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ABSTRACT 

Millimeter-wave and THz spectroscopy is nowadays a huge research 
field largely focused on the development of new and improved 
instruments and techniques for practical applications such as medical 
diagnostics, security screenings, and industrial control processes; mainly 
due to its non-invasive and remote scope for matter elucidation and 
characterization. Such instruments are based on spectroscopic techniques 
that, broadly speaking, irradiate a target sample using electromagnetic 
radiation at different frequencies (wavelengths) to measure its optical 
properties as frequency-dependent functions. Thus, the use of 
spectroscopic techniques leads to the acquisition of spectral data 
containing the information about the interaction between the sample 
under evaluation and the applied electromagnetic radiation. In this 
situation, the processing and analysis of the spectral data are important 
tasks when developing new instruments based on spectroscopic 
techniques (applied spectroscopy systems), and one of the most 
challenging scenarios appears in applications in which the sample includes 
multiple species with very similar optical properties, as often happens in 
biomedical applications. Consequently, statistical methods are required, 
not only to extract the desired information from the spectral data, but also 
as part of the calibration process of the technique/instrument.  

In this doctoral thesis, a novel non-invasive approach using mm-
wave spectroscopy for in-vivo detection and monitoring of sustained 
hyperglycemia, typically associated with Diabetes Mellitus (DM), is 
evaluated through several experimental tests including the use of animal 
models and a pilot clinical study on humans (Type 1 DM patients). The 
experimental tests were carried out using a W-band spectrometer built 
specifically for this study, capable of acquiring the reflection and 
transmission spectra from in-vivo and non-invasive measurements 
performed on the animals and humans. The spectral data collected from 
these tests have been processed and analyzed using Functional Data 
Analysis (FDA) methods due to their suitability for the abovementioned 
challenging spectroscopic scenarios in the framework of biomedical 
applications. FDA techniques have allowed us to study the spectral 
response measured within the W-band in unsupervised and supervised 
settings, providing an interpretation of the different interrogation 
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frequencies contribution at all the analysis stages, even for a longitudinal 
analysis performed on spectral data collected at different times during the 
pilot clinical study with type 1 DM patients. It is important to note that in 
the conception of the diagnostic we have used a non-targeted spectral 
profiling approach that allowed us to consider collectively the spectral 
features of all the sample constituents (avoiding the necessity of individual 
metabolites identification) thus providing with a wider perspective about 
the applicability of the proposed spectroscopic technique for in-vivo 
sensing of hyperglycemia. 

The experimental results of this thesis demonstrate that simple 
transmission-type spectrometers in the W-band in combination with the 
right statistical analysis tools show great potential for the further 
development of a non-invasive diagnostic tool for in-vivo sensing of 
sustained glycemia in humans. This would mean a clear breakthrough in 
Diabetes Mellitus diagnostic and management as it could substitute the 
current standard tool in medical practice for DM diagnosis and 
monitoring, as it is the invasive HbA1c test. 
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RESUMEN 

Hoy en día, la espectroscopia de ondas milimétricas y THz 
comprenden un gran campo de investigación que se enfoca en gran parte 
al desarrollo de técnicas e instrumentos nuevos y mejorados en 
aplicaciones prácticas, tales como: diagnósticos médicos, controles de 
seguridad y el control de procesos industriales; esto se debe principalmente 
a su alcance para elucidar y caracterizar la materia de forma remota y no 
invasiva. Dichos instrumentos se basan en técnicas espectroscópicas que, 
en términos generales, irradian una muestra objetivo utilizando radiación 
electromagnética a diferentes frecuencias (longitudes de onda), para medir 
sus propiedades ópticas en función de las frecuencias utilizadas. Siendo 
ésta la razón por la que el uso de técnicas espectroscópicas resulta en la 
adquisición de datos espectrales, los cuales contienen la información sobre 
la interacción entre la muestra evaluada y la radiación electromagnética 
aplicada. En esta situación, el procesamiento y análisis de los datos 
espectrales son tareas importantes a la hora de desarrollar nuevos 
instrumentos basados en técnicas espectroscópicas (sistemas de 
espectroscopía aplicada), y uno de los escenarios más desafiantes se 
encuentra en aplicaciones donde la muestra incluye múltiples especies con 
propiedades ópticas muy similares entre sí, como suele ocurrir en las 
aplicaciones biomédicas. En consecuencia, se requieren métodos 
estadísticos, no solo para extraer la información deseada de los datos 
espectrales, sino también como parte del proceso de calibración de la 
técnica o el instrumento. 

En esta tesis doctoral, se evalúa un enfoque novedoso que utiliza 
espectroscopía de ondas milimétricas para la detección y monitorización 
in vivo y de forma no invasiva de la hiperglucemia sostenida, típicamente 
asociada a la Diabetes Mellitus (DM), en donde se incluyen varias pruebas 
experimentales realizadas con modelos animales y un estudio clínico piloto 
en los seres humanos (pacientes con DM tipo 1). Las pruebas 
experimentales se realizaron mediante un espectrómetro de banda W que 
se construyó específicamente para esta investigación, capaz de adquirir los 
espectros de reflexión y transmisión a partir de las mediciones in vivo y 
no invasivas realizadas sobre las muestras biológicas. Todos los datos 
espectrales obtenidos durante estas pruebas, fueron procesados y 
analizados utilizando métodos de Análisis de Datos Funcionales (ADF) 
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debido a su idoneidad para abordar los escenarios espectroscópicos 
complejos que se encuentran muy comúnmente en el marco de 
aplicaciones biomédicas. Las técnicas del ADF nos permitieron estudiar la 
respuesta espectral medida en la banda W bajo los entornos de aprendizaje 
supervisado y no supervisado, proporcionando una interpretación de la 
contribución de las frecuencias medidas en todas las etapas del análisis, 
incluso para un análisis longitudinal realizado con datos espectrales que 
fueron observados a diferentes tiempos durante el estudio clínico piloto 
con pacientes de DM tipo 1. También es importante señalar que referente 
a la concepción de los diagnósticos presentados, se utilizó un enfoque de 
perfilamiento espectral no específico, el cual nos permitió considerar de 
forma colectiva las características espectrales de todos los constituyentes 
de la muestra (sin tener que identificar metabolitos individualmente). 
Además, este enfoque nos proporcionó una perspectiva más amplia a la 
hora de estudiar la aplicabilidad de la técnica espectroscópica propuesta 
para la detección in vivo de hiperglucemia. 

Los resultados experimentales obtenidos en esta tesis, demuestran que un 
simple espectrómetro capaz de medir la transmitancia de la muestra 
biológica en la banda W, combinado con las herramientas de análisis 
estadístico adecuadas, proporciona un enfoque potencial para el desarrollo 
de una herramienta de diagnóstico no invasiva enfocada a la detección in 
vivo de la glucemia sostenida en humanos. Esto significaría un claro 
avance en el manejo y en el diagnóstico de la diabetes, ya que podría 
sustituir la prueba invasiva de HbA1c, que es la herramienta estándar 
utilizada actualmente en la práctica médica para el diagnóstico y 
seguimiento de la Diabetes. 

 



~ XV ~ 

TABLE OF CONTENTS 

AGRADECIMIENTOS .................................................................. IV 

PUBLISHED AND SUBMITTED CONTENT .......................... VI 

OTHER RESEARCH MERITS.................................................. VIII 

LIST OF ACRONYMS ................................................................... IX 

ABSTRACT ...................................................................................... XI 

RESUMEN ................................................................................... XIII 

TABLE OF CONTENTS .............................................................. XV 

1. Introduction .................................................................................... 1 

1.1. The spectroscopy: fundamentals and challenges in 
biomedical engineering ............................................................ 2 

1.2. The spectral data analysis in the development process of 
applied spectroscopy systems .................................................10 

1.3. Thesis overview and objectives ..............................................14 

2. Statistical tools for spectral data analysis.....................................18 

2.1. Functional Data Analysis (FDA) ........................................... 20 
2.1.1. Definitions and theoretical assumptions ................................. 21 

2.2. Main summary statistics for functional data ........................ 23 

2.3. Approximation of Functional data ........................................ 24 
2.3.1. Basis expansion ............................................................................ 26 

2.3.1.1. B-spline bases ..................................................................... 27 
2.3.2. Regression splines ........................................................................ 28 

2.3.2.1. Leave-One-Out Cross Validation (LOOCV) ............... 30 
2.3.3. Penalized splines (P-splines) ...................................................... 31 

2.3.3.1. Generalized Cross Validation (GCV) ............................ 32 

2.4. Functional Principal Component Analysis ........................... 33 
2.4.1. Approximation of the FPCA solution ..................................... 35 
2.4.2. Orthogonal representation of a Stochastic Process ............... 36 



~ XVI ~ 

2.5. Functional Linear Regression ............................................... 37 
2.5.1. Functional Logit Model .............................................................. 39 

2.5.1.1. FLoR model estimation by FPCs ................................... 40 
2.5.1.2. Functional parameter interpretation............................... 41 

2.6. Longitudinal Functional Data Analysis ................................ 43 
2.6.1. Longitudinal FPCA (LFPCA) .................................................... 44 
2.6.2. Longitudinal scalar-on-function regression analysis .............. 47 

3. Millimeter-wave spectroscopy for non-invasive sensing of 
sustained hyperglycemia ..............................................................51 

3.1. Diabetes Mellitus: technological advances and challenges for 
non-invasive sensing of blood glucose level .......................... 53 

3.2. THz, Microwave and Millimeter- wave radiation in 
biomedical engineering .......................................................... 57 

3.3. Mm-wave spectroscopy instrument used for experiments .. 59 

4. Use of W-band spectroscopy for in-vivo non-invasive assessment 
of hyperglycemic states using animal models ............................ 64 

4.1. Description of the experiments using animal models .......... 66 
4.1.1. Animal models used in the experiments .................................. 67 
4.1.2. Experiment A ............................................................................... 68 
4.1.3. Experiment B ............................................................................... 71 
4.1.4. Experiment C ............................................................................... 73 

4.2. Blind exploration and characterization of the measured 
spectral response..................................................................... 74 

4.2.1. Interpreting FPCs’ scores ........................................................... 77 
4.2.2. Interpreting FPCs’ loading functions ....................................... 83 

4.3. Evaluation of the consistency and robustness of the 
measured spectral response ................................................... 84 

4.3.1. Multi-test analysis: performance and robustness of the 
proposed approach ....................................................................................... 87 

4.3.2. Validation of the consistency of the applied spectroscopic 
technique and analysis of the FPCLoR model ......................................... 90 

4.4. Sensitivity of the non-invasive approach to detect changes in 
sustained glycemia ................................................................. 93 

4.5. Discussion and conclusions .................................................. 97 



~ XVII ~ 

5. Use of W-band spectroscopy for in-vivo and non-invasive 
assessment of hyperglycemic states in Humans: Pilot clinical 
study ............................................................................................ 101 

5.1. Design of the pilot clinical test ............................................. 103 

5.2. First results in humans: Scalar-on-function regression....... 109 

5.3. Analyzing inter and intra-subject variations within the W-
band spectrometer measurements ........................................ 113 

5.3.1. LFPCA on longitudinal spectral data ..................................... 114 
5.3.2. Longitudinal regression analysis on HbA1c value................ 118 

5.4. Discussion and conclusions ................................................. 120 

6. General conclusions and discussion .......................................... 123 

7. References ................................................................................... 131 

8. Appendix ..................................................................................... 157 

8.1. Ethical issues ......................................................................... 158 
8.1.1. Animal experiments .................................................................. 158 
8.1.2. Pilot clinical study ...................................................................... 158 

8.2. Informed consents ................................................................ 161 
8.2.1. Controls ....................................................................................... 161 
8.2.2. Patients ........................................................................................ 164 

 

 



~ 1 ~ 

 INTRODUCTION 
 



~ 2 ~ 

1.1. THE SPECTROSCOPY: FUNDAMENTALS AND 

CHALLENGES IN BIOMEDICAL ENGINEERING 

The origins of the spectroscopy dates from the 17th century, being 
the systematic studies made by Isaac Newton about the white light 
decomposition (rainbow effect) considered as the first main contribution 
in this field [1]. Early in the 19th century, Joseph von Fraunhofer invented 
the first spectroscope and discovered a set of dark lines in the visible 

spectrum (~400 THz - ~790 THz), known as Fraunhofer lines [2]. 
Subsequently, Gustav Robert Kirchhoff and Robert Wilhelm Bunsen 
constructed a flame spectroscope to study the light emission properties of 
chemical components [3], [4], and their experiments allowed them to relate 
the Fraunhofer lines to the absorption properties of some gases in the 
atmosphere of the sun. Kirchhoff and Bunsen stated that each chemical 
element has a set of characteristic spectral lines (fixed frequencies) in 
which can either emit or absorb energy [5]. In 1913, Niels Bohr analyzed 
the hydrogen spectrum combining the quantum theories proposed by 
Albert Einstein and Max Planck with the Rutherford model, resulting in 
the Bohr model [6], [7]. The Bohr model postulates that electrons exist 
only in quantified energy orbitals (states of constant energy) and they can 
be promoted to higher energy orbitals (excited state) through photon 
absorption. Similarly, the electrons fall back to lower energy orbitals 
(electron relaxation) by emitting photons, with the lowest possible energy 
orbital called ground state. But the electrons only can absorb or emit 
photons carrying an amount of energy exactly equal to the energy 
difference between the initial and final state of the transition. This theory 
provided an explanation to the already observed characteristic spectral 
lines associated to chemical components (absorption and emission 
spectrum) since the photon energy is determined by the frequency of the 
electromagnetic wave as follows (Planck-Einstein relation) 

𝐸 = ℎ𝑣, (1-1) 

where 𝐸 is the photon energy, ℎ is the Planck’s constant (6.625×10-34 J∙s), 
and 𝑣 is the frequency. Thus, the transition of an electron from an initial 

state 𝐸1 to a higher energy state 𝐸2 by the photon energy absorption 
satisfies the relation 



~ 3 ~ 

𝐸2 − 𝐸1 = 𝑛ℎ𝑣, 𝑛 ∈ ℕ. (1-2) 

Let us to note that the frequency 𝑣 and the wavelength 𝜆 of an 
electromagnetic wave are related as follows 

𝑣 =
𝑐

𝜆
 , (1-3) 

where 𝑐 is the speed of light in vacuum (3×108 m/s). The electromagnetic 
waves (electromagnetic radiation) include all types of energy travelling 

through space at the constant velocity of 𝑐, being the visible light a portion 
of the electromagnetic spectrum [8]. 

In other words, when a molecule interacts electromagnetic waves 
only the frequencies satisfying Eq. (1-2) will produce molecular electronic 
transitions resulting in a partial or complete absorption of the radiant 
energy. This wavelength dependent absorption coefficient is seen every 
day on the characteristic colors of matter; the observed color corresponds 
to the not absorbed wavelengths by the chromophores of molecules 
within the visible light. Then, as illustrated in Figure 1-1 where the 
absorption spectra for several gases are shown, an absorption spectrum is 
a wavelength dependent function with its peaks matching with the 
absorbing frequencies of a determined chemical compound observed over 
a frequency range.  

Let us note that besides the molecular electronic transitions 
(electronic energy), there are other rotational and vibrational molecular 
energy levels (related to the absorption of photons) that are also 
characterized by their dependence on the wavelength [9, Ch. 1]. The 
energy absorption by molecules within the millimeter-wave and THz 
radiations is determined by the rotational and vibrational energy levels 
rather than molecular electronic transitions. 
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Figure 1-1. Absorption spectrums of several gases: carbon dioxide (CO2), methane 
(CH4) and ammonia (NH3) in the 4.8 µm to 4.9 µm range [10]. Different 
concentrations were considered for viewing purposes. 

The relationship between a chemical specie and the amount of 
energy absorbed when is irradiated by electromagnetic waves  
(absorbance) was studied by Johann Heinrich Lambert in 1760 and later 
by August Beer in 1852 providing the Beer-Lambert law [11], [12, Ch. 1]. 

This law demonstrated (under certain conditions) that absorbance 𝐴 is 
directly related to the concentration of the chemical specie as follows 

𝐴 = 𝜀ℓ𝜌 = 𝛼ℓ, (1-4) 

where 𝜀 is the wavelength dependent molar extinction coefficient, ℓ is the 

length crossed by the electromagnetic wave, 𝜌 is the concentration of the 

given chemical specie, and 𝛼 is known as the absorption coefficient. Thus, 
the absorption coefficient indicates the number of photons (amount of 
energy) absorbed per unit distance. In cases in which there are multiple 
species (without chemical reactions between them) absorbing at a given 
wavelength, the total absorbance equals to the sum of the individual 
absorbances [12, Ch. 1]. The relation shown in Eq. (1-4) was empirically 
determined by measuring the attenuation of the intensity of an 
electromagnetic wave (at a specific frequency) travelling through an 

absorbing media (known as transmittance). The transmittance 𝑇 and the 

absorbance 𝐴 are related by the Beer-Lambert law as follows  

𝐴 = − log10 𝑇 , = − log10

𝐼𝑜𝑢𝑡

𝐼𝑖𝑛
 , (1-5) 
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where 𝐼𝑖𝑛 is the intensity (radiant energy) of the electromagnetic wave that 

reaches the absorbing media, and 𝐼𝑜𝑢𝑡 is the radiant energy that passes 
through it without being absorbed. 

Over the years more precise theories have been formulated 
describing the absorption phenomenon and providing solutions for cases 
in which Eq. (1-4) is no longer valid (e.g. due to stronger intermolecular 
interactions or scattering effects described below), but, those findings 
were fundamental pieces in the development of the spectrochemical 
analysis (absorption and emission spectroscopy) [7], [13], [14]. The 
characteristic and unique behavior of chemical species observed from 
their interaction with electromagnetic radiation, making identifiable most 
of the chemical species (as a fingerprint), has attracted increasing attention 
to the spectroscopy field for the development of non-invasive exploratory 
tools (spectroscopic techniques) of matter. Today, the spectroscopy field 
spreads over the whole electromagnetic spectrum involving different types 
of radiation such as microwaves, Terahertz (THz), infrared (IR), 
ultraviolet (UV), X-Rays, among others [15]–[19]. The linear spectroscopic 
techniques are commonly focused to measure the spectrum resulting from 
the irradiation of a sample under study (gaseous, liquid, or solid) by 
electromagnetic waves at different frequencies within a frequency interval 
of interest (spectral interrogation). 

In addition to the atomic absorption and emission of energy, there 
are other natural phenomena associated to the interaction of 
electromagnetic radiation with matter such as reflection, refraction, and 
scattering, among others [20]–[25]. These phenomena are widely studied 
and used in the spectroscopy field because they are related to the natural 
properties of the matter and are wavelength dependent too [26]–[32]. In 
Figure 1-2 are shown simply examples of absorption, reflection, refraction 
and scattering phenomena above mentioned. (A) Absorption: the light 
beam enters the liquid and is strongly attenuated until it fades. (B) 
Reflection: the light is returned when hits the water surface retaining the 
imaging geometry (specular reflection), when the light is reflected in all 
directions is called diffuse reflection. (C) Refraction: the pencil seems to 
have two different positions (appears to be broken) because the speed and 
direction of the light change into the water. Another example of refraction 
is the rainbow effect (light dispersion). (D) Scattering: the photons of the 
light beam are deviated (scattered) from its straight trajectory in random 
directions when hits the particles, when the photon is repeatedly scattered 
by different molecules is called multiple scattering. This phenomenon is 
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also observed in the sky; the electromagnetic waves corresponding to 
those frequencies that human eye perceives like blue light are scattered 
(more than the other wavelengths) by gases in Earth atmosphere (Rayleigh 
scattering). Let us observe here that specular reflection and refraction are 
considered as particular cases of coherent scattering from a large number 
of molecules when the incident wave interacts with “optically smooth” 
surfaces [25], [32], [33]. 

 

Figure 1-2. Photographs illustrating in the simplest way the absorption (A), reflection 
(B), refraction (C), and scattering (D) phenomena. 

The reflection, refraction and scattering effects are inherently related 

to the refractive index 𝜂 of matter [24], [34] which is commonly defined 
as follows 

𝜂𝑖 =
𝑐

𝑢𝑖
 , (1-6) 
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where 𝑐 is the speed of the electromagnetic waves in vacuum and 𝑢𝑖 is the 
phase velocity (speed of propagation) of the electromagnetic wave in a 

given medium, being 𝑢𝑖 dependent on the natural properties of the 
medium. As shown by Fresnel laws [35], [36, Ch. 1] (Augustin-Jean 
Fresnel; 1821) the refractive index is strongly related to the reflection and 
transmission coefficients of matter, and it can be also used to determine 
the change in direction of the incident wave when it passes from one 
medium to another (transmitted wave) according to its angle of incidence 
on the interface surface between both mediums (generally true for 
optically smooth surfaces). Such relation between the refractive index and 
the change in wave direction was stated in the Snell’s law [36, Ch. 1], [37] 
(Willebrord Snel van Royen; 1637) which in its most basic form (non-
absorbing media) is given by 

𝜂1 𝑠𝑖𝑛 𝜃1 = 𝜂2 𝑠𝑖𝑛 𝜃2 , (1-7) 

where 𝑛1 and 𝑛2 are the respective refractive indices of each medium, 𝜃1 

is the angle of incidence, 𝜃2 angle of refraction. Let us observe that the 
refractive index is complex valued, with the imaginary and real parts 
determined by the molar extinction coefficient and the refractive 
properties of the medium, respectively [38]. Both properties (absorption 
and refraction) are interlinked by the Kramers-Kronig relations (Ralph de 
Laer Kronig, 1926; Hendrik Anthony Kramers, 1927) [39]–[42], which 
demonstrate that the refractive properties of matter are directly associated 
with its characteristic absorption spectral lines. For some cases, the 
Kramers-Kronig analysis has been proposed to characterize the complex 
refractive index from reflectance spectra [43], [44]. However, the 
mathematically modelling of complex refractive index becomes a 
challenging task for highly absorbent and scattering media [45]–[48]. The 
spectroscopy applied to biomedical engineering is an example of such 
cases, where the samples usually involve a large number of components 
with strong interactions between molecules (liquids) and exhibiting similar 
absorption properties, as illustrated in Figure 1-3. As it can be seen, 
absorption spectrums from oxyhemoglobin and deoxyhemoglobin show 
a continuum level of absorption over the frequency interval with wider 
and less pronounced peaks compared to the narrow spectral features 
observed in Figure 1-1 for gases. This kind of spectral responses are very 
characteristic for biological tissues. In particular, the spectral interrogation 
of in-vivo biological samples will be the target of the applied spectroscopic 
technique addressed throughout this thesis.  
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Figure 1-3. Absorption spectrums of oxyhemoglobin (red line) and deoxyhemoglobin 
(blue line) blood in the 300 nm to 1000 nm range [49] 

In addition to the absorption coefficient, the propagation of 
electromagnetic radiation through biological media is also determined by 
scattering effects (scattering coefficient) due to their inhomogeneities. The 
scattering coefficient indicates the number of photons scattered per unit 
distance. There are many factors influencing the measured characteristics 
of scattering such as the wavelength, complex refractive index, 
concentration, geometrical thickness of the medium, and the size, shape 
and orientation of molecules, among many others. It has been proven that 
scattering measurements provide structural and functional information 
about tissue and cells that can be used to detect and monitor pathologies 
in humans [50], [51], being the detection and monitoring of cancer cells 
one of the more promising biomedical spectroscopic applications. 

The strong absorption of many biological tissues (poor penetration 
depth in tissue) makes many spectroscopic techniques only possible for 
in-vivo measurements by reflectance approaches (reflection and 
backscattering). However, it has been shown that transmittance 
measurements provide much more information about absorption and 
scattering characteristics of tissue [52]. This issue is addressed in chapter 
4 by comparing reflection and transmission profiles from in-vivo 
measurements of different metabolic conditions in mice. 

As shown by the Radiation Transfer Equation (RTE) theory [53], 
[54], the propagation of electromagnetic radiation through biological 
media is mainly determined by the combination of the abovementioned 
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effects, this is, the absorption coefficient 𝛿𝑎(𝜆), and a transport scattering 

coefficient 𝛿𝑠
′(𝜆) = 𝛿𝑠(1 − 𝑔) with 𝛿𝑠 being the wavelength dependent 

scattering coefficient and 𝑔 an anisotropy factor of scattering which is 
defined as the average cosine of the scattering angles. However, the great 
diversity and structural complexity of biological tissues make quite difficult 
to mathematically modelling the cooperative effects of absorption and 
scattering therefore, in practice, many assumptions have to be done to 
simplify the mathematics, with exact solutions achieved only in a small 
number of particular cases [50], [53], [55], [56]. New methods based on 
Monte Carlo simulations have been proposed for the numerical solution 
of the radiation transfer problems, allowing to incorporate more real 
conditions in the model plus other advantages over analytical methods 
[50], [54], [56], [57], but, usually they require high computational resources 
with large simulation times, they are not valid for high accuracy problems, 
and are impractical for high in-depth tissue optical analysis. An extensive 
review of the theoretical background and current spectroscopic methods 
for biomedical diagnostics, and optical properties of tissues among other 
biological objects can be found in [50], [55], [58]. 

In general, modelling the interaction between electromagnetic 
radiation and biological systems is an extremely hard task, and this thesis 
does not intend to address the above-mentioned radiation transfer 
theories and the current analytical or numerical methods commonly used 
to address such issue. On the contrary we will follow the also very 
common approach of new spectroscopy systems applied to biomedical 
engineering that rely on performing the spectral interrogation on the 
biological media (within a frequency range of interest), and then, try to 
correlate the spectral responses measured at each frequency with a specific 
biological component (or components) of interest. Such approach is 
hindered due to the superposition of similar spectral responses from 
different components (as shown in Figure 1-3), besides instrumental noise 
and other interferences associated to environmental and physiological 
factors (depending on the spectroscopic technique). Therefore, statistical 
methods are often needed for modelling and classification of measured 
spectral data. This thesis focuses to the analysis and interpretation of 
spectral data obtained from multi-species structures exhibiting complex 
spectral features. As described in chapter 4, a non-targeted spectral 
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profiling approach is proposed to explore and evaluate new applied 
spectroscopic techniques in biomedical engineering. 

1.2. THE SPECTRAL DATA ANALYSIS IN THE 

DEVELOPMENT PROCESS OF APPLIED 

SPECTROSCOPY SYSTEMS 

As introduced in previous section, there are numerous spectroscopic 
techniques focused to measure the relative energy that is whether emitted, 
absorbed, reflected (including backscattering) or transmitted (affected by 
refraction, scattering and absorption) by a sample as a function of 
frequency (wavelength). The use of spectroscopic techniques for spectral 
interrogation of such sample under study leads to the acquisition of 
spectral data for further processing and analysis. The measured spectral 
data usually correspond to the intensity (amplitude) or phase (phase shift 
with respect to the incident wave) of the reflected and/or transmitted 
signals resulting from the spectral interrogation. Then, amplitude and 
phase parameters are used to find a characteristic relationship that allows 
for modelling one or more sample constituents (or other sample 
properties). The eventual goal is to obtain a complete spectroscopy system 
(incorporating the spectroscopic interrogation technique, the electronics 
and the software for data acquisition and processing) capable of 
autonomously carrying out measurements and automatically provide 
precise results (like a medical diagnosis or estimate the concentration of 
one or more sample constituents). 

However, to achieve this, the realization of experimental tests for the 
evaluation and calibration of the spectroscopic technique are necessary, as 
shown in Figure 1-4, which illustrates the general process for the 
development of applied spectroscopy systems. The difficulty of this 
process can be coined to the complexity of the sample, relatively simpler 
for samples exhibiting sharp spectral responses (easy to model and 
without superposition effects), and to the spectroscopic technique 
(robustness against external factors and the signal-to-noise ratio). In this 
sense, the application of spectroscopic techniques to biomedical 
engineering leads to the more complex multi-species scenarios in which 
spectral responses of many sample constituents are overlapped and there 
are strong interferences from instrumental, environmental and 
physiological factors. Consequently, statistical tools are needed for the 
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processing and analysis of spectral data in order to make the development 
process of applied spectroscopy systems as efficient as possible. 

 

Figure 1-4. Scheme illustration of the general process for development and evaluation 
of applied spectroscopy systems. 

As depicted in Figure 1-4, the statistical analysis of the spectral data 
can be used not only to validate and calibrate the spectroscopic technique, 
but also to improve the design of the experimental tests. Furthermore, as 
it will be seen throughout this doctoral thesis, the spectral data analysis 
can provide useful information to optimize the spectral interrogation 
process and setup of the spectroscopic technique. This thesis focuses on 
showing the relevance of such feedback process and how the use of 
adequate statistical methods can maximize the information extracted from 
the spectral data analysis, especially in the early stages of the development 
process of an applied spectroscopy system. 

The first step in the experimental evaluation of a spectroscopic 
technique is to explore the spectral response of the sample in the 
frequency interval of interest. As highlighted above, in the case of 
biomedical applications, the overlap of the spectral features from sample 
constituents prevents their direct isolation and quantification. The 
complexity of the spectral features of multi-species structures (such as 
biological tissues) force the spectral interrogation of broader frequency 
intervals. Besides this, the high resolution in frequency (and time) of 
modern spectroscopic instruments and currently available technologies 
for data collection and storage have made that spectral interrogation 
usually collects a large number of frequencies (or time points). 

