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Abstract

Several business are nowadays becoming more and more aware of the
potential that lies beneath Big Data. From social media ‘titans’ and
healthcare companies, to the mobile industry that propelled them, 5th
Generation mobile network (5G) will be a fundamental factor that will
drive our new reality. Current mobile service usage has been explored
for data-driven organizational growth in the touristic sector, as it allows
forecasting hotel occupancy rates or targeting customersHowever, mobile data
is continuously increasing, and therefore it is enormously important to analyze
such data for networking purposes.

Previous Ericsson Mobility Reports claimed that by the end of 2022 the
total monthly traffic associated with mobile devices would be 77 exabytes
(EB), representing 20% of the total Internet Protocol (IP) traffic around
the world. They also declare that 50 EB/month would come from 2nd
Generation mobile network (2G), 3rd Generation mobile network (3G), and
4th Generation mobile network (4G) devices. In terms of 5G subscriptions,
it is expected to reach up to 2.8 billion subscriptions globally by the end of
2025, accounting for about 30% of total mobile subscriptions. Experts stake
out that by the year 2020, 1.7 megabytes of data will be generated every second
for every person on the planet, forcing the network to evolve and adapt to
challenging new demands.

Network providers not only deal with the deployment of the required
resources to support this growth, but also the potential newcomers into the
business, and the stringent conditions of the distinct services to be provided.
One of the features proposed to face this dilemma is using the network slicing
technique. It allows to transform and orchestrate a 5G network by creating
multiple logical instances (i.e., slices) on top of it, while Big Data would
provide the specifications of the services’ traffic dynamics to be served. In
this way, operators achieve the best allocation of resources.

This thesis contributes to the ongoing Network Slicing research, assessing
a nationwide scenario. Our results show mobile traffic similarities and
differences across time, space, and frequency domains, whereas we intend
for distinct service clusterizations that would enhance the network efficiency
in terms of resource management. For instance, we show that benefits are
achieved when considering the top 10 consuming Network Slice (NS). In
addition, we could observe mobile service similarities in the spatial domain,
while the spectral and time domains open the door for wavelets uncertainty,
where we point future directions to address this research branch. Moreover,
we propose two data-driven algorithms that shed light on the trade-off
between complexity and multiplexing efficiency derived from the network slice
specifications, both exhibiting promising performances (e.g., leading to a new
architecture for traffic balancing in the cloud and edge clusters, with 60% and
400% gain in efficiency respectively and 1/3 of dedicated resources).

Keywords: Big Data, Network slicing, Resource Management, Network
Efficiency, Mobile Networks, Slice Orchestration, NFV.
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1.4 Outline of the thesis . . . . . . . . . . . . . . . . . . . . . . 7

It is worldwide agreed that current mobile networks will have to experience a huge
revolution to cover all the needs of the users and vertical customers, as well as the
management of their generated data. This revolution is known as 5G, and in order to
boost that leap, there are several techniques to explore and areas to improve.

In this first chapter of the thesis, we introduce the motivation underneath the
characterization of mobile network services elaborated in the remainder of this work
(see Section 1.1), as well as the landscape that the new mobile generation pose
for current network technologies (see Section 1.2). Next, we present the goals and
contributions of the developed work in Section 1.3. To end up, we outline the structure
of the document per se (see Section 1.4). Hence, this chapter is divided in four sections
in order to address each one of these topics.

1.1 Motivation

As the mobile Internet traffic grows along with the quantity and diversity of offered
services, it becomes increasingly important to understand the demands generated
by them. Indeed, characterizing the traffic dynamics associated to different mobile
services is of paramount importance in order to properly dimension and orchestrate the
mobile network, and also offers an opportunity to unravel broader societal behaviors
in general. In social sciences, understanding the dynamics of the demands for mobile
services helps drawing causal links between land use and the way mobile applications
are used [5], highlighting cultural factors in app adoption [6], helping governments to
take informed public health actions [7], or even detecting psychiatric disorder states at
scale [8]. From an engineering and technology viewpoint, the knowledge of large-scale
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traffic volumes generated by each mobile service enables a more efficient dimensioning
and management of the communication infrastructure [4], the optimized caching of
applications data at mobile devices [9], the interplay between the digital world space
and the physical one (e.g., urban development [10] or planning [5,11]), or the improved
planning of urban transport systems based on app user flows [12].

