimated by the
regression model at each visit (see Figure 5-4). It can be seen that the
functional parameter exhibits different shapes between visits, providing
inconsistent information about the relation between the W-band
measured transmission spectra and the HbAlc value.
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Figure 5-4. Functional parameter [ (t) estimated by the regression model at each visit.

To address this problem in the evaluation of the proposed diagnostic
we are going to used the Longitudinal Functional Data Analysis LEFDA
techniques introduced in section 2.6. The used of these tools will allow us
not only to consider the between-subjects variability in the statistical
analysis, but also to take into account the within-subject variation when
subjects are repeatedly observed. Thus, the captured variability in spectral
data is decomposed into three parts: inter-subject variability (between
subjects), intra-subject variability (within subject) and noise. The part of
the variance estimated as noise can be seen as the variability in spectral
data not shared in either of the first two modes (inter and intra-subject).
In this way, the intra-subject variability extraction may improve the
previously obtained results since it will allow to consider much more
information in the statistical analysis (larger sample size) and can be used
to identify the factors that are introducing changes in W-band measured
transmission spectra between visits.

5.3. ANALYZING INTER AND INTRA-SUBJECT
VARIATIONS WITHIN THE W-BAND
SPECTROMETER MEASUREMENTS

In this section, the spectral data collected during the pilot clinical test
(eighty-three observations) will be analyzed simultaneously using novel
LFDA techniques introduced in section 2.6. Firstly, the longitudinal
spectral data will be decomposed performing LFPCA (see section 2.6.1)
to study possible influences of the available clinical variables in the intra-
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subject variation among visits depicted in previous section. Then,
longitudinal scalar-on-function regression methods (see section 2.6.2) are
used to study the relation between the W-band measured transmission
spectra and HbATlc value considering the inter and intra-subject variation
components along the time (three different visits). For both cases, the
functional data analyzed corresponds to the sample curves already shown
in Figure 5-2.

5.3.1. LFPCA ON LONGITUDINAL SPECTRAL DATA

The LFPCA was performed estimating the first four FPCs associated
to the inter-subject variability B;(t) and intra-subject variability U;;(t)
extracted from the longitudinal spectral data. A total of 95.8% of
variability contained in the longitudinal spectral data was captured by the
eight estimated FPCs, with a 54.8% related to the inter-subject variation,
a 41% related to the intra-subject variation, and a 0% of variability
estimated as noise.

The scores &; (see Eq. (2-58)) of the first FPC of B;(t) versus the
scores (;j (see Eq. (2-59)) of the first principal component of U;;(t),
corresponding to the inter and intra-subject variability, respectively, are
shown in Figure 5-5. The first FPC related to the inter-subject variability,
which explains 44.7% of variability in longitudinal spectral data (estimated
according to Eq. (2-62)), discriminates most of the observations between
diabetics and non-diabetics. The achieved discrimination between non-
diabetics and diabetics among visits considering the inter-subject
variability, extracted by the LFPCA, supports that the W-band
spectrometer measurements are capable to detect biological changes
related to type 1 DM in humans, as it was able to do in the animal
experiments.
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Figure 5-5. Scatterplot of the scores of the first FPCs cortesponding to the intet-subject
variability B;(t) and intra-subject variability U;;(t) estimated by the LFPCA. Non-
diabetics and diabetics are identified by blue citcles and red triangles, respectively.

The W-band obtained spectra associated to type 1 DM detection in
humans is characterized by the loading functions (random functional
intercept (1?) and random functional slope (1)), corresponding to the
first FPC of the inter-subject variation B;(t). The loading functions 1
and Y7 are plotted at the top of the Figure 5-6. At the bottom, the loading
functions multiplied by twice the standard deviation of the FPC were
added (+) and subtracted (=) to the estimated time-constant mean
function of the W-band measured transmission spectra. It is interesting to
note that, similarly to the results obtained in section 4.2.2, the determining
factors for discrimination between non-diabetics and diabetics are the
transmittance level of tissue over the W-band (characterized by the
random functional intercept) and a significant change of slope from 81
GHz to 89 GHz (characterized by the random slope function). These
findings suggest that both characteristic responses captured by the W-
band spectrometer are strongly related to changes in metabolism or tissue
in both sustained hyperglycemic mice models (used in chapter 4) and Type
1 DM patients, being less pronounced in the last ones.
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Figure 5-6. (Top) Loading functions associated to the first FPC of the inter-subject
vatiation estimated by the LFPCA, and the estimated time-constant mean function +
the corresponding loading function multiplied by twice the standard deviation of the
associated FPC (bottom).

On the other hand, the first four FPCs (;; related to the intra-subject
variation among visits, which accumulate 41% of variance in longitudinal
spectral data, were used to study possible relations between collected
clinical variables and the evolution of the W-band measured spectra
among visits. In Figure 5-7 a correlation matrix involving the most
relevant clinical variables and the first four FPCs ;; estimated by the
LFPCA 1s shown. The correlation matrix contains the Pearson’s
correlation coefficients ('), which measures the linear correlation between
two vatiables (Wy, W5) [243], [244], estimated as follows

= Z(W1 - liwl) (W1 - .qu)
JE(WI - llwl)2 (Wz - MWZ)Z

where W and W, are the random variables, and py, and py, are their

G-1)

sample means, respectively. The correlation coefficient can take values
between —1 and +1, the magnitude |r| indicates the strength of the
relation between both random variables, and the sign of r indicates how
the random variables are related; a positive value indicates that the random
variables are directly proportional, and negative values indicate that the
random variables are inversely proportional.
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Figure 5-7. Correlation matrix involving the first four FPCs related to the intra-subject
vatiation among visits and the more relevant clinical variables (described in Table 5-3).