 Consequently, a common feature in the structure of spectral data 

sets is that the number of measured frequencies 𝑝 is much larger compared 
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to the number of observations 𝑛 (small sample populations), for example 
in biological experiments in which access to the sample is quite limited. 
Nowadays, the standard methods used in the analysis of spectral data 
consist of Multivariate Data Analysis (MDA) that analyzes the measured 
frequencies as individual variables [59]–[62]. The analysis of spectral data 
under the MDA framework, considering the structure features previously 
mentioned, have two important consequences that appear immediately. 
The first one is that the spectral data analysis results in high-dimensional 

statistical problems such as the so called “large 𝑝, small 𝑛” problem [63]–
[65], basically, as the number of variables increases (measured frequencies) 
much more observations are required. The second is the well-known 
multicollinearity problem [66], [67], [68, Ch. 37] since the variables of 
spectral data sets might be highly linearly correlated, depending on the 
frequency resolution and the spectral features of the sample. Such 
correlation is originated, for example when multiple measured frequencies 
are comprising the same spectral peak (highly likely for broad spectral 
peaks), which results in strong dependencies between frequencies. These 
multicollinearity and high-dimensional problems cause that many classical 
statistical methods for regression analysis become inadequate or not 
feasible (over-fitted or inefficient regression models, inaccurate 
computations or without solution, etc.), requiring more dedicated 
statistical analysis [69]–[72]. Dimension reduction methods [73]–[76] are 
often used prior to any modelling efforts, but since frequencies 
contribution is somehow summarized, the resulting regression analysis are 
not directly interpretable in terms of the original measured frequencies. 
An alternative approach that has been also proposed to deal with both 
high-dimensional and multicollinearity without losing original semantics 
of measured variables consist of variable selection methods [77]–[80]. The 
variable selection methods are focused on finding specific wavelengths 
(within the whole frequency range) that provide the best regression results 
without redundant information (uncorrelated wavelengths), however, in 
spectroscopy applications, this is still a challenging task (leading to high 
computational loads in many cases) and selecting optimal interval variables 
(frequency sub-intervals) [81]–[83] has been proposed as a more practical 
and stable approach. In fact, functional representation, which is the first 
step in Functional Data Analysis (FDA), has been proposed as a pre-
processing step to facilitate the variable selection problem and to improve 
the statistical significance of the obtained results [84].  In any case, as will 
be seen in chapter 2, summary statistics are required in multivariate 
statistical analysis of spectral data for longitudinal settings (the samples are 
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measured repeatedly over a period of time), losing a lot of available 
information within the measured frequency range and interpretation 
capacity. 

As seen before, a spectrum contains a set of values measured 
describing the evolution of a parameter (amplitude or phase) over a 
frequency range. This underlying continuous nature of spectral 
interrogation process generating the spectral data is completely bypassed 
when measured frequencies are treated as “independent variables” (MDA 
framework). In this sense, an alternative and more adequate statistical 
approach for spectral data analysis has emerged from the statistic field, 
called Functional Data Analysis (FDA) [85], [86] already mentioned above. 
As illustrated in Figure 1-5 the FDA framework, described in detail in 
chapter 2, deals with spectral data as continuous trajectories (discretized 
at a sequence of frequency points) of a wavelength dependent function 
being advantageous in many ways: it solves high-dimensional problems, 
handles multicollinearity problems without losing interpretability of 
regression analysis in terms of the original measured frequencies, allows 
to consider all the available information in longitudinal analysis, and 
enhances visualization of spectral data. 

 

Figure 1-5. On the left, a spectrum consisting of a set of values measured at different 
frequencies (as acquired in practice) is illustrated; the MDA considers the measured 
frequencies as a set of independent variables. In contrast, the FDA analyzes the 
continuous trajectories (functional data) over the whole frequency range, estimated 
from the measured spectra (on the right). 

The greatest strength of FDA is the perspective used to address the 
spectral data analysis. Spectral data modelling is based on trends within 
the approximated continuous trajectories (the shape of the wavelength 
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dependent function) instead of a set of values corresponding to the 
discretely measured frequencies that are easily affected by undesirable 
interferences. As will be seen, the estimation of the continuous trajectories 
(functional data) from the measured spectra (vectors) is based on very 
flexible approximation methods that can be used in spectroscopy to 
reduce the effects of undesirable interferences on spectroscopic 
measurements. Furthermore, the estimated continuous trajectories 
facilitate the study of dynamics of the spectral responses within the 
frequency range of interest, such as their derivative functions [87]–[89], 
that in some cases can be used to annihilates noise factors in measured 
spectra. The spectral data analysis carried out throughout this thesis is 
addressed under the FDA framework since provides a set of more suitable 
and powerful statistical tools for spectral data analysis, can be applied to a 
wide range of spectroscopy applications and being particularly promising 
in biomedical engineering and applications [89]. 

1.3. THESIS OVERVIEW AND OBJECTIVES 

The work presented in this thesis dissertation stems from two main 
objectives: firstly to assess the applicability of a novel non-invasive 
approach, based on millimeter-wave (mm-wave) spectroscopy, for the 
diagnosis and follow-up of Diabetes Mellitus (DM) through the in-vivo 
sensing of sustained hyperglycemia and, secondly, to motivate and boost 
the use of FDA methods for spectral data analysis in the development, 
assessment and calibration of new applied spectroscopy systems, 
especially for biomedical applications. Regarding to the first objective, the 
proposed spectroscopic technique was initially tested by performing 
spectral interrogation on animal models of different glycemic states, and 
subsequently, a pilot diagnostic validation study was carried out on 
humans, referred to as “pilot clinical study” in the remainder of the 
document. All the spectral data collected from the in-vivo measurements 
were processed and analyzed under the framework of the FDA to show 
the current available FDA methods and their potential for spectral data 
modelling and interpretation. The introduced FDA methods can be 
applied to any spectroscopy application in which the collected data is 
measured over a continuum, which is the most common scenario in 
spectroscopy field, e.g. spectral data measured over time or frequency 
domains. 
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The remainder of this thesis dissertation is organized in five more 
chapters as described below.  

First, the theoretical background and basic concepts needed in the 
framework of the FDA are introduced in chapter 2. A set of statistical 
tools for continuous trajectories approximation from measured spectra 
(functional data estimation) are described in detail and their applications 
in spectroscopy approaches are discussed. Different FDA methods based 
on unsupervised and supervised approaches, which will be applied in the 
analysis carried out in chapters 4 and 5, are also introduced. 

In chapter 3, the relevant clinical concepts associated to DM are 
introduced, and a brief review of the state of the art in DM diagnosis and 
monitoring is done. The need for new non-invasive technologies to 
improve current medical procedures in diagnosis and follow-up of DM, 
enhancing patients' quality of life and reducing the global incidence rate, 
is motivated. Then, the potential of Terahertz (THz), microwave, and 
mm-wave spectroscopy for biomedical applications is discussed and the 
mm-wave spectroscopic technique proposed for in-vivo sensing of 
sustained hyperglycemia is described. Considering that there is no a priori 
information of the spectral features of biological sample constituents 
within the measured frequency range and mathematical modelling is for 
now impractical, the in-vivo measurements were performed under a non-
targeted spectral profiling approach [90], [91] focused to characterize the 
clinical pathology (DM) in terms of the classification of the spectral 
response from the biological samples (healthy and diabetic animals) over 
the whole frequency range, thus, the sum of the spectral features from all 
sample constituents are considered instead of targeting a specific 
metabolite (non-targeted metabolomics). 

In chapter 4, the most relevant experimental results obtained from 
the assessment and validation of the proposed spectroscopic technique 
using animal models are presented. The content of this chapter includes 
the published results in papers A, B and C. The animal experiments were 
conducted on different mice strains involving healthy cases (controls) and 
two different mice models representing sustained hyperglycemic cases:  
mild and full-blown diabetes. The in-vivo measurements consist of 
spectral interrogation over the W-band, within the mm-wave range, 
directly performed on a fold of skin from the back of the mice. The 
experimental protocols and the mice models employed in each 
experimental test for in-vivo measurements using the W-band 
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spectrometer are described in detail. All this research work was carried out 
in collaboration with the Epithelial Biomedicine Division of the Centro 
de Investigaciones Energéticas, Medioambientales y Tecnológicas 
(CIEMAT) and following the European and Spanish laws and regulations 
for housing and care of laboratory animals. This chapter shows how the 
extraction of information from the spectral data analysis interpretation not 
only allows to reformulate a simpler design of the spectroscopic technique 
but also to design the next experimental tests with clear and specific 
objectives. 

In chapter 5, the spectroscopic technique proposed for in-vivo non-
invasive sensing of hyperglycemic metabolism is tested on humans. The 
excellent performance of the proposed approach achieved during animal 
experiments encourage the realization of a pilot clinical study focused on 
type 1 DM patients. The in-vivo measurements using the W-band 
spectrometer were directly performed on a skin fold in the first interdigital 
space (between the thumb and index finger) of the right hand. All this 
research work was carried out in collaboration with the Instituto de 
Investigación Sanitaria Fundación Jiménez Díaz (Servicio de 
Endocrinología y Nutrición) and following the International and 
European ethical and safety principles regarding human experimentation. 
This chapter validates the results obtained from animal experiments on 
humans and studies the relation between the non-invasive measure and 
the mean value of the Blood Glucose Level (BGL) in body for most recent 
three months. Therefore, the pilot clinical study was designed as a 
longitudinal study and lasted about twelve months, with seven months 
between the first and the last measurements. The longitudinal spectral data 
collected throughout the entire pilot clinical study (subjects were measured 
at three times with three months at least between each time) were analyzed 
using novel FDA methods to show the scope and advantages of FDA 
framework in  spectroscopy applied to biomedical applications. 

In chapter 6, the main conclusions extracted from this doctoral thesis 
are listed. The use of FDA methods in spectral data analysis and the 
obtained results from experimental assessments of the proposed 
spectroscopic technique are discussed. Future considerations for 
following experimental assessments in the development and calibration of 
the proposed spectroscopic approach for non-invasive sensing of 
sustained hyperglycemia in diabetics are also revised. 
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Finally, the corresponding section including all cited references 
throughout this thesis dissertation and an appendix including the ethical 
issues corresponding to the animal experiments and the pilot clinical trial, 
and the informed consents containing all the relevant information 
provided to the volunteers prior they participation in the pilot clinical 
study are shown. 
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 STATISTICAL TOOLS FOR 

SPECTRAL DATA ANALYSIS 
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We have previously stressed the intrinsic continuous nature 
underlying the spectral data raised from spectral interrogation throughout 
a continuous frequency interval, although experimental and practical 
constrains allow only for the obtaining of spectral information at given 
sampling points. One of the main objectives of this thesis is to show the 
challenges and exciting possibilities of addressing these measured spectral 
data (at discrete sampling points) by using Functional Data Analysis 
(FDA), which is a current topic in statistical mathematics of continuous 
signals. In FDA, the sample trajectories discretized in frequency (vectors 
containing the sampling information points) are converted into 
continuous curves over the measured frequency range, obtaining a 
functional data set. It is important to note that the set of sampling points 
in which spectral data is observed does not need to be regular and can 
differ between observations. However, the spectral data sets analyzed in 
this thesis were measured on a set of equally spaced frequencies. In 
contrast to a finite collection of sampled values, the continuous 
representation (functional data) obtained from the spectral data is a rich 
source of information that permits us to evaluate many aspects of the 
spectral response in the whole measured frequency band (trends, 
derivatives, etc.). Other advantages of the use of FDA are data noise 
reduction by curve smoothing methods, improves the intrinsic patterns 
detection in data throughout the continuous domain, and better flexibility 
for longitudinal and high dimensional spectral data analysis.  

In this chapter, the necessary FDA theory and basic concepts needed 
for further statistical analysis of spectral data used in this work are firstly 
introduced. Subsequently, some functional data approximation 
approaches and FDA methods for unsupervised and supervised spectral 
data analysis will be briefly described. 

The spectral data collected from different experiments designed to 
assess the proposed non-invasive approach for detection and monitoring 
of hyperglycemic metabolism will be analyzed using both supervised and 
unsupervised FDA methods. The aim is to extract relevant information 
from the spectral data analysis allowing for a feedback between the 
spectroscopic technique and the measured spectral response. Such 
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feedback from the measured spectral response is essential for assessment 
and optimization of the applied spectroscopic technique. 

2.1. FUNCTIONAL DATA ANALYSIS (FDA) 

FDA is a very active branch of research in the Statistics field, devoted 
to solving statistical problems involving functional variables. In a 
functional variable its observations are functions that represent the 
evolution of a scalar variable over a continuum. The aim of this research 
topic is to provide statistical tools for the analysis and modelling of 
functional data sets (curves), defined and sampled on a continuous 
domain, that represents a population. As we shall see throughout this 
thesis, many of the statistical methods developed in the FDA framework 
are extended versions of well-established Multivariate Data Analysis 
(MDA) methods. A very comprehensive collection of information about 
FDA basic methods, computational aspects, and some practical 
applications can be found in the pioneer books of Ramsay and Silverman 
[92], [93] and Ramsay et al. [94]. 

A functional data set 𝓍1(𝑡), 𝓍2(𝑡),… , 𝓍𝑛(𝑡) can be seen as a set of 
observations of a functional variable. Usually, such observations are 
sample functions (also called realizations, sample paths, trajectories, 

among other names) of a stochastic process {𝒳(𝑡): 𝑡 ∈ 𝒯}. A stochastic 
process is formally defined [95, pp. 201–202] as a family of random variables 

{𝒳(𝑡,𝓌): 𝑡 ∈ 𝒯, 𝓌 ∈ 𝛺} indexed by some real set 𝒯(discrete or continuous) and 

defined on a common probability space (𝛺,𝒜,𝒫). If all the random variables of 
the random process take only real values, then, it is known as a real 

stochastic process. The sample function 𝓍𝑖(𝑡) is an observation 
(outcome) of the stochastic process and contains a single value of each of 
the indexed random variables of the stochastic process. Thus, the sample 
functions represent different states of the stochastic process. Usually, the 
sample functions describe the evolution of a property or characteristic of 

a system under study, which is observed over 𝒯, a frequency interval in 
our case, but can also be time, geographic location, probability, etc. 

Throughout this thesis, and for the purposes of the FDA, only 
stochastic processes holding the three following hypotheses will be 

considered: (H1) the stochastic processes are of second order, (H2) they 

are continuous in quadratic mean, and (H3) their trajectories are square-
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integrable functions. The corresponding definitions implicated by these 
assumptions on the stochastic processes are detailed below. 

2.1.1. DEFINITIONS AND THEORETICAL ASSUMPTIONS 

Let us consider a probability space (Ω, 𝒜,𝒫), and let ℒ2(Ω) be the 

space of real random variables 𝒳 on Ω with finite second order moments, 
so that 

𝐸[|𝒳|2] = ∫ |𝒳(𝓌)|2𝑑𝒫(𝓌)
Ω

< ∞,∀ 𝒳 ∈ ℒ2(Ω). (2-1) 

Thus, the natural scalar product associated to the space ℒ2(Ω) is given by 
the bilinear form 

ℒ2(Ω) × ℒ2(Ω) → ℝ

 (𝒳,𝒴) → 𝐸[𝒳𝒴] = ∫ 𝒳(𝓌)𝒴(𝓌)𝑑𝒫(𝓌)
Ω

,
 (2-2) 

providing to ℒ2(Ω) with a Hilbert space structure. 

A stochastic process {𝒳(𝑡): 𝑡 ∈ 𝒯} defined on 𝒯 × Ω, with their 
observations given by the function 

𝒳(𝓌): 𝒯 → ℝ

𝑡 → 𝒳(𝑡, 𝓌) = 𝓍(𝑡),
 (2-3) 

is of second order if 𝒳(𝑡) ∈ ℒ2(Ω), i.e. a real stochastic process. 

Related to a second order stochastic process, the following functions 
can be defined: 

• Mean function 

𝜇: 𝒯 → ℝ

𝑡 → 𝜇(𝑡) = 𝐸[𝒳(𝑡)] = ∫ 𝒳(𝑡,𝓌)𝑑𝒫(𝓌)
Ω

.
 (2-4) 

• Covariance function 

𝐶: 𝒯 × 𝒯 → ℝ
(𝑡, 𝑠) → 𝐶(𝑡, 𝑠),

 (2-5) 

where 
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𝐶(𝑡, 𝑠) = ∫ [(𝒳(𝑡,𝓌) − 𝜇(𝑡))(𝒳(𝑠,𝓌) − 𝜇(𝑠))]𝑑𝒫(𝓌).
Ω

 (2-6) 

Then, a second order stochastic process is continuous in quadratic 
mean if  

lim
ℎ→0

𝐸 [(𝒳(𝑡 + ℎ) − 𝒳(𝑡))
2
] = 0, ∀ 𝑡 ∈  𝒯, (2-7) 

which implies the continuity of the covariance function in 𝒯 × 𝒯. 

On the other hand, the continuity in quadratic mean of the stochastic 
process it is not a sufficient condition for the continuity of their sample 
functions. Therefore, the Kolmogorov continuity theorem is considered, 
which implies that if a second order stochastic process is continuous in 
quadratic mean there exists another process stochastically equivalent, 
whose sample paths are square-integrable functions. 

A stochastic process {𝒳(𝑡): 𝑡 ∈ 𝒯} verifying these three hypotheses: 

𝐻1 The stochastic process is of second order, 

𝐻2 The stochastic process is continuous in quadratic mean, 

𝐻3 The trajectories of the stochastic process are square-
integrable functions, i.e. belongs to the Hilbert space 

ℒ2(𝒯), 

may be seen as a random functional variable defined on ℒ2(𝒯): 

𝒳: Ω → ℒ2(𝒯)

𝓌 → 𝒳(𝓌): 𝒯 → ℝ

𝑡 → 𝒳(𝑡, 𝓌),

 (2-8) 

with an associated covariance operator defined as 

𝒞: ℒ2(𝒯) → ℒ2(𝒯)

𝑓 → 𝒞(𝑓),
 (2-9) 

verifying that 

[𝒞(𝑓)](𝑡) = ∫𝐶(𝑡, 𝑠)𝑓(𝑠)
𝒯

𝑑𝑠. (2-10) 

Let us observe that 𝒞 is a Hilbert-Schmidt operator, whose kernel is 

the covariance function 𝐶(𝑡, 𝑠) of the process. Furthermore, since  𝐶(𝑡, 𝑠) 
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is a continuous function in 𝒯 × 𝒯, the covariance operator 𝒞 is both 

bounded and continuous in the Hilbert space ℒ2(𝒯). The main properties 

of the covariance operator 𝒞 as defined here are [96]:  

i. 𝒞 is a compact operator on ℒ2(𝒯). 

ii. 𝒞 is a self-adjoint operator (also called Hermitian operator), 

i.e. 〈𝒞(𝑓)|𝑔〉 = 〈𝑓|𝒞(𝑔)〉 ∀ 𝑓, 𝑔 ∈ ℒ2(𝒯). 

iii. 𝒞 is a positive-definite operator, i.e. 

 〈𝒞(𝑓)|𝑓〉 ≥ 0 ∀ 𝑓 ∈ ℒ2(𝒯). 

The theoretical framework introduced until now paves the 
formulation for the statistical methods that will be used in further analysis 
of the spectral data. Therefore, in the remaining of this thesis, we will 

consider a functional variable 𝒳, whose observations are realizations of a 

second order stochastic process 𝒳 = {𝒳(𝑡): 𝑡 ∈ 𝒯}, continuous in 
quadratic mean, and with their sample functions belonging to the Hilbert 

space ℒ2(𝒯) defined by 

ℒ2(𝒯) = {𝑓:𝒯 → ℝ:∫𝑓2(𝑡)𝑑𝑡 < ∞
𝒯

}, (2-11) 

with the usual scalar product given by 

〈𝑓, 𝑔〉 =  ∫𝑓(𝑡)𝑔(𝑡)𝑑𝑡 
𝒯

∀ 𝑓, 𝑔 ∈ ℒ2(𝒯). (2-12) 

2.2. MAIN SUMMARY STATISTICS FOR 

FUNCTIONAL DATA 

As in the MDA, summary statistics such as sample mean, sample 
covariance, between others, can be defined for functional data [92, pp. 11–
16] in the framework described above. Let us consider a random sample 

{𝑥𝑖(𝑡): 𝑡 ∈ 𝒯, 𝑖 = 1, . . . , 𝑛} of a functional variable 𝒳 as a set of 
independent and equally distributed realizations of a continuous second 

order stochastic process {𝒳(𝑡): 𝑡 ∈ 𝒯}. Then, the sample mean function 
is defined as follows 

𝐸[𝒳(𝑡)] = 𝑥̅(𝑡) = 𝑛−1  ∑𝑥𝑖(𝑡)

𝑛

𝑖=1

∀ 𝑡 ∈  𝒯, (2-13) 
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providing the mean value estimated for all sample functions at every 𝑡 ∈
 𝒯 (pointwise). Likewise, the variance function is given by 

𝑣𝑎𝑟[𝒳(𝑡)] = (𝑛 − 1)−1 ∑[𝑥𝑖(𝑡) − 𝑥̅(𝑡)]2
𝑛

𝑖=1

, (2-14) 

and the square root of the variance function is the known standard 
deviation function. 

Other widely used concept is the sample covariance function, which 
provides a measure of dependence of the sample curves across different 
argument values and is defined as follows 

𝐶̂(𝑡, 𝑠) = (𝑛 − 1)−1 ∑(𝑥𝑖(𝑡) − 𝑥̅(𝑡))(𝑥𝑖(𝑠) − 𝑥̅(𝑠)),

𝑛

𝑖=1

∀ 𝑡, 𝑠 ∈  𝒯,

 (2-15) 

and the associated correlation function is 

𝑐𝑜𝑟𝑟[𝒳(𝑡),𝒳(𝑠)] =
𝐶̂(𝑡, 𝑠)

√𝑣𝑎𝑟[𝒳(𝑡)]𝑣𝑎𝑟[𝒳(𝑠)]
. (2-16) 

2.3. APPROXIMATION OF FUNCTIONAL DATA 

Although during the last decades resolution for measuring systems 
has been considerable improved, natural phenomena (that can almost 
always considered as continuous in space and time) can only be recorded 
at discrete times and positions (digital acquisition), i.e. sample curves are 

observed (measured) at a finite number of points {𝑥𝑖𝑗 : 𝑖 = 1, . . . , 𝑛; 𝑗 =

1, . . . , 𝑚𝑖}, being 𝑛 the number of observations and 𝑚𝑖 the total number 

of points in which the 𝑖-th sample curve has been measured 

{𝑡1, 𝑡2, . . . , 𝑡𝑚𝑖
∈ 𝒯}. Therefore, the first step in the FDA is converting 

the discrete measured values (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑚𝑖
) for the observations (raw 

functional data) into a true functional form 𝑥𝑖(𝑡) of the sample curves. 
This leads to the first challenge for the researcher performing FDA, rising 
important questions about the raw data (measured data): Were data 
measured with error? How big is the error introduced by the measuring 
system? Is the measurement process expected to have a smooth or rough 
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response throughout 𝒯?. These questions are key for the researcher to 
make necessary and important decisions during the functional data 
approximation. As we shall see throughout this thesis, the smoothness 
degree in the approximated sample curves has a big influence in the 
statistical analysis and data interpretation. Therefore, the “smoothness” in 
the approximate sample curves should be defined by the researcher 
according to the goal of the experiment and his a priori knowledge about 
the nature of the measure. 

For cases in which data is assumed to be measured without error: 

𝑥𝑖𝑗 = 𝑥𝑖(𝑡𝑖𝑗), 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚𝑖 , (2-17) 

where 𝑥𝑖𝑗  is the 𝑗-th measured value for the 𝑖-th observation, and 𝑥𝑖(𝑡𝑖𝑗) 

is the true function observed at the sampling point 𝑡𝑖𝑗, the functional data 

can be estimated using polynomial interpolation methods, among others 
[97]. In practice, however, and especially in applications with many 
external factors introducing noise to the measurement, such as in 
spectroscopy, it is mostly assumed that data is observed with an error. In 
this thesis, data analysis will be performed by assuming that measurement 

data includes some error, adding an error 𝜖𝑖𝑗 term, representing noise, to 

Eq. (2-17) follows: 

𝑥𝑖𝑗 = 𝑥𝑖(𝑡𝑖𝑗) + 𝜖𝑖𝑗, 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝑚𝑖. (2-18) 

In Figure 2-1, the interpolation (Eq. (2-17)) and smoothing (Eq. 
(2-18) approaches are illustrated by fitting a set of random values 

simulated within the continuous interval 𝒯 = [0,20]. As can be seen, the 
interpolated curve (dashed blue line) cross exactly at the raw data points 
(measured values). The interpolation can lead to overfitting of data, and 
for spectroscopic techniques where usually some noise is introduced in 
measurements, the interpolated spectral data result in rough curves 
exhibiting strong frequency oscillations. This kind of approximations not 
only hinder the spectral data interpretation, but also the affects the 
robustness in regression analysis due to the included random noise in the 
fitted curves. On the other hand, the smoothing approach (green line) 
provides a flexible approximation of the raw data points that allows to 
reduce the noise contribution in measurements and highlight the main 
trends in the fitted curves. 
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Figure 2-1. Illustration of an interpolated function vs a smooth function from a set of 
values discretely observed over continuum (raw data). 

For both cases, interpolation and smoothing, the functional form can 
be estimated by considering the sample curves as linear combinations of a 
basis of functions, which is known as basis expansion methods. 

2.3.1. BASIS EXPANSION 

Let us consider a set of sample functions {𝑥𝑖(𝑡): 𝑡 ∈ 𝒯, 𝑖 =
1, . . . , 𝑛}, which are related to a functional variable 𝒳, belonging to a finite 
dimension space generated by an orthogonal basis 

{𝜙1(𝑡), 𝜙2(𝑡), . . . , 𝜙𝑝(𝑡)}, in this case we can express 𝑥𝑖(𝑡) as follows: 

𝑥𝑖(𝑡) = ∑ 𝑎𝑖𝑘𝜙𝑘(𝑡)

𝑚

𝑘=1

, 𝑡 ∈ 𝒯, 𝑖 = 1, . . . , 𝑛, (2-19) 

where 𝑥𝑖(𝑡) is the estimated sample curve, 𝑎𝑖𝑘 are the basis coefficients 

and 𝜙𝑘(𝑡) are the basis functions considered for the basis expansion. 

This is the fundamental equation for FDA but there are two further 
points that must be addressed: How to estimate the basis coefficients? and, 
which basis functions should we use? Regarding to the second question, 
basis functions should be considered according to the data characteristics. 
Then, once the appropriate basis is chosen, the simplest approach to 
estimate the basis coefficients is by Ordinary Least Squares (OLS), but we 
will come back to this later. 
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This thesis focuses to those approaches based on B-spline bases, 
since they provide with easy computability of polynomials with great 
flexibility and fit for changing local behaviour. B-splines will be addressed 
in more detail below, but a more complete review and comparison of 
existing methods for the approximation of smooth curves with B-spline 
bases can be found in [98]–[100].  Other basis functions commonly used 
in practice are the Fourier basis for periodic data, and wavelet bases for 
data with discontinuities or strong local behavior. For more detailed 
information about these basis functions, among others, the reader can 
refer to [92], [101]. 

2.3.1.1. B-SPLINE BASES 

A B-spline bases of degree ℎ and order ℎ + 1 generates a space of 
splines with the same characteristics (order and degree). A spline of degree 

ℎ is a function that is basically constructed by joining smoothly 
polynomials of the same degree end-to-end (piecewise polynomials) at a 

set of defined points 𝜏𝑙 ∈ 𝒯 called knots (also known as break points or 
nodes), so that the adjacent polynomials must match in their derivatives 

up to order ℎ −  1. 

Let us consider a set of knots (𝜏0, 𝜏1, . . . , 𝜏𝑠−1, 𝜏𝑠) such that  𝜏𝑙−1 <
𝜏𝑙 for 𝑙 = 0, . . . , 𝑠, such that the interval 𝒯 is divided into 𝑠 subintervals, 

with the two outside knots (𝜏0, 𝜏𝑠) defining the interval 𝒯 and the internal 

knots (𝜏1, . . . , 𝜏𝑠−1) defining the 𝑠 subintervals. Then, for an extended 

partition 𝜏−3 < 𝜏−2 < 𝜏−1 < 𝜏0 < . . . < 𝜏𝑠 < 𝜏𝑠+1 < 𝜏𝑠+2 < 𝜏𝑠+3 of  

𝒯, the B-spline basis of order ℎ + 1  is defined iteratively defined by [102] 

𝐵𝑙,ℎ+1(𝑡) =
𝑡 − 𝜏𝑙−2

𝜏𝑙+ℎ−2 − 𝜏𝑙−2
𝐵𝑙,ℎ(𝑡) +

𝜏𝑙+ℎ−1 − 𝑡

𝜏𝑙+ℎ−1 − 𝜏𝑙−1
𝐵𝑙+1,ℎ(𝑡)

ℎ = 1,2, . . . ; 𝑙 = −1,0, . . . , 𝑠 − ℎ + 4,

 (2-20) 

with 

𝐵𝑙,1(𝑡) = {
 1 𝜏𝑙−2 ≤ 𝑡 ≤ 𝜏𝑙−1

 0 in other case
, 𝑙 = −1,0,1, . . . , 𝑠 + 4. (2-21) 

In Figure 2-2, two examples of B-spline bases defined on the 

continuum [0,1] with a basis dimension equals 10 are shown: B-spline 
basis functions of order 2 (at the top), and a B-spline basis functions of 
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order 4 (at the bottom). The basis dimension and the number of knots of 
a B-spline bases are related by the following formula [102] 

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓
𝑏𝑎𝑠𝑖𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛𝑠

= 𝑜𝑟𝑑𝑒𝑟 +  𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑘𝑛𝑜𝑡𝑠 − 2. (2-22) 

In particular, the Cubic B-spline bases provides us with the expected 
smoothness fit for our data. A cubic B-spline bases generates the space of 
splines of order 4, with piecewise polynomials of degree 3 joining up 
smoothly in a set of knots with continuity in their derivatives up to order 
2. Let us observe that, according to Eq.(2-22), the dimension of the cubic 
B-spline bases equals to the number of internal knots plus 4 (order) or 

equivalently 𝑠 + 3. 