While disentangling mobile service demand patterns is a challenging exercise, it is
necessary for a proper allocation of resources and shaping networks accordingly, which
is a fundamental operation for 5G networks.The many and varied apps running on
mobile devices entail strongly heterogeneous dynamics (e.g., high data rates, sub-ms
delays, extensive coverage) [13, 14] over a space that is high-dimensional along both
its temporal (where measurement data can encompass long periods of months with a
fine granularity of minutes) and geographical (with traffic information concurrently
recorded at hundreds of locations within, e.g., a single metropolitan area) facets. In
addition, measurements are often noisy, due to inherent randomness in user access to
apps [15], oscillations in device associations to the radio access infrastructure caused
by signal strength fluctuations, load balancing policies [16], or positioning accuracy
limitations of the mobile network technology [17].

Therefore, network operators and tenants need to cope with all these issues and
performance metrics in a new infrastructure with respect to Long Term Evolution
(LTE) [18, 19]. On the one hand, one of the new enablers is Network Function
Virtualization (NFV), a general reference framework for the network architecture.
Its aim is to virtualize different elements of the network, motivated by the necessity
of more flexible architectures. On the other hand, Software Defined Networking
(SDN) is a paradigm that allows to decouple the Radio Access Network (RAN)
control functionality from the data plane. We can see the difference between the
SDN approach and the classical one in Figure 1.1. Hence, SDN simplifies the network
deployment and operation along with reducing the total cost of managing networks by
means of network slices and NFV. For instance, an effective orchestration of network
slices (virtual networks with dedicated resources allocated and customized Quality of
Service (QoS) guarantees and network Key Performance Indicators (KPIs)) could be
built on the spatial complementarity of the demands for the different services [20].

Figure 1.1. Traditional network (a) vs SDN network (b) [21]
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To the best of our knowledge, only a couple of works analyzed a large set of
heterogeneous individual mobile services to date. They focus on quantifying the
statistical diversity of apps in terms of network-level performance indicators [22], and
forecasting future demands for each app separately [23], respectively. As a result, most
previous works in the area are concerned with coarse-grained service categories or rely
on relatively small-sized datasets, providing limited knowledge about the specificities
of individual services and their differences.

In this thesis, we contribute to fill the gap above, by analyzing the usage of a
selection of mobile services at a national scale and in two residential areas with regards
of 5G networks. Our study investigates the traffic behavior of specific services across
time (i.e., temporal usage patterns), space (i.e., at different locations), and spectral
(i.e., frequency components) domains. In doing so, we offer a global overview of the
traffic dynamics for specific applications in a large-scale operational cellular network.

Furthermore, the results and insights gained from our analysis may find appli-
cations in different areas. In future-generation mobile networks, the understanding
of when, where and how different mobile services are consumed will be essential to
dynamically tailor resources to the actual fluctuations of the subscribers’ activity.
Indeed, many novel architectural paradigms aim at enabling the dynamic manage-
ment of system resources, across multiple network functions at the network edge or
core [21, 24,25].

1.2 Landscape

In the section above, we described the concept of a network slice, but we did not
provide details about how they run. As it can be seen in Figure 1.2, a Network Slice
Instance operates on top of a shared infrastructure, which is composed of generic and
dedicated hardware resources.
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Figure 1.2. Network slicing conceptual outline [26]

We also introduce the NFV framework. However, the complexity of such a
paradigm is a challenge. As depicted in Figure 1.3, we can divide it into the following
blocks:
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• Network Functions Virtualization Infrastructure (NFVI), which contains both
the hardware that allocates the Virtual Machines (VMs) and the program that
allows to virtualize resources.

• Virtual Network Function (VNF), which uses the VMs from the NFVI block.
Moreover, it adds the required software upon the VNFs.

• Management and Orchestration (MANO), which is a disconnected block in
the architecture that interacts with both NFVI and VNF blocks. Here, all
the resource management base is delegated (including the space reservation,
creation, and deletion of the VMs).

Furthermore, there are additional elements to manage and control multiple slices.
For instance, the Software-Defined Mobile network Coordinator (SDM-X) is required
in order to ensure high resource efficiency and individual Service Level Agreements
(SLAs)whenmanynetwork slices shareNetworkFunctions (NFs). Another important
entity is the Software-Defined Mobile network Control (SDM-C), on which network
slices rely. It includes not only virtual NFs, but also physical ones [27].

Figure 1.3. Schema of 5G network layers [27]

Considering that all the functions should run over the RAN, the protocol
stack needs a re-design. Some implementations showed a low performance when
computational outages occur [28], but recent studies [29] provide solutions with a
better performance and temporarily limited computational resources in a virtualized
RAN. Hence, the real problem comes with the nature of the services in the network.

According to the International Telecommunication Union (ITU) [30], the envi-
sioned services instantiated in a specific network slice are: Enhanced Mobile Broad-
band (eMBB), massive Machine Type Communication (mMTC), and Ultra Reliable
Low Latency Communication (URLLC). Since slices may serve heterogeneous ser-
vices within the same infrastructure, different telecommunication services (arranged
to a single slice) can be configured separately taking into account their unique char-
acteristics. In addition, as slices run on a shared infrastructure, their cost-efficient
customization is allowed via the cloudified network.