As can be seen in the first four rows of the correlation matrix shown
in Figure 5-7, no strong correlations were found between the first four
FPCs related to the intra-subject variation and collected clinical variables.
The greatest correlation associated to the FPCs (r = 0.34) is between
FPC4 and HbAlc. This means that the intra-subject variation components
captured by LFPCA on longitudinal spectral data are not lineatly related
to the collected clinical variables. However, considering that the intra-
subject variation among visits is estimated as variation modes shared
between all subjects (diabetics and non-diabetics), it becomes apparent
that such vatiation is not determined by the presence of diabetes in
subjects and is mostly related to other biological factors not considered
into the pilot clinical test or could be related to systematic noise introduced
in the measurements among visits, such as changes in calibration of
spectroscopic instrument or environmental conditions.
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Additionally, and as a curiosity, we must note that the statistical
analysis performed on the different clinical variables obtained for the
different patients can provide with further relevant clinical information.
In this sense, some strong linear relations between clinical variables can be
highlighted from the correlation matrix estimated above, for example, the
strong correlation between LDL and the total cholesterol (r = 0.8), which
is higher than the observed between HDL and total cholesterol (r =
0.41), implying that the total cholesterol in blood is mostly affected by the
LDL. Also, we can see that GFR exhibits a strong inverse relation (r = -
0.73) with Age, implying that kidney function deteriorates with age, and it
exhibits a good inverse correlation with creatinine since higher content of
creatinine in blood is indicator of renal diseases. Weight and BMI show a
strong positive correlation (r = 0.72) due to their relation, and finally AST
and ALT production in body it seems to be closely related with a
correlation value of (r = 0.71).

5.3.2. LONGITUDINAL REGRESSION ANALYSIS ON HBA1C
VALUE

As mentioned above, the main objective of the pilot clinical test is to
assess the capability of the non-invasive approach to predict the HbAlc
value. The obtained results in Figure 5-3 show that, even though a good
linear relation can be achieved between the W-band measured
transmission spectra and the HbAlc value, such relation is significantly
affected among visits due to uncontrolled variations in the W-band
measured transmission spectra (shown in Figure 5-4). Nevertheless, as
shown in Figure 5-5, such variation among visits can be improved by
considering the intra-subject variation into the statistical analysis.
Therefore, the relation between the W-band measured transmission
spectra and the HbAlc value will be studied using longitudinal regression
models (LPFR and LFPCR) described in section 2.6.2. The main
difference between LPFR and LFPCR is that the first one estimates scalar
random intercepts to compensate the intra-subject variation among visits
and the functional parameter 5 (t) is estimated considering all the sample
curves (including repeated observations) as a fixed effect across visits. By
contrast, the second one is based on the variance decomposition estimated
by the LFPCA (inter and intra-subject variation).
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In Figure 5-8 is shown the scatter plot of the HbAlc values against
the predicted values by the fitted LPFR model, as introduced in Eq. (2-64),
considering the longitudinal spectral data shown in Figure 5-2. Let us
remark that no scalar predictors were considered in the model estimation.
As it can be seen, the LPFR model provides an excellent fit of the HbAlc
values measured from all visits (R-squared = 0.98), with the RMSE for
prediction equals 0.24. These are very promising results indicating that the
W-band spectra acquired has great potential for non-invasive Type 1 DM
monitoring, being strongly related to the biomarker of HbAlc test.
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Figure 5-8. HbAlc values versus predicted values by the LPFR model. Non-diabetics,
diabetics are identified by blue circles, and red triangles, respectively.

The measurement frequencies contribution for such relation can be
qualitatively evaluated obsetving the functional coefficient f;(t) estimated
by the LPFR model and plotted in Figure 5-9. As it can be seen, the
functional parameter splits the W-band into two frequency ranges with the
zero crossing at 94.8 GHz, indicating that transmittance for frequencies
below of 95 GHz is directly proportional to the HbAlc value, and the
transmittance measured for all other frequencies has inversely relation.
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Figure 5-9. Functional coefficient f§;(t) estimated by the LPFR model for HbAlc
regression, and their pointwise 95% confidence bands (dashed line).

Additionally, in order to validate the results achieved by LPFR, the
LFPCR model has also been estimated. The comparison of the
performance of both models can be seen in Table 5-5. An excellent fit is
also achieved by the LFPCR model (scores-based approach) with very
similar results even though the regression models are based on different
estimation methods. The consistent results obtained in Table 5-5
demonstrates the relation between the W-band spectral response and the
HbA1lc values.

Table 5-5. Results obtained from fitted LPFR and LFPCR models

on HbAlc values.
Model R-squared RMSE
LPFR 0.9753 0.2408
LFPCR

(scotes-based) 0.9771 0.2318

5.4. DISCUSSION AND CONCLUSIONS

In this chapter, a pilot clinical test was performed to assess the
applicability of the non-invasive approach (based on the transmittance of
the biological sample within the W-band) for hyperglycemia detection and
monitoring in Type 1 DM patients. A group of thirty volunteers (ten non-
diabetics and twenty diabetics) were non-invasively measured using the
proposed spectroscopic technique, which has previously been assessed
using animal models in chapter 4. Considering the observed features of
the non-invasive measure during the animal experiments, the pilot clinical
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study was focused to study the relation between the measured spectral
response and the HbATc test. The measurements were performed directly
on a fold of skin located in the first interdigital space (between the thumb
and index finger) of the right hand. The subjects were measured at three
different visits (regular medical appointments) over a period of seven
months with a blood analysis and other clinical variables collected at each
visit.

Firstly, the functional data sets approximated from each visit were
analyzed separately performing scalar-on-function regression to study the
relation between the HbAlc test and the W-band measured transmission
spectra. The obtained results provided evidence that there is a linear
relation between the W-band measured transmission spectra and the
HbA1lc values, but the goodness-of-fit achieved by the regression analysis
is considerably affected due to changes in the W-band measured
transmission spectra among visits.

The LFDA allows to analyze changes in the measured spectral
response when the sample is repeatedly observed at different times (intra-
subject variation), as in longitudinal studies. LFPCA was performed to
decompose the variance in longitudinal functional data (spectra measured
from all visits) into inter- and intra-subject variability. The first four FPCs
(with an accumulative explained variance of 41%) associated to the intra-
subject variability were used to study possible influences of collected
clinical variables in the spectral response evolution across visits. Although
no significant correlations were found between the estimated components
capturing the intra-subject variation and the collected clinical variables, the
first component of the inter-subject variability (with a 44.7% of explained
variance) allows to discriminate most of the observations between
diabetics and non-diabetics. Such discrimination implies that, in contrast
to the intra-subject variation, the inter-subject variations in the measured
spectral response is mostly determined by the presence of type 1 DM in
subjects. The characteristic spectral responses associated to the detection
of type 1 DM patients were qualitatively studied by interpreting the
corresponding loading functions. Such interpretation shows that the
achieved discrimination of type 1 DM patients is related to spectral
responses within the W-band that are quite similar to those observed in
the animal models studied in chapter 4. This suggests that sustained
hyperglycemia consistently affects the spectral response of both mice and
humans within the W-band, which might be associated to the spectral
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features of a biological indicator strongly related to hyperglycemic
metabolism.