 

Figure 2-2. B-spline basis of order 2 and 4 are shown at the top and bottom, 
respectively. 

2.3.2. REGRESSION SPLINES 

As mentioned above, once the basis functions are defined, the 

simplest approach to estimate the basis coefficients 𝑎𝑖 of Eq.(2-19) is by 
least square criterion. For the case of B-spline bases, such approximation 
is known as Regression splines.  

Let us rewrite Eq. (2-19) in its matrix form 𝑥𝑖(𝑡) = 𝑎𝑖
′𝜙(𝑡), where 

𝑎𝑖 = (𝑎𝑖1, . . . , 𝑎𝑖𝑚)′ are a vector containing the basis coefficients and 

𝜙(𝑡) = (𝜙1(𝑡), . . . , 𝜙𝑚(𝑡))′ are the basis functions, which in our case, 
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will be a cubic B-spline bases.  In the simplest way, the basis coefficients 

𝑎𝑖 are obtained by OLS method, minimizing the Mean Squared Error 
(MSE) [103] 

𝑀𝑆𝐸(𝑎𝑖|𝑥𝑖) = (𝑥𝑖 − Φ𝑖𝑎𝑖)
′(𝑥𝑖 − Φ𝑖𝑎𝑖), (2-23) 

where 𝑥𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑚𝑖
)
′
 are the measured values of the 𝑖-th 

observation, and  Φ𝑖 = (𝜙𝑘(𝑡𝑖𝑗))𝑚𝑖×𝑚
 is a matrix comprising the basis 

functions observed at arguments 𝑡𝑖𝑗. Thus, taking partial derivatives of 

Eq. (2-23) with respect to 𝑎𝑖, and setting derivative equals to zero as 
follows 

𝜕

𝜕𝑎𝑖
(𝑥𝑖 − Φ𝑖𝑎𝑖)

′(𝑥𝑖 − Φ𝑖𝑎𝑖) = 0, (2-24) 

the estimate of 𝑎𝑖 which minimizes the mean squared error is given by 

𝑎̂𝑖 = (Φ𝑖
′Φ𝑖)

−1Φ𝑖
′𝑥𝑖 . (2-25) 

Then, the fitted values for the 𝑥𝑖 measured values are given by the vectors 

𝑥𝑖 = Φ𝑖𝑎̂𝑖 = Φ𝑖(Φ𝑖
′Φ𝑖)

−1Φ𝑖
′𝑥𝑖 , (2-26) 

and the fitted curves (functional form) are given by 

𝑥𝑖(𝑡) = 𝑎̂𝑖
′𝜙(𝑡)  ∀ 𝑖 = 1, . . . , 𝑛. (2-27) 

An important observation working with the regression splines, is that 

smoothness of the fitted curve is directly determined by the number 𝑚 of 
basis functions (dimension of the orthogonal basis), which is related to the 
number of knots by Eq. (2-22). The influence of the number of knots in 
the smoothness of the fitted curves is illustrated in Figure 2-3, which 
shows the fitted curves from a set of measured values using different 
number of knots. If the number of knots is too large, an overfitting of the 
data might occur, introducing noise in the fitted curve. In contrast, if too 
few knots are provided, relevant information could be omitted by the 
fitted curve, which is known as underfitting. 
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Figure 2-3. Fitted curves by regression splines using cubic B-spline basis defined on 6, 
8, 15 and 18 equally spaced knots. 

Therefore, defining the number of knots is a very important decision 
applying regression splines. In this sense, researcher must define the 
number of knots according the desired fit for the data under study. For 
cases in which researcher does not want to highlight a specific shape for 
estimated curves or has no prior knowledge about the data, the number 
of knots can be chosen by using the Leave-One-Out Cross Validation 
(LOOCV) method (see below). 

2.3.2.1. LEAVE-ONE-OUT CROSS VALIDATION (LOOCV) 

The LOOCV is a resampling method very helpful for choosing the 
ideal number of knots which best fits the data. The LOOCV provides with 
an error measure based on the estimation of the Root Mean Square Error 

(RMSE) for the fitted curves at each measured point 𝑡𝑗 as follows 

𝐶𝑉(𝑞) =
1

𝑛
∑𝐶𝑉𝑖(𝑞)

𝑛

𝑖=1

, (2-28) 

where 

𝐶𝑉𝑖(𝑞) = √∑(𝑥𝑖𝑗 − 𝑥𝑖𝑗
−𝑗

)
2

𝑚𝑖

𝑗=0

(𝑚𝑖 + 1)⁄ , (2-29) 
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with 𝑞 as the number of knots, 𝑚𝑖 as the total number of points 𝑡𝑖𝑗 in 

which the 𝑖-th observation has been measured, and 𝑥𝑖𝑗
−𝑗

 being the values 

of the corresponding fitted curve for the 𝑖-th observation at points 𝑡𝑖𝑗 

avoiding the 𝑗-th point in the iterative estimation process. 

The LOOCV method is computationally expensive and for cases in which 

data is observed in a large set of points 𝑡𝑗 might not be the best choice. 

This problem is alleviated by an alternative approach for sample curves 
approximation called Penalized splines (P-splines). 

2.3.3. PENALIZED SPLINES (P-SPLINES) 

The P-splines are an alternative approach to regression splines 
reducing the dependency between the number of knots and the 
smoothness of the fitted curve. The P-splines comes from a discrete 

penalty approach based on 𝑑-order differences between adjacent B-splines 
coefficients [104]. It is also important to note that for P-splines estimation, 
unlike the regression splines, the knots must be equally distributed along 

the continuum 𝒯. The basis coefficients 𝑎𝑖 for P-splines are estimated by 
adding a penalty term, involving a smoothing parameter, in the least 
square’s formula shown in Eq. (2-23). Hence, the basis coefficients are 
computed to minimize the Discrete Penalized Mean Squares Error 
(DPMSE) as 

𝐷𝑃𝑀𝑆𝐸𝑑(𝑎𝑖|𝑥𝑖) = (𝑥𝑖 − Φ𝑖𝑎𝑖)
′(𝑥𝑖 − Φ𝑖𝑎𝑖) + 𝜆𝑎𝑖

′𝑃𝑑𝑎𝑖 , (2-30) 

where 𝜆 is the smoothing parameter, and 𝑃𝑑 = (∆𝑑)
′
∆𝑑 with ∆𝑑 as the 

matrix of 𝑑-order differences. In practice, 𝑑 = 2 is the most usual value, 
and then, the matrix of 2-order differences is given by [98] 

∆2= (

1 −2 1 0 0 ⋯
0 1 −2 1 0 ⋯
0 0 1 −2 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱

)

(𝑚−2)×𝑚

. (2-31) 

Finally, the basis coefficients 𝑎𝑖 are estimated by 

𝑎̂𝑖 = (Φ𝑖
′Φ𝑖 + 𝜆𝑃𝑑)−1Φ𝑖

′𝑥𝑖 . (2-32) 

Let us observe that the smoothness of the fitted curve according to 
Eq. (2-32) is controlled and directly proportional to the smoothing 
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parameter 𝜆, and the number and location of the knots are not so 
determinant factors as in regression splines case. In practice, Ruppert’s law 
of thumb is usually considered to select the number of knots: one knot for 
every 4 or 5 observations up to a maximum of 40 knots [105]. 
Nevertheless, working with a small sample size, the Ruppert’s law it is not 
always the best way to define the number of knots. On the other hand, if 

we want to highlight characteristic shapes at specific points 𝑡𝑗, the 

flexibility provided by the regression splines for the arbitrary location of 
the knots, might represent a desired scenario. In this sense, the knots can 
be strategically fixed at the most contributing frequencies in terms of 
sample curves variability. Regarding the smoothing parameter, we will 
introduce the Generalized Cross Validation (GCV) method to find the 

optimal value of 𝜆. 

2.3.3.1. GENERALIZED CROSS VALIDATION (GCV) 

The GCV method [106] will be considered in this thesis as selection 

criteria choosing the optimal value for the smoothing parameter 𝜆. The 

GCV method estimate 𝜆 so that minimizes the following expression [98] 

𝐺𝐶𝑉(𝜆) =
1

𝑛
∑𝐺𝐶𝑉𝑖(𝜆)

𝑛

𝑖=1

, (2-33) 

where 

𝐺𝐶𝑉𝑖(𝜆) =
(𝑚𝑖 + 1)−1𝑀𝑆𝐸𝑖

[(𝑚𝑖 + 1)−1𝑡𝑟(𝐼 − 𝐻𝑖)]
2, 

(2-34) 

𝑀𝑆𝐸𝑖 =
1

𝑛
∑(𝑥𝑖𝑗 − 𝑥𝑖𝑗)

2

𝑚𝑖

𝑗=0

, (2-35) 

and 𝐻𝑖 = Φ𝑖(Φ𝑖
′Φ𝑖 + 𝜆𝑃𝑑)−1Φ𝑖

′. 

Both methods LOOCV and GCV can be used estimating the 𝜆 value, 
being the last one simpler in computational terms. A simulation study 
comparing both approaches was developed in [98, pp. 30–34]. The P-
spline approach as well as LOOCV and GCV are useful when researcher 
does not seek to highlight any special feature or tend by the fitted curves. 
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2.4. FUNCTIONAL PRINCIPAL COMPONENT 

ANALYSIS   

A challenge developing new applied spectroscopic techniques in 
biomedical engineering is that experimental tests usually involve small 
sample size due to high costs, limit access or difficult handling of the 
sample (in our case, mice). The sample size is an important factor to take 
into account in the statistical analysis, and for a small sample size 
regression models are not feasible. An alternative approach is to 
addressing this kind of studies as unsupervised learning problems, being 
the Blind Signal Separation (BSS) techniques such as Independent 
Components Analysis (ICA) [107] and Principal Component Analysis 
(PCA) [108], the most commonly used working with a set of mixed signals. 
The unsupervised techniques are characterized by providing a 
mathematical modelling of data without a priori information of the sample 
population. 

The Functional Principal Component Analysis (FPCA) is the 
extended version of the well-suited multivariate PCA to the framework of 
the FDA [92, Ch. 6]. The FPCA provides an easy way of looking the main 
sources of variance contained in the sample curves by synthesizing such 
variability into a small set of uncorrelated functions, known as Functional 
Principal Components (FPCs). Obtaining a reduced set of uncorrelated 
variables that efficiently summarize the contained variance in original data 
allows for dimension reduction and can be used to prevent 
multicollinearity problems in regression analysis. 

For the FPCA formulation, we will consider a set of sample 

functions {𝑥𝑖(𝑡): 𝑡 ∈ 𝒯, 𝑖 = 1, . . . , 𝑛} of a random functional variable 𝒳, 

meeting the three hypothesis (𝐻1, 𝐻2 and 𝐻3) stablished in section 2.1.1, 
and it will be assumed without loss of generality that the sample functions 

are centered, implying that 𝑥̅(𝑡) = 0, i.e. the sample mean, defined in Eq. 
(2-13), equals 0. Working with the centered sample functions ensures that 
maximizing the variance of the principal component is equivalent to 
maximizing their sample variance. Then, the FPCs are estimated as 
generalized linear combinations of the sample curves, uncorrelated and 

with maximum variance. In general, the 𝑗-th principal component scores 
are given by 
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𝜉𝑗 = ∫𝑥𝑖(𝑡)𝜓𝑗(𝑡)𝑑𝑡
𝒯

, (2-36) 

where 𝑓𝑗  is the weight function or loading associated to the 𝑗-th principal 

component. The loadings are computed such that maximize the most 
important modes of variation of the sample functions under 
orthonormality conditions as follows 

{
max

𝜓
𝑣𝑎𝑟 [∫𝑥𝑖(𝑡)𝜓(𝑡)𝑑𝑡

𝒯

]

s. t. ‖𝜓‖2 = 1 𝑎𝑛𝑑 〈𝜓𝑗, 𝜓𝑙〉 = 0, ∀ 𝑗 ≠ 𝑙

, (2-37) 

with the estimated principal components scores 𝜉𝑗 verifying that 

𝐸[𝜉𝑗] = 0,       𝑣𝑎𝑟[𝜉𝑗] = 𝜆𝑗 ,       𝑐𝑜𝑣[𝜉𝑗, 𝜉𝑙] = 0. (2-38) 

As demonstrated in [109, pp. 15–19], the solution for Eq. (2-37) is 
given by the eigenfunctions associated to the spectral decomposition of 
the sample covariance operator, defined on Eq. (2-9). The Spectral 
Theorem provides a spectral decomposition of the sample covariance 
operator (compact, self-adjoint and positive linear operators), such that 

[𝒞(𝑓𝑗)](𝑡) = 𝜆𝑗𝜓𝑗(𝑡), (2-39) 

with {𝜆𝑗} being a sequence of positive non-null numbers in decreasing 

order, known as eigenvalues, and {𝜓𝑗} being an orthonormal basis 

associated to the eigenvalues, known as eigenfunctions. Then, the 

estimated eigenvalues and eigenfunctions of 𝒞, are the corresponding 
variances and loadings of the FPCs. 

As will be seen further on, the scores of the FPCs can be used for 
clustering analysis on the sample curves either by scatterplots, in the 
simplest way, or using clustering algorithms based on partitioning or 
hierarchical methods, among others [110]. The data clustering occurs 
when some observations are somehow related, and such relation is not 
shared by all the observations in the population. The relations between 
resulting clusters using the scores of the FPCs can be studied by 
interpreting their corresponding loadings. 
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2.4.1. APPROXIMATION OF THE FPCA SOLUTION 

The FPCA until now has been developed in terms of continuous 
functions, but it is well known that in practice, involved computations 
must be performed in matrix form. To this end, the FPCA will be 
estimated by expressing the loadings of the FPCs in terms of the basis 
functions employed in the basis expansion of the sample curves (see 
section 2.3). Thus, as shown in Eq. (2-19), the corresponding loading to 

the 𝑗-th FPC can be expressed as a linear combination of the basis 
functions 

𝑓𝑗(𝑡) = ∑ 𝑏𝑗𝑘𝜙𝑘(𝑡)

𝑚

𝑘=1

, (2-40) 

where 𝑏𝑗𝑘 are the corresponding basis coefficients. Considering basis 

expansion of both sample curves Eq. (2-19) and the loadings Eq. (2-40) in 
their matrix form as shown in Eq. (2-27), the variance of the FPCs defined 
in Eq. (2-36) can be expressed as follows  

𝑣𝑎𝑟[𝜉]  =  𝑣𝑎𝑟 [∫𝑥𝑖(𝑡)𝑓(𝑡)𝑑𝑡
𝒯

] =  𝑏′Ψ𝑉Ψ𝑏, (2-41) 

where 𝑉 = 𝑛−1𝐴′𝐴, being 𝐴 = (𝑎𝑖𝑗)𝑛×𝑚
 a matrix containing the basis 

coefficients of the sample curves and Ψ𝑚×𝑚 = ∫ 𝜙𝑖(𝑡)𝜙𝑗(𝑡)𝒯
𝑑𝑡 a matrix 

containing the inner products between the basis functions. Consequently, 
as formulated in [111], the FPCA problem defined in Eq. (2-37) is 

equivalent to the multivariate PCA problem on the matrix 𝐴Ψ1 2⁄  and the 
basis coefficients of the loading functions associated to the estimated 

FPCs are given by 𝐹 = Ψ1 2⁄ 𝑈, with 𝐹 being the matrix comprising the 

basis coefficients of the loading functions and 𝑈 is a matrix whose 
columns are the associated eigenvectors to the sample covariance matrix 

of 𝐴Ψ1 2⁄ , estimated as follows: 

𝑛−1Ψ1 2⁄ 𝐴′𝐴Ψ1 2⁄ 𝑢 =  𝜆𝑢. (2-42) 

See [111] for more details. 
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2.4.2. ORTHOGONAL REPRESENTATION OF A 

STOCHASTIC PROCESS 

Other relevant result is that the theoretical framework behind the 
FPCA allows the applicability of the Karhunen-Loève (K-L) expansion 
presented in [96] as an harmonic analysis technique for functional data. 
The K-L expansion supports that the sample functions can be expressed 
in terms of the FPCs, and in fact, it can be realized using a truncated 

number 𝑞 of the FPCs as follows: 

𝑥𝑖(𝑡) = 𝑥̅(𝑡) + ∑𝜉𝑖𝑗𝜓𝑗(𝑡)

𝑞

𝑗=1

. (2-43) 

where 𝑥𝑖(𝑡) is the approximated function by the K-L expansion, and 𝑥̅(𝑡) 
is the sample mean function (Eq. (2-13)). Such reconstruction will be the 

best linear approximation of the sample curves 𝑥𝑖(𝑡), in the least squares 
sense, and the total explained variance corresponds to the sum of the 

contributed variances by the 𝑞 first FPCs used 

𝑣𝑎𝑟 (𝑥𝑖
𝑞
) = ∑𝜆𝑖

𝑞

𝑖=1

. (2-44) 

Such K-L reconstruction is illustrated in Figure 2-4, where two 
interpolated sample curves, corresponding to two spectrums chosen 
arbitrarily from a spectral data set, are accurately approximated, as shown 
in Eq. (2-43), using the first two principal components accumulating a 
99.69% of explained variance of the spectral data set. 

The K-L reconstruction is an interesting and powerful statistical tool 
that can be used for generating (limitless) synthetic sample functions [112], 
[113]. In this way, new sample data can be simulated without the need to 
experimental replications. This approach can be implemented, from a 
moderate size sample, by fitting a probability model (distribution of 
probability) to the corresponding scores of the principal components used 
in the K-L reconstruction. Then, new score values can be simulated, 
considering the fitted probability model, to synthetize sample functions 
according to Eq. (2-43). In this sense, the generated curves will preserve 
the original variability captured by the FPCs from the measured sample 
data. 
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Figure 2-4. Two interpolated sample curves (black lines) with their corresponding K-L 
reconstruction using the first two principal components with an accumulative explained 
variance of 99.69%. 

2.5. FUNCTIONAL LINEAR REGRESSION 

As in the MDA framework, linear regression models have been 
constructed in the FDA framework (functional regression) for relating one 
or more variables (as covariates or predictors) to a response variable. The 
Functional Linear Model (FLM) can be generally categorized into three 
types of functional regression depending on the nature of the predictors 
or the response variable [94], [114]: modeling a functional response 
variable by functional predictors (Function-on-function regression), 
modeling a functional response variable by scalar predictors (Function-
on-scalar regression), and modeling a scalar response variable by 
functional predictors (Scalar-on-function regression). The Scalar-on-
function regression is the most common scenario in functional regression 
problems and can be addressed by linear, non-linear, and non-parametric 
approaches [115]. In particular, the supervised statistical analysis 
performed on the spectral data presented in this thesis is based on Scalar-
on-function linear regression. 

Let us consider a sample data consisting on an independent and 

identically distributed (iid) sample of random pairs (𝑥𝑖(𝑡), 𝑦𝑖), 𝑖 =
1, . . . , 𝑛, where {𝑥𝑖(𝑡): 𝑡 ∈ 𝒯, 𝑖 = 1, . . . , 𝑛} are a set of observations of a 

random functional variable 𝒳 = {𝒳(𝑡): 𝑡 ∈ 𝒯}, meeting the three 

hypothesis (𝐻1, 𝐻2 and 𝐻3) stablished in section 2.1.1, and {𝑦𝑖: 𝑖 =
1, . . . , 𝑛} the associated sample of the continuous (Gaussian) scalar 
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response variable 𝑌. Then, the FLM for Scalar-on-function regression is 
expressed as 

𝑦𝑖 = 𝛼 + ∫𝑥𝑖(𝑡)𝛽(𝑡)𝑑𝑡
𝒯

+ 𝜖𝑖,     𝑖 = 1, . . . , 𝑛, (2-45) 

where 𝛼 is a scalar intercept, 𝛽(𝑡) is the functional parameter of the 

regression model, and 𝜖𝑖 are iid errors with zero mean. As observed in 

[115], the functional parameter 𝛽 can be naturally interpreted, being the 

locations 𝑡 with largest |𝛽(𝑡)| the most influential to the response variable. 
The FLM is also extended for the case of non-Gaussian response 
variables, known as Generalized Functional Linear Model (GFLM) [116], 
relating the functional predictor and the response variable by using a link 

function 𝑔(∙), modelled as follows 

𝑔{𝐸(𝑦𝑖)} =  𝛼 + ∫𝑥𝑖(𝑡)𝛽(𝑡)𝑑𝑡
𝒯

. (2-46) 

A classic example of a link function 𝑔(∙) is the logistic link commonly 
used modelling a Bernoulli variable (binary response variable) by the 
Functional Logit Model. The Functional Logit Model will be addressed in 
more detail below. 

In order to estimate the FLM, a common general approach is 
assuming the basis expansions, as defined in Eq. (2-19), of both the sample 

functions 𝑥𝑖(𝑡) and the functional parameter 𝛽(𝑡) in Eq. (2-45) such that 

𝑌̂ = 𝛼 + ∫𝒳(𝑡)𝛽̂(𝑡)𝑑𝑡
𝒯

= 𝛼1 + 𝐴Ψ𝑏, (2-47) 

where 1 is a unit vector of length 𝑛, 𝐴𝑛×𝑚 is the matrix containing the 

basis coefficients of the sample functions, Ψ𝑚×𝑚 a matrix containing the 

inner products between the basis functions, and 𝑏𝑚×1 is a vector 
containing the basis coefficients of the functional parameter. Let us 
observe here that the number of basis functions used in the basis 
expansion of sample functions and the functional parameter do not 
necessarily need to be the same. Then, Eq. (2-47) implies that the FLM 

can be reduced in a standard multiple regression problem with [1 𝐴Ψ] as 

the design matrix and (𝛼, 𝑏1, . . . , 𝑏𝑚) as the regression parameters. 
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2.5.1. FUNCTIONAL LOGIT MODEL 

A very common approach developing new spectroscopic techniques 
for medical diagnosis is the statistical classification problem. This kind of 
problems are widely modeled by logistic regression in many research fields 
such as sociology [117]–[119], finance [120]–[122] and medicine [123]–
[126], since allows to model the probability of occurrence of an event from 
a set of predictors, and the predictors contribution can be quantitatively 
studied in terms of the odds ratio [127], as will be shown later.  

The Functional Logistic Regression (FLoR) is the extended version 
of the multivariate logit model in the FDA context, and it is a particular 

case of the GFLM in which the sample functions 𝑥𝑖(𝑡) are related to a 

qualitative variable with two possible outcomes 𝑦𝑖 ∈ {0,1}, with 1 
indicating the occurrence of the event. Let us consider, without loss of 

generality, a set of sample functions {𝑥𝑖(𝑡): 𝑡 ∈ 𝒯, 𝑖 = 1, . . . , 𝑛} of a 

centered random functional variable 𝒳, and a binary scalar response 

{𝑦𝑖: 𝑖 = 1, . . . , 𝑛} associated to them. Then, the FLoR model is 
formulated as follows 

𝑦𝑖 = 𝜋𝑖 + 𝜖𝑖,      𝑖 = 1, . . . , 𝑛, (2-48) 

where 𝑦𝑖 ∈ {0,1} is the corresponding outcome to the 𝑖-th observation 

𝑥𝑖(𝑡) of the centered functional variable 𝒳(𝑡), 𝜖𝑖 are iid errors with zero 

mean, and 𝜋𝑖 is the expectation of 𝑌 given 𝑥𝑖(𝑡) modelled as 

𝜋𝑖 = 𝑃[𝑌 = 1|{𝑥𝑖(𝑡): 𝑡 ∈ 𝒯}]

=
𝑒𝑥𝑝{𝛼 + ∫ 𝑥𝑖(𝑡)𝛽(𝑡)

𝒯
𝑑𝑡}

1 + 𝑒𝑥𝑝{𝛼 + ∫ 𝑥𝑖(𝑡)𝛽(𝑡)
𝒯

𝑑𝑡}
, 𝑖 = 1, . . . , 𝑛,

 (2-49) 

with 𝛼 a real parameter (intercept) and 𝛽(𝑡) a functional parameter. 
Equivalently, considering Eq. (2-49), the FLoR model can be seen as a 
FGLM with the logit transformation as the link function as follows 

𝑙𝑖 = 𝑙𝑛 [
𝜋𝑖

1 − 𝜋𝑖
]

= 𝛼 + ∫𝑥𝑖(𝑡)𝛽(𝑡)
𝒯

𝑑𝑡, 𝑖 = 1, . . . , 𝑛.

 (2-50) 
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2.5.1.1. FLOR MODEL ESTIMATION BY FPCS 

As stated earlier, a common approach estimating Eq. (2-50) 

considers the basis representation of the sample functions 𝑥𝑖(𝑡) and the 

functional parameter 𝛽(𝑡), resulting in standard multivariate regression on 

the design matrix [1 𝐴Ψ], however, the way in which the matrix 𝐴Ψ is 
obtained leads to multicollinearity problems in the FLoR [128]. This 
problem is alleviated by using the K-L expansion (see Eq. (2-43)) for the 
sample functions and estimating the functional parameter in terms of the 
loadings associated to the FPCs. This alternative approach, proposed in 
[128] as Functional Principal Component Logistic Regression (FPCLoR), 
is based on introducing a set of FPCs as predictors for the FLoR model 
estimation. Considering a reduced number of FPCs, estimated according 
to Eq. (2-36) and Eq. (2-37), as uncorrelated predictors not only prevents 
multicollinearity between covariates of the FLoR model but also reduces 
the dimensionality of the regression problem. 

In the FPCLoR model, Eq. (2-50) can be equivalently expressed in 

terms of a multivariate logit model with the scores of the first 𝑞 FPCs as 
predictors as follows 

𝑙𝑖  =  𝛼 + ∑𝜉𝑖𝑗𝛾𝑗

𝑞

𝑗=1

, 𝑖 = 1, . . . , 𝑛, (2-51) 

with its matrix form given by 

𝐿 =  𝛼1 + Γ𝛾, (2-52) 

where 𝐿 = (𝑙1, . . . , 𝑙𝑛), 1 is a unit vector of length 𝑛, 𝛼 is the intercept, 

Γ = (𝜉𝑖𝑗)𝑛×𝑞
 is a matrix comprising the columns of the first 𝑞 FPCs, and 

𝛾 is the vector containing the model coefficients. 

Regarding the estimation of the functional parameter 𝛽(𝑡), let us 

replace 𝜉𝑖𝑗 in Eq. (2-51) by Eq. (2-36) as follows 
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𝑙𝑖 =  𝛼 + ∑(∫𝑥𝑖(𝑡)𝜓𝑗(𝑡)𝑑𝑡
𝒯

)𝛾𝑗

𝑞

𝑗=1

= 𝛼 + ∫𝑥𝑖(𝑡)
𝒯

(∑𝜓𝑗(𝑡)𝛾𝑗

𝑞

𝑗=1

)𝑑𝑡,   𝑖 = 1, . . . , 𝑛,

 (2-53) 

and according to Eq. (2-50), an expression of 𝛽(𝑡) is obtained in Eq. 

(2-53), in terms of the loading functions 𝜓𝑗(𝑡) associated to the first 𝑞 

FPCs, and the model coefficients 𝛾𝑗. Then, considering the basis 

expansion of 𝛽(𝑡) and 𝑓𝑗(𝑡), the basis coefficients 𝛽 =  (𝑐1, . . . , 𝑐𝑝)′ of 

the basis expansion of the functional parameter can be estimated by 𝛽̂ =
𝐹(𝑚×𝑞)𝛾(𝑞×1), where 𝐹 is a matrix whose columns correspond to the basis 

coefficients of the loading functions associated to the first 𝑞 FPCs (see 
2.4.1). 

The number 𝑞 of the FPCs to be taken into account in the FPCLoR 
model estimation is a  fundamental question addressed in [128], with the 
variance of the estimated functional parameter as the criterium for model 
selection. In [98, Ch. 3], a double-GCV procedure for selection of 

optimum number 𝑞 is presented and studied for different estimation 
approaches of the FPCLoR model. 