From a system standpoint, the technology needed to support the different types of
slices is well understood or even already available. For instance, several cloud resource
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orchestrators exist for both commercial and open-source telco-cloud platforms [31];
similarly, traditional tools for network management are insufficient for the amount of
data flowing through the network and the difficulties in forecasting the behavior of
a system involving many different slices. Therefore, a variety of solutions has been
proposed for the dynamic allocation of resources across network slices [32]. However,
multiplexing efficiency regarding resource management has not been deeply explored
with real data and the parameters that may be needed for reconfiguration.

Thus, a network slicing framework should define novel algorithms to efficiently
manage the infrastructure resources, sharing them between the different slices while
guaranteeing that the requirements of each slice are met.

1.3 Objectives and contributions

As described above, it is required to understand service demands as well as the distinct
requirements of each of them for a proper network slice definition. It is also imperative
to analyze the trade-offs between network efficiency, complexity and customization of
such services as close to reality as possible. In this way, operators will be able take
informed decisions on how to orchestrate future networks.

This doctoral thesis is a first step to address these questions with a data-driven
approach. Firstly, it includes an analysis ofmobile services given their spatio-temporal
and frequency characteristics. Secondly, it describes two algorithms that allow to
efficiently manage the network resources by means of network slices. Our overall
contributions are as follows:

1. Spatio-temporal analysis. Individual mobile services are inspectioned at a
national scale, by studying data collected in a 3G/4G mobile network deployed
over a major European country. Through correlation and clustering analyses,
our study unveils a strong heterogeneity in the demand for different mobile
services, both in time and space. In particular, we show that: (i) somehow
surprisingly, almost all considered services exhibit quite different temporal usage
patterns; (ii) in contrast to such temporal behavior, spatial patterns are fairly
uniform across all services; (iii) when looking at usage patterns at different
locations, the average traffic volume per user is dependent on the urbanization
level, yet its temporal dynamics are not. Last but not least, our findings do not
only have sociological implications, but are also relevant to the orchestration of
network resources.

2. Spectral analysis. In the context of heterogeneity derived by the analysis
above, in order to find common patterns across services, we hinge upon a spectral
analysis framework, by computing Discrete Fourier Transform (DFTs) of the
typical demands for tens of popular mobile services observed in an operational
metropolitan-scale network. We filter, cluster, and analyse hundreds of
frequency components, and identify a substantial set of regular patterns that
are common across most service demands. We also unveil how several mobile
services defy classification, and have instead highly distinguishing temporal
dynamics.

3. Hybrid time-frequency analysis. As shown in the previous contributions,
mobile traffic time-series could be transformed and decomposed in order to
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find proper clusterization approaches. In order to exploit the conciseness of
frequency analysis and the expressiveness of the temporal analysis, we followed
an hybrid approach and we apply the wavelet transformation to extract relevant
features both in the time and frequency domain of a collection of differentmobile
services. This approach allows to extract their information without losing
the connection between these two dimensions. Then, we apply unsupervised
clustering algorithms to the relevant features in order to classify the behaviour
and be able to provide recommendations on how to allocate network resources
for distinct clusters.

4. First cost-efficient customization algorithm. As the economic sustain-
ability of future mobile networks will largely depend on the strong specialization
of its offered services, network operators will need to provide added value to their
tenants, by moving from the traditional one-size-fits-all strategy to a set of vir-
tual end-to-end instances of a common physical infrastructure (i.e., network
slices). We provide a first empirical investigation of the trade-off between: (i)
the need for fully dedicated resources to support service customization, and (ii)
the dynamic resource sharing among services to increase resource efficiency and
cost-effectiveness of the system in network slicing scenarios. Building on sub-
stantial measurement data collected in an operational mobile network (i) we
quantify the efficiency gap introduced by non-reconfigurable allocation strate-
gies of different kinds of resources, from radio access to the core of the network,
and (ii) we quantify the advantages of their dynamic orchestration at different
timescales. Our results provide insights on the achievable efficiency of network
slicing architectures, their dimensioning, and their interplay with resource man-
agement algorithms.

5. Waterfilling algorithm. Implementing network slicing has significant
consequences in terms of resource management, as we showed with the previous
algorithm. In this case, we adopt a novel data-driven approach to quantify
the efficiency of resource sharing in future sliced networks under overbooking
conditions, and we compare it to the previous one. Service customization
entails assigning to each slice fully dedicated resources, which may also be
dynamically reassigned and overbooked in order to increase the cost-efficiency
of the system. Building on metropolitan-scale real-world traffic measurements,
we carry out an extensive parametric analysis that highlights how diverse
performance guarantees, technological settings, and slice configurations impact
the resource utilization at different levels of the infrastructure in presence of
network slicing.