On the other hand, even though no significant correlations were
found between the intra-subject variability, estimated by the LFPCA, and
the collected clinical variables, the achieved discrimination by the inter-
subject variability indicate that the relation between the HbAlc value and
the non-invasive measure can be significantly improved by considering
both inter- and intra-subject variability in the tregression analysis.
Therefore, taking advantage of the longitudinal regression analysis, the
HbA1lc values measured from all visits were fitted using LPFR and LFPCR
(scores-based approach) obtaining a R-squared value above 0.97 and a
RMSE below 0.24. The longitudinal regression analysis not only improve
the regression results on the HbAlc values, but also allows to interpret the
relation between the measured spectral response and the HbAlc value
since provided a much more smooth functional parameter [£;(t) than
those estimated by the scalar-on-function regression model.

In summary, these preliminary results from the pilot clinical study
indicate that the proposed spectroscopic approach provide a non-invasive
measure, based on the transmittance properties of the biological sample,
that can be potentially used for in-vivo detection and monitoring of
sustained hyperglycemia in humans. Nevertheless, there is still a lot of
further experimental work to identify and evaluate the predominant
factors (biological, environmental, or instrumental) associated to the
observed intra-subject variation in order to calibrate a spectroscopy
system that can be used as a non-invasive diagnostic tool in DM medical
proceedings.
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6. GENERAI CONCLUSIONS
AND DISCUSSION
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In this thesis a mm-wave spectroscopic technique has been proposed
and experimentally evaluated as a new non-invasive approach for in-vivo
sensing of sustained hyperglycemia, typically associated to DM. The
proposed non-invasive approach has been tested in different experimental
settings involving animal models and a pilot clinical study on humans. The
development and evaluation processes have been addressed under a two-
pronged strategy: a non-targeted spectral profiling approach and the
analysis of the collected spectral data using FDA techniques. The main
conclusions gathered throughout this thesis are reviewed and discussed
below.

A first experimental test (Experiment A) was designed according to
the non-targeted spectral profiling approach to explore the reflection and
transmission spectral responses within the W-band (measured by the
proposed spectroscopic technique) of mice models which represent
different glycemic conditions (normoglycemia, hyperglycemia from a mild
diabetes, and hyperglycemia from a full-blown diabetes). Two significant
conclusions were extracted from such exploratory test by using
unsupervised analysis (FPCA) on measured spectral data: the amplitude
parameter of transmission (related to the transmittance of the biological
media) provides the best indicator (unaffected by biological variations
between mice strains) for discrimination of the different glycemic states,
and such indicator is strongly associated to sustained glycemia rather than
the instantaneous BGL of the mice at the time of the non-invasive
assessment. Such discrimination between the different glycemic
conditions (normoglycemia, mild diabetes, and full-blown diabetes) was
also achieved by modelling the mice skin phenotypes using a full model
calibration procedure, typical for microwave network analysis [245]. In
contrast to the approach used here, the proposed mathematical model
requires amplitude and phase information of reflection and transmission
measurements, and special procedures for spectral data calibration are
needed.

Let us observe here that the obtained results from the exploratory
test provided a clearer and more specific perspective about the
applicability of the proposed spectroscopic approach for in-vivo sensing
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of hyperglycemia, which determined the design of the following stages of
the diagnostic development process. Thus, the next two experimental tests
allowed us to validate the detection of sustained hyperglycemia on a new
sample of mice (Experiment B) using a classification model (FPCLoR) and
to validate the sensitivity of the proposed approach to detect changes in
sustained glycemia (with at least four days of occurrence) tracking gradual
transitions from a normoglycemia to a hyperglycemia condition in a set of
healthy mice with a drug-induced diabetes by studying the evolution of
their corresponding FPC’s scores over a period of two weeks (Experiment

0).

A significant contribution of the FDA to the spectral data analysis
performed to the W-band transmission spectra collected from the
experiments with animal models is that we were able to identify and
validate a sub-interval of frequencies retaining the most relevant spectral
features associated to sustained hyperglycemia detection in mice. These
tindings were achieved by visually inspecting the loading functions and the
functional parameter estimated from FPCA and FPCLoR, respectively,
performed on the approximated functional data. Furthermore, we showed
that the relationship between the measured spectral response (by
frequency intervals) and sustained hyperglycemia prediction can be
quantitatively studied in terms of the odds ratio by analyzing the functional
parameter of the FPCLoR model. This is very interesting since enables the
calibration of a spectroscopic technique, proposed for a medical
diagnostic, without the need to relate the measured spectral response to a
specific component of the biological sample.

The extracted information from the spectral data analysis during the
animals experiments indicated that the proposed non-invasive approach
could be optimized according to the achieved detection of sustained
hyperglycemic states in mice, simplifying the spectroscopic technique
from a W-band spectrometer designed for reflection and transmission
complex measurements to a simple transmission-type spectrometer with
a significantly reduced interrogation frequency band-width.

Regarding to the non-invasive spectroscopic approach under
evaluation, the excellent capabilities to detect sustained hyperglycemia and
track different levels of sustained hyperglycemia achieved during the
previously discussed experimental tests provided strong evidence that the
non-invasive measurement (based on the transmittance of the biological
media) could be used to monitor sustained glycemia in humans, similarly
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to the HbATlc test, but with a better time resolution. The HbAlc test is
widely recognized in diagnosis and follow-up of DM as an indicator of the
average BGL in the body during the last two to three months. Therefore,
a pilot clinical test was performed to study the capability of the described
non-invasive approach to predict the HbAlc value on non-diabetic
volunteers and type 1 DM patients.