2.5.1.2. FUNCTIONAL PARAMETER INTERPRETATION 

A significant additional contribution of the FLoR model, compared 
to other regression models, is the interpretation of the functional 

parameter 𝛽(𝑡), which is also achieved in the FPCLoR model. The 
estimated functional parameter represents the discriminating relation 

between the response variable 𝑌 and the functional predictor 𝒳(𝑡), 
providing a qualitative interpretation of such relation. Furthermore, as 
mentioned above, such relation can be also quantitatively studied in terms 

of the odds ratio [127]. The odds of a determined outcome “A” is 

interpreted as the chances of A occurs and is defined as the ratio between 

the probability of occurrence of 𝒫(A) and its complement 1 − 𝒫(A), i.e. 

the probability of absence of A. Then, the odds ratio is used as a measure 
of the relationship between the odds of two outcomes [129], and can be 

used to quantify the influence of a factor associated to the outcome A, e.g. 
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considering that A is the probability of being diagnosed as diabetic and 
the sugar consumption is a determining factor (predictor), then, the odds 
ratio can be used to compare the odds of being diabetic according to the 
sugar consumption. 

Let us consider the logit transformation 𝑙𝑖 for a specific sample 

observation 𝑥𝑖(𝑡) as shown in Eq. (2-50), and 𝑙𝑖
∗ be the resulting logit 

transformation for the same 𝑥𝑖(𝑡) increased in a constant way by a factor 

𝐾 within a period [𝑡0, 𝑡0+ℎ] ⊆  𝒯 as follows 𝑥𝑖(𝑡)  →  𝑥𝑖
∗(𝑡)  =  𝑥𝑖(𝑡) +

𝐼∆(𝑡)=ℎ(𝑡) ∙ 𝐾, with 

𝐼∆(𝑡)=ℎ(𝑡) = {
1       𝑠𝑖  𝑡 ∈ [𝑡0, 𝑡0+ℎ]

0       𝑜𝑡ℎ𝑒𝑟 𝑤𝑖𝑠𝑒

, (2-54) 

such that 

𝑙𝑖
∗  = 𝛼 + ∫[𝑥𝑖(𝑡) + (𝐼∆(𝑡)=ℎ(𝑡) ∙ 𝐾)]𝛽(𝑡)

𝒯

𝑑𝑡. (2-55) 

Then, the odds ratio for 𝑙𝑖
∗ and 𝑙𝑖 is given by 

𝑙𝑛

[
 
 
 

𝜋𝑖
∗

1 − 𝜋𝑖
∗

𝜋𝑖
1 − 𝜋𝑖 ]

 
 
 
= ∫ 𝐾 ∙ 𝛽(𝑡)

𝑡0+ℎ

𝑡0

𝑑𝑡. (2-56) 

This means, that a constant increment in 𝐾 units in a fixed interval for 

𝑥𝑖(𝑡) increases the odds of 𝑦 = 1 against 𝑦 = 0 by a factor of the same 

magnitude. In spectroscopy applications, the factor 𝐾 may concern to a 
variation in the response of the optical properties such as reflection and 
transmission of the sample under study either in the whole measured 
frequency band or at specific sub frequency intervals. The interpretation 

of the functional parameter of the FPCLoR model 𝛽(𝑡) in terms of the 
odds ratio is very useful since allows to quantitatively study the impact of 
the measured spectral response in diagnosis of a disease when developing 
new biomedical spectroscopic techniques. Furthermore, interpretation 
can be used to detect major contributing frequencies for diagnosis since 
can be estimated for specific frequency intervals within the measured 
frequency band. 
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As it can be inferred, the smoothness of the fitted sample curves, 
addressed in section 2.3, can have important effects on the regression 
relation, and consequently, influences the interpretability of the FPCLoR 
model. This issue will be discussed later during the spectral data analysis. 

2.6. LONGITUDINAL FUNCTIONAL DATA 

ANALYSIS 

So far, only statistical methods for analysis of functional data 
involving independent sample functions has been introduced. The 
functional data becomes structurally dependent between observations 
when sample population is repeatedly observed during the study. This 
scenario naturally emerges in longitudinal studies, based on spectroscopic 
techniques, in which the sample population is repeatedly assessed at 
different times over a period. A common approach in longitudinal studies 
is to understand better the evolution of chronic diseases, their risk factors, 
and find indicators for their progress prediction. Some examples of the 
applications of longitudinal studies are Alzheimer’s disease [130], [131], 
Diabetes Mellitus [132], [133] and Multiple Sclerosis [134], [135]. In this 
sense, the longitudinal spectral data usually consist of profiles or images 
collected on the same subjects over several visits. 

Traditionally, the longitudinal spectral data is analyzed by combining 
summary statistics and mixed effects models [136]–[138] but this strategy 
may miss important sources of variability within subjects profiles or 
images. Similarly, the FDA methods described above ignores the 
longitudinal structure in the collected spectral data from longitudinal 
studies. These two aspects have led to the development of novel FDA 
methods for Longitudinal Functional Data Analysis (LFDA). 

In the LFDA, the longitudinal spectral data is addressed as 
longitudinal functional data by considering the time variable associated to 
the sample functions. The LFDA focuses not only on the study possible 
of relations between the measured spectral response and the target 
pathology, but also on the variations or trends of the measured spectral 
response within dependent observations, that may be related to different 
states of the target pathology at the evaluation times.  

In this section, some statistical methods for LFDA will be briefly 
described. Firstly, a variance decomposition method for longitudinal 
functional data, called Longitudinal Functional Principal Component 
Analysis (LFPCA), based on mixed effects model and eigenanalysis is 
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introduced. Then, different approaches for longitudinal scalar-on-
function regression, in which the scalar response variable and the 
functional predictor are measured longitudinally, will be mentioned. 
Additionally, the regression approaches will allow to consider both 
functional and scalar predictors simultaneously. 

2.6.1. LONGITUDINAL FPCA (LFPCA) 

As can be deduced, the LFPCA extends the FPCA to the LFDA. 
The main idea behind the LFPCA, introduced in [139], is to extract the 
main differences between subjects’ average profiles (between-subjects 
variation) and the subjects profiles evolution over time. 

Let us consider a set of sample functions {𝑥𝑖𝑗(𝑡): 𝑡 ∈ 𝒯, 𝑖 =

1, . . . , 𝑛, 𝑗 = 1, . . . , 𝐽𝑖}, with 𝑛 as the total of subjects and 𝐽𝑖 the number 

of visits recorded for the 𝑖-th subject. Let us observe that LFPCA 
addresses the case in which longitudinal functional data involves some 

subjects with at least three visits, and cases in which 𝐽𝑖 ≤ 2 were fully 
addressed by the multi-level case [140], [141]. A significant advantage of 
LFPCA working with experimental measurements such as clinical trials is 
that subjects has not to be necessarily assessed at the same number of 
visits or at the same visits (unbalanced data). Other advantage is that 
LFPCA allows to work with sample curves that have missing values. 

In order to estimate the LFPCA, the longitudinal functional data is 
modelled by a functional random intercept and random slope model [139] 
as follows 

𝑥𝑖𝑗(𝑡) = 𝜂(𝑡, 𝑇𝑖𝑗) + 𝐵𝑖,0(𝑡) + 𝐵𝑖,1(𝑡)𝑇𝑖𝑗 + 𝑈𝑖𝑗(𝑡) + 𝜀𝑖𝑗(𝑡), (2-57) 

where 𝜂(𝑡, 𝑇𝑖𝑗) is an overall fixed mean surface, 𝑇𝑖𝑗 is the standardized 

time of visit 𝑗 for subject 𝑖, 𝐵𝑖,0(𝑡) and 𝐵𝑖,1(𝑡) are the functional intercept 

and functional slope for subject 𝑖, respectively, 𝑈𝑖𝑗(𝑡) is a visit-specific 

functional deviation from the functional trend of subject 𝑖, and 𝜀𝑖𝑗(𝑡) is 

white noise error with variance 𝜎2. In addition, 𝐵𝑖(𝑡) =

{𝐵𝑖,0(𝑡), 𝐵𝑖,1(𝑡)}, 𝑈𝑖𝑗(𝑡) and 𝜀𝑖𝑗(𝑡) are assumed to be centered square-

integrable and mutually uncorrelated random processes on 𝒯. Thus, the 

bivariate process 𝐵𝑖(𝑡) captures the between-subjects variation, 𝑈𝑖𝑗(𝑡) 
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captures the within-subject variation among visits and 𝜀𝑖𝑗(𝑡) captures 

random uncorrelated variation within each sample curve. 

Then, the principal components scores are estimated as zero-mean 
uncorrelated random variables using the eigen decomposition of the 

corresponding covariance operators 𝒞𝑈 and 𝒞𝐵 to the random processes 

𝑈(𝑡) and 𝐵(𝑡) respectively. In general, the principal component scores 

related to the between-subjects variability, captured by the 𝐵(𝑡) process 
are given by 

𝜉𝑖𝑘 = ∫𝐵𝑖,0(𝑡)𝜓𝑘
0(𝑡)𝑑𝑡

𝒯

+ ∫𝐵𝑖,1(𝑡)𝜓𝑘
1(𝑡)𝑑𝑡

𝒯

, (2-58) 

where 𝜓𝑘
𝐵(𝑡) = {𝜓𝑘

0(𝑡), 𝜓𝑘
1(𝑡)}

′
 are the ordered eigen functions of 𝒞𝐵, 

corresponding to the non-null decreasing eigenvalues {𝜆𝑘}. Similarly, the 
principal component scores related to the within-subject variability, 

captured by the 𝑈(𝑡) process are given by 

𝜁𝑖𝑗𝑘 = ∫𝑈𝑖𝑗(𝑡)𝜓𝑘
𝑈(𝑡)𝑑𝑡

𝒯

, (2-59) 

where 𝜓𝑘
𝑈(𝑡) are the eigen functions of 𝒞𝑈 corresponding to the non-null 

decreasing eigenvalues {𝑣𝑘}.  

Similarly to the FPCA, the functions 𝜓𝑘
𝐵(𝑡) = {𝜓𝑘

0(𝑡), 𝜓𝑘
1(𝑡)}

′
and 

𝜓𝑘
𝑈(𝑡) can be seen as the loadings of the principal components and 

correspond to the largest variation modes in processes 𝐵(𝑡) and 𝑈(𝑡), 

respectively. The estimated subject-specific scores 𝜉𝑖𝑘 and 𝜁𝑖𝑗𝑘 allow to 

study the possible relations between the measured spectral and the status 
of the target pathology over visits or other collected variables during the 
clinical trial. 

Estimates of the principal component scores 𝜉𝑖𝑘 and 𝜁𝑖𝑗𝑘 are 

obtained by considering finite-dimensional approximations of the 𝐵(𝑡) 

and 𝑈(𝑡) processes (K-L decomposition) as follows 
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𝐵𝑖,0(𝑡) = ∑ 𝜉𝑖𝑘𝜓𝑘
0(𝑡),

𝑁𝐵

𝑘=1

𝐵𝑖,1(𝑡) = ∑ 𝜉𝑖𝑘𝜓𝑘
1(𝑡)

𝑁𝐵

𝑘=1

,

𝑈𝑖𝑗(𝑡) = ∑ 𝜁𝑖𝑗𝑘𝜓𝑘
𝑈(𝑡)

𝑁𝑈

𝑘=1

.

 (2-60) 

Thus, the functional random intercept and random slope model shown in 
Eq. (2-57) can be expressed as a linear mixed model as follows 

𝑥𝑖𝑗(𝑡) ≈ 𝜂(𝑡, 𝑇𝑖𝑗) + ∑𝜉𝑖𝑘𝑉𝑖𝑗
′ 𝜓𝑘

𝐵(𝑡)

𝑁𝐵

𝑘=1

+ ∑ 𝜁𝑖𝑗𝑘𝜓𝑘
𝑈(𝑡)

𝑁𝑈

𝑘=1

 + 𝜀𝑖𝑗(𝑡), (2-61) 

with 𝑉𝑖𝑗 = (1, 𝑇𝑖𝑗)
′
. 

The number of principal components 𝑁𝐵 and 𝑁𝑈 used in Eq. (2-60) 
are chosen by considering the total proportion of explained variability 
captured by the K-L reconstruction. The explained variance can be 

interpreted in terms of the estimated eigen values {𝜆̂𝑘} and {𝑣̂𝑘}, only if 

the time variable 𝑇𝑖𝑗 is standardized to have zero mean and unit variance 

as follows 

∑ 𝜆̂𝑘
𝑁𝐵
𝑘=1 + ∑ 𝑣̂𝑘

𝑁𝑈
𝑘=1 + 𝜎̂2

∫ 𝑣𝑎𝑟[𝑥𝑖𝑗(𝑡)]
1

0
𝑑𝑡

. (2-62) 

For simplicity, and as stated in [139], the LFPCA approximation 
process for principal component scores estimation according to Eq. (2-61) 
is summarized in five steps: 

1. The overall fixed mean surface 𝜂(𝑡, 𝑇𝑖𝑗) is estimated using a 

bivariate smoother in 𝑡 and 𝑇 under the independence assumption 

𝑥𝑖𝑗(𝑡) = 𝜂(𝑡, 𝑇𝑖𝑗) + 𝜀𝑖𝑗(𝑡) considering P-splines smoothing with 

Restricted Maximum Likelihood (REML) estimating for the 
smoothing parameter [142].  
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2. The covariance functions associated to the random processes 

𝐵𝑖(𝑡) = {𝐵𝑖,0(𝑡), 𝐵𝑖,1(𝑡)} and 𝑈𝑖𝑗(𝑡) are estimated from the 

residuals 𝑥𝑖𝑗(𝑡) − 𝜂̂(𝑡, 𝑇𝑖𝑗) using linear multiple regression on the 

cross-products 𝑥𝑖𝑗(𝑡)𝑥𝑖𝑗′(𝑠) with interaction effects to consider 

the time variable 𝑇. 

3. Bivariate smoothing is applied to the “raw” covariance functions 

estimated from previous step and, the estimate of 𝜎2 is based on 
the residuals between the raw and smoothed covariance functions 

from  𝑈 process. 

4. Spectral decomposition of smoothed 𝒞𝑈 and 𝒞𝐵 are obtained by 
eigenanalysis, and their estimated eigenfunctions are used as the 

basis functions for K-L reconstructions of 𝐵𝑖,0(𝑡), 𝐵𝑖,1(𝑡) and 

𝑈𝑖𝑗(𝑡) processes as shown in Eq. (2-60). 

5. Finally, the principal component scores 𝜉𝑖𝑘 and 𝜁𝑖𝑗𝑘 are estimated 

as the Best Linear Unbiased Predictors (BLUPs) of the linear 
mixed model shown in Eq. (2-61). 

For more details about the LFPCA theory and estimation, the reader 
can refer to [139]. 

2.6.2. LONGITUDINAL SCALAR-ON-FUNCTION 

REGRESSION ANALYSIS 

In this section, two novel models for longitudinal scalar-on-
functions regression will be briefly introduced: Longitudinal Penalized 
Functional Regression (LPFR) and Longitudinal Functional Principal 
Components Regression (LFPCR), with two different approaches for the 
LFPCR model. These models address the regression problem in which a 
scalar variable is related to a functional variable, and both are measured 
longitudinally. Additionally, it allows to consider more than one functional 
predictor, that can be observed on different domains, and multivariate 
scalar predictors can be included in the model’s estimation. This is a very 
useful and interesting approach analyzing data from clinical studies in 
which both spectral data and clinical variables can be related to the 
response variable. The LPFR and LFPCR models estimation is based on 
the mixed-model framework [143]–[146]. 
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Let us consider a sample data set with following structure 

[𝑦𝑖𝑗, 𝑥𝑖𝑗1, 𝑥𝑖𝑗2, . . . , 𝑥𝑖𝑗𝐾 ,𝑊𝑖𝑗], 𝑖 = 1, . . . , 𝑛, 𝑗 = 1, . . . , 𝐽𝑖, where 𝑛 is the 

total of subjects, 𝐽𝑖 the total of visits recorded for subject 𝑖, 𝑥𝑖𝑗𝑙(𝑡) ∈

ℒ2[0,1], 1 ≤ 𝑙 ≤ 𝐾 are functional predictors (not necessarily observed 

over the same domain), 𝑊𝑖𝑗 is a row vector of scalar predictors, and 𝑦𝑖𝑗  

the associated scalar response. Then, the LPFR model [147] is given by 

𝑔{𝐸(𝑦𝑖𝑗)} = 𝑊𝑖𝑗𝛾 + 𝑍𝑖𝑗𝑏𝑖 + ∑∫ 𝑥𝑖𝑗𝑙(𝑡)𝛽𝑙(𝑡)𝑑𝑡
1

0

𝐾

𝑙=1

 (2-63) 

where 𝛾 is a vector containing the standard fixed-effects coefficients 

related to the scalar predictors 𝑊𝑖𝑗, 𝑍𝑖𝑗 is a vector modelling random 

intercepts (accounting for repeated observations), 𝑏𝑖 is a vector containing 

the standard random-effects coefficients, and 𝛽𝑙 are the functional 
coefficients related to the functional predictors. Thus, the scalar 

coefficients 𝛾 and the functional coefficients 𝛽𝑙 are fixed effects that do 
not vary among visits and the subject-specific effects are modelled by the 

component 𝑍𝑖𝑗𝑏𝑖. 

The approximation process for LPFR model, shown in Eq. (2-63), is 
summarized in two steps: 

1. K-L reconstruction of the functional predictors is obtained by 
using the spectral decomposition of their corresponding 

covariance operators 𝒞𝑙 as follows 

𝑥𝑖𝑗𝑙(𝑡) = 𝜇𝑙(𝑡) + ∑ 𝜉𝑖𝑗𝑙𝑘𝜓𝑙𝑘(𝑡)𝑑𝑡

𝑁𝑥

𝑘=1

, (2-64) 

where 𝜇𝑙(𝑡) is the mean function estimated for the 𝑙-th functional 

predictor, {𝜓𝑙1(𝑡), . . . , 𝜓𝑙𝑁𝑥
(𝑡)} are the eigenfunctions 

corresponding to the spectral decomposition of 𝒞𝑙 with associated 

eigenvalues 𝜆𝑙1 ≥ 𝜆𝑙2 ≥. . . ≥ 𝜆𝑙𝑁𝑥
, and 𝑎𝑖𝑗𝑙𝑘 = ∫ (𝑥𝑖𝑗𝑙(𝑡) −

1

0

𝜇𝑙(𝑡))𝜓𝑙𝑘(𝑡)𝑑𝑡 are the principal component scores 

corresponding to the 𝑙-th functional predictor. 
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2. Then, basis expansions (see section 2.3.1) of the functional 

coefficients 𝛽𝑙(𝑡) using spline basis {𝜙𝑙1(𝑡), 𝜙𝑙2(𝑡), . . . , 𝜙𝑙𝑁𝛽
(𝑡)} 

are considered, such that 

𝛽𝑙(𝑡) = 𝜙𝑙
′(𝑡)𝑐𝑙, (2-65) 

with 𝑐𝑙 = (𝑐𝑙1, . . . , 𝑐𝑙𝑁𝛽
)
′
. 

Thus, the functional term in Eq. (2-63) can be rewritten as follows 

∫ 𝑥𝑖𝑗𝑙(𝑡)𝛽𝑙(𝑡)𝑑𝑡
1

0

= 𝛼𝑙 + Γ𝑙 [∫ 𝜓𝑙(𝑡)𝜙𝑙
′(𝑡)𝑑𝑡

1

0

] 𝑐𝑙

= 𝛼𝑙 + Γ𝑙Ψ𝑙𝑐𝑙

 (2-66) 

where 𝛼𝑙 = ∫ 𝜇𝑙(𝑡)𝛽𝑙(𝑡)𝑑𝑡
1

0
, Γ𝑙 = (𝜉𝑖𝑗𝑙)𝐼×𝑁𝑥

 with I = ∑ 𝐽𝑖
𝑛
𝑖=1  is a matrix 

comprising the principal component scores for all observations, 𝐼 

corresponding to the 𝑙-th functional predictor, and Ψ𝑙 is a (𝑁𝑥 × 𝑁𝛽)-

dimensional matrix containing the inner products between the 

eigenfunctions 𝜓𝑙 and the basis functions 𝜙𝑙.  

Thus, the LPFR model can be estimated by using standard mixed 

effects models, with the terms 𝛼𝑙 incorporated in the overall model 
intercept. For more details the reader can refer to [147]. 

As can be seen in Eq. (2-64), the LPFR model basically decompose the 

functional predictors 𝒳𝑙(𝑡), as in the FPCA case, without consider the 

longitudinal information associated to the sample functions 𝑥𝑖𝑗𝑙(𝑡) that 

may lead to omit relevant sources of variation. Therefore, two alternative 
approaches for LFPCR were proposed in [148] based on LFPCA for 
variability decomposition of the functional predictors. 

The first approach, which is the more intuitive case, directly uses the 
functional principal components scores estimated by LFPCA, with the 
LFPCR model given by 

𝑔{𝐸(𝑦𝑖𝑗)} = 𝛼(𝑇𝑖𝑗) + 𝑊𝑖𝑗𝛾 + 𝑍𝑖𝑗𝑏𝑖 + ∑Γ𝑙
𝐵𝜃𝑙

𝐾

𝑙

+ ∑Γ𝑙
𝑈𝛿𝑙

𝐾

𝑙

, (2-67) 

where components 𝑊𝑖𝑗𝛾 and 𝑍𝑖𝑗𝑏𝑖 are the same introduced in Eq. (2-63), 

Γ𝑙
𝐵 and Γ𝑙

𝑈 are the principal components scores estimated for 𝐵(𝑡) and 
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𝑈(𝑡) processes from the 𝑙-th functional predictor, and 𝛼(𝑇𝑖𝑗) is a time-

varying intercept estimated by considering 𝜂(𝑡, 𝑇𝑖𝑗) (see (2-57)). 

The second approach directly replaces the components in Eq. (2-67), 

associated to the principal component scores, with the 𝐵(𝑡) and 𝑈(𝑡) 
processes as follows 

∑Γ𝑙
𝐵𝜃𝑙

𝐾

𝑙

⟹ ∑∫𝑈𝑖𝑗𝑙(𝑡)𝛽𝑙
𝑈(𝑡)

𝐾

𝑙

∑Γ𝑙
𝑈𝛿𝑙

𝐾

𝑙

⟹ ∑𝐵𝑖𝑙(𝑡)𝛽𝑙
𝐵(𝑡)

𝐾

𝑙

, (2-68) 

with 𝐵𝑖(𝑡) = {𝐵𝑖,0(𝑡), 𝐵𝑖,1(𝑡)} and 𝑈𝑖𝑗(𝑡) processes obtained by K-L 

reconstruction, as shown in Eq. (2-60), and the functional coefficients 

𝛽𝑙
𝑈(𝑡) and 𝛽𝑙

𝐵(𝑡) estimated using P-splines expansions with the 
smoothing parameter estimated via REML. 

The LFPCR approaches are studied and compared together with the 
LPFR model in [148]. One of the LFPCR model advantages over the 
LPFR model is that it adds the natural interpretation provided by the 
LFPCA on the functional predictors. Other advantage is that LFPCR 
model can be applied when the response variable does not change from 

visit to visit, for instance, when 𝑦𝑖𝑗  indicates the presence or absence of a 

disease that does not change among visits. Both LFPCR models can be 
estimated analogously to the LPFR model using the generalized additive 
mixed models. For more details see [147], [148]. 
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As briefly introduced in the first chapter, applied spectroscopy takes 
advantage of the spectral fingerprint of molecules to characterize the 
spectral response of one or more targeted components in a sample under 
study. In particular, such characterization is a hard task in high-complexity, 
multi-species, scenarios where there is no a-priori information about the 
sample or its constituents in terms of their spectral response (absorption, 
reflexion and transmission properties), and accurate mathematical 
modelling is practical impossible due to their so complex integration. This 
kind of scenarios are commonly found when developing applied 
spectroscopic techniques in biomedical engineering in which the spectral 
interrogation is performed on biological samples with numerous 
metabolites and substances resonating at different partially overlapping 
frequencies when probed with electromagnetic waves. Additionally, there 
are always interferences associated to natural physiological process (body 
temperature, body fluid shifts and transpiration, among others) affecting 
adversely the spectral response.  

The superposition of the spectral features from metabolites and 
other substances such as water and fat, besides several interferences such 
as physiological processes, environmental factors, and intrinsic 
spectroscopic instrument noise, make it very difficult to isolate and 
quantify (i.e. to estimate the concentration) a specific metabolite within 
the biological sample accurately, especially in in-vivo applications. 
Therefore, a non-targeted spectral profiling approach is proposed in this 
thesis for the evaluation of applied spectroscopic techniques in biomedical 
engineering, being particularly useful at first stages of the development 
process. As will be seen, a non-targeted spectral profiling approach can 
have great potential to explore and evaluate the applicability of a 
spectroscopic technique within a frequency range in which the target 
sample has not been characterized, as often happens in biomedical 
engineering.  

Thus, in this work, and similarly to the principle applied in non-
targeted metabolomics (see [149]–[151]), the biological sample is to be 
interrogated throughout a widely frequency range of interest, and the 
collected spectral data is to be analysed to study possible relations between 
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the measured spectral response and a targeted clinical pathology 
(comparing the spectra associated to the target pathology with control 
cases), without the necessity to quantify an specific metabolite involved in 
the biological sample. This approach is exploited under the FDA 
framework, that allows to address the spectral profiles as single entities, 
highlighting their main trends, and provides flexible handling of undesired 
factors contributions (noise) in the measured spectral response.  

Under this two-fold approach (non-targeted spectral profiling 
combined to FDA), in this thesis, a mm-wave spectroscopic technique is 
proposed and experimentally assessed as a novel non-invasive approach 
for in-vivo detection and monitoring of DM. Basically, the proposed 
system interrogates the biological sample with a tunable source spanning 
the W-band (75 GHz – 110 GHz) using a Continuous Wave (CW) 
spectrometer. Thus, a W-band spectral profile is obtained from the 
biological sample under study involving the spectral features of all 
components of the biological sample that will be processed, analyzed, and 
interpreted by using FDA methods. 

In this chapter, we briefly describe the current state-of-the-art in DM 
and sustained hyperglycemia non-invasive detection. Subsequently some 
advantages of the use of THz and mm-wave radiation for biomedical 
engineering are described and, finally, the proposed mm-wave 
spectroscopic instrument for in-vivo and non-invasive, detection and 
monitoring of sustained hyperglycemic metabolism is described in detail. 

3.1. DIABETES MELLITUS: TECHNOLOGICAL 

ADVANCES AND CHALLENGES FOR NON-
INVASIVE SENSING OF BLOOD GLUCOSE 

LEVEL 

DM is a very complicated metabolic disorder affecting a great part 
of the world population, with almost 500 millions of cases around the 
world and an expected rate of increase of 51% in the years to come [152]. 
This chronic disease encompasses a group of complex metabolic 
conditions characterized by the continuous presence of high blood 
glucose levels (BGL), known as sustained hyperglycemia, due to the 
inability of diabetic patients to produce or use insulin adequately [153]. So 
far, there is not any kind of cure for DM, and diabetic patients follow-up 
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is based on the continuous monitoring of BGL. It is well known that 
medium/long-term exposure to sustained hyperglycemia on the body 
leads to the formation of Advanced Glycation End-products (AGEs) 
[154], [155], resulting from non-enzymatic chemical bonding of free sugars 
to proteins or lipids (glycation), which plays an important role in the 
development of several and irreversible physiological consequences such 
as early aging, cardiomyopathy, nephropathy, retinopathy, and 
neuropathy, among others [156]–[161]. The AGEs are irreversible 
compounds that accumulate in the body, but the generation of these 
metabolomic end-products go through two previous main stages: the 
Schiff base (early stage) and Amadori products (intermediate stage), being 
both reversible steps in the AGEs formation process [154]. Therefore, 
sustained hyperglycemia detection in its earliest stages is critical not only 
for DM diagnostics, but also for metabolomic control and supervision of 
the patients, facilitating an early intervention to regulate the carbohydrate 
metabolism, and consequently, reducing health complication risks.  

Nowadays, the well-stablished methods used for diagnosis and 
follow-up of DM are invasive (blood samples are required) based on 
enzymatic reactions [162]. Some common procedures performed at 
hospitals include Fasting Plasma Glucose (FPG) measurements, Oral 
Glucose Tolerance Tests (OGTT), and glycohemoglobin tests (A1c or 
HbA1c) [163]–[166], that are conducted under well-defined protocols and 
standards for diagnostic criteria [167]. These methods involve the two 
physiological parameters currently used in medical practice for diabetes 
treatment: the instantaneous BGL indicating the concentration of free 
glucose in blood at the time of the measurement (FPG and OGTT), and 
glycated hemoglobin (HbA1c) presence providing an indicator of the 
average blood glucose content over the preceding three months [164]. The 
glycated hemoglobin is an example of AGEs resulting from the glycation 
of red blood cells (erythrocytes), with an average lifespan of three months.  
The HbA1c test was approved in 2010 by the American Diabetes 
Association as a diagnostic criteria for DM [168]. In contrast to the 
instantaneous BGL, the HbA1c measure is a more stable and reliable 
parameter in diabetes treatment practice because it is not significantly 
affected by peaks of glucose presence in blood associated to many 
physiological processes such as digestion, exercise, or strong emotions 
[169]. However, HbA1c test can be only used for long-term glycemic 
control due to his poor time resolution (depends on the lifespan of red 
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blood cells) and requires complex equipment only available at specialized 
laboratories, being less accessible in low- and middle-income countries. 