The result of such contributions were published in the following publications. The
first contribution was published in Proceedings of the 13th International Conference
on Emerging Networking EXperiments and Technologies (ACM CoNEXT) 2017,
indexed in COmputing Research and Education (CORE) A ranking. The second
one was recently published in the 18th Mediterranean Communication and Computer
Networking Conference (IEEE MedComNet) 2020. The third contribution belongs
to a working paper under preparation. The fourth one was published in Proceedings
of the 24th Annual International Conference on Mobile Computing and Networking
(ACM MobiCom 2018), indexed in CORE A* ranking. Finally, the last contribution
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was published in IEEE Transactions on Network and Service Management (IEEE
TNSM) 2019 as a special issue on Novel Techniques in Big Data Analytics for
Management, indexed in Journal Citation Reports (JCR).

1.4 Outline of the thesis

This thesis is divided in 7 chapters, plus the references. The chosen structure facilitates
the reading comprehension and the achievement of the distinct objectives according
to the following order:

• Chapter 1: Introduction. It describes current trends, motivations, tech-
nologies and challenges of the research field of interest. The structure of the
thesis is summarized.

• Chapter 2: State of art. This chapter addresses the global framework for
network slicing, providing the expected 5G agenda. It continues with an
explanation about the network slicing strategies for 5G networks, the related
work of Data Analysis studies, as well as a section with relevant information
about the guaranteed legal usage of users’ data in this research. We finish this
chapter adding a brief section on security .

• Chapter 3: Spatio-temporal analysis. It starts describing the data
employed. It continues with an overview of the mobile services extracted.
Finally, the temporal and spatial clustering results are presented and discussed.

• Chapter 4: Spectral analysis. This chapter introduces a new methodology
to cluster mobile services. In order to do so, we describe a preprocessing of the
data. Then, the most relevant components are filtered for clustering purposes.
After that, the commonalities and outliers in mobile services are reviewed.

• Chapter 5: Hybrid time-frequency analysis. Firstly, the wavelet repre-
sentation is described. Secondly, a new methodology is introduced to charac-
terize mobile services. Thirdly, a clusterization is applied over the new charac-
terization data. Finally, we examine the same methodology over a region where
services are distributed over a number of clusters in a specific area.

• Chapter 6: Data-driven resource management. In this chapter, we
explore two data-driven algorithms that explore the trade-off between service
customization and resource efficiency in network slicing scenarios. Once these
scenarios are defined, the metrics and slice specification are described. Next, we
explore some settings that allow to understand the relation between several
variables, such as number of slices or time window, for static and dynamic
resource orchestrated configurations.

• Chapter 7: Conclusions and future work. It draws the most important
conclusions of the aforementioned research and future lines of work.
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As mentioned in Chapter 1, it is now commonly agreed that current networks
will experience a change of paradigm in order to achieve the goals set for 5G mobile
networks. To this end, they will be built upon the network slicing concept, that
encompasses with it many other network changes.

In the first section, this Chapter defines the distinct key concepts of the 5G
agenda and the motivation for network slicing. In the second section we describe
the considered network architecture to define distinct network slices. Next, since our
data comes from a European Operator, we address the related work associated with
mobile phone data and the possible legal issues associated to such data in our work.
Finally, the last section explores briefly the network security concerns about this new
digital era.

2.1 5G technology

Current trends in mobile networks point towards a strong diversification of services,
which are characterized by increasingly heterogeneous KPI and QoS requirements.
This tendency is driving the design of 5Gnetworks thatwill eventually have to support,
e.g., the Internet of Things (IoT) with ultra-low rate communication from a massive
number of devices, automotive and tactile applications with millisecond latencies,
industrial communications with extreme reliability, and virtual/augmented reality
services with very high data rates.

However, clear needs for tailored KPI and QoS requirements are already evident
in today’s mobile services, which encompass, e.g., high-quality video streaming,
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machine-type communication, low-latency mobile gaming, jointly with best effort
traffic. Unfortunately, current mobile network architectures [33] lack the necessary
flexibility to meet the extreme requirements imposed by such services.

This situation is pushing independent initiatives to address the problem. 3rd
Generation Partnership Project (3GPP) has developed an Internet of Things (IoT)-
specific Medium Access Control (MAC) that co-exists with the legacy general-
purpose MAC layer [34]. Network deployments in industrial environments rely
on proprietary architectures that ensure reliability levels not attainable with
public mobile networks [35]. Google has started to deploy its own radio access
infrastructure and proprietary transit networks to run its many services under hard
QoS guarantees [36].