The pilot clinical test was designed as a longitudinal study (subjects
were measured repeatedly at different times) due to the desired evaluation
of the time resolution for the test, resulting in a total of three visits over a
period of seven months. This scenario allowed us to show the scope of
the FDA methods that enables the longitudinal spectral data analysis in
which all the collected spectral data during the three visits were
simultaneously analyzed in terms of the original contributions of the
measured frequencies. Firstly, the spectral data collected from each visit
were analyzed separately by scalar-on-function regression, with the HbAlc
value as the response variable and the W-band measured transmission
spectra corresponding to amplitude parameter as a functional predictor.
The non-longitudinal regression analysis showed that a good linear
relation can be achieved between the non-invasive measure and the
HbA1lc value (with an R-squared value of 0.88 for the first visit), but such
relation was significantly affected due to changes in the measured spectral
response among visits, with the R-squatred value ranging from 0.56 to 0.88.
Such variations were visually assessed by comparing the functional
parameters estimated for the three visits, which exhibited completely
different shapes from each other. These results cleatly indicated that, in
contrast to the measurements obtained with the animal experiments, the
interferences raised from biological, environmental or instrumental factors
were strong enough to considerably affect the performance of the non-
invasive approach. Such difficulties were expected since, compared to the
animal models, humans exhibit stronger absorption, much bigger
biological variability between subjects, and a slower metabolism.

In view of the observed variations in the measured spectral response
among visits, the longitudinal spectral data was analyzed using LFDA
methods which consider the inter and intra-subject variability. A LFPCA
was performed for a blindly exploration of the inter- and intra-subject
variation captured by the longitudinal spectral data. The inter-subject
variation allowed to discriminate most of the type 1 DM patients from the
non-diabetics, similarly to the discrimination achieved during animal
experiments. Once again, taking advantage of the interpretability of the
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corresponding loading functions, we realized that the achieved
discrimination of type 1 DM in humans and the detection of sustained
hyperglycemia in the mice models were determined by quite similar
characteristic spectral responses within the W-band. This clearly indicates
that there is a biological component (or components), with characteristic
spectral lines at the identified frequencies within the W-band, which is
closely related to the presence of sustained hyperglycemia. Besides this,
the estimated scores associated to the intra-subject variability (capturing
the variation of the spectral response among visits) were used to study
possible influences of several clinical variables collected during the pilot
clinical test, including the HbAlc value, but no significant correlations
were found. Let us remark here that LFPCA is a very powerful tool for
longitudinal spectral data analysis that not only allows to study possible
correlations between the estimated scores from the inter and intra-subject
variability decomposition and other measured variables (either biological,
environmental or instrumental), but also allows to study the temporal
evolution of the spectral response using surface graphics, which is very
useful for longitudinal studies of progressive diseases.

Then, two different longitudinal regression methods (LPFR and
LFPCR) were used in order to model all the HbAlc values in terms of the
longitudinal spectral data by considering the inter and intra-subject
variation which improved the prediction of the HbAlc values with an R-
squared value above 0.97 and a RMSE below 0.24. These results obtained
from the two models that are estimated through different approaches are
very promising since demonstrates that the measured spectral response

can provide an excellent indicator for sustained glycemia closely related to
the HbAlc value.

Thus, on one hand, it has been shown in this thesis that the non-
targeted spectral profiling approach allows to gain perspective in the
exploration and characterization of spectral responses obtained from
spectral interrogation performed on multi-species scenatios exhibiting
complex spectral features, such as biological media. This approach allowed
us to evaluate the applicability of the proposed spectroscopic technique
for in-vivo sensing of hyperglycemia by considering collectively the
spectral responses of all the components involved in the biological sample.
This is a very interesting alternative approach in the development of new
spectroscopy systems applied to biomedical engineering for two reasons:
no a-priori information about the spectral features of the sample
constituents is required, and it is not necessary to model an isolated
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metabolite (which is quite difficult in biological media) to associate the
measured spectral response to the pathology under study. This approach
is useful not only for cases in which the diagnostic does not requires the
quantification of a specific metabolite, but also to identify characteristic
spectral responses associated to the pathology under study that might lead
to determination of relevant biomarkers by specialized analysis of the
biological media composition (from the inverse problem perspective).

On the other hand, we have shown that the FDA framework covers
most of the classical multivariate statistical methods widely used for
unsupervised and supervised learning problems involving spectroscopy
data. FDA is advantageous for the spectral data analysis in many ways, but
one of the most significant benefits that makes it very suitable for the
development of applied spectroscopy systems is the ongoing
interpretation of the spectral data. However, as discussed in chapter 4, an
amenable interpretation of spectral data using FDA methods is subject to
the smoothness degree used in the approximation of the functional data
and regression analysis. In this regard, approximating smooth sample
curves from heterogeneous spectral features might be a challenging task
using a fixed overall smoothness degree. These cases can be addressed
using the approximation methods presented in this thesis by manually
fixing the knots at strategic locations over the measured frequency range.
Nevertheless, such a task requires considerable efforts if researcher does
not know which spectral peaks are truly associated to the optical properties
of the sample. The adaptive smoothing approaches can be very useful in
this situations, such as the adaptive P-splines [246], [247], that allows for
different local penalizations within the measured frequency range (varying
smoothing parameter).

It has been shown throughout this doctoral thesis that the FDA
framework is well suited for spectral data analysis, providing powerful and
amenable statistical methods for different experimental settings such as
the longitudinal studies. The FDA methods enable naturally the direct
interpretation of frequencies contribution at all time for supervised and
unsupervised analysis of spectral data (not usually possible for MDA
methods). As shown throughout this research work, the interpretation of
the measutred spectral data plays a key role in the evaluation process of
applied spectroscopic techniques. Therefore, we support that FDA
methods have a great scope for processing and analysis of spectral data
measured over a continuous domain.
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Finally, as the most relevant result of this thesis, the obtained results
from the pilot clinical study prove that the transmittance properties of the
biological media measured indirectly by the spectroscopic technique using
the W-band are closely related to sustained glycemia in humans. But the
spectroscopic technique requires further calibration to compensate the
intra-subject variation introduced in the measured spectral response. Even
though an excellent fit for the HbAlc value was achieved by the
longitudinal regression models, such approach limits the prediction
capabilities of the non-invasive diagnostic to individuals previously used
for calibration, requiring repeated measurements on each subject until
proper calibration is achieved. Therefore, further experimental tests need
to be made in order to identify and reduce the interferences introduced by
the intra-subject variation in the measured spectral response. An
important step prior the next experimental test in humans is to obtain a
prototype of the final spectroscopic instrument to ensute the stability of
the spectroscopic instrument response within the W-band and reduce the
instrumental interferences in the non-invasive assessments. Besides this,
other factors not considered in the pilot clinical trial, such as the skin
moisture, temperature of the targeted biological sample, humidity and
temperature of environment, should be registered during the
measurements in order to study their influence in the intra-subject
variation. Other interesting experimental test that should be also
considered for a next clinical study is to carry out the non-invasive
assessments more frequently (at least weekly), in order to compare the
non-invasive measure with the average BGL of subjects (using multiple
BGL readings per day) over shorter time periods. This will enable us to
study the time resolution offered by the proposed non-invasive approach
to track changes in sustained glycemia on humans.