The instantaneous BGL is the most common parameter used in DM 
control introduced in 1962 with the first glucose enzyme electrode [170], 
thus paving the way for development of conventional glucometers [171]. 
The glucometers are widely used at hospitals and allow diabetic patients 
to non-continuous self-monitoring of BGLs through finger pricking with 
a lancet to extract full blood drops. Other recent minimally invasive 
technologies currently available in the market are the continuous glucose 
monitoring devices consisting on a wireless receiver, a transmitter, and a 
tiny subcutaneous sensor that estimate the BGL by the glucose content in 
the interstitial fluid [172]. Some disadvantages of continuous glucose 
monitoring devices are that requires frequent calibration using standard 
glucometers and provides shifted-in-time BGL measurements of 
approximately 5 minutes [173]. In general, these invasive and minimally-
invasive methods for the BGL sensing have significant drawbacks such as 
discomfort,  they are time-consuming, are based on consumable materials 
(resulting in high follow-up costs in long-term use), can be painful (tissue 
damage), and may cause infections. All the drawbacks mentioned above 
explain somehow the unwillingness of an important number of diabetic 
patients to follow completely medical recommendations in DM care [174]. 

Therefore, there is a worldwide effort to develop new non-invasive 
technologies with the aim to provide more efficient methods for 
instantaneous BGL monitoring, improve the patients’ comfort and to 
alleviate the drawbacks mentioned above. An extensive revision of current 
proposed technologies for non-invasive sensing of BGL, involving 
thermal, electrical, and optical methods, can be found in [175]–[177]. 

Some of these non-invasive techniques are based on transdermal 
approaches (considered also for some authors as minimally invasive), such 
as bioimpedance spectroscopy and reverse iontophoresis, their actual 
performance being considerable affected by variations in tissue water 
content and perspiration. Side effects as skin irritation has been also 
shown by reverse iontophoresis. Besides interstitial fluid evaluation, which 
is the target of these minimally invasive technologies for BGL monitoring 
including reverse iontophoresis, there are other proposed technologies of 
wearable sensors focused to continuous BGL monitoring (or other DM 
biomarkers) by using different biological fluids such as sweat, breath, 
saliva, aqueous humour, etc. [178]. 
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Among the most studied and developed non-invasive optical 
approaches are the infrared technologies. The near-infrared spectroscopy 

(~215 THz - ~400 THz) offers relatively low-cost materials and allows 
for deeper detection of glucose concentrations (low water absorption of 
near-infrared radiation) but shows high scattering in tissue and significant 
interferences by proteins, fat, hemoglobin, among others biological 
substances that have similar absorption properties to glucose molecule 
[177], [179]. On the other hand, even though the mid-infrared 

spectroscopy (~30 THz - ~120 THz) exhibits less scattering and more 
specific absorption bands, the strong water absorption coefficient in mid-
infrared band (poor penetration depth of tissue) makes necessary the use 
of powerful sources such as quantum cascade lasers, resulting in more 
complex and expensive implementations [180]. Some other approaches 
such as photoacoustic, photothermal, occlusion, and Raman techniques 
has been proposed to improve infrared technologies deficiencies [181]–
[186]. Other proposed methods are fluorescence [187], [188], optical 
polarimetry [189], [190], optical coherence tomography [191], [192] and 
metabolic heat conformation [193], [194].    

In general, all the non-invasive technologies proposed for BGL 
sensing are influenced by physiological variability and environmental 
conditions, affecting their accuracy and consistency, and although the 
extent of the problem varies among these technologies, there is still no 
completely viable solution compared to current enzyme-based standard 
methods, especially for cases in which accurate and frequent monitoring 
of BGL is a serious matter. 

Besides the research lines above mentioned, more recent approaches 
for non-invasive sensing of BGL has been emerging based on THz time-
domain spectroscopy [195], [196] and microwaves spectroscopy [197]–
[199]. These approaches are motivated by their good interaction properties 
with biological media mentioned above, but they are still far from an 
operational diagnostic. In particular, the mm-wave spectroscopy (30 GHz 
- 300 GHz) has shown great potential for the non-invasive sensing of 
BGL, with in-vivo blood glucose monitoring in animal models reported 
using Ka-band frequencies (27 GHz - 40 GHz) [200], [201], and the 
detection of glucose spikes in humans during an intravenous glucose 
tolerance test using transmission measurements at 60 GHz [202].  

In this thesis the application of mm-wave spectroscopy (W-band 
frequencies: 75 GHz – 110 GHz) is studied as an alternative approach for 
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non-invasive sensing of hyperglycemia. It is important to note here that 
the actual target of the thesis is not to obtain a diagnostic for the 
instantaneous value of the BGL (as most of the diagnostics enumerated 
before), but to evaluate sustained hyperglycemia conditions associated to 
the physiological changes that early accumulation of AGEs have on the 
tissues. In this sense, the system performance will be ultimately tested 
against HbA1c measurements that, as discussed before, it is a more stable 
and reliable parameter in diabetes treatment practice. 

Finally, it is worth mention that the selection of the W-band for this 
diagnostic is associated to some of the attractive advantages of such 
frequencies for this kind of diagnostics as they are that the interaction 
region is well defined, the probing location is small due to tighter focusing 
capabilities or smaller waveguide dimensions, the dispersion effects are 
less pronounced, and can lead to very compact sensing equipment.  

3.2. THZ, MICROWAVE AND MILLIMETER- WAVE 

RADIATION IN BIOMEDICAL ENGINEERING 

Nowadays, the development of new technologies in biomedical 
industry is a huge research field with a substantial growth, aiming not only 
to provide more efficient tools for medical diagnosis, treatments, and 
procedures, but also to enhance patients’ quality of life and well-being. 
However, a complete settlement of new techniques to develop minimally 
or non-invasive medical procedures in diagnosis and follow-up of existing 
diseases is a current barrier to break in the twenty-first century. In this 
sense, increasing attention is being paid to microwave [197], [203]–[206], 
millimeter-wave [207]–[209] and THz [210]–[214] spectroscopy as very 
promising non-invasive approaches for biomedical applications.  

The microwaves region refers to the frequencies from 300 MHz to 
30 GHz, millimeter waves (mm-waves) correspond to frequencies from 
30 GHz to 300 GHz, and the THz region lies between the millimeter 
waves and infrared band, being typically defined as 100 GHz – 10 THz. 

Among the unique properties that make microwave, mm-wave and 
THz regions well-suited for health-care systems applications is their non-
ionizing character. In both cases, the electromagnetic radiation implies 
very low photon energy below 10 meV, which is known not to be capable 
of modifying atoms structure or cause other kind of chemical damages to 
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molecules, unlike X Rays. However, biosafety of THz and microwaves 
radiation is still a controversial question since some studies have reported 
evidence of chromosome lesions, among other physiological hazards 
using specific modes of irradiation [205], [212], [214], [215].  

The THz radiation is characterized for exhibiting strong absorption 
by water, which is a double-edged sword: biological substances are mainly 
composed of water, limiting THz waves penetration depth biologic media, 
but such high absorption also provides THz radiation with a very effective 
contrast capacity to differentiate tissues with different water content, 
which usually happens between diseased and normal tissue. An example 
of such contrast capacity is the interest in THz imaging for cancer 
diagnosis since presence of tumors often implies an increased blood 
supply and water content in the affected tissues. Besides that, it has been 
also proven that structural changes in affected tissues can be also identified 
using THz radiation by eliminating water content in tissue [210]. Other 
advantages of THz radiation are that scattering losses in biological tissues 
are negligible, offers excellent time and spatial resolutions, and the photon 
energy of THz waves coincides with rotational and vibrational transitions 
of biomolecules. An overview of THz radiation and several 
biological/biomedical applications such as vessel imaging, corneal tissue 
sensing, identification of different pathogenic bacteria, detection of dental 
caries, detection of DNA fragments in aqueous solutions, among others 
can be found in [212]–[214]. However, the development of compact and 
cost-effective mm-wave and THz systems with good operating 
performance is still a common current challenge to make them suitable 
for healthcare application and clinical practice. 

Similarly, microwaves can also polarize biological substances, can 
achieve greater penetration depth in biological tissue than THz radiation, 
and many microwaves modalities are better suited for reliable, compact, 
and relatively cost-effective implementations. The microwaves have also 
shown great potential for biomedical applications taking advantage of the 
different electrical properties (permittivity and conductivity) of biological 
substances and tissues (primarily related to water content), with several 
applications such as microwave imaging of the heart, brain, bones and 
breast cancer diagnostics, blood glucose monitoring, brain stroke and 
heartbeat detection, sensing of blood flow and pressure, etc. [197], [203], 
[216]. Other applications of microwaves in medicine are based on 
hyperthermia induction and ablation for medical therapies such as the 
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treatment of cardiac arrythmias, liver, benign prostate hypertrophy, 
angioplasty, brain tumors, etc. [205], [217]–[220].  

In general, microwaves, mm-waves, and THz radiation are very 
promising developing spectroscopic techniques in biomedical approaches 
with good sensibility to differentiate biological tissues and substances, 
offering different balances between penetration depth and resolution. 
However, there is still much work to be done to achieve the complete 
settlement of effective technologies, based on THz, microwave and mm-
wave radiations, in the medicine field. 

3.3. MM-WAVE SPECTROSCOPY INSTRUMENT 

USED FOR EXPERIMENTS 

This work focuses on the assessment of an alternative approach for 
non-invasive sensing of hyperglycemia, typically associated to DM, by 
spectral interrogation using mm-waves (W-band). As mentioned above, 
high frequencies such as mm-waves and THz radiation reduce dispersion 
effects in tissue and are very potential developing compact spectroscopic 
devices, besides their biosafety, which is very attractive in biomedical 
applications. The small waveguide dimensions and the small dispersion in 
tissue allows for small probing areas. However, frequencies closer to THz 
radiation exhibit poor penetration depth in tissue due to the water 
absorption and poor signal-to-noise ratio requiring longer measurement 
times that are usually not compatible with in-vivo monitoring. In this 
sense, the W-band offers a good balance between penetration depth in 
tissue, interaction volume, and signal-to-noise ratio. 

In order to study the capabilities of W-band for non-invasive sensing 
of hyperglycemia, a CW mm-wave spectrometer spanning the whole W-
band from 75 GHz to 111 GHz was put together specifically for this 
project in collaboration with Professor Viktor Krozer’s research group at 
Goethe University in Frankfurt. The spectrometer, designed and mounted 
in Frankfurt, uses different multiplication chains to reach the W-band 
frequencies from a Ku-band generator (12 GHz - 18 GHz). The 
spectrometer allows to collect transmission and reflection signals from 
spectral interrogation performed to the biological media. 

A simplified block diagram of the setup used in the measurements is 
shown in Figure 3-1, and explained in the following lines. A frequency 
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sweep from 12.5 GHz to 18.5 in steps of 0.25 GHz is generated using a 
synthetized signal generator APSIN20G (AnaPico, Zurich, Switzerland) 
with 0.3 MHz frequency difference between the outputs SG1 and SG2. 
The output signal SG1 is directly connected (SMA) to an AFM6 Active 
Frequency Multiplier (Radiometer Physics GmbH, Meckenheim, 
Germany) that increase the frequency signal by a factor of six, resulting in 
a frequency sweep from 75 GHz to 111 GHz in steps of 1.5 GHz. The 
AFM6 Frequency Multiplier is realized in a waveguide housing and 
exhibits a WR10 waveguide output, which is fed to a dual directional 
coupler. The coupled arms of the dual directional coupler define the 
reference and reflection channels, respectively, with two HMR6 
subharmonic mixer receivers (Radiometer Physics GmbH, Meckenheim, 
Germany) one at each coupled port. The thru branch of the coupler is 
connected to a waveguide probe and the incident wave is sent through the 
biological media (sample). Then, the signal that traveled through the 
biological media is directed towards a subharmonic mixer receiver, 
similarly as in the reference and reflection ports, by using a second 
rectangular waveguide probe positioned after the sample. The probes are 
straight cuts of a WR10 waveguide tapered on the outside directly in 
contact with the sample. The outputs of the subharmonic mixer receivers 
deliver an intermediate frequency of IF = 1.8 MHz and are connected to 
a data acquisition unit (Handyscope HS4-10, TiePie engineering, Sneek, 
Netherlands), which digitizes the measured signals (reference, reflection, 
and transmission) with a sampling rate of 10 MHz for further filtering and 
processing using LabVIEW software [221]. All the acquisition routines 
were developed in the Sensors and Instrumentation Techniques Group of 
the Universidad Carlos III de Madrid. 

 

Figure 3-1. Block diagram of the mm-wave spectroscopy system used for non-invasive 
assessment of biological media. See text for details. 
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A photography of the mm-wave spectroscopic instrument involved 
in the spectroscopy system described above is shown in Figure 3-2, 
identifying the different components enumerated above. The mm-wave 
instrument can be made very compact and it is based on potentially low-
cost electronic technology. 

 

Figure 3-2. Photography of the mm-wave spectroscopic instrument used for spectral 
interrogation within the W-band. 

A flowchart summarizing the LabVIEW routine used for that 
acquisition and pre-processing is shown in ¡Error! No se encuentra el 
origen de la referencia.. All the reference, reflection, and transmission 
signals measured at each frequency point (spectral data acquisition) are 
averaged (18 periods sampled) to reduce the effects of random noise in 
the sampled signal. Then, all the signals are filtered through a narrow band 
filter with the intermediate frequency (1.8 MHz) as the center frequency. 
The LabVIEW program runs in real-time and implements a multi-channel 
lock-in amplifier for the estimation of the amplitude of the sampled signals 
improving the signal-to-noise ratio [222], [223]. Simultaneously, the phase 
of the sampled signals is estimated by tone identification using the fast 
Fourier Transform. The obtained phase from the signals is used to 
estimate the phase shift of the transmitted and the reflected waves with 
respect to the reference signal (measured from incident wave). The 
measurement is repeated 5 times at each frequency point and the mean 
value and the standard deviation are estimated for the amplitude and phase 
parameters. The collected spectral data, including the corresponding 
standard deviations, are exported as a .txt file. 
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The complete measurement process, covering 25 frequencies equally 
distributed over the W-band takes around 45 seconds. The measurement 
time is mainly limited by the control electronics (signal generator and 
LabVIEW program for signal acquisition and processing) rather than the 
mm-wave instrument. 
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Figure 3-3. Flowchart summarizing the LabVIEW program for data acquisition and 
pre-processing. The numbers within the circles indicate branch connectors. 
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In this thesis dissertation, a non-invasive approach for in-vivo 
detection and monitoring of DM by spectral interrogation in the W-band 
is assessed using the system described in the previous chapter. The aim is 
to study possible relations between the measured W-band spectral 
response and sustained hyperglycemia condition, typically associated to 
DM. To this end, three experiments were carried out using mice as animal 
models representative of normoglycemia and different sustained 
hyperglycemic conditions. As outlined in chapter 3, the experiments were 
designed under a non-targeted spectral profiling approach, adopting a 
strategy of comparison between the W-band profiles to detect variations 
in the measured spectral response that qualitatively differ between the 
glycemic states involved in the sample population. The spectral data sets 
collected from the experiments will be processed using FDA methods 
introduced in chapter 2. In this way, the W-band spectral profiles are 
analyzed as single continuous responses, which contains all the spectral 
features of biological components constituting the sample.  

In this fourth chapter, all the experiments related to the animal 
models and the corresponding statistical analysis developed for the 
assessment of the applied spectroscopic technique will be presented. 
Firstly, the sample populations and the experimental protocols common 
to the three experiments, that were carried out sequentially, will be 
described. Later, the most relevant findings obtained from the 
experiments by the FDA performed on the collected spectral data sets will 
be shown. In the first experiment, from now on referred to as 
“Experiment A”, the diagnostic technique is assessed by exploring the 
contained variability in the spectral response measured achieved by FPCA. 
The obtained results from the spectral data sets, corresponding to 
amplitude and phase of both transmission and reflection measurements, 
are compared to find the indicator that best discriminates the sustained 
hyperglycemia condition.  Then, the FPCA results are interpreted with two 
aims in mind: first, to study possible influences of known variables 
involved in the experiment on the measured spectral response and, 
second, to characterize the spectral response associated to the sustained 
hyperglycemia discrimination. A second experiment, herein after referred 
to as “Experiment B”, was carried out after the first one with the aim to 
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evaluate the consistency and robustness of the diagnostic by a validation 
test and a multi-test analysis using a classification model. The classification 
model is estimated by FPCLoR on the measured spectral data. Then, the 
FPCLoR model is interpreted to study, qualitatively and quantitatively, the 
relation between the spectral response and the sustained hyperglycemia 
discrimination. Additionally, two different approximations of continuous 
spectral profiles using regression splines and P-splines are compared. Both 
approaches, with a different smoothness degree, are used to show the 
main trade-off between the classification rate and interpretation of the 
fitted model. The idea behind this scenario is to highlight typical choices 
and decisions to be made by the researcher in the FDA, and the exciting 
possibilities working with functional data. Finally, a third experiment, 
referred to as “Experiment C”, was carried out to evaluate the feasibility 
of the applied spectroscopic technique for DM monitoring. To achieve 
this, diabetes was induced on a group of healthy mice to observe their 
evolution over a period of two weeks. A classifier obtained from the first 
experiment (different sample population) is used to predict the condition 
of diabetized mice at each measurement day separately, to test the 
sensitivity of the proposed approach to detect different glycemic states. 

4.1. DESCRIPTION OF THE EXPERIMENTS USING 

ANIMAL MODELS 

The experiments presented in this chapter were carried out in 
collaboration with the Epithelial Biomedicine Division of the Centro de 
Investigaciones Energéticas, Medioambientales y Tecnológicas 
(CIEMAT). 

All the experimental procedures involved in the mice experiments 
were carried out according to European and Spanish laws and regulations 
(see Appendix for more details on the corresponding Ethical Issues in 
section 8.1). The animals were purchased from Elevage-Janvier (Le 
Genest-Saint-Isle, France), treated and housed individually in pathogen-
free conditions at the Laboratory Animals Facility (Spanish registration 
number 28079-21 A) of the CIEMAT. 
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4.1.1. ANIMAL MODELS USED IN THE EXPERIMENTS 

In the experiments different mice strains exhibiting varied physical 
features between them such as hair color and skin types were used, as 
illustrated in Figure 4-1. The C57BL6/J mouse has a dark brown hair and 
it is widely used for genetic modifications to model human diseases (being 
diabetes on of such diseases). The BALB/C is an albino mouse and is one 
of the most popular inbred strains used in animal experimentations. The 
NMRI-Foxn1nu/Foxn1nu is a hairless mouse, commonly known as 
“nude”, and it is an immunodeficient animal model (T cell deficient) 
widely used in biomedical research. 

 

Figure 4-1. Images of the main mice strains showing their physical features. 

Regarding to the non-targeted spectral profiling approach, different 
normal/pathological conditions were considered in the experiments and 
implemented using the abovementioned animals. The two main groups 
used in the experiments involved all the mice models: normoglycemia and 
hyperglycemia conditions. The normoglycemia condition is represented 
by healthy mice exhibiting normal and stable BGLs, with an expected 
glucose level of 100 mg/dl. Within the hyperglycemia condition two types 
of pathologies with different associated sustained hyperglycemic states 
were considered: overweight mice by overeating, hereinafter referred to as 
“obese mice”, representing mild diabetes, and diabetic mice representing 
a full-blown diabetes (“diabetic mice”). To achieve these two conditions, 
mice were genetically modified to has spontaneous mutations leading to 
deficiency of Leptin (Lepob/Lepob), the “obese mice” and Insulin 
resistance (Lepdb/Lepdb) [224], the “diabetic mice”. Additionally, a third 
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type of hyperglycemic animals were obtained through drug-induced 
diabetes on healthy mice, hereinafter referred to as “diabetized mice”. This 
third condition was considered as an alternative and complementary 
condition of full-blown diabetes due to its strongest effects in mice 
(compared to genetically modified “diabetic mice”). The induction process 
for the diabetized mice consisted of three intraperitoneal injections of 
Streptozotocin (Sigma-Aldrich, Inc., St. Louis, MO, USA) with 
concentrations of 0.1 mg/g, 0.1 mg/g, and 0.15 mg/g on alternate days 
during a period of 5 days. The Streptozotocin (STZ) is a compound 
designed to be especially toxic to pancreatic islet insulin-producing β-cells 
[225]. These obese, diabetic and diabetized mice are widely recognized 
animal models undergoing sustained hyperglycemia [226], i.e. they exhibit 
higher BGL than normoglycemic mice under normal conditions (meals, 
exercise, sleep, etc.), being the less aggressive condition for the obese mice. 

4.1.2. EXPERIMENT A 

The first experiment was designed to explore the influences of 
different glycemic states and varied physical features on the W-band 
measured spectra. Therefore, all animal models introduced in section 4.1.1 
were considered in the experiment. 

The non-invasive assessments of hyperglycemia in the first 
experiment was performed on a sample population of twenty mice with 
ten normoglycemic cases and ten hyperglycemic cases. The group of 
hyperglycemic cases involves five obese mice, two diabetic mice, and three 
diabetized mice. The group of normoglycemic cases consist of eight 
healthy mice, and two obese mice treated with precise and continuous 
doses of human leptin using implantable 28-day-lasting micro osmotic 
pump (ALZET Osmotic Pumps, California, USA) [227]. The mice strain 
among other characteristics of the sample population are detailed in Table 
4-1. 
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Table 4-1. Sample population measured in experiment A. 

Condition Mice strain Variation Treatment 
Expected 
Glucose 

level 
Age Qty. 

Normoglycemia 

NMRI- 
Foxn1nu/ 
Foxn1nu 

- - 
100 

mg/dl 
1 

month 
4 

C57BL6/J - - 
100 

mg/dl 
6 

months 
2 

C57BL6/J Lepob/ Lepob 
Leptin-
pump 

100 
mg/dl 

6 
months 

2 

BALB/C - - 
100 

mg/dl 
6 

months 
2 

Hyperglycemia 

C57BL6/J Lepob/ Lepob - 
>150 
mg/dl 

6 
months 

5 

C57BL6/J Lepdb/ Lepdb - 
>250 
mg/dl 

6 
months 

2 

NMRI- 
Foxn1nu/ 
Foxn1nu 

- 
STZ-

induced 
diabetes 

>400 
mg/dl 

1 
month 

3 

 

Let us to note that the mice with hair were not shaved for the non-
invasive assessment by the mm-wave spectroscopic instrument.  Instead, 
mice hair at the measurement location was regularly cut off to ensure and 
facilitate the positioning of the skin between the probes. Besides this, no 
additional special treatments of the skin were considered.  Prior to the 
non-invasive assessment, mice were anesthetized to prevent excessive 
movement and self-harm risks during the measuring process, which takes 
around 45 seconds. The mice were induced into a skeletal muscle 
relaxation state (around 30 minutes) using a standard rodent anesthesia 
(ketamine-medetomidine), administered by an intraperitoneal injection 
five minutes before taking the measurement.  

The spectroscopic measurements were carried out directly on a fold 
of the skin on the mice back, as shown in Figure 4-2. The probes of the 
spectrometer instrument are brought into direct contact with the skin fold, 
without applying to much pressure, to ensure the propagation of the signal 
through the skin and underlying layers, resulting in an interaction between 
the generated waves and the skin fold during the spectroscopic 
measurement. As seen in section 3.3, the probes of the spectrometer 
instrument consist of previously aligned standard rectangular WR10 
waveguides tapered on the outside to hold the skin fold. A separation of 

~1 mm between probes was carefully adjusted as the minimum required 
to hold the skin of the mice without infringing damage or pain on them. 
It should be noted that the pressure of the two waveguide straights on the 
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mice skin was not of prime importance in the non-invasive assessment 
procedure. 

The measuring process for spectral interrogation consists of a 
frequency sweep across the W-band (75 GHz - 111 GHz) in steps of 1.5 
GHz by using the mm-wave instrument described in section 3.3. The 
amplitude and phase measurements of both reflection and transmission 
coefficients of the biological sample were continuously acquired during 
the whole measuring process. 

 

Figure 4-2. Photograph taken during the measuring process for two different mice 
strains. 

It is important to note that no special calibration procedures were 
performed to the spectroscopy instrument previous the measurements. 
One of the most important challenges was adjusting an appropriate 
reference of the signal power generator to ensure both a good dynamic 
range for the measured signals at harmonic receivers and to avoid 
receiver's saturation. To this end, several tests were carried out using a 
quartz cuvette (5 mm) containing water to simulate the expected high 
absorption level of the biological tissue. The reference level for 
transmission signal was dictated by the highest absorption level and the 
receiver noise floor. Then, the output power of the signal generator was 
adjusted to obtain a frequency response as flat as possible at the 
transmission port.  

Additionally, almost simultaneously to the non-invasive assessment, 
the BGL was measured on the mouse tail by an Accu-Chek Aviva Nano 
(Hoffmann-La Roche, Basilea, Switzerland), as shown in Figure 4-3, and 
the skin-fold thickness used in the measurement was determined by a 
Mitutoyo Digital Caliper (Mitutoyo Corp., Kanagawa, Japan). 
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Figure 4-3. Photograph taken during the BGL measurement by blood extraction from 
the tail of the mouse. 

4.1.3. EXPERIMENT B 

The second experiment was focused to validate the obtained results 
from Experiment A, and to assess the robustness of the applied 
spectroscopic technique. Therefore, a new sample population of thirty-
three mice was measured using the proposed non-invasive approach. In 
this experiment, only one mice strain was considered (C57BL6/J). The 
new sample population consisted of eighteen healthy mice as 
normoglycemic cases, and fifteen hyperglycemic cases: nine leptin 
deficient (Lepob/Lepob) mice undergoing a mild diabetes, and six insulin 
resistant (Lepdb/Lepdb) mice undergoing a full-blown diabetes. The sample 
population measured in Experiment B is detailed in Table 4-2. 

Table 4-2. Sample population measured in experiment B. 

Condition Mice strain Variation Treatment 
Expected 
Glucose 

level 
Age Qty. 

Normoglycemia C57BL6/J - - 
100 

mg/dl 
8 

weeks 
18 

Hyperglycemia 
C57BL6/J Lepob/ Lepob - 

>150 
mg/dl 

5 
weeks 

9 

C57BL6/J Lepdb/ Lepdb - 
>250 
mg/dl 

6 
weeks 

6 
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As in the previous experiment (Experiment A), the non-invasive 
assessment was performed directly on a skin fold on the back of the mice 
(see Figure 4-2) and the mice hair was regularly cut off to facilitate the 
handling of their skin, but no special procedures were conducted on the 
measurement skin area prior the non-invasive assessment.  The BGL was 
measured on the mouse tail by an Accu-Chek Aviva Nano (Hoffmann-La 
Roche, Basilea, Switzerland), almost simultaneously to the non-invasive 
assessment (see Figure 4-3). 

Let us to note that Experiment A and Experiment B were conducted 
separately with sixteen months elapsed between them and using a totally 
different sample of mice. During that time, many changes in hardware and 
software of the mm-wave spectroscopy system were made to improve its 
functionality. Therefore, the output power of the signal generator, 
previously calibrated in experiment A (see section 4.1.2), had to be 
recalibrated to obtain a flat frequency response at the transmission port 
without the biological sample. This is an important issue as that even 
changes were incorporated in the hardware and software the results 
obtained were consistent and allowed proper comparison of the results 
between the two experiments as discussed below. 

Also, considering the harmful effects of the injected anesthesia 
(ketamine-medetomidine) on mice observed in previous experiment 
(experiment A), the experimental protocol was modified to replace the 
injected anesthesia with other less aggressive method. In this second 
experiment, excessive movement of the mice during the non-invasive 
assessment was prevented by using inhaled anesthesia. As shown in Figure 
4-4, previous to the measurement process, each mouse was introduced 
into an induction chamber with isoflurane mixed with oxygen (3% - 4% 
of isoflurane concentration) until anesthetic takes effect. Once the mouse 
is “sedated”, it was placed on a table with its snout into a supplying mask 
to continuously inhale a lower anesthesia concentration (1.5% - 3% of 
isoflurane concentration) during the whole measurement process. 
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Figure 4-4. Photograph of the mouse into the anesthetic induction chamber (at the 
top), and of the same mouse placed on the table for continuous administration of the 
anesthesia via a mask during the measuring process (at the bottom). 

4.1.4. EXPERIMENT C 

The third experiment focused on the feasibility of the proposed non-
invasive approach to detect gradual changes in the glycemic state of the 
mice. The experiment included the study of the measured spectral 
response from over time on transition cases from normoglycemia to 
hyperglycemia. This experiment was performed under the same 
conditions and proceedings described for Experiment B (see 4.1.3). The 
sample population used in the experiment is detailed in Table 4-3. Let us 
observe that most of the mice employed in the experiment were taken 
from the sample population measured in Experiment B, including the 
diabetized mice that were identified as normoglycemic cases before the 
diabetes induction process. 
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Table 4-3. Sample population measured in Experiment C. 