While the scope of thementioned solutions is clearly limited, they do show the need
for customized network support even with present-day traffic. They also substantiate
the well-established vision that several network instances, each devoted to a specific
set of services, have to co-exist in the same infrastructure in order to satisfy the KPI
and QoS requirements of current and future mobile applications.

The agenda for 5Gnetworks is to achieve this via somediversification of the physical
network, andmainly via network virtualization, which evolves the traditional hardbox
paradigm into a cloudified architecture where the once hardware-based network
functions (e.g., spectrum management, baseband processing, mobility management)
are implemented as software VNFs running on a general-purpose telco-cloud. Network
virtualization enables the deployment of multiple virtual instances of the complete
network, named network slices.

Slices are then easily customized by tuning the functionality and location of VNFs.
They thus create on top of the physical infrastructure a set of logical networks,
each tailored to accommodate fine-tuned SLA reflecting the needs of different service
providers.

2.2 Network slicing strategies

Even though we have already defined what a network slice is, and its context in future
networks, the possible strategies are a topic we need to describe to fully understand
our research. Since we have in mind the full picture of the new generation of networks
described in Chapter 1, we can focus on network slicing.

Network slicing has profound implications on resource management. When
instantiating a slice, an operator needs to allocate sufficient computational and
communication resources to its VNFs. In some cases, these resources may be
dedicated, becoming inaccessible to other slices [37]. Alternatively, smart assignment
algorithms can be employed to dynamically allocate resources to slices based on the
time-varying demands of tenants [38, 39]. This grants the flexibility to modify the
share of resources assigned to each tenant, multiplexing logical slices into software
or hardware assets while trying to abide by tenant requirements. However, such
algorithms introduce additional complexity, and may in some cases hinder resource
isolation, the corresponding guarantees to tenants, and/or the ability to deploy fully
customized slices.

The above shows that there is an inherent trade-off among: (i) service
customization, which favours the deployment of specialized slices with tailored
functions for each service and, possibly, dedicated and guaranteed resources; (ii)
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Figure 2.1. Network slicing strategies.

resource management efficiency, which increases by dynamically sharing the resources
of the common infrastructure among the different services and slices; and, (iii) system
complexity, resulting from deploying more dynamic resource allocation mechanisms
that provide higher efficiency at the cost of employing elaborate operation and
maintenance functions [40].

The above trade-off is fundamentally affected by the strategy adopted to
implement network slicing, as illustrated inFigure 2.1. In its simplest realization, slices
are limited to the core network (type-A slice in Figure 2.1): the allocation of resources
to slices only involves cloud resources, andmostly becomes a VM or container resource
assignment problem [32]. In this case, the level of service customization granted by
slices is low, since it is restricted to core network functions; yet, high efficiency can be
achieved at low complexity, as a large portion of the network remains shared among
all services and tenants.

More dependable slicing would offer customized functions, possibly involving
dedicated resources, also at the radio access, through, e.g., Cloud/Centralized Radio
Access Network (C-RAN) paradigms. Here, basic radio-access slices allow for tailored
MAC-layer scheduling [41] across a large number of antennas (type-B slice). Moving
down the protocol stack, advanced slices implement customized baseband processing
(i.e., encoding and decoding operations) in the Base Band Units (BBUs), possibly
providing tenants with a guaranteed bandwidth at the air interface (type-C slice).
These approaches provide the ability to customize scheduling strategies, but at the
same time they reduce the possibility of radio resource sharing and/or increase the
system complexity.

At fronthaul, resource isolation becomes a hardware problem [42]. A first case for
slicing is one where tenants share antenna sites but are granted their own dedicated
spectrum (type-D slice); we have virtually independent protocol stacks and full
isolation, and sharing is limited to the physical hardware. Otherwise, tenants may
require dedicated end-to-end resources down to the antennas (type-E slice); this results
into slices that tell apart full, end-to-end virtual networks.

In general, slicing strategies at the higher network layers provide a lower level of
customization yet they can more easily achieve efficient resource sharing without
additional complexity. Indeed, when slicing occurs at high layers (e.g., type-A),
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the operator cannot offer full customization, but can easily employ highly dynamic
allocation schemes for the lower layers; in contrast, achieving such an efficient resource
allocation is much more challenging when considering network slicing schemes with
stringent customization requirements (i.e., strategies involving the lower layers down
to type-E slicing). For instance, when all slices have a commonMAC layer, an efficient
sharing of radio resources is easy, yet MAC is not tailored to their different needs;
conversely, if each slice implements a different, customized MAC protocol, it is more
difficult to efficiently share radio resources.