Nevertheless, the statistical results obtained throughout this thesis
work demonstrate that the proposed spectroscopic technique is very
promising for the development of a non-invasive approach to sustained
hyperglycemia monitoring since it could potentially be less costly and time
consuming in diabetes management compared to current medical
procedures based on BGL and HbAlc invasive measurements. The non-
invasive instrument can be made very compact and mass-produced using
semiconductor processes, and its painless, non-invasive operation can
eliminate infection risks and ongoing expenses for consumables. All these
improvements in medical proceedings for diabetes management and
diagnosis would have a great positive impact in early diabetes detection,
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patient's quality of life, and in risk mitigation of potentially diabetic
individuals.
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8.1. ETHICAL ISSUES

8.1.1. ANIMAL EXPERIMENTS

All the experimental procedures involved in the mice experiments
were cartied out according to European and Spanish laws and regulations
(European convention ETS 1 2 3, about the use and protection of
vertebrate mammals used in experimentation and other scientific
purposes, Directive 2010/63/UE and Spanish Law 6/2013, and R.D.
53/2013 about the protection and use of animals in scientific research).
Procedures were approved by the Animal Experimentation Ethical
Committee of the CIEMAT according to all external and internal bio-
safety and bio-ethics guidelines, and by Spanish competent authority with
registered number PROEX 176/15.

8.1.2. PILOT CLINICAL STUDY

The clinical study protocol (Protocol code: FJD-ESPEC-DM-17-01)
was approved by the Comité de Ftica de la Investigacién del Hospital
Universitatio Fundacién Jiménez Diaz (CEI/CEIm-FJD). The clinical
study was performed in accordance to the ethical principles regarding
human experimentation stablished in the Declaration of Helsinki
developed by the World Medical Association, the guidelines for Good
Clinical Practice of the International Committee of Harmonization, and
the Law 14/2017, of 3 July, on Biomedical Research. All the information
related to the participants was processed according to the Organic Law
15/1999, of 13 December, on Protection of Personal Data.
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INFORME DEL COMITE DE ETICA DE LA INVESTIGACION

Fu

Dra. Macarena Bonilla Porras, Vicepresidenta del COMITE DE ETICA DE LA INVESTIGACION DE LA
FUNDACION JIMENEZ DIAZ
CERTIFICA:

Que en la reunion del CEIm-FJD que tuvo lugar el dia 10 de abril de 2018 (acta n° 07/18) se evalud el

estudio referido y, ha decidido: .
APROBAR

La propuesta para que se realice el estudio clinico titulado: “Estudio de la correlacion entre una
medida no-invasiva de estados de hiperglucemia sostenida usando espectroscopia de ondas
milimétricas y la Hb glicosilada en pacientes con Diabetes Mellitus tipo 1”, Cddigo Protocolo: FJD-
ESPEC-DM-17-01. Version del protocolo y la HIP: 2.1, 23 de Marzo de 2018.

Ademas, hace constar que:
1. En dicha reunion se cumplieron los requisitos establecidos en la legislacion vigente —Real decreto
109072015 y Decreto 39/94 de la CAM- para que la decision del citado CEIm sea valida.

. El Estudio relne las normas éticas estandar de nuestra Institucion para la realizacion de este tipo
de estudios.

n

3. Que se cumplen los preceptos éticos formulados en la Orden SAS 3470/2009 y la Declaracion de
Helsinki de la Asociacion Médica mundial sobre principios éticos para las investigaciones médicas
en seres humanos y en sus posteriores revisiones, asi como aquellos exigidos por la normativa
aplicable en funcion de las caracteristicas del estudio.

N

. EI CEImFJD, tanto en su composicién como en sus procedimientos, cumple con las normas de BPC
(CPMP/ICH/135/95) y con la legislacion vigente que regula su funcionamiento, y que la composicion
del CEIm FJD es la indicada en el anexo |, teniendo¥en cuenta que en el caso de que algun
miembro participe en el estudio o declare algin conflicto de interés no habra participado en la
evaluacion ni en el dictamen.

o

. Asimismo, hacemos constar no existe contraprestacion econdmica para el centro y los
investigadores.

6. Ademas, este comité recuerda la obligacion de realizar el seguimiento del estudio de acuerdo a la
legislacion vigente

Lo que firmo en Madrid a 10 de abril de 2018

Dra. Macarena Bon a Porras
Vicepresidenta CEIrr}FJD

Conocido %o#.forl;ne: Ve Be

anl % aie
Juan Antonio Alvaro de la Parra
Gerente'FJD
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COLABORADORES
Edurne Lecumberri Pascual Maria José de la Cruz Fundacién Jiménez Diaz

Carolina Suarez
Lucia Llanos Jiménez
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8.2. INFORMED CONSENTS

8.2.1. CONTROLS

HOJA DE INFORMACION AL PARTICIPANTE (CONTROLES)

TITULO DEL ESTUDIO: Estudio de la correlacion entre una medida no-invasiva de
estados de hiperglucemia sostenida usando espectroscopia de ondas milimétricas y la
Hb glicosilada en pacientes con Diabetes Mellitus tipo 1"

Cédigo Protocolo: FJD-ESPEC-DM-17-01, versién 2.1, 23 de Marzo de 2018

INVESTIGADORA PRINCIPAL: Edurne Lecumberri Pascual. Médico Adjunto Servicio
de Endocrinologia. Hospital Universitario Fundacion Jiménez Diaz.