Condition Mice strain Variation Treatment 
Expected 
Glucose 

level 
Age Qty. 

Normoglycemia C57BL6/J - - 
100 

mg/dl 
8 

weeks 
6 

Transition cases C57BL6/J - 
STZ-

induced 
diabetes 

>400 
mg/dl 

8 
weeks 

16 

Hyperglycemia C57BL6/J Lepdb/ Lepdb - 
>250 
mg/dl 

6 
weeks 

6 
 

The experiment lasted nineteen days and a total of 4 measurements 
were performed. The measurements started on the last day of the 
treatment (animals receiving the final dose) and finished 14 days hereafter. 
The six diabetic mice and six healthy mice were also measured 
simultaneously to diabetized mice as references. During the experiment, 
six diabetized mice died before the third measurement day (ten days after 
treatment) due to the adverse effects of the STZ drug [228]. 

4.2. BLIND EXPLORATION AND 

CHARACTERIZATION OF THE MEASURED 

SPECTRAL RESPONSE 

In this section, the measured spectral data obtained from the non-
invasive assessment of hyperglycemia on the sample population employed 
in Experiment A (see 4.1.2), will be analyzed using FPCA. The sample 
information for each measurement consists of four sets of twenty 
observations containing the complex information of amplitude and phase 
for the reflection at the top skin layers and the transmission through the 
biological media (fold of skin). Each observation was measured at twenty-
five frequencies equally spaced across the W-band (75 GHz - 111 GHz). 
In Figure 4-5, the measured spectra (raw data) for examples of each of the 
glycemic cases from sample population of Experiment A are shown, with 
normoglycemia and hyperglycemia conditions identified by doted blue 
lines and dashed red lines, respectively. It is apparent how the 
transmittance of the fold of skin of the hyperglycemic mice is considerably 
higher than normoglycemic mice, providing with a relatively good “a 
priori” classification. However, FPCA was estimated for each of the 
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spectral data sets to explore all the captured variability by the non-invasive 
assessment. 

 

Figure 4-5. Amplitude and phase spectra measured from both reflected waves by the 
top skin layers (left column) and transmitted waves through the fold of skin (right 
column). Normoglycemic and hyperglycemic cases are identified by doted blue lines 
and dashed red lines, respectively. 

In spectroscopy applications, as shown at the bottom of the Figure 

4-5, the instantaneous phase is typically wrapped within the interval 𝜋 and 

−𝜋. The phase unwrapping is a very common problem due to the 2𝜋 

discontinuities, that occurs when an extreme value of the interval [𝜋, −𝜋] 
is reached. Basically, phase unwrapping is a process for solving problems 
of ambiguity in the measured phase of the signals (instantaneous phase). 
Then, in its simplest way, reconstructing the continuous phase variation 

can be done by adding or subtracting multiples of 2𝜋 to the instantaneous 
phase at the frequencies in which discontinuities occurs. The unwrapped 
phase, shown in Figure 4-6, was estimated before performing FPCA to 
remove the periodic behavior exhibited by the spectral data corresponding 
to the instantaneous phase. In this way, we prevent influence the FPCA 

by the excessive variability in the spectra associated to the 2𝜋 
discontinuities in the instantaneous phase spectra. 
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Figure 4-6. Unwrapped phase of reflected (left panel) and transmitted (right panel) 
waves. Normoglycemic and hyperglycemic cases are identified by doted blue lines and 
dashed red lines, respectively. 

All the data processing and analysis were developed using the 
statistical free software R [229], and the FPCA was estimated by using the 
package “fda” available in the library of R [230]. The fda packages includes 
a wide range of tools for functional data analysis and processing, such as 
the basis representation, curves registration, functional linear models, etc. 
(see [94]).  

The functional data sets obtained from amplitude and phase of the 
reflected and transmitted waves are shown in Figure 4-7. The functional 
data was approximated by cubic regression splines, as shown in Eq. (2-19),  
with the basis coefficients estimated as shown in Eq. (2-23). The cubic B-
splines were defined on 7 and 18 equally spaced knots, for amplitude and 
unwrapped phase spectra, respectively. 
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Figure 4-7. Approximated sample curves from amplitude and phase of both reflected 
waves by the top skin layers (left column) and transmitted waves through the fold of 
skin (right column). Normoglycemic and hyperglycemic cases are identified by doted 
blue lines and dashed red lines, respectively. 

4.2.1. INTERPRETING FPCS’ SCORES 

A FPCA was performed separately on each of the approximated 
functional data sets shown in Figure 4-7. The percentages of the explained 
variance by the estimated FPCs for each functional data set are 
summarized in Table 4-4.. In all cases, the cumulative explained variance 
by the first two FPCs is above the 97%, i.e. more than the 97% of the 
contained variability in the sample curves is retained and explained by the 
first two FPCs. Here is important to note that, in some cases, the captured 
variance by the first FPCs might be related with no significant information 
about the current study. Let us observe that the loading functions 
associated to the FPCs are estimated as the orthonormal set that best 
describes variance in the data, but, this does not mean that there is no 
other orthonormal set meeting the same objective less efficiently, i.e. no 
largest variability is captured by the first FPC.  The VARIMAX rotation is 
a widely used tool in multivariate PCA, also extended to the FPCA, which 
allows to find other orthonormal sets (loading functions) decomposing 
variability in the sample curves in different proportions than the estimated 
by the original FPCA [92, pp. 95–99]. This is a very useful approach that 
allows to look for different sources of variation in data that might be 
initially overshadowed by the largest variance estimated in terms of the 
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FPCA problem, especially when the first FPC originally accounts for large 
proportion of explained variance. In our case, VARIMAX rotation did not 
provide additional relevant information than the one obtained directly by 
the FPCA. 

Table 4-4. Explained variance by the FPCs estimated on the 
approximated functional spectral data sets. 

 Parameter FPC1 FPC2 

Reflected 
wave 

Amplitude 94.91 % 2.74 % 
Unwrapped 

Phase 
99.89 % 0.09 % 

Transmitted  
wave 

Amplitude 99.69 % 0.18 % 
Unwrapped 

Phase 
99.92 % 0.06 % 

 

In Figure 4-8, the estimated scores of the first FPC are plotted versus 
the estimated scores of the second FPC for each functional data set 
obtained from Experiment A. The scatterplots of the scores provide an 
easy way to look for natural clustering of the sample curves according to 
the captured variance by the estimated FPCs. From this figure, we can see 
how the zero axis of the first FPC potentially discriminates normoglycemia 
from hyperglycemia, as discrimination rule, using the amplitude of the 
reflected wave and both parameters (amplitude and phase) of the 
transmitted wave. Then, as expected, the amplitude of the transmitted 
wave provides a clearer separation between both conditions with no 
misclassified cases. It is also equally worth noting that, other clusters can 
be glimpsed from the measured parameters of the transmitted wave, which 
implies the second FPC is providing additional information about the 
sample.   In general, we can say that the transmitted wave provides a 
potentially better indicator than the reflected wave. This is predictable 
because transmitted wave propagates through deeper skin layers as 
compared to the reflected wave, travelling throughout the whole biological 
media. Therefore, hereinafter, the analysis will be focused only on the 
transmitted wave. 
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Figure 4-8. Scatterplots of the scores of the first FPC vs scores of the second FPC 
estimated for amplitude (top line) and unwrapped phase (bottom line) of reflected (left 
column) and transmitted (right column) waves. Hyperglycemic and normoglycemic 
cases are identified by red triangles and blue circles, respectively. 

In Figure 4-9,  the different mice strains and pathologies involved in 
the sample mice population are identified. In general, we can observe the 
scores of the phase parameter exhibits strong clustering related to the 
different mice strains. This implies that the phase parameter is affected (it 
is more sensitive) by the anatomic varieties between the mice strains: type 
of skin, hair density, hair color, skin-fold thickness, etc. Unlike the phase 
parameter, the second FPC estimated from the amplitude separates obese 
mice from diabetic and diabetized mice, and all normoglycemic mice are 
grouped together. As before, considering the zero axis of the second FPC 
as the discrimination rule, obese mice are potentially discriminated 
between diabetic cases (either genetically diabetic or diabetized) with no 
misclassified cases. This is very interesting because, as depicted in Table 
4-1, diabetic and diabetized mice are expected to have higher BGL than 
obese mice. This result implies that the amplitude parameter is not only 
capable to discriminate hyperglycemia condition from normoglycemia 
condition, but it is also able to distinguish between different hyperglycemic 
states. 
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Figure 4-9. Scatterplots of the scores of the first FPC vs scores of the second FPC 
estimated for amplitude (left panel) and unwrapped phase (right panel) of the 
transmitted wave. Hyperglycemic and normoglycemic cases are identified by triangles 
and circles, respectively, and the different types of mice has been identified by colors. 

Let us remark that, as shown in Figure 4-9, the obese mice treated 
with human leptin in Experiment A (see section 4.1.2) were successfully 
detected as normoglycemic by both FPCs, being grouped together to the 
healthy mice. This also implies that the non-invasive assessment is capable 
of detecting changes taking place in obese mice associated to the leptin 
treatment, which normalize their glycemia. 

Then, amplitude of the transmitted wave, directly related to the 
transmission coefficient of the biological media, has shown to be less 
sensitive to the outer skin layers among other physical features between 
mice strains, and provides a potential indicator for the non-invasive 
discrimination of hyperglycemic states. 

Additionally, the skin-fold thickness (µm) of the mice employed in 
Experiment A (see section 4.1.2) was measured, and the instantaneous 
BGL (mg/dl) was measured almost simultaneously to the non-invasive 
assessment during all experiments (Experiment A, B and C). In Figure 
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4-10, we evaluate the influence of the BGL and skin-fold thickness 
measurements on the measured spectral response by using the scores 
associated to the first two FPCs. It is worthwhile to note that the measured 
BGL values of normoglycemic mice are higher compared to the expected 
BGL, as shown in Table 4-1. Such increment in the BGL values of 
normoglycemic mice was attributed to the stress caused on the animals 
during the measuring process and the effect of the injected anesthesia (see 
section 4.1.2). Then, we can observe that obese mice are discriminated as 
hyperglycemic by the first two FPCs, even though they have similar BGL 
values to the healthy mice during the non-invasive assessment. In fact, 
obese mice treated with human leptin were detected as normoglycemic 
since their BGL values were normalized during the last 28 days previous 
the non-invasive assessment. This means that hyperglycemia 
discrimination depends on the sustained glycemic state rather than the 
instantaneous BGL value at the time of the measurement (as provided by 
a glucometer). From Figure 4-10, it can be also noted that, in some cases, 
the fold of skin of obese mice is twice as thick as the diabetic mice, which 
implies that hyperglycemia discrimination by the first FPC is not affected 
by the skin-fold thickness. On the other hand, an inverse relation may be 
noted between the skin-fold thickness and the clusters obtained by second 
FPC. However, we can observe that such relation is poor between 
observations since strong clustering is present in the scores even though 
the measured values of the skin-fold thickness are homogeneously 
distributed. 

All the obtained results until now, from analyzing the scores 
variability estimated by the FPCA, are clear evidence that the amplitude 
parameter, related to the transmission coefficient of the biological sample, 
is strongly affected by the hyperglycemia condition in mice. From the 
same analysis, we experimentally prove that such parameter provides a 
clear and robust indicator for the hyperglycemia discrimination, being not 
affected by the biological varieties between the mice strains such as the 
hair types, skin types or the skin-fold thickness. 
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Figure 4-10. Scatterplots of the BGL (mg/dl) and skin-fold thickness (µm) plotted 
versus the scores of the first two FPCs are shown at the top line and bottom line, 
respectively. Hyperglycemia and normoglycemia conditions are identified by triangles 
and circles, respectively. Diabetic cases (genetically diabetic and diabetized mice), obese 
mice, healthy mice and obese mice treated with leptin are identified by red, green, blue, 
and black, respectively. 

Moreover, no correlations were found between the instantaneous 
BGL of the mice, measured simultaneously to the non-invasive 
assessment, and the indicator obtained from the amplitude parameter. 
This supports that such indicator is sensitive to sustained glycemic states 
in the mice rather than their instantaneous BGL. 

Once we have demonstrated that the proposed spectroscopic 
approach can discriminate the pathology under study, we move one step 
further and start asking ourselves how to build and actual diagnostic from 
this system. In this sense one of the main issues is what is the actual 
frequency range that is needed for proper classification, i.e. Which are the 
frequencies that contribute most to discrimination? and, Which is the 
minimum frequency interrogation span that is needed for proper 
discrimination? These questions are paramount to obtain a compact and 
low-cost instrument and will be addressed qualitatively by interpreting the 
corresponding loading functions of the FPC’s. In this sense, the potential 
of the statistics techniques described in chapter 2 for biomedical 
instrument design is demonstrated. 
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4.2.2. INTERPRETING FPCS’ LOADING FUNCTIONS 

A significant advantage working with FPCA is the interpretation of 

the loading functions 𝑓𝑗(𝑡) associated to the FPCs. Until now, all the 

information obtained has been deduced by comparing the computed 
scores of the FPCs (see Eq. (2-36)), and the available information of the 
sample mice population, but additional and more detailed information 
about the achieved discrimination can be obtained by interpreting the 
corresponding loading functions. The loading functions allows for 
qualitatively study the relation between the spectral response and the 
scores variability, which is very useful to understand the relation between 
clusters. 

In Figure 4-11, the loading functions corresponding to the estimated 
FPCs are shown on the top line, and the same loading functions are 
plotted as perturbation of the sample mean function on the bottom line. 
In order to show more clearly the effects of the loading functions on the 
sample mean, the loading functions were multiplied by the standard 

deviation of their associated scores and added (+) and subtracted (−) to 
the mean function of the measured spectral response. 

 

Figure 4-11. (Top) Loading functions associated to the first FPC (left column) and 

second FPC (right column), and the mean function ± the corresponding loading 
function multiplied by standard deviation of their associated scores are shown 
(bottom). 
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As we could see, the second FPC allows for discrimination between 
hyperglycemic states (mild diabetes and full-blown diabetes), and such 
discrimination is directly related to those frequencies in which the loading 
function takes negative values, being more determining the frequency 
interval between 84 GHz - 93 GHz. The observed behavior in the loading 
function remarks a slope change in the spectral response between obese 
and diabetic mice, as shown by the loading effect on the sample mean 
function. Thus, interpreting the loading functions of the FPCs allows to 
characterize the spectral response for normoglycemic, obese and diabetic 
mice.  

Furthermore, considering the frequencies contribution, observed in 
Figure 4-11, for the discrimination achieved by the FPCs, we can deduce 
that the frequency interval between 84 GHz - 93 GHz not only provides 
a clear discrimination between normoglycemia and sustained 
hyperglycemia conditions, but also allows to discriminate a mild diabetes 
from a full-blown diabetes. Then, interpreting the loading functions we 
are able to identify those frequencies as the main contributions for the 
discrimination between all the sustained glycemic states involved in the 
mice sample population.  

Identifying major contributing frequencies is a very important issue 
when developing actual spectroscopic medical diagnostics. As mentioned 
in chapter 1, the wavelength selection problem has been widely studied in 
the MDA with the aim to reduce the number of variables involved in the 
regression model, and to optimize the frequency interval for spectral 
interrogation [231]–[234]. In this way, the noisy frequencies can be 
eliminated, reducing the dimension of the learning problem, and 
simplifying the spectroscopic instrument. 

4.3. EVALUATION OF THE CONSISTENCY AND 

ROBUSTNESS OF THE MEASURED SPECTRAL 

RESPONSE 

In this section, a classification model for sustained hyperglycemia 
prediction is obtained and analyzed to study the consistency and 
robustness of the W-band measured transmission spectra. A second 
experiment described in section 4.1.3 (Experiment B) was carried out to 
assess normoglycemia and hyperglycemia conditions on a new sample of 



~ 85 ~ 

mice (independent from sample population employed in Experiment A) 
using the diagnostic technique. The classification model, based on 
FPCLoR introduced in 2.5.1, is estimated and tested by a multi-test 
analysis with hundreds of iterations using the spectral data obtained from 
Experiment B. As will be shown later, the multi-test analysis allows to 
evaluate the performance and robustness of the fitted model. Additionally, 
the results obtained from both approximations, regression splines and P-
splines of the sample curves will be compared. Then, the estimated 
FPCLoR model is used to predict sustained hyperglycemia on the sample 
population measured in Experiment A (described in 4.1.2). In this way, we 
are able to validate the consistency of the W-band measured transmission 
spectra for sustained hyperglycemia detection, which is important to 
support the claim that the non-invasive assessment by the mm-wave 
spectrometer provides a characteristic response associated to the sustained 
hyperglycemia condition in mice. 

From now on, exclusively spectral data corresponding to the 
transmission amplitude measurements will be considered since has been 
previously proved that such parameter is less sensitive to the outer skin 
layers among other biological features associated to the different mice 
strains involved in the sample mice population (see section 4.1.1).  

The measured spectra (raw data) from sample mice population of 
Experiment B is shown in Figure 4-12, identifying normoglycemia and 
hyperglycemia conditions by doted blue lines and dashed red lines, 
respectively. 

 

Figure 4-12. Amplitude spectra of the transmitted wave through the fold of skin. 
Normoglycemic and hyperglycemic cases are identified by doted blue lines and dashed 
red lines, respectively. 
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In contrast to Experiment A, hyperglycemic and normoglycemic 
mice shows the same absorption level at several frequencies. This fact is 
attributed to the age difference; hyperglycemic mice from Experiment B 
are almost five months younger than hyperglycemic mice from 
Experiment A (see Table 4-1 and Table 4-2). The presence of sustained 
medium/long-term hyperglycemia led to dehydration problems and could 
reduce the thickness of the skin layers, resulting in higher transmittance 
levels for older mice. Then, considering the different absorption levels of 
the hyperglycemic mice between experiments, and that output power of 
signal generator was recalibrated due to hardware and software changes in 
the mm-wave spectroscopy system between experiments (see section 
4.1.3), the transmission amplitude was normalized according to the mean 
of each sample previous the statistical analysis. This fact also demonstrated 
the robustness of the instrument because, as we can see in this section, we 
will be able to properly classify the different metabolic states regarding 
these aspects. 

For comparison purposes, two functional data sets with different 
smoothness degree were estimated using regression splines and P-splines. 
Figure 4-13 shows the approximated curves for a normoglycemic and 
hyperglycemic case using both approaches. The cubic regression splines 
(top panel) were defined on 17 knots strategically positioned to reproduce 
most of the variability in raw data. On the other hand, the P-splines 
(bottom panel) were defined on the same number of knots (17 knots), 

equally spaced over the W-band, with the smoother parameter 𝜆 = 0.11 
selected by the GCV method (see section 2.3.3.1). 
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Figure 4-13. Estimated sample curves from the measured transmission amplitude for a 
normoglycemic (left panel) and a hyperglycemic mouse (right panel) by cubic regression 
splines (at the top) and P-splines (at the bottom). 

4.3.1. MULTI-TEST ANALYSIS: PERFORMANCE AND 

ROBUSTNESS OF THE PROPOSED APPROACH 

As mentioned above, the mice sample population of thirty-three 
mice corresponding to the Experiment B was used for the multi-test 
analysis. The multi-test analysis consisted of estimate a FPCLoR model 
using the 80% of the sample curves (training sample) and predict the 
condition (outcome) on the remaining 20% (test sample) repeatedly for 
one hundred times. Both subgroups, the training and test sample, were 
selected randomly at each iteration preserving the original proportion of 
the classes within the global group: 54% of the cases are normoglycemic 
and 46% are hyperglycemic.  

In the literature on logit regression, measures such as the Area Under 
Curve (AUC), the True Positive Rate (TPR), the True Negative Rate 
(TNR), and the Correct Classification Rate (CCR) are very useful 
parameters to quantify the goodness of fit and predictive capability of the 
classification model. The TPR and TNR, also known as sensitivity and 
specificity, respectively, are commonly used in medical diagnostics [235]. 
The TPR, TNR and CCR values are estimated taking into account the 
confusion matrix, shown in Table 4-5, as follows: 



~ 88 ~ 

𝑇𝑃𝑅 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
, 𝑇𝑁𝑅 =  

𝑇𝑁

𝑇𝑁 + 𝐹𝑃
, 𝐶𝐶𝑅 =  

𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
. 

 

Table 4-5. Confusion matrix 

  True condition 

  Hyperglycemia Normoglycemia 

Predicted  
condition 

Hyperglycemia 
Hyperglycemia 

correctly classified 
(True Positive TP) 

Normoglycemia 
misclassified 

(False Positive 
FP) 

Normoglycemia 

Hyperglycemia 
misclassified 

(False Negative 
FN) 

Normoglycemia 
correctly 
classified 

(True Negative 
TN) 

 

The Receiver Operating Characteristic (ROC) curve [236] shows the 
inverse relation between the sensitivity and the specificity (sensitivity vs 

1−specificity) varying the diagnostic criterion (cut-off value to assign 𝑦 =
1) of the test, and the AUC (which refers to the area under the estimated 

ROC curve defined by the integral equation ∫ 𝑓(𝑥)𝑑𝑥
𝑏

𝑎
), can be 

approximated by numerical integration algorithms [237], provides an 
effective measure of the diagnostic accuracy of the predictive model. 

In  are summarized the obtained results of the multi-test analysis for 
both approximations: regression splines and P-splines (see Figure 4-13). 
As it can be seen, the mean value of AUC is above 0.95 for both cases, 
being slightly higher for the model based on regression splines. The 
achieved AUC values indicate an excellent discrimination capability of the 
inter-condition (normoglycemia and hyperglycemia), with very robust 
results since the estimated standard deviation is under 0.02.  Also, a very 
good classification rate on new observations (prediction) was achieved for 
both cases, evaluated by the CCR value, with a mean value of 82% of 
correctly predicted cases by the FPCLoR model based on P-splines and 
increased in a 10% by the regression splines. These results suggest that the 
FPCLoR model obtained from regression splines is the best in terms of 
the prediction capabilities, being considerable more accurate to detect the 
sustained hyperglycemia in mice, as depicted by the TPR values shown in 
Table 4-6. 
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Table 4-6. Summary of the multi-test analysis. 

Parameter 

Regression splines P-splines 

Mean 
Std. 
Dev. 

Mean Std. Dev. 

AUC 0.99 0.01 0.96 0.02 
CCR 0.92 0.08 0.82 0.11 
TPR 0.91 0.18 0.74 0.23 
TNR 0.93 0.11 0.87 0.18 

 

Nevertheless, as mentioned above, a significant advantage of 
working with the FPCLoR is the interpretation of the estimated functional 

parameter 𝛽(𝑡), which is a potential source of information to calibrate and 
optimize the applied spectroscopic technique. Here, we can emphasize 
that the lack of smoothness in approximated sample curves is reflected in 
the discriminating functional parameter. Figure 4-14 shows one of the 
functional parameters estimated for both approaches, based on regression 
splines (left panel) and P-splines (right panel). Comparing both beta 
functions, we can see that the corresponding to the FPCLoR model based 
on regression splines exhibits strongest oscillation versus frequency and 
such variability makes its interpretation very difficult. As shown in 
Functional parameter interpretation, the FPCLoR is interpreted in terms 
of the odds ratio, which is estimated by the integral of the beta function 
(see Eq. (2-56)). The odds ratio, previously introduced in section 2.5.1.2, 
is a statistic tool that allows us to measure the influence of the W-band 
measured transmission spectra in diagnosis by introducing variations in 
the beta function estimated by the FPCLoR model. 

 

Figure 4-14. Functional parameter 𝛽(𝑡) estimated for FPCLoR on the functional data 
approximated by regression splines (left panel) and P-splines (right panel) 
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Then, for a noisy beta function, as the obtained from regression 
splines, the odds ratio must be estimated considering very short frequency 
intervals so that the integral of the beta function does not tends to zero, 
which implies an estimated odds ratio close to one. This minimizes the 
frequencies contribution for discrimination and a lot of information is lost 
since too few frequencies are considered in the estimation of the odds 
ratio. In contrast, a smoother beta function, as the obtained from P-
splines, allows to identify wider frequency intervals estimating the odds 
ratio, and consequently, an easier and clearer interpretation from the 
FPCLoR model can be obtained. Therefore, we will work with the P-
splines since the resulting functional parameter offers a much better 
interpretation of the FPCLoR model, being such feedback very important 
when developing applied spectroscopic techniques, and both FPCLoR 
models provide excellent multi-test results. 

4.3.2. VALIDATION OF THE CONSISTENCY OF THE 

APPLIED SPECTROSCOPIC TECHNIQUE AND 

ANALYSIS OF THE FPCLOR MODEL 

Two sample mice populations evaluated separately at different 
experiments were employed to validate the consistency of the spectral 
response, measured by the mm-wave spectroscopic instrument, for the 
non-invasive detection of sustained hyperglycemia. This time, the 
FPCLoR model was estimated using all the spectral data from Experiment 
B as the training sample, consisting on eighteen normoglycemic mice plus 
fifteen hyperglycemic mice, and a group of twenty mice with 
normoglycemia and hyperglycemia conditions proportionately distributed 
(see section 4.1.2) were used as the test sample. Functional data from both 
spectral data sets were estimated by using P-splines defined on seventeen 
equally spaced knots as shown in Figure 4-13 (bottom line). The ROC 
curve computed for the fitted FPCLoR model is shown in Figure 4-15, 
with the AUC = 0.95. Furthermore, testing the predictive capabilities of 
the fitted on the test sample, we obtain a CCR of 100% with all the new 
observations correctly classified. These results probe the consistency of 
the proposed non-invasive approach for sustained hyperglycemia 
detection in mice, supporting the reliability of the mm-wave spectroscopic 
technique. 
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Figure 4-15. ROC curve of the fitted FPCLoR model. 

Then, as one of the main objectives of this work, the next step is to 
show how to analyze the functional parameter estimated for the fitted 
FPCLoR model in terms of the odds ratio so we can extract information 
to optimize the diagnostic system for its eventual use in clinical practice. 
From Figure 4-16, it can be notice that the beta function varies from 
negative to positive values versus frequency with a zero crossing at 86 
GHz, indicated by the red line. Then, the W-band is subdivided into two 
frequency intervals, which inversely relates the measured spectral response 
and the sustained hyperglycemia discrimination. This effect is illustrated 
by computing and interpreting the odds ratio for both sub-frequency 
intervals, considering a constant increase in the transmission amplitude of 

0.3 mV (𝐾 = 0.3) for the measured spectral response, as shown in Eq. 
(2-56). For the first frequency interval the estimated odds ratio 

𝑂𝑅75−86
0.3 = 0.516 indicates that such a constant increment in the 

transmitted amplitude for the frequencies under 86 GHz reduce the 
possibilities of being diagnosed with sustained hyperglycemia to one half. 
In contrast, the estimated odds ratio for the second frequency interval 

𝑂𝑅86−111
0.3 = 6.52 indicates that the possibilities of being diagnosed with 

sustained hyperglycemia is six-fold. In this way, we are able to measure the 
relationship between the measured spectral response and the diagnosis. 
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Figure 4-16. Discriminating function 𝛽(𝑡) for sustained hyperglycemia discrimination 
estimated by the FPCLoR model. The red line indicates a sign change for the function 
at the frequency of 86 GHz. The green lines indicate the frequencies, chosen arbitrarily, 
as the lower and upper limits for a reduced frequency interval. 

Then, considering the observed relation between the spectral 
response and the discrimination of sustained hyperglycemia, we will 
consider a reduced frequency band around the frequency (~86 GHz)  in 
which the beta function crosses zero, with the lower and upper frequency 
limits chosen arbitrarily to be 78 GHz and 93 GHz, respectively,  indicated 
by the green lines in Figure 4-16. The delimited frequency range 78 GHz 
- 93 GHz provides two regions inversely relating the spectral response to 
the sustained hyperglycemia condition, which enhance the achieved 
discrimination. The reduction of an operating frequency range represents 
a drastic improvement in measurement time, and it can also have an 
important impact in the spectroscopic instrument complexity, 
demonstrating the utility of these tools for biomedical instrumentations 
design.  

However, since less frequencies are considered, less information is 
provided to the regression model, and that may affect the achieved 
discrimination. Therefore, the sustained hyperglycemia detection was re-
valuated by repeating the multi-test analysis shown in previous section, 
and the validation test, considering only the contribution of the reduced 
frequency range (78 GHz - 93 GHz). All the sample curves were 

approximated by P-splines defined on eleven equally spaced knots with 𝜆 
= 0.528 chosen by GCV method (see section 2.3.3.1). Table 4-7 
summarizes the obtained results re-evaluating the multi-test analysis and 
validation test using the measured spectral response corresponding to the 
reduced frequency range. 
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Table 4-7. Obtained results for multi-test analysis and validation test considering only 
frequencies from 78 GHz and 93 GHz. 

 
Parameter 

AUC CCR TPR TNR 

 Mean 
Std. 
Dev. 

Mean 
Std. 
Dev. 

Mean 
Std. 
Dev. 

Mean 
Std. 
Dev. 