However, the implications of network slicing in terms of efficiency of network
resource utilization are still not well understood. Efficiency intuitively grows as
one moves away from the radio access infrastructure (type-E slicing) towards the
network core (type-A slicing); but we lack any more detailed characterization of the
aforementioned trade-offs between customization, efficiency, and complexity. This is
an important gap, since insights on the efficiency gains in network slicing are crucial to
take informed decision on resource configuration strategies: if efficiency is preserved
with solutions that assign resources to slices more or less statically, high customization
levels can be achieved at a reduced complexity; however, if the price in efficiency is
high, more elaborate (and expensive) solutions may be desirable.

To the best of our knowledge, this thesis presents the first work tackling the
empirical assessment of network slicing in real-world networks. We believe that the
insights it provides can be used as rule of thumb to evaluate the solution space for
smart resource assignment algorithms and infrastructure dimensioning.

For instance, our results show that efficiency gains are very high in the edge,
where employing technologies that allow for dynamic resource allocation provides a
high reward; in contrast, gains are much reduced in the core, where complex, highly
flexible reconfiguration schemes may not always pay off. Mobile network operators
should thus be aware that isolating slices at the radio access may have a high cost
in terms of efficiency, and that network slicing should be combined with solutions for
dynamic orchestration of resources, at least at the network edge.

2.3 Related work for data analysis

As described in Chapter 1, related work that analyzes real-world mobile traffic data is
scarce. In fact, the vast majority of analyses of cellular traffic builds on measurements
and accounting data of voice calling and texting activities, such as Call Detail Records
(CDRs); a thorough review is in [43]. Also, a number of works have investigated the
properties of mobile data traffic from a high-level perspective, aggregating the load of
all services [44–46]. The approaches above allow inferring important information on
the communication patterns of users and on the overall data traffic they generate, but
clearly do not explore subscribers’ behavior on a per-service basis.

The literature becomes fairly thin when considering the usage of specific mobile
services. Previous works have almost exclusively addressed the traffic dynamics of
broad service categories (e.g., video or chat) that encompass all mobile services of
a kind. Service categories were proven to display interesting properties, including
strong locality [17,47,48], high predictability [49], and adoption by well-outlined user
groups [50, 51]. However, such broad categories hide the peculiarities of each service
that, as we show in the following sections, are not negligible and deserve a dedicated
investigation.
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Considering individual mobile services (e.g., YouTube or WhatsApp), they have
been studied in isolation [52,53], or within the scope of single categories such as video
streaming [54] and mobile cloud [55]. As far as we know, the only work to consider a
huge number of heterogeneous mobile services at once is that in [22]. There, the aim
is comparing cellular and wireline traffic statistics for a relatively small (20-50,000)
user population: both the purpose and the scale of the analysis are sensibly different
from ours.

In contrast to the literature, in this work we analyze fine-grained service
consumption from a European country. The dataset we employ in our study was
collected in the core network of Orange, a major European mobile operator with a
national market share of around 30%. We describe in each chapter the particularities
of the studied data, since the relevant details vary as we focus on different aspects of
the data according to the goal of each chapter.

2.4 Privacy, ethics and legal issues

We remark that our study abides by high ethical standards. All data collection,
processing, and storage procedures at Orange were carried out in compliance with
applicable regulations, including the European Commission (EC) General Data
Protection Regulation (GDPR) [56]. These activities were supervised by the Orange
Data Privacy Officer (DPO) as well as by the Commission Nationale de l’Informatique
et desLibertés (CNIL), theFrenchnational body ensuring privacy in personal data use.
Researchers outside theOrange premises only had access to traffic volumes aggregated
at the antenna level over hundreds of users, which do not qualify as personal data and
do not entail privacy risks.

2.5 Network security

Experts claim that network security is not horizontal anymore, but rather orthogonal
to the network topology. Classical networks only allow to apply network security at
the Layer 3 boundary (e.g., using a firewall or router), but recent techniques such as
Virtual Local Area Network (VLAN) stitching have enabled the use of transparent
firewalls. In addition, using OpenStack Neutron networking [57] makes possible to
provision security zones and protect application tiers using security groups rather than
dedicated Layer 2 networks .

We allege that the the isolation between slices is the critical security issue related
to slices. Nevertheless, Next Generation Mobile Networks (NGMN) already mention
a list of key security concerns beyond isolation in [58]. Additionally, the work in
Technical Reports [59,60] undertakes security areas in 5Gnetworks, and a full foresight
of this dimension is addressed in [61].

5G architectures will have to provide at least the same security features than
the previous Long Term Evolution (LTE) technology (e.g., privacy and integrity in
telecommunications, robust NFs, controlled access to admissible users). Besides, the
virtualization framework has some risks associated, as compromised VNFs can affect
others through the hypervisor, not only due to software bugs, but also because of
hardware design failures.