INTRODUCCION:

Nos dirigimos a usted para informarle sobre un estudio de investigacion en el que se le
invita a participar. La intencién de este escrito es que reciba la informacién correcta y
suficiente para que pueda evaluar si quiere o no participar en este estudio. Para ello
lea esta hoja informativa con atencién y nosotros le aclararemos cualquier duda que le
pueda surgir.

PARTICIPACION VOLUNTARIA:

Debe saber que su participacion en este estudio es voluntaria y que puede decidir no
participar o cambiar su decision y retirar el consentimiento en cualquier momento sin
que por ello se altere la relacién con su médico ni se produzca perjuicio alguno en su
tratamiento.

DESCRIPCION GENERAL DEL ESTUDIO:

Desde la Universidad Carlos Ill, en colaboracién con el Centro de Investigaciones
Energeéticas, Medioambientales y Tecnologicas (CIEMAT) y con la Fundacion Jiménez
Diaz, se esta desarrollando un nuevo método no invasivo (que no implique pinchazos)
para la determinacion del control del azucar en sangre a través del analisis de un
pliegue de piel en pacientes que tengan diabetes tipo 1. El tratamiento de esta
enfermedad para evitar que aparezcan complicaciones a corto, medio y largo plazo
requiere un estrecho control de los niveles de azucar en sangre y un ajuste del mismo
en funcién de cémo se encuentren. Para ello, es necesario que los pacientes se
pinchen varias veces al dia para determinar los niveles de azlcar, y que ademas
acudan varias veces al afio al médico para hacerse analitica que determine otros
parametros que dan idea del control de su enfermedad, como la Hemoglobina
glicosilada (HbA1c).

Hasta este momento, se han realizado mediciones en animales, con buenos
resultados. El objetivo de este proyecto es el desarrollo, validacion y evaluacion de
esta nueva herramienta en seres humanos. Para ello, se necesita realizar la medicion
con la nueva herramienta tanto en pacientes con DM tipo 1 como en personas que
como usted no tienen diabetes, y comparar los resultados con las mediciones
habituales para el control de la diabetes. Por este motivo le invitamos a participar en el
estudio. Si su médico cree que cumple los criterios para participar y usted esta de
acuerdo, tendra que dar su consentimiento por escrito.

El estudio tiene una duracion prevista de 6 meses, y participaran 30 personas, de las
cuales 20 seran pacientes con DM tipo 1 y 10 serdn personas sin diabetes. Las
mediciones con la nueva herramienta se llevaran a cabo el dia que usted acuda a su
revision habitual. Se llevaran a cabo 3 mediciones (al inicio, a los 3 y a los 6 meses).
La medicién consiste en colocar un pliegue de la piel espacio que hay entre el primer y
el segundo dedo de la mano del paciente entre las dos sondas de medida del aparato.
Para ello, el médico tomaré con los dedos indice y pulgar de ambas manos un pliegue
cutaneo en esa zona efectuando una pequefia traccién hacia afuera que permita la
buena formacién del pliegue. Una vez asegurado que ambos lados del pliegue son

~161~



paralelos se colocaré el pliegue entre las sondas del equipo de medida, que habran
sido previamente separadas 70 mm. El técnico encargado de la toma de medidas
procedera a cerrar el espacio entre sondas hasta que éstas entren en contacto con la
piel, pinzando de esta forma el pliegue, sin que esto produzca el mas minimo dolor
para el paciente. El médico mantendra sujeto el pliegue de piel para asegurar su
posicion durante la realizacion de la medida. Tras aproximadamente 60 segundos, en
los que el paciente debera permanecer inmovil (no notara absolutamente nada durante
la medida), la caracterizacion se habré completado. Tras ello, el técnico procedera a
separar las sondas, liberando la piel del paciente.

Su participacion en el estudio consiste en permitir que se le realicen estas mediciones
y una analitica de sangre el dia de la medicién en dar su permiso para que se recoja
informacion relevante sobre su enfermedad para este estudio. Las visitas y pruebas
realizadas desde Endocrinologia y Nutricion son las mismas que deben realizarse en
su control habitual, es decir, no se hara ninguna prueba extraordinaria por el hecho de
participar en el estudio salvo por la medicion no invasiva.

BENEFICIOS Y RIESGOS DERIVADOS DE SU PARTICIPACION EN EL ESTUDIO
Es probable que usted no se beneficie directamente de su participacién en este
estudio. Independientemente de su participacién, usted recibira la atencién médica
habitual. Este estudio puede contribuir al desarrollo de una nueva herramienta que en
un futuro podria permitir un seguimiento de la enfermedad que evitara los pinchazos.

Usted no se va a someter a ningun riesgo por su participacion en este estudio. La
medicion, como se le ha explicado, no conlleva riesgos. El pinchazo en una vena del
brazo para hacerle la analitica puede causar algin efecto secundario como
inflamacion de la vena (flebitis), hematoma, trombo en la vena o inflamacion del tejido
bajo la piel, que suelen ser leves y resolverse sin incidencias.

CONFIDENCIALIDAD

El tratamiento, la comunicacion y la cesién de los datos de carécter personal de todos
los sujetos participantes se ajustara a lo dispuesto en la Ley Organica 15/1999, de 13
de diciembre de proteccion de datos de caracter personal. De acuerdo a lo que
establece la legislacion mencionada, usted puede ejercer los derechos de acceso,
modificacion, oposicion y cancelacion de datos, para lo cual debera dirigirse a su
meédico del estudio. Los datos recogidos para el estudio estaran identificados mediante
un codigo y solo su meédico del estudio/colaboradores podréa relacionar dichos datos
con usted y con su historia clinica. Por lo tanto, su identidad no sera revelada a
persona alguna salvo excepciones (si existe alguna situacién especial por la que se
necesitara conocer la identidad del sujeto para cumplir con algun requisito del estudio
se debe explicar en este apartado), en caso de urgencia médica o requerimiento legal.
Solo se transmitiran a terceros y a otros paises los datos recogidos para el estudio que
en ningln caso contendran informacion que le pueda identificar directamente, como
nombre y apellidos, iniciales, direccion, n° de la seguridad social, etc. En el caso de
que se produzca esta cesion, seréd para los mismos fines del estudio descrito y
garantizando la confidencialidad como minimo con el nivel de proteccién de la
legislacion vigente en nuestro pais. El acceso a su informacion personal quedara
restringido al médico del estudio/colaboradores, autoridades sanitarias, al Comité Etico
de Investigacion Clinica, cuando lo precisen para comprobar los datos y
procedimientos del estudio, pero siempre manteniendo la confidencialidad de los
mismos de acuerdo a la legislacion vigente.