Multi-test 
analysis 

1 0 0.91 0.1 0.94 0.14 0.92 0.16 

Validation 
test 

1 0.95 0.90 1 
 

The results of the multi-test analysis were improved when compared 
to those shown in Table 4-6, and the CCR of the validation test decreased 
only 5% compared to the used of the whole frequency range, even though 
the frequency band was reduced to the half. These results show that the 
reduced frequency band originates the major contribution for sustained 
hyperglycemia discrimination within the W-band, and the remaining 
frequencies introduce some noise to the discrimination analysis. 

4.4. SENSITIVITY OF THE NON-INVASIVE 

APPROACH TO DETECT CHANGES IN 

SUSTAINED GLYCEMIA 

As shown in section 4.2, the non-invasive approach for in-vivo 
hyperglycemia detection was capable to differentiate between a mild 
diabetes and a full-blown diabetes, suggesting that the measured spectral 
response in the W-band can be used to monitor different glycemic states. 
Such results motivate the realization of a third experiment focused to test 
the sensitivity of the proposed non-invasive approach to detect changes 
in metabolism of mice related to gradual increments in glycemia due to an 
uncontrolled diabetes, i.e. to be able to study the temporal evolution of 
the metabolomic condition (longitudinal study). 

In this section, the evolution of the spectral response from a group 
of sixteen diabetized mice (see section 4.1.1) measured in Experiment C 
(see section 4.1.4) is studied during their transition from normoglycemia 
to hyperglycemia condition. The condition of the diabetized mice is 
predicted at each measurement day using a classifier based on the first 
FPC estimated from the FPCA performed on section 4.2. Using the 
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classifier, which is obtained from a different sample population, allows to 
test the capability of the proposed approach for prediction of different 
glycemic states on new cases, besides the sustained hyperglycemia 
detection proved in section 4.3. Additionally to the diabetized mice, six 
diabetic mice with full-blown diabetes and six healthy mice were measured 
simultaneously as reference for hyperglycemia and normoglycemia 
conditions respectively (see Table 4-3). As described in section 4.1.4 
(Experiment C), the sample population (sixteen diabetized mice, six 
healthy mice, and six diabetic mice) was evaluated at four different days 
along fourteen days between the first and last measurement. Due to the 
fast metabolomic processes in mice, a duration of fourteen days should 
give a clear indication of glycemic conditions in the animals. 
Measurements had started when the diabetes induction process was 
completed, hence, the first measurement corresponded to the final dose 
day (the fifth day after the applications of the first dose of STZ). 

As in previous section, the sample curves were estimated using P-
splines defined on 17 equally spaced knots over the W-band, with the 

smoother parameter 𝜆 = 0.11. The obtained functional data sets at each 
day are shown in Figure 4-17. As depicted in the figure, transmittance level 
of diabetized mice increase over time until reach similar values to those 
measured for diabetic mice. 

 

Figure 4-17. Approximated sample curves from amplitude of the transmitted waves 
through the fold of skin at the four measurement days. Healthy, diabetic and diabetized 
cases are identified by doted blue lines, dashed red lines, and orange lines, respectively. 
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The hyperglycemic state in diabetized mice at each measurement day 
was blindly predicted using the loading function associated to the first FPC 
estimated from the FPCA performed on amplitude spectra in section 4.2 
(which explains 99% of the total variance of the data). As before, the 
transmitted amplitude was normalized according the mean of each sample 
data set to compensate for variations in amplitude ranges of spectral data 
sets between experiment A and experiment C. The mean value of the 
predicted scores by groups, with the corresponding standard deviation, for 
all measurement days are shown in Figure 4-18. In this figure, we can 
clearly see that the diabetized mice evolved from scores between the 
diabetic and healthy mice towards the diabetic region of the positive 
scores. Such an evolution was confirmed by the evolution of the measured 
blood glucose levels for the diabetized mice at the same days, shown in 
the Figure 4-19. Comparing the described trajectories for diabetized mice 
by the scores and BGLs, it can be clearly deduced that the sensing 
approach can closely follow the evolution from normoglycemia to 
hyperglycemia condition right from the beginning of the test. 

 

Figure 4-18. The mean score determined for each group with the corresponding 
standard deviation are shown as a function of the measurement days. The healthy, 
diabetized, and diabetic group are identified by circle, square, and triangle, respectively. 
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Figure 4-19. The mean value of the instantaneous BGLs measured for each group with 
the corresponding standard deviation are shown as a function of the measurement days. 
The healthy, diabetized, and diabetic group are identified by circle, square, and triangle, 
respectively. 

It is important to remark that the biological response of each mouse 
to the diabetes induction process may vary as some mice are more resistant 
to the drug (STZ). This biological variation is also captured by the 
proposed non-invasive approach, with some diabetized mice already 
identified as hyperglycemic at the final dose day, even though the 
measured BGL is still very similar to the healthy mice. This suggests that 
the proposed non-invasive approach allows for the prompt detection of 
diabetes effects in sustained hyperglycemia. The remaining cases have a 
slower transition accounting for different speeds of development of the 
induced diabetes in mice. Nevertheless, most of the diabetized mice were 
predicted as hyperglycemic four days after the final dose day, and the 
average predicted scores of diabetized and diabetic mice at the last two 
days were very similar, specially at day fourteen.  

The obtained results indicate that the measured spectral response in 
the W-band allows to the detect changes in mice metabolism with four 
days or less of sustained hyperglycemia, and a full-blown diabetes in mice 
two weeks after the induction. Moreover, normal BGLs measured on the 
diabetized mice at the final dose day support the obtained results in section 
4.2 demonstrating that the proposed non-invasive approach is sensitive to 
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the effects of sustained hyperglycemia in metabolism rather to the 
instantaneous BGLs. 

4.5. DISCUSSION AND CONCLUSIONS 

In this chapter, a new non-invasive approach for hyperglycemia 
detection, based on spectral interrogation in the W-band, has been tested 
on animal models using the FDA methods introduced in chapter 2. A first 
experiment was carried out by non-invasively assessing a sample of twenty 
mice of different strains representing three glycemic states 
(normoglycemia, mild diabetes and full-blown diabetes). The 
measurements were performed directly on a fold of skin in their back, and 
the instantaneous BGL and the skin-fold thickness were measured almost 
simultaneously. The amplitude and phase parameters of the reflection at 
the top skin layers and the transmission through the fold of skin were 
analyzed separately. The sample curves estimated from the measured 
spectra were analyzed by interpreting the FPCA results. The computed 
FPC’s scores from the reflection and transmission parameters allows to 
detect hyperglycemia condition, and to distinguish other biological 
features associated to the different mice strains involved in the 
experiment. However, it could be concluded that the amplitude parameter 
from transmission is more adequate for hyperglycemia discrimination 
since appears to be not affected by the biological varieties of the different 
mice strains involved in the sample mice population. The FPCA on 
amplitude parameter of transmission provides a robust indicator not only 
for hyperglycemia detection, but also for discrimination between a mild 
diabetes and full-blown diabetes in mice. In addition, it was experimentally 
proven that such discrimination of the hyperglycemic states does not 
depend on the instantaneous BGL or the skin-fold thickness. Another 
interesting observation in the achieved discrimination is that obese mice 
suffering hyperglycemia condition for five months were detected has 
normoglycemic after on month of having normoglycemia by a human 
leptin treatment. At the view of all the obtained results, it is clear that the 
proposed approach is rather robust against surface skin properties, in 
contrast to optical methods, which are strongly affected by the skin 
characteristics such as the hair, subepidermal fat, skin thickness or melanin 
content, among others. Besides that, the fact that the proposed approach 
is not directly monitoring the instantaneous BGL points to other 
metabolites associated to sustained hyperglycemia in metabolism, such as 
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the AGEs. This supports that the non-invasive assessment is sensitive to 
detect metabolic changes related to sustained hyperglycemic states. 

On the other hand, we were able to show that the relation between 
the spectral response and the discrimination achieved can be quantitatively 
studied by interpreting the loading functions of the FPCs. In this way, the 
FPCA was able to characterize the spectral responses associated to the 
discrimination of the sustained hyperglycemic states. 

The obtained results from the first experiment encouraged us to 
perform two more experiments with the aim to validate the hyperglycemia 
detection on mice, and to study the sensitivity of the proposed approach 
to detect different sustained hyperglycemic states.  

In the second experiment, a new sample population of mice 
consisting on eighteen normoglycemic mice and fifteen hyperglycemic 
mice was non-invasively assessed by the applied spectroscopic technique. 
The measured amplitude, related to the transmission coefficient of the 
biological sample, was used to estimate a predictive model for 
classification of sustained hyperglycemia by using FPCLoR. A multi-test 
analysis, with hundred iterations, was developed to test the performance 
of the predictive model. During the multi-test analysis two different 
smoothness degrees were considered for the fitted sample curves to show 
the tradeoffs between them in the FDA and highlight the importance of 
obtaining smooth sample curves. The multi-test analysis shows that the 
FPCLoR models estimated from both approaches provide excellent 
performance in terms of the goodness of fit and prediction capabilities, 
with an AUC of the ROC curve > 0.95 and a CCR > 80%. It should be 
noted here that, regarding on the sustained hyperglycemia discrimination, 
the obtained results from the multi-test analysis demonstrates that such 
discrimination do not depend on the choice of a particular splines or 
fitting function. On the other hand, we show that the lack of smoothness 
in the fitted sample curves affects the interpretations and analysis of the 
discriminating functional parameter estimated by the FPCLoR model. 
Then, the non-invasive assessment for sustained hyperglycemia detection 
was validated using the estimated FPCLoR model to predict the condition 
of the twenty mice measured in the first experiment, with a 100% of 
correct classification rate. Such results prove that the amplitude of the 
coefficient transmission in the W-band provides a robust and reliable 
indicator for sustained hyperglycemia prediction, with no prior calibration 
required for the amplitude parameter. 
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On the other hand, to remark the great potential of the presented 
statistical methods in the development of applied spectroscopy systems to 
build medical diagnostics, the estimated functional parameter of the 
FPCLoR model was analyzed and interpreted in terms of the odds ratio. 
This analysis allows to obtain a quantitative measure relating the measured 
spectral response and the sustained hyperglycemia detection. Such 
measure can be considered for further calibration of the applied 
spectroscopic technique. Moreover, by the same analysis, we were able to 
identify a narrow frequency interval between 78 GHz and 93 GHz as the 
potential contributing frequencies for the achieved discrimination of 
sustained hyperglycemic states, previously highlighted by interpreting the 
FPCA performed in the first experiment. From the obtained feedback by 
the statistical analysis we experimentally prove that the operating 
frequency band of the spectroscopic instrument can be substantially 
reduced without affects the performance of the predictive model.  This is 
very important not only for optimization of the applied spectroscopic 
technique, but also for further in deep analysis of the condition because it 
could lead to identify novel biomarkers indicative of metabolic alterations 
related to the development of diabetes. 

Finally, it was experimentally proven that the proposed non-invasive 
approach is able to monitor temporal changes in sustained glycemia 
associated to uncontrolled diabetes in a group of sixteen mice with a drug-
induced diabetes. Using a classifier obtained from the first experiment we 
were able to clearly track the evolution of diabetized mice from 
normoglycemia to hyperglycemia, enabling the prompt detection of 
hyperglycemia condition. These results support the great potential of the 
proposed approach not only for sustained hyperglycemia detection but 
also for its early detection and monitoring with a temporal resolution of 
few days. Although the minimum length of time required for the method 
to detect changes in metabolism associated to different sustained glycemic 
states is still not determined, the results indicate that different sustained 
hyperglycemic states related to uncontrolled diabetes can be detected with 
only four days of occurrence.  

In summary, using the FDA to study the measured spectral response 
by the spectroscopic instrument we were able to extract significant 
information of the tested non-invasive approach for hyperglycemia 
detection. We experimentally probe that the amplitude parameter of 
transmission provides a robust indicator (not affected by skin thickness, 
subepidermal fat or other biological varieties among the mice strains) with 
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high potential for the detection of sustained glycemic states in mice. This 
simplifies the overall spectroscopy system resulting in a simple 
transmission-type spectrometer with limited frequency bandwidth of 
operation, which significantly reduces the complexity and cost 
implementation of the spectroscopic instrument. These results show the 
great potential of FDA in spectral data analysis for characterization and 
optimization of applied spectroscopic techniques. It was also 
demonstrated that the proposed approach can be potentially used to 
monitor changes in sustained glycemia associated to diabetes with a 
resolution of four days between measurements. The spectroscopic system 
provides results in seconds, do not require frequent calibration, it is not 
based on consumable materials, and can be made very compact and 
realized cost-efficiently. Therefore, we consider that the proposed 
approach has great potential in developing a new non-invasive technique 
for diabetes monitoring not depending on the instantaneous BGL. 
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As described in section 3.1, sustained hyperglycemic metabolism 
leads to the irreversible formation of AGEs, (free sugars in blood that 
bind permanently to proteins and lipids), that have strong effects on many 
body organs and tissues. This pathological condition is typical in diabetic 
patients and is the underlying cause of all the complications associated to 
DM. In this sense, the appearance of the HbA1c test, which provides a 
measure of the glycated hemoglobin associated to sustained 
hyperglycemia, is a recent indicator that has improved the diagnosis and 
monitoring of DM (since 2010). The HbA1c measurement is a more stable 
indicator than BGL measurement, and consequently, more convenient for 
medical treatment decisions in diabetes care. Nevertheless, the HbA1c test 
can only be used for long-term diabetes monitoring and control due to the 
fact that the general consensus is that the HbA1c is a good indicator of 
the average hyperglycemic metabolism over a period three months [238].  

The observed characteristics of the non-invasive sustained 
hyperglycemia measurement approach, described and experimentally 
assessed using animal models in chapter 4, indicate that the proposed 
system offers a comparable measure of the metabolomic state of the 
animal to that provided by the HbA1c test, but the lead times required to 
detect the sustained hyperglycemia condition are much shorter compared 
to the periods required for the HbA1c test. For this reason, a preliminary 
clinical study with human patients was proposed to compare the non-
invasive measure of sustained hyperglycemia using mm-wave 
spectroscopy and the HbA1c standard measurement protocol in type 1 
DM patients. The objective of this study, in collaboration with the 
Instituto de Investigación Sanitaria Fundación Jiménez Díaz (Servicio de 
Endocrinología y Nutrición) was to validate the actual performance of the 
developed diagnostic in humans. 

 In this chapter the spectral profiles in the W-band corresponding to 
type 1 DM patients obtained from a pilot clinical test will be analyzed. The 
sample population was assessed repeatedly during three different visits 
over a period of seven months. In line with the previous work, the spectral 
data analysis is performed using FDA methods, but with the HbA1c value 
as the response variable of interest. 
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The collected data sets will be firstly analyzed separately (by visit) 
using scalar-on-function regression to study the linear relation between 
the W-band spectral response and the HbA1c value. Then, the spectral 
data obtained from all visits will be analyzed simultaneously using LFDA 
methods.  More detailed information about the sample population and the 
measurement protocol, as well as the obtained statistical results related to 
the pilot clinical test, will be presented throughout this chapter. 

5.1. DESIGN OF THE PILOT CLINICAL TEST 

The clinical study protocol was developed in conformity with 
international and national standards stablished for realization of human 
experiments, and safeguarding confidentiality of participants (see section 
8.1.2). All the participants gave written informed consent after having 
understood about the objectives and protocol of the clinical study in the 
recruitment stage (see section 8.2).  

A total of thirty subjects were included in the sample population: ten 
healthy volunteers (non-diabetics subjects) and twenty volunteer patients 
with clinically diagnosed type 1 DM. Only type 1 DM was considered in 
the pilot clinical study since affects homogeneously to the population, in 
contrast to type 2 DM which is more frequent in older adults. The study 
subjects recruited for the pilot clinical study were adults ranging from 25 
to 79 years old and the gender distribution was 60 % women and 40 % 
men. 

The diagnostic criteria considered for inclusion of type 1 DM 
patients in the pilot clinical study are the following:  

a. The presence of carinal signs of DM such as polyuria, 
polydipsia, and unexplained weight loss, with plasma glucose 

≥ 200 mg/dl or diagnosis of diabetic ketoacidosis. 

b. FPG (≥ 8 hrs) ≥ 126 mg/dl. 

c. Plasma glucose ≥ 200 mg/dl after two hours in the OGTT 
(75g of glucose). 

d. HbA1c ≥ 6.5 % (according to the National Glycohemoglobin 
Standardized Program and standardized by the Diabetes 
Control and Complications Trial). 
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The exclusion criteria were diagnosis of type 2 DM or monogenic 
diabetes, pregnancy, severe renal or hepatic insufficiency, poor short-term 

prognosis (< 6 months), treatment with glucocorticoids or 
immunosuppressive medications, or who have been hospitalized in the 
past three months. Two different types of metabolic control were 
equivalently included within the diabetic group: patients with good 

metabolic control (HbA1c < 7 %) and patients with poor metabolic 

control (HbA1c > 8 %), according to their clinical records at the time of 
the recruitment. The sample population related to the pilot clinical test is 
summarized in Table 5-1. 

Table 5-1. Sample population evaluated in the pilot clinical test. 

Condition HbA1c  Quantity 

Non-diabetic  - 10 

Diabetics with good 
metabolic control  

< 7 % 10 

Diabetics with poor 
metabolic control 

> 7 % 10 
 

The general outline of the pilot clinical test is shown in Table 5-2 
indicating the tests carried out at each visit. The evaluation process was 
repeated at three visits within a period of seven months, with three months 
between visits 1 and 2, and four months between visits 2 and 3. All the 
evaluations were scheduled to match with regular medical appointments 
at the Hospital Universitario Fundación Jiménez Díaz. 

At each visit, subjects were non-invasively assessed using the mm-
wave spectroscopy system (see section 3.3) to obtain their spectral 
response within the W-band. The frequency step was halved to increase 
the measured frequencies (49 frequencies), resulting in a frequency sweep 
from 75 GHz to 111 GHz in steps of 0.75 GHz. 
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Table 5-2. General outline of the pilot clinical test. 

Visit 0 
• Recruitment (compliance assessment of selection 

criteria). 

• Supplementing informed consent forms. 

Visit 1 

• Blood analysis (hemogram and general biochemistry). 

• Non-invasive assessment using the mm-wave 
spectroscopic instrument. 

• Fasting BGL (FBGL) measurement. 

• Skin-fold thickness (SFT) measurement. 

Visit 2 

• Blood analysis (hemogram and general biochemistry). 

• Non-invasive assessment using the mm-wave 
spectroscopic instrument. 

• Fasting BGL (FBGL) measurement. 

• Skin-fold thickness (SFT) measurement. 

Visit 3 

• Blood analysis (hemogram and general biochemistry). 

• Non-invasive assessment using the mm-wave 
spectroscopic instrument. 

• Fasting BGL (FBGL) measurement. 

• Skin-fold thickness (SFT) measurement. 
 

As shown in Figure 5-1, the non-invasive measure was performed on 
a skin fold located in the first interdigital space (between the thumb and 
index finger) of the right hand. The first interdigital space was chosen 
because it is highly vascularized [239], [240], the skin is relatively thin and 
is a comfortable location to perform the measurement. Additionally, an 
elbow support was incorporated to the structure of the mm-wave 
spectroscopic instrument for subjects’ comfort during the non-invasive 
assessment and reduce arm movements and fatigue. No special indications 
concerning the non-invasive assessment were given to the participants, 
and all the patients continued their medical treatments at all times. 
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Figure 5-1. Photographs taken during the non-invasive assessment of sustained 
hyperglycemia using the mm-wave spectroscopic instrument installed at the Hospital 
Fundación Jiménez Díaz. 

Besides the non-invasive assessment, other relevant physiological 
variables were collected such as age, weight, height, Body Mass Index 
(BMI), Skin-fold thickness (SFT), Systolic Blood Pressure (SBP) and 
Diastolic Blood Pressure (DBP). The clinical variables considered in the 
blood analysis are total hemoglobin (HGB), Glycated Hemoglobin 
(HbA1c), Triglycerides (TG), total Cholesterol (Chol), High-density 
Lipoprotein (HDL), Low-density Lipoprotein (LDH), Glomerular 
Filtration Rate (GFR), Thyroid-stimulating Hormone (TSH), Aspartate 
Transaminase (AST), and Alanine Transaminase (ALT). All the clinical 
variables considered during the statistical analysis of spectral data collected 
for pilot clinical test are listed and briefly described in Table 5-3. 
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Table 5-3. Clinical/physiological variables considered in the statistical analysis of spectral 
data. 

Variable Description Medical Relevance 

Age - - 

Weight - - 

Height - - 

Body Mass 
Index (BMI) 

Rate between weight (Kg) 
and the square of height 

(m2). 

Overweight (fatness) 
indicator. 

Systolic Blood 
Pressure (SBP) 

Pressure within arteries 
during active cardiac 

contraction. 

Associated to 
cardiovascular diseases, 

arterial aneurysm, kidney 
failure, hormonal 

abnormalities, sepsis, 
cardiogenic shock, among 

others. 

Diastolic Blood 
Pressure (DBP) 

Pressure within arteries 
during heart relaxation 
(between heart beats). 

Glycated 
Hemoglobin 

(HbA1c) 

Hemoglobin chemically 
linked to sugar. 

Indicator of mean BGL of 
the last three months used 

for sustained 
hyperglycemia detection 
and DM diagnosis and 

control. 
Fasting Blood 
Glucose Level 

(FBGL) 

Free sugar in blood after an 
overnight fast. 

Indicator for DM 
diagnosis and control. 

Creatinine (Cr) 
Waste product generated by 

the daily function of 
muscles. 

Biomarker associated to 
renal insufficiency and 

kidney failure. 
Glomerular 

Filtration Rate 
(GFR) 

The glomerular filtration is 
the process of blood 
filtering by kidneys. 

Used as biomarker to test 
kidneys function. 

Aspartate 
Transaminase 

(AST) 

Important enzymes in the 
amino acid metabolism, and 
are found in many organs 
and tissue such as liver, 
hearth, kidneys, muscle 

tissue, etc. The ALT 
enzymes are found 
primarily in liver. 

Commonly used as 
biomarkers to test liver 

function by estimating the 
AST/ALT ratio. 

Alanine 
Transaminase 

(ALT) 

Total 
Cholesterol 

(Chol) 

Organic substance 
necessary for many body 

processes. 

Associated to 
cardiovascular diseases 

and kidneys failure. 



~ 108 ~ 

High-density 
Lipoprotein 

(HDL) 

Lipoproteins which 
transport cholesterol to the 
liver from different body 

tissues. Commonly known 
as “good” cholesterol. 

Low-density 
Lipoprotein 

(LDL) 

Lipoprotein which 
transport and deliver fats 

around the body. 
Commonly known as “bad” 

cholesterol. 

Triglycerides 
(TG) 

They are the main form of 
fats in body. 

Thyroid-
stimulating 
hormone 

(TSH) 

Glycoprotein hormone that 
regulates the thyroid 
hormone production. 

Used as biomarker for 
thyroid disorders. 

Total 
Hemoglobin 

(HGB) 

Protein contained in red 
blood cells which transports 

oxygen, and other gases, 
between lungs and the rest 

of the body.  

Used as biomarker for 
anemia, lungs and hearth 
diseases, among others. 

 

As could be expected, the first test using the mm-wave spectrometer 
described in chapter 3 in human tissue exhibited higher absorption 
(thicker skin and higher water content) than the observed during the mice 
experiments, therefore, an amplifying stage for the transmitted signal was 
required. The average SFT value measured for mice was 394 ± 83 µm and 
for humans was 1.85 ± 2 mm. The transmission signal was amplified using 
a W-LNA low noise amplifier (Radiometer Physics GmbH, Meckenheim, 
Germany) connected at the input of the subharmonic mixer receiver 
corresponding to the transmission measure. The W-LNA provides a 
typical gain of 40 dB with a noise figure of around 4 dB. Then, the output 
power of the signal generator was calibrated to obtain a flat frequency 
response at the transmission port (around 250 mV ± 5 mV) using a RF 
attenuator (17 dB) at the input of the active frequency multiplier (see 
Figure 3-2) to compensate for human tissue absorption. A separation of 
1.8 mm between the probes of the mm-waves spectroscopic instrument 
was fixed for calibration tests and to hold the skinfold of the participants 
during the non-invasive assessments at the visits (see Figure 5-1). 
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5.2. FIRST RESULTS IN HUMANS: SCALAR-ON-
FUNCTION REGRESSION 

As described above, a sample population of 30 subjects was recruited 
and non-invasively measured using the mm-wave spectroscopic 
instrument described in section 3.3 at three different visits, as detailed in 
previous section. The collected spectral data include measurements from 
twenty type 1 DM patients and ten controls (participants without DM). 
After the 3 visits a total of eighty-three measurements were obtained 
distributed as shown in Table 5-4 where some absences are indicated. 

Table 5-4. Record of visits during the pilot clinical test. 

 Visit 1  Visit 2  Visit 3 
Total 

attendance 
30 

 
27 

 
26 

Absences 0 
1 control 
2 patients 

3 controls 
1 patient 

 

The approximated sample curves from amplitude spectra of 
transmission collected at each visit are shown in Figure 5-2 identifying the 
control cases, type 1 DM patients with good metabolic control, and type 
1 DM with poor metabolic control by dotted blue lines, dashed orange 
lines and red lines, respectively. The sample curves were approximated 
using P-splines defined on 35 equally spaced knots over the W-band, with 

the smoother parameter 𝜆 = 0.3 chosen by the GCV method (as 
discussed in section 2.3.3). As seen in Figure 5-2, spectra from all cases 
(non-diabetics, diabetics with good and poor metabolic control) are mixed 
and, in contrast to the transmittance observed in animal models, there is 
no apparent differentiation between the spectra for the different 
populations. Unlike the case for the animal models used previously, 
glycemia in human subjects is continuously controlled (medication) 
reducing the effects of sustained hyperglycemia in tissue and metabolism, 
therefore, similar transmission properties were expected between subjects, 
whether diabetics or non-diabetics. In fact, no differentiation in the W-
band measured transmission spectra between diabetics with good and 
poor metabolic control is appreciated at first sight. 

 3 months  4 months 
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Figure 5-2. Approximated sample curves from amplitude spectra of the transmitted 
wave through the fold of skin of all the subjects at each visit. Non-diabetic subjects, 
type 1 DM patients with good metabolic control, and type 1 DM patients with poor 
metabolic control are identified by dotted blue lines, dashed orange lines and red lines, 
respectively. 

When dealing with this type of measurements in spectroscopy the 
typical approach uses summary statistics for analyzing the spectral data 
without consider repeated observations and the intrinsic longitudinal 
nature of the observations. In this approach the relation between the W-
band measured transmission spectra and the HbA1c value would be 
studied at each visit separately, without consider all the available 
information (longitudinal data) of the sample population into the statistical 
analysis. However, when dealing with such complex experimental 
scenarios, such as biological ones, there are too many parameters 
(biological variability, environmental, or, even, instrumental) affecting the 
measured spectral response and it is extremely difficult to control them 
completely (if eventually possible). Therefore, usually different results are 
obtained when spectral data sets are analyzed separately (each visit 
independently), even though all measurements come from repeated 
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observations done under the same circumstances (sample individuals, 
spectroscopic instrument and experimental protocol), leading to an 
inconclusive or poor interpretation of spectral data analysis. 

To illustrate this point, a scalar-on-function regression model (see 
section 2.5) was estimated for each visit recorded during the pilot clinical 
test. Thus, the W-band measured transmission spectra measured at each 
visit is used to predict the corresponding HbA1c values. The R-squared 
coefficient, also known as determination coefficient, is a goodness-of-fit 
summary statistic that measures the proportion of variability of the 
response variable (HbA1c value) explained by the fitted model [241], 
[242]. As shown in Eq. (2-47), the number of basis functions used for the 
estimation of the functional parameter by scalar-on-function regression 
can differs to the number of basis functions used in the sample curves 
approximation. In order to compare the analysis results of the three visits, 
the functional parameter of the regression models was estimated 
considering the same number of basis functions, and the best fit for 
HbA1c values at the three visits was achieved using seventeen cubic B-
spline basis functions. 

The scatter plots of predicted HbA1c values by the scalar-on-
function regression model versus the measured HbA1c values at each visit 
are shown in Figure 5-3. Let us observe that, as depicted by the HbA1c 
values of diabetics, the initial distinction of good (HbA1c < 7%) and poor 
(HbA1c > 7%) metabolic control, according to their medical records, was 
not continued during the pilot clinical test. Therefore, such distinction 
between diabetics will be not considered for further analysis. 

As shown in Figure 5-3, different results were obtained from the 
estimated regression models, with the best fit (R-squared = 0.88) achieved 
on the last visit. The results of the last visit indicate that a good linear 
relation can be achieved between the W-band measured transmission 
spectra and the HbA1c value. Nevertheless, the inconsistent results 
between visits shows that there are uncontrolled factors involved in the 
non-invasive assessment that strongly affects the HbA1c value prediction. 
Such variation in the obtained results might be caused by changes in the 
calibration of the spectroscopic instrument or changes in metabolism of 
subjects between visits (within-subject variation among visits). Besides 
this, other interferences in the non-invasive assessment such as 
physiological, environmental or instrumental noise cannot be dismissed. 
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Figure 5-3. HbA1c values versus predicted values by the regression model at each visit. 
Non-diabetics, diabetics with good metabolic control and diabetics with poor metabolic 
control are identified by blue circles, orange down-pointing triangles and red triangles, 
respectively. 