Since monitoring or reporting slice security is an open field, it is still a challenge
to ensure trust and consistent security policies between providers and tenants.
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Nonetheless, in addition to other underlying framework, a dedicated slice for ”control
and management” of slice inter-dependencies may be needed [62].

As a remark, we provide these references in case the reader is interested in the
security aspects, since security aspects are beyond the scope of this thesis.
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As a first step towards understanding and exploiting data collected by mobile
networks, we are interested in comparing the traffic demand patterns of different
mobile services, exploring eventual common behaviors at a national scale and in two
residential areas. Previous research on this topic unveiled that mobile apps tend to
yield fairly comparable geographical pattern of consumption at national or regional
scales [63], as wewill observe. However, the same does not hold for temporal dynamics:
apps have very diverse time series and even apps belonging to the same class feature
unique combinations of activity peaks. This makes any attempt at clustering mobile
services along a time dimension, as we will see in Section 3.3.

The characterization of mobile service consumption carried out in this work is
also relevant to disciplines beyond networking. In fact, it allows observing social
phenomena at unprecedented scales, unveiling interplays between the digital and
physical worlds that are relevant to, e.g., urban development [10] or planning [5, 11].

Hence, in this chapter we analyze fine-grained service consumption from a
nationwide dataset. Our analysis is divided in four sections. First, we describe
the dataset in Section 3.1, then we perform an analysis of all the services behavior
3.2. In Section 3.3 we explore the service time dynamics, and finally we present the
geographical insights in Section 3.4.

3.1 Measurements and dataset

The dataset we employ in our study was collected in the core network of Orange, a
major European mobile operator. It describes the mobile traffic generated by the
whole Orange subscriber base in France, i.e., a user population of approximately 30
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million individuals distributed over more than 550,000 km2. The data cover one week,
starting on September 24, 2016. The time frame allows capturing the vast majority of
mobile trafficdynamics, which are known to occur overweekly timescales [49,50], while
avoiding that the dataset size becomes unmanageable. To maximise the generality
of our results, the measurement week was carefully selected so as to avoid major
nationwide events like holidays or strikes.

A simplified representation of the Orange 3G/4G mobile network architecture
is portrayed in Figure 3.1. The Figure is limited to the 3G Universal Mobile
Telecommunications System Terrestrial Radio Access Network (UTRAN) and packet
switched core, and to the 4G Evolved Universal Mobile Telecommunications System
Terrestrial Radio Access Network (EUTRAN) and evolved packet core, as our focus
is on data traffic. The data were recorded by passive probes at the Gn and S5/S8
interfaces of the Gateway GPRS Support Node (GGSN) and of the Packet Data
Network (PDN) Gateway (P-GW). The 3G and 4G gateways are conveniently co-
located, which eases the probe deployment, management and synchronization. The
probes inspect IP traffic on the GPRS Tunneling Protocol User (GTP-U), and extract
information on the transport- and application-layer protocols of each user session. The
specific mobile service associated to each IP session is detected by the mobile network
operator via Deep Packet Inspection (DPI) and multiple fingerprinting techniques,
each tailored to a specific traffic type. These operations can classify 88% of the mobile
traffic; however, their implementation is proprietary to the mobile network operator,
which prevents us from providing further details1.

Figure 3.1. Simplified 3G/4G mobile network.

Geo-referencing of the IP sessions, and of the corresponding mobile service usages,
is performed by examining the User Location Information (ULI) contained in the
3G Packet Data Protocol (PDP) Contexts and 4G Evolved Packet System (EPS)
Bearers. These data structures are transferred over the GPRS Tunneling Protocol
Control (GTP-C), which also transits through Gn and S5/S8 interfaces, making their
inspection straightforward. The localization granted by this approach is fairly coarse,
since the ULI is updated upon possibly infrequent events, i.e., the establishment of

1Due to similar confidentiality restrictions, we do not disclose the absolute values of traffic
volumes in the document, and limit our analysis to percentages of the total demand.
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a new IP session, and handovers across access technologies (2.5G, 3G, 4G, Wireless
Fidelity (Wi-Fi)) or Routing/Tracking Areas (RA/TA).

This limits the spatial accuracy of the dataset. As prior analyses showed that
the median error of ULI is around 3 km [17], in our study we consider an appropriate
tessellation of space at the level of communes. These are over 36,000 administrative
regions whose union covers the whole France, and whose average surface is around
16 km2. We thus associate each base station to the commune where it is deployed,
and aggregate at the commune level all traffic mapped by ULI to base stations in that
commune.