OTRA INFORMACION RELEVANTE
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Debe saber que puede ser excluido del estudio si el promotor o los investigadores del
estudio lo consideran oportuno, ya sea por motivos de seguridad, por cualquier
acontecimiento adverso que se produzca o porque consideren que no estd cumpliendo
con los procedimientos establecidos. En cualquiera de los casos, usted recibira una
explicacién adecuada del motivo que ha ocasionado su retirada del estudio.

Al firmar la hoja de consentimiento adjunta, se compromete a cumplir con los
procedimientos del estudio que se le han expuesto. Cuando acabe su participacion
recibird el mejor tratamiento disponible y que su médico considere el més adecuado
para su enfermedad.

Si tiene cualquier pregunta ahora o en cualquier momento del acerca del estudio, de
su seguridad o de sus derechos, pregunte al investigador responsable del estudio o a
los miembros de su equipo. La investigadora responsable del estudio es la Dra.
Edurne Lecumberri, del Servicio de Endocrinologia. En caso de preguntas o dudas
acerca del estudio podra ponerse en contacto con ella en el teléfono 915504846.

FORMULARIO DE CONSENTIMIENTO INFORMADO POR ESCRITO

TiTULO DEL ESTUDIO: Estudio de la correlacién entre una medida no-invasiva de
estados de hiperglucemia sostenida usando espectroscopia de ondas milimétricas y la
Hb glicosilada en pacientes con Diabetes Mellitus tipo 17

Cédigo Protocolo: FJD-ESPEC-DM-17-01

INVESTIGADORA PRINCIPAL: Edurne Lecumberri Pascual. Médico Adjunto Servicio
de Endocrinologia. Hospital Universitario Fundacion Jiménez Diaz.

Yo (Nombre y apellidos)

- He leido la hoja de informacién que se me ha entregado.

- He podido hacer preguntas sobre el estudio.

- He recibido suficiente informacion sobre el estudio.

-He hablado CON ...
(Nombre y apellidos del investigador)

Comprendo que mi participacion es voluntaria.
Comprendo que puedo retirarme del estudio:

- Cuando quiera.

- Sin tener que dar explicaciones.

- Sin que esto repercuta en mis cuidados méedicos.

Presto libremente mi conformidad para participar en el estudio.

. Aevnnnnnans L [
de...........

Firma del participante Firma del investigador

Fecha: / / Fecha: / /
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8.2.2. PATIENTS

HOJA DE INFORMACION AL PARTICIPANTE

TITULO DEL ESTUDIO: Estudio de la correlacion entre una medida no-invasiva de
estados de hiperglucemia sostenida usando espectroscopia de ondas milimétricas y la
Hb glicosilada en pacientes con Diabetes Mellitus tipo 1"

Cdadigo Protocolo: FJD-ESPEC-DM-17-01, version 2.1, 23 de Marzo de 2018

INVESTIGADORA PRINCIPAL: Edurne Lecumberri Pascual. Médico Adjunto Servicio
de Endocrinologia. Hospital Universitario Fundacion Jiménez Diaz.

INTRODUCCION:

Nos dirigimos a usted para informarle sobre un estudio de investigacion en el que se le
invita a participar. La intencién de este escrito es que reciba la informacion correcta y
suficiente para que pueda evaluar si quiere o no participar en este estudio. Para ello
lea esta hoja informativa con atencion y nosotros le aclararemos cualquier duda que le
pueda surgir.

PARTICIPACION VOLUNTARIA:

Debe saber que su participacién en este estudio es voluntaria y que puede decidir no
participar o cambiar su decisién y retirar el consentimiento en cualquier momento sin
que por ello se altere la relacion con su médico ni se produzca perjuicio alguno en su
tratamiento.

DESCRIPCION GENERAL DEL ESTUDIO:

Usted padece Diabetes tipo 1 (Dm tipo 1) y se encuentra en seguimiento por el
Servicio de Endocrinologia. Como sabe, el tratamiento de esta enfermedad para evitar
que aparezcan complicaciones a corto, medio y largo plazo requiere un estrecho
control de los niveles de azucar en sangre y un ajuste del mismo en funcién de cémo
se encuentren. Para ello, es necesario que los pacientes como usted se pinchen varias
veces al dia para determinar los niveles de azucar, y que ademas acudan varias veces
al afio al médico para hacerse analitica que determine otros parametros que dan idea
del control de su enfermedad, como la Hemoglobina glicosilada (HbA1c).

Desde la Universidad Carlos Ill, en colaboracién con el Centro de Investigaciones
Energéticas, Medioambientales y Tecnolégicas (CIEMAT) y con la Fundacién Jiménez
Diaz, se esta desarrollando un nuevo método no invasivo (que no implique pinchazos)
para la determinacion del control del azucar en sangre a través del analisis de un
pliegue de piel en pacientes.

Hasta este momento, se han realizado mediciones en animales, con buenos
resultados. El objetivo de este proyecto es el desarrollo, validacion y evaluacion de
esta nueva herramienta en seres humanos. Para ello, se necesita realizar la medicion
con la nueva herramienta tanto en pacientes con DM tipo 1 como en personas sin
diabetes, y comparar los resultados con las mediciones habituales para el control de la
diabetes.

Si su médico cree que cumple los criterios para participar y usted esta de acuerdo,
tendra que dar su consentimiento por escrito.