The changes in the W-band measured transmission spectra among 

visits can be clearly seen in the functional parameter 𝛽(𝑡) estimated by the 
regression model at each visit (see Figure 5-4). It can be seen that the 
functional parameter exhibits different shapes between visits, providing 
inconsistent information about the relation between the W-band 
measured transmission spectra and the HbA1c value. 
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Figure 5-4. Functional parameter 𝛽(𝑡) estimated by the regression model at each visit. 

To address this problem in the evaluation of the proposed diagnostic 
we are going to used the Longitudinal Functional Data Analysis LFDA 
techniques introduced in section 2.6. The used of these tools will allow us 
not only to consider the between-subjects variability in the statistical 
analysis, but also to take into account the within-subject variation when 
subjects are repeatedly observed. Thus, the captured variability in spectral 
data is decomposed into three parts: inter-subject variability (between 
subjects), intra-subject variability (within subject) and noise. The part of 
the variance estimated as noise can be seen as the variability in spectral 
data not shared in either of the first two modes (inter and intra-subject). 
In this way, the intra-subject variability extraction may improve the 
previously obtained results since it will allow to consider much more 
information in the statistical analysis (larger sample size) and can be used 
to identify the factors that are introducing changes in W-band measured 
transmission spectra between visits. 

5.3. ANALYZING INTER AND INTRA-SUBJECT 

VARIATIONS WITHIN THE W-BAND 

SPECTROMETER MEASUREMENTS 

In this section, the spectral data collected during the pilot clinical test 
(eighty-three observations) will be analyzed simultaneously using novel 
LFDA techniques introduced in section 2.6. Firstly, the longitudinal 
spectral data will be decomposed performing LFPCA (see section 2.6.1) 
to study possible influences of the available clinical variables in the intra-
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subject variation among visits depicted in previous section. Then, 
longitudinal scalar-on-function regression methods (see section 2.6.2) are 
used to study the relation between the W-band measured transmission 
spectra and HbA1c value considering the inter and intra-subject variation 
components along the time (three different visits). For both cases, the 
functional data analyzed corresponds to the sample curves already shown 
in Figure 5-2. 

5.3.1. LFPCA ON LONGITUDINAL SPECTRAL DATA 

The LFPCA was performed estimating the first four FPCs associated 

to the inter-subject variability 𝐵𝑖(𝑡) and intra-subject variability 𝑈𝑖𝑗(𝑡) 

extracted from the longitudinal spectral data. A total of 95.8% of 
variability contained in the longitudinal spectral data was captured by the 
eight estimated FPCs, with a 54.8% related to the inter-subject variation, 
a 41% related to the intra-subject variation, and a 0% of variability 
estimated as noise. 

The scores 𝜉𝑖 (see Eq. (2-58)) of the first FPC of 𝐵𝑖(𝑡) versus the 

scores 𝜁𝑖𝑗 (see Eq. (2-59)) of the first principal component of 𝑈𝑖𝑗(𝑡), 

corresponding to the inter and intra-subject variability, respectively, are 
shown in Figure 5-5. The first FPC related to the inter-subject variability, 
which explains 44.7% of variability in longitudinal spectral data (estimated 
according to Eq. (2-62)), discriminates most of the observations between 
diabetics and non-diabetics. The achieved discrimination between non-
diabetics and diabetics among visits considering the inter-subject 
variability, extracted by the LFPCA, supports that the W-band 
spectrometer measurements are capable to detect biological changes 
related to type 1 DM in humans, as it was able to do in the animal 
experiments. 
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Figure 5-5. Scatterplot of the scores of the first FPCs corresponding to the inter-subject 

variability 𝐵𝑖(𝑡) and intra-subject variability 𝑈𝑖𝑗(𝑡) estimated by the LFPCA. Non-

diabetics and diabetics are identified by blue circles and red triangles, respectively. 

The W-band obtained spectra associated to type 1 DM detection in 
humans is characterized by the loading functions (random functional 

intercept (𝜓1
0) and random functional slope (𝜓1

1)), corresponding to the 

first FPC of the inter-subject variation 𝐵𝑖(𝑡). The loading functions 𝜓1
0 

and 𝜓1
1 are plotted at the top of the Figure 5-6. At the bottom, the loading 

functions multiplied by twice the standard deviation of the FPC were 

added (+) and subtracted (−) to the estimated time-constant mean 
function of the W-band measured transmission spectra. It is interesting to 
note that, similarly to the results obtained in section 4.2.2, the determining 
factors for discrimination between non-diabetics and diabetics are the 
transmittance level of tissue over the W-band (characterized by the 
random functional intercept) and a significant change of slope from 81 
GHz to 89 GHz (characterized by the random slope function). These 
findings suggest that both characteristic responses captured by the W-
band spectrometer are strongly related to changes in metabolism or tissue 
in both sustained hyperglycemic mice models (used in chapter 4) and Type 
1 DM patients, being less pronounced in the last ones. 
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Figure 5-6. (Top) Loading functions associated to the first FPC of the inter-subject 

variation estimated by the LFPCA, and the estimated time-constant mean function ± 
the corresponding loading function multiplied by twice the standard deviation of the 
associated FPC (bottom). 

On the other hand, the first four FPCs 𝜁𝑖𝑗 related to the intra-subject 

variation among visits, which accumulate 41% of variance in longitudinal 
spectral data, were used to study possible relations between collected 
clinical variables and the evolution of the W-band measured spectra 
among visits. In Figure 5-7 a correlation matrix involving the most 

relevant clinical variables and the first four FPCs 𝜁𝑖𝑗 estimated by the 

LFPCA is shown. The correlation matrix contains the Pearson’s 

correlation coefficients (𝑟), which measures the linear correlation between 

two variables (𝑊1, 𝑊2) [243], [244], estimated as follows 

𝑟 =
∑(𝑊1 − 𝜇𝑊1

) (𝑊1 − 𝜇𝑊2
)

√∑(𝑊1 − 𝜇𝑊1
)
2
(𝑊2 − 𝜇𝑊2

)
2
, 

(5-1) 

where 𝑊1 and 𝑊2 are the random variables, and 𝜇𝑊1
 and 𝜇𝑊2

 are their 

sample means, respectively. The correlation coefficient can take values 

between −1 and +1, the magnitude |𝑟| indicates the strength of the 

relation between both random variables, and the sign of 𝑟 indicates how 
the random variables are related; a positive value indicates that the random 
variables are directly proportional, and negative values indicate that the 
random variables are inversely proportional. 
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Figure 5-7. Correlation matrix involving the first four FPCs related to the intra-subject 
variation among visits and the more relevant clinical variables (described in Table 5-3). 

As can be seen in the first four rows of the correlation matrix shown 
in Figure 5-7, no strong correlations were found between the first four 
FPCs related to the intra-subject variation and collected clinical variables. 

The greatest correlation associated to the FPCs (𝑟 = 0.34) is between 
FPC4 and HbA1c. This means that the intra-subject variation components 
captured by LFPCA on longitudinal spectral data are not linearly related 
to the collected clinical variables. However, considering that the intra-
subject variation among visits is estimated as variation modes shared 
between all subjects (diabetics and non-diabetics), it becomes apparent 
that such variation is not determined by the presence of diabetes in 
subjects and is mostly related to other biological factors not considered 
into the pilot clinical test or could be related to systematic noise introduced 
in the measurements among visits, such as changes in calibration of 
spectroscopic instrument or environmental conditions. 
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Additionally, and as a curiosity, we must note that the statistical 
analysis performed on the different clinical variables obtained for the 
different patients can provide with further relevant clinical information. 
In this sense, some strong linear relations between clinical variables can be 
highlighted from the correlation matrix estimated above, for example, the  

strong correlation between LDL and the total cholesterol (𝑟 = 0.8), which 

is higher than the observed between HDL and total cholesterol (𝑟 = 
0.41), implying that the total cholesterol in blood is mostly affected by the 

LDL. Also, we can see that GFR exhibits a strong inverse relation (𝑟 = -
0.73) with Age, implying that kidney function deteriorates with age, and it 
exhibits a good inverse correlation with creatinine since higher content of 
creatinine in blood is indicator of renal diseases. Weight and BMI show a 

strong positive correlation (𝑟 = 0.72) due to their relation, and finally AST 
and ALT production in body it seems to be closely related with a 

correlation value of (𝑟 = 0.71). 

5.3.2. LONGITUDINAL REGRESSION ANALYSIS ON HBA1C 

VALUE 

As mentioned above, the main objective of the pilot clinical test is to 
assess the capability of the non-invasive approach to predict the HbA1c 
value. The obtained results in Figure 5-3 show that, even though a good 
linear relation can be achieved between the W-band measured 
transmission spectra and the HbA1c value, such relation is significantly 
affected among visits due to uncontrolled variations in the W-band 
measured transmission spectra (shown in Figure 5-4). Nevertheless, as 
shown in Figure 5-5, such variation among visits can be improved by 
considering the intra-subject variation into the statistical analysis. 
Therefore, the relation between the W-band measured transmission 
spectra and the HbA1c value will be studied using longitudinal regression 
models (LPFR and LFPCR) described in section 2.6.2. The main 
difference between LPFR and LFPCR is that the first one estimates scalar 
random intercepts to compensate the intra-subject variation among visits 

and the functional parameter 𝛽𝑙(𝑡) is estimated considering all the sample 
curves (including repeated observations) as a fixed effect across visits. By 
contrast, the second one is based on the variance decomposition estimated 
by the LFPCA (inter and intra-subject variation). 
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In Figure 5-8 is shown the scatter plot of the HbA1c values against 
the predicted values by the fitted LPFR model, as introduced in Eq. (2-64), 
considering the longitudinal spectral data shown in Figure 5-2. Let us 
remark that no scalar predictors were considered in the model estimation. 
As it can be seen, the LPFR model provides an excellent fit of the HbA1c 
values measured from all visits (R-squared = 0.98), with the RMSE for 
prediction equals 0.24. These are very promising results indicating that the 
W-band spectra acquired has great potential for non-invasive Type 1 DM 
monitoring, being strongly related to the biomarker of HbA1c test. 

 

Figure 5-8. HbA1c values versus predicted values by the LPFR model. Non-diabetics, 
diabetics are identified by blue circles, and red triangles, respectively. 

The measurement frequencies contribution for such relation can be 

qualitatively evaluated observing the functional coefficient 𝛽𝑙(𝑡) estimated 
by the LPFR model and plotted in Figure 5-9. As it can be seen, the 
functional parameter splits the W-band into two frequency ranges with the 
zero crossing at 94.8 GHz, indicating that transmittance for frequencies 
below of 95 GHz is directly proportional to the HbA1c value, and the 
transmittance measured for all other frequencies has inversely relation. 
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Figure 5-9. Functional coefficient 𝛽𝑙(𝑡) estimated by the LPFR model for HbA1c 
regression, and their pointwise 95% confidence bands (dashed line). 

Additionally, in order to validate the results achieved by LPFR, the 
LFPCR model has also been estimated. The comparison of the 
performance of both models can be seen in Table 5-5. An excellent fit is 
also achieved by the LFPCR model (scores-based approach) with very 
similar results even though the regression models are based on different 
estimation methods. The consistent results obtained in Table 5-5 
demonstrates the relation between the W-band spectral response and the 
HbA1c values. 

Table 5-5. Results obtained from fitted LPFR and LFPCR models 
on HbA1c values. 

Model R-squared RMSE 

LPFR 0.9753 0.2408 
LFPCR  

(scores-based) 
0.9771 0.2318 
 

5.4. DISCUSSION AND CONCLUSIONS 

In this chapter, a pilot clinical test was performed to assess the 
applicability of the non-invasive approach (based on the transmittance of 
the biological sample within the W-band) for hyperglycemia detection and 
monitoring in Type 1 DM patients. A group of thirty volunteers (ten non-
diabetics and twenty diabetics) were non-invasively measured using the 
proposed spectroscopic technique, which has previously been assessed 
using animal models in chapter 4. Considering the observed features of 
the non-invasive measure during the animal experiments, the pilot clinical 
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study was focused to study the relation between the measured spectral 
response and the HbA1c test. The measurements were performed directly 
on a fold of skin located in the first interdigital space (between the thumb 
and index finger) of the right hand. The subjects were measured at three 
different visits (regular medical appointments) over a period of seven 
months with a blood analysis and other clinical variables collected at each 
visit. 

Firstly, the functional data sets approximated from each visit were 
analyzed separately performing scalar-on-function regression to study the 
relation between the HbA1c test and the W-band measured transmission 
spectra. The obtained results provided evidence that there is a linear 
relation between the W-band measured transmission spectra and the 
HbA1c values, but the goodness-of-fit achieved by the regression analysis 
is considerably affected due to changes in the W-band measured 
transmission spectra among visits.  

The LFDA allows to analyze changes in the measured spectral 
response when the sample is repeatedly observed at different times (intra-
subject variation), as in longitudinal studies. LFPCA was performed to 
decompose the variance in longitudinal functional data (spectra measured 
from all visits) into inter- and intra-subject variability. The first four FPCs 
(with an accumulative explained variance of 41%) associated to the intra-
subject variability were used to study possible influences of collected 
clinical variables in the spectral response evolution across visits. Although 
no significant correlations were found between the estimated components 
capturing the intra-subject variation and the collected clinical variables, the 
first component of the inter-subject variability (with a 44.7% of explained 
variance) allows to discriminate most of the observations between 
diabetics and non-diabetics. Such discrimination implies that, in contrast 
to the intra-subject variation, the inter-subject variations in the measured 
spectral response is mostly determined by the presence of type 1 DM in 
subjects. The characteristic spectral responses associated to the detection 
of type 1 DM patients were qualitatively studied by interpreting the 
corresponding loading functions. Such interpretation shows that the 
achieved discrimination of type 1 DM patients is related to spectral 
responses within the W-band that are quite similar to those observed in 
the animal models studied in chapter 4. This suggests that sustained 
hyperglycemia consistently affects the spectral response of both mice and 
humans within the W-band, which might be associated to the spectral 
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features of a biological indicator strongly related to hyperglycemic 
metabolism. 

On the other hand, even though no significant correlations were 
found between the intra-subject variability, estimated by the LFPCA, and 
the collected clinical variables, the achieved discrimination by the inter-
subject variability indicate that the relation between the HbA1c value and 
the non-invasive measure can be significantly improved by considering 
both inter- and intra-subject variability in the regression analysis. 
Therefore, taking advantage of the longitudinal regression analysis, the 
HbA1c values measured from all visits were fitted using LPFR and LFPCR 
(scores-based approach) obtaining a R-squared value above 0.97 and a 
RMSE below 0.24. The longitudinal regression analysis not only improve 
the regression results on the HbA1c values, but also allows to interpret the 
relation between the measured spectral response and the HbA1c value 

since provided a much more smooth functional parameter 𝛽𝑙(𝑡) than 
those estimated by the scalar-on-function regression model.  

In summary, these preliminary results from the pilot clinical study 
indicate that the proposed spectroscopic approach provide a non-invasive 
measure, based on the transmittance properties of the biological sample, 
that can be potentially used for in-vivo detection and monitoring of 
sustained hyperglycemia in humans. Nevertheless, there is still a lot of 
further experimental work to identify and evaluate the predominant 
factors (biological, environmental, or instrumental) associated to the 
observed intra-subject variation in order to calibrate a spectroscopy 
system that can be used as a non-invasive diagnostic tool in DM medical 
proceedings. 
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In this thesis a mm-wave spectroscopic technique has been proposed 
and experimentally evaluated as a new non-invasive approach for in-vivo 
sensing of sustained hyperglycemia, typically associated to DM. The 
proposed non-invasive approach has been tested in different experimental 
settings involving animal models and a pilot clinical study on humans. The 
development and evaluation processes have been addressed under a two-
pronged strategy: a non-targeted spectral profiling approach and the 
analysis of the collected spectral data using FDA techniques. The main 
conclusions gathered throughout this thesis are reviewed and discussed 
below.  

A first experimental test (Experiment A) was designed according to 
the non-targeted spectral profiling approach to explore the reflection and 
transmission spectral responses within the W-band (measured by the 
proposed spectroscopic technique) of mice models which represent 
different glycemic conditions (normoglycemia, hyperglycemia from a mild 
diabetes, and hyperglycemia from a full-blown diabetes). Two significant 
conclusions were extracted from such exploratory test by using 
unsupervised analysis (FPCA) on measured spectral data: the amplitude 
parameter of transmission (related to the transmittance of the biological 
media) provides the best indicator (unaffected by biological variations 
between mice strains) for discrimination of the different glycemic states, 
and such indicator is strongly associated to sustained glycemia rather than 
the instantaneous BGL of the mice at the time of the non-invasive 
assessment. Such discrimination between the different glycemic 
conditions (normoglycemia, mild diabetes, and full-blown diabetes) was 
also achieved by modelling the mice skin phenotypes using a full model 
calibration procedure, typical for microwave network analysis [245]. In 
contrast to the approach used here, the proposed mathematical model 
requires amplitude and phase information of reflection and transmission 
measurements, and special procedures for spectral data calibration are 
needed. 

Let us observe here that the obtained results from the exploratory 
test provided a clearer and more specific perspective about the 
applicability of the proposed spectroscopic approach for in-vivo sensing 
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of hyperglycemia, which determined the design of the following stages of 
the diagnostic development process. Thus, the next two experimental tests 
allowed us to validate the detection of sustained hyperglycemia on a new 
sample of mice (Experiment B) using a classification model (FPCLoR) and 
to validate the sensitivity of the proposed approach to detect changes in 
sustained glycemia (with at least four days of occurrence) tracking gradual 
transitions from a normoglycemia to a hyperglycemia condition in a set of 
healthy mice with a drug-induced diabetes by studying the evolution of 
their corresponding FPC’s scores over a period of two weeks (Experiment 
C). 

A significant contribution of the FDA to the spectral data analysis 
performed to the W-band transmission spectra collected from the 
experiments with animal models is that we were able to identify and 
validate a sub-interval of frequencies retaining the most relevant spectral 
features associated to sustained hyperglycemia detection in mice. These 
findings were achieved by visually inspecting the loading functions and the 
functional parameter estimated from FPCA and FPCLoR, respectively, 
performed on the approximated functional data. Furthermore, we showed 
that the relationship between the measured spectral response (by 
frequency intervals) and sustained hyperglycemia prediction can be 
quantitatively studied in terms of the odds ratio by analyzing the functional 
parameter of the FPCLoR model. This is very interesting since enables the 
calibration of a spectroscopic technique, proposed for a medical 
diagnostic, without the need to relate the measured spectral response to a 
specific component of the biological sample. 

The extracted information from the spectral data analysis during the 
animals experiments indicated that the proposed non-invasive approach 
could be optimized according to the achieved detection of sustained 
hyperglycemic states in mice, simplifying the spectroscopic technique 
from a W-band spectrometer designed for reflection and transmission 
complex measurements to a simple transmission-type spectrometer with 
a significantly reduced interrogation frequency band-width. 

Regarding to the non-invasive spectroscopic approach under 
evaluation, the excellent capabilities to detect sustained hyperglycemia and 
track different levels of sustained hyperglycemia achieved during the 
previously discussed experimental tests provided strong evidence that the 
non-invasive measurement (based on the transmittance of the biological 
media) could be used to monitor sustained glycemia in humans, similarly 
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to the HbA1c test, but with a better time resolution. The HbA1c test is 
widely recognized in diagnosis and follow-up of DM as an indicator of the 
average BGL in the body during the last two to three months. Therefore, 
a pilot clinical test was performed to study the capability of the described 
non-invasive approach to predict the HbA1c value on non-diabetic 
volunteers and type 1 DM patients.  

The pilot clinical test was designed as a longitudinal study (subjects 
were measured repeatedly at different times) due to the desired evaluation 
of the time resolution for the test, resulting in a total of three visits over a 
period of seven months. This scenario allowed us to show the scope of 
the FDA methods that enables the longitudinal spectral data analysis in 
which all the collected spectral data during the three visits were 
simultaneously analyzed in terms of the original contributions of the 
measured frequencies. Firstly, the spectral data collected from each visit 
were analyzed separately by scalar-on-function regression, with the HbA1c 
value as the response variable and the W-band measured transmission 
spectra corresponding to amplitude parameter as a functional predictor. 
The non-longitudinal regression analysis showed that a good linear 
relation can be achieved between the non-invasive measure and the 
HbA1c value (with an R-squared value of 0.88 for the first visit), but such 
relation was significantly affected due to changes in the measured spectral 
response among visits, with the R-squared value ranging from 0.56 to 0.88. 
Such variations were visually assessed by comparing the functional 
parameters estimated for the three visits, which exhibited completely 
different shapes from each other. These results clearly indicated that, in 
contrast to the measurements obtained with the animal experiments, the 
interferences raised from biological, environmental or instrumental factors 
were strong enough to considerably affect the performance of the non-
invasive approach. Such difficulties were expected since, compared to the 
animal models, humans exhibit stronger absorption, much bigger 
biological variability between subjects, and a slower metabolism. 

In view of the observed variations in the measured spectral response 
among visits, the longitudinal spectral data was analyzed using LFDA 
methods which consider the inter and intra-subject variability. A LFPCA 
was performed for a blindly exploration of the inter- and intra-subject 
variation captured by the longitudinal spectral data. The inter-subject 
variation allowed to discriminate most of the type 1 DM patients from the 
non-diabetics, similarly to the discrimination achieved during animal 
experiments. Once again, taking advantage of the interpretability of the 
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corresponding loading functions, we realized that the achieved 
discrimination of type 1 DM in humans and the detection of sustained 
hyperglycemia in the mice models were determined by quite similar 
characteristic spectral responses within the W-band. This clearly indicates 
that there is a biological component (or components), with characteristic 
spectral lines at the identified frequencies within the W-band, which is 
closely related to the presence of sustained hyperglycemia. Besides this, 
the estimated scores associated to the intra-subject variability (capturing 
the variation of the spectral response among visits) were used to study 
possible influences of several clinical variables collected during the pilot 
clinical test, including the HbA1c value, but no significant correlations 
were found. Let us remark here that LFPCA is a very powerful tool for 
longitudinal spectral data analysis that not only allows to study possible 
correlations between the estimated scores from the inter and intra-subject 
variability decomposition and other measured variables (either biological, 
environmental or instrumental), but also allows to study the temporal 
evolution of the spectral response using surface graphics, which is very 
useful for longitudinal studies of progressive diseases. 

Then, two different longitudinal regression methods (LPFR and 
LFPCR) were used in order to model all the HbA1c values in terms of the 
longitudinal spectral data by considering the inter and intra-subject 
variation which improved the prediction of the HbA1c values with an R-
squared value above 0.97 and a RMSE below 0.24. These results obtained 
from the two models that are estimated through different approaches are 
very promising since demonstrates that the measured spectral response 
can provide an excellent indicator for sustained glycemia closely related to 
the HbA1c value. 

Thus, on one hand, it has been shown in this thesis that the non-
targeted spectral profiling approach allows to gain perspective in the 
exploration and characterization of spectral responses obtained from 
spectral interrogation performed on multi-species scenarios exhibiting 
complex spectral features, such as biological media. This approach allowed 
us to evaluate the applicability of the proposed spectroscopic technique 
for in-vivo sensing of hyperglycemia by considering collectively the 
spectral responses of all the components involved in the biological sample. 
This is a very interesting alternative approach in the development of new 
spectroscopy systems applied to biomedical engineering for two reasons: 
no a-priori information about the spectral features of the sample 
constituents is required, and it is not necessary to model an isolated 
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metabolite (which is quite difficult in biological media) to associate the 
measured spectral response to the pathology under study. This approach 
is useful not only for cases in which the diagnostic does not requires the 
quantification of a specific metabolite, but also to identify characteristic 
spectral responses associated to the pathology under study that might lead 
to determination of relevant biomarkers by specialized analysis of the 
biological media composition (from the inverse problem perspective). 

On the other hand, we have shown that the FDA framework covers 
most of the classical multivariate statistical methods widely used for 
unsupervised and supervised learning problems involving spectroscopy 
data. FDA is advantageous for the spectral data analysis in many ways, but 
one of the most significant benefits that makes it very suitable for the 
development of applied spectroscopy systems is the ongoing 
interpretation of the spectral data. However, as discussed in chapter 4, an 
amenable interpretation of spectral data using FDA methods is subject to 
the smoothness degree used in the approximation of the functional data 
and regression analysis. In this regard, approximating smooth sample 
curves from heterogeneous spectral features might be a challenging task 
using a fixed overall smoothness degree. These cases can be addressed 
using the approximation methods presented in this thesis by manually 
fixing the knots at strategic locations over the measured frequency range. 
Nevertheless, such a task requires considerable efforts if researcher does 
not know which spectral peaks are truly associated to the optical properties 
of the sample. The adaptive smoothing approaches can be very useful in 
this situations, such as the adaptive P-splines [246], [247], that allows for 
different local penalizations within the measured frequency range (varying 
smoothing parameter).  

It has been shown throughout this doctoral thesis that the FDA 
framework is well suited for spectral data analysis, providing powerful and 
amenable statistical methods for different experimental settings such as 
the longitudinal studies. The FDA methods enable naturally the direct 
interpretation of frequencies contribution at all time for supervised and 
unsupervised analysis of spectral data (not usually possible for MDA 
methods). As shown throughout this research work, the interpretation of 
the measured spectral data plays a key role in the evaluation process of 
applied spectroscopic techniques. Therefore, we support that FDA 
methods have a great scope for processing and analysis of spectral data 
measured over a continuous domain.  
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Finally, as the most relevant result of this thesis, the obtained results 
from the pilot clinical study prove that the transmittance properties of the 
biological media measured indirectly by the spectroscopic technique using 
the W-band are closely related to sustained glycemia in humans. But the 
spectroscopic technique requires further calibration to compensate the 
intra-subject variation introduced in the measured spectral response. Even 
though an excellent fit for the HbA1c value was achieved by the 
longitudinal regression models, such approach limits the prediction 
capabilities of the non-invasive diagnostic to individuals previously used 
for calibration, requiring repeated measurements on each subject until 
proper calibration is achieved. Therefore, further experimental tests need 
to be made in order to identify and reduce the interferences introduced by 
the intra-subject variation in the measured spectral response. An 
important step prior the next experimental test in humans is to obtain a 
prototype of the final spectroscopic instrument to ensure the stability of 
the spectroscopic instrument response within the W-band and reduce the 
instrumental interferences in the non-invasive assessments. Besides this, 
other factors not considered in the pilot clinical trial, such as the skin 
moisture, temperature of the targeted biological sample, humidity and 
temperature of environment, should be registered during the 
measurements in order to study their influence in the intra-subject 
variation. Other interesting experimental test that should be also 
considered for a next clinical study is to carry out the non-invasive 
assessments more frequently (at least weekly), in order to compare the 
non-invasive measure with the average BGL of subjects (using multiple 
BGL readings per day) over shorter time periods. This will enable us to 
study the time resolution offered by the proposed non-invasive approach 
to track changes in sustained glycemia on humans. 

Nevertheless, the statistical results obtained throughout this thesis 
work demonstrate that the proposed spectroscopic technique is very 
promising for the development of a non-invasive approach to sustained 
hyperglycemia monitoring since it could potentially be less costly and time 
consuming in diabetes management compared to current medical 
procedures based on BGL and HbA1c invasive measurements. The non-
invasive instrument can be made very compact and mass-produced using 
semiconductor processes, and its painless, non-invasive operation can 
eliminate infection risks and ongoing expenses for consumables. All these 
improvements in medical proceedings for diabetes management and 
diagnosis would have a great positive impact in early diabetes detection, 
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patient's quality of life, and in risk mitigation of potentially diabetic 
individuals. 
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8.1. ETHICAL ISSUES 

8.1.1. ANIMAL EXPERIMENTS 

All the experimental procedures involved in the mice experiments 
were carried out according to European and Spanish laws and regulations 
(European convention ETS 1 2 3, about the use and protection of 
vertebrate mammals used in experimentation and other scientific 
purposes, Directive 2010/63/UE and Spanish Law 6/2013, and R.D. 
53/2013 about the protection and use of animals in scientific research). 
Procedures were approved by the Animal Experimentation Ethical 
Committee of the CIEMAT according to all external and internal bio-
safety and bio-ethics guidelines, and by Spanish competent authority with 
registered number PROEX 176/15. 

8.1.2. PILOT CLINICAL STUDY 

The clinical study protocol (Protocol code: FJD-ESPEC-DM-17-01) 
was approved by the Comité de Ética de la Investigación del Hospital 
Universitario Fundación Jiménez Díaz (CEI/CEIm-FJD). The clinical 
study was performed in accordance to the ethical principles regarding 
human experimentation stablished in the Declaration of Helsinki 
developed by the World Medical Association, the guidelines for Good 
Clinical Practice of the International Committee of Harmonization, and 
the Law 14/2017, of 3 July, on Biomedical Research. All the information 
related to the participants was processed according to the Organic Law 
15/1999, of 13 December, on Protection of Personal Data. 
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8.2. INFORMED CONSENTS 

8.2.1. CONTROLS 
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8.2.2. PATIENTS 
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