El estudio tiene una duracion prevista de 6 meses, y participaran 30 personas, de las
cuales 20 seran pacientes con Dm tipo 1 y 10 seran personas sin diabetes. Las
mediciones con la nueva herramienta se llevaran a cabo el dia que usted acuda a su
revisién habitual. Se llevaran a cabo 3 mediciones (al inicio, a los 3 y a los 6 meses).
La medicion consiste en colocar un pliegue de la piel del espacio que hay entre el
primer y el segundo dedo de la mano entre las dos sondas de medida del aparato.
Para ello, el médico tomara con los dedos indice y pulgar de ambas manos un pliegue
cutdneo en esa zona efectuando una pequefia traccién hacia afuera que permita la
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buena formacién del pliegue. Una vez asegurado que ambos lados del pliegue son
paralelos se colocara el pliegue entre las sondas del equipo de medida, que habran
sido previamente separadas 70 mm. El técnico encargado de la toma de medidas
procedera a cerrar el espacio entre sondas hasta que éstas entren en contacto con la
piel, pinzando de esta forma el pliegue, sin que esto produzca el mas minimo dolor
para el paciente. El médico mantendra sujeto el pliegue de piel para asegurar su
posicién durante la realizacién de la medida. Tras aproximadamente 60 segundos, en
los que el paciente deberad permanecer inmévil (no notaré absolutamente nada durante
la medida), la caracterizacién se habra completado. Tras ello, el técnico procederd a
separar las sondas, liberando la piel del paciente.

Su participacion en el estudio consiste en permitir que se le realicen estas mediciones
y en dar su permiso para que se recoja informacion relevante sobre su enfermedad
para este estudio. Las visitas y pruebas realizadas desde Endocrinologia y Nutricion
son las mismas que deben realizarse en el control de la diabetes normal, es decir, no
se haréd ninguna prueba extraordinaria por el hecho de participar en el estudio salvo
por la medicion no invasiva.

BENEFICIOS Y RIESGOS DERIVADOS DE SU PARTICIPACION EN EL ESTUDIO
Es probable que usted no se beneficie directamente de su participacion en este
estudio. Independientemente de su participacion, usted recibira la atencion médica
habitual. Este estudio puede contribuir al desarrollo de una nueva herramienta que en
un futuro podria permitir un seguimiento de la enfermedad que evitara los pinchazos.

Usted no se va a someter a ningun riesgo por su participacion en este estudio. La
medicidn, como se le ha explicado, no conlleva riesgos.

CONFIDENCIALIDAD

El tratamiento, la comunicacion y la cesion de los datos de caracter personal de todos
los sujetos participantes se ajustara a lo dispuesto en la Ley Organica 15/1999, de 13
de diciembre de proteccion de datos de caracter personal. De acuerdo a lo que
establece la legislacion mencionada, usted puede ejercer los derechos de acceso,
modificacién, oposicién y cancelacion de datos, para lo cual debera dirigirse a su
médico del estudio. Los datos recogidos para el estudio estaran identificados mediante
un codigo y solo su médico del estudio/colaboradores podra relacionar dichos datos
con usted y con su historia clinica. Por lo tanto, su identidad no sera revelada a
persona alguna salvo excepciones (si existe alguna situacién especial por la que se
necesitara conocer la identidad del sujeto para cumplir con algln requisito del estudio
se debe explicar en este apartado), en caso de urgencia médica o requerimiento legal.
Solo se transmitiran a terceros y a otros paises los datos recogidos para el estudio que
en ningun caso contendrén informacién que le pueda identificar directamente, como
nombre y apellidos, iniciales, direccién, n° de la seguridad social, etc. En el caso de
que se produzca esta cesién, serd para los mismos fines del estudio descrito y
garantizando la confidencialidad como minimo con el nivel de proteccién de la
legislacion vigente en nuestro pais. El acceso a su informacion personal quedara
restringido al médico del estudio/colaboradores, autoridades sanitarias, al Comité Etico
de Investigacion Clinica, cuando lo precisen para comprobar los datos y
procedimientos del estudio, pero siempre manteniendo la confidencialidad de los
mismos de acuerdo a la legislacion vigente.

OTRA INFORMACION RELEVANTE

Debe saber que puede ser excluido del estudio si el promotor o los investigadores del
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estudio lo consideran oportuno, ya sea por motivos de seguridad, por cualquier
acontecimiento adverso que se produzca o porque consideren que no esta cumpliendo
con los procedimientos establecidos. En cualquiera de los casos, usted recibira una
explicacion adecuada del motivo que ha ocasionado su retirada del estudio.
Al firmar la hoja de consentimiento adjunta, se compromete a cumplir con los
procedimientos del estudio que se le han expuesto. Cuando acabe su participacion
recibira el mejor tratamiento disponible y que su médico considere el mas adecuado
para su enfermedad.
Si tiene cualquier pregunta ahora o en cualquier momento del acerca del estudio, de
su seguridad o de sus derechos, pregunte al investigador responsable del estudio o a
los miembros de su equipo. La investigadora responsable del estudio es la Dra.
Edurne Lecumberri, del Servicio de Endocrinologia. En caso de preguntas o dudas
acerca del estudio podra ponerse en contacto con ella en el teléfono 915504846.
FORMULARIO DE CONSENTIMIENTO INFORMADO POR ESCRITO

TITULO DEL ESTUDIO: Estudio de la correlacion entre una medida no-invasiva de
estados de hiperglucemia sostenida usando espectroscopia de ondas milimétricas y la
Hb glicosilada en pacientes con Diabetes Mellitus tipo 1"

Cédigo Protocolo: FJD-ESPEC-DM-17-01

INVESTIGADORA PRINCIPAL: Edurne Lecumberri Pascual. Médico Adjunto Servicio
de Endocrinologia. Hospital Universitario Fundacién Jiménez Diaz.

Yo (Nombre y apellidos)

- He leido la hoja de informacion que se me ha entregado.

- He podido hacer preguntas sobre el estudio.

- He recibido suficiente informacion sobre el estudio.

~He hablado Con ...
(Nombre y apellidos del investigador)

Comprendo que mi participacion es voluntaria.
Comprendo que puedo retirarme del estudio:

- Cuando quiera.

- Sin tener que dar explicaciones.

- Sin que esto repercuta en mis cuidados médicos.

Presto libremente mi conformidad para participar en el estudio.

Firma del participante Firma del investigador

Fecha: / / Fecha: / /
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