An issue with this process was that a number of rural communes have in fact
no associated base stations, since coverage is provided by base stations deployed
in neighboring communes. To avoid biases due to gaps in the spatial distribution,
we evened out traffic in rural areas via Stewart potential model [64]. The model,
commonly used in geography to estimate the reciprocal influence of spatial areas,
was run on the set of communes with none to three base stations. The resulting re-
distribution effectively poises demands across rural areas, while conserving the global
traffic volume of each service in such regions.

3.2 Mobile services overview

The dataset contains information about over 500 mobile services that generate some
traffic during the measurement period. Figure 3.2 shows their ranking on the
normalized traffic volume, in downlink and uplink. In both cases, rankings for the
top half of services fit Zipf’s distributions with similar parameters, at 1.69 and 1.55
respectively, before a cut-off intervenes that separates the bottom half of services.

1 5 10 50 100
Service rank

10−10

10−6
10−4
10−2

1

N
or

m
al

iz
ed

Tr
af

fic

Traffic
Zipf’s with parameter -1.69

1 5 10 50 100
Service rank

10−10

10−6

10−4

10−2

Tr
af

fic

Traffic
Zipf’s with parameter -1.55

Figure 3.2. Ranking of mobile services on downlink (top) and uplink (bottom) traffic
volume.

When comparing this plot to the equivalent one in [49], referring to 3G traffic
measured in a US state in 2010, we remark that: (i) as in [49], the per-service traffic
volumes span around 10 orders of magnitude, denoting a strong imbalance among

16



3 SPATIO-TEMPORAL ANALYSIS

service loads; (ii) however, the distribution of traffic volume differs significantly from
that in [49]: as mentioned before, only the top half of the services follows a Zipf
distribution, and furthermore this Zipf distribution exhibits much lower parameters
than the 4.74 value recorded in [49]. This latter observation highlights how per-service
mobile traffic has evolved over the past six years: top-ranked applications now share
more evenly the global demand, but a large number of very low-traffic services has
also emerged.

In this study, we focus on the head of the distribution, which is composed of 20
representative services summarized in Figure 3.3. This subset ofmobile services covers
a large fraction (over 60%) of the overall network traffic and spans across a variety of
service categories with diverse requirements in terms of network performance, such as
video streaming, gaming, and social networks. The plots list the services (names on
bars), categorized (colors of bars, as per the legend) and ranked on the relative traffic
volume they generate.
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Figure 3.3. Selected mobile services, ranked on downlink (top) and uplink (bottom)
traffic volume.

In downlink, video streaming services tend to dominate mobile downloads, with
an aggregate figure at over 46% of the total traffic. This is a non-negligible increase
over the 36% performance recorded six years ago in downstream cellular traffic [54].
It is also quite a different value from the 60% reported by Cisco2 in their yearly
forecast [65], for both cellular andWi-Fi traffic: this lets us speculate that subscribers

2Cisco statistics refer to the aggregate downlink and uplink traffic. However, the latter accounts
for less than one twentieth of the total network load in our case, hence it does not affect our
conclusions.

17



3 SPATIO-TEMPORAL ANALYSIS

may drastically reduce access to video streaming services whenWi-Fi is not available.
YouTube emerges as the dominant provider, followed at a distance by iTunes.

Things change significantly in the uplink direction. Here, social networks and
messaging services occupy the top three positions. This is not surprising, since services
such as SnapChat and Facebook are oriented at content-sharing within limited circles
(e.g., of friends or contacts). Such a small potential audience of the content reduces
the number of visualizations for the published material, ultimately resulting in high
upstream-to-downstream traffic ratios.

3.3 Nationwide time dynamics

Our first goal is investigating the temporal dynamics of different mobile services. We
focus on traffic at the national scale, aggregating the weekly demand for each service
in space, over all communes.

Examples of the resulting time series are shown in Figure 3.4, for four sample
mobile services in downlink. In all cases, classic patterns can be observed, i.e., higher
diurnal activity versus much reduced overnight traffic, and a distinctive dichotomy
between weekends and working days. In addition, the time series of each service is
characterized by a variety of fluctuations. For instance, the first plot in Figure 3.4,
which refers to Facebook, displays amajor traffic peak atmidday of working days, plus
several other minor peaks. However, other services in Figure 3.4 show other traffic
peak arrangements.

Facebook SnapChat

Sat Sun Mon Tue Wed Thu Fri
Netflix

Sat Sun Mon Tue Wed Thu Fri
Apple Store

Figure 3.4. Sample time series of mobile services: vertical lines highlight activity
peaks detected in the time series by the smoothed z-score algorithm.

Motivated by this last observation, we study how similar are the temporal patterns
of mobile service usages in the whole France. Our aim is understanding whether the
diversity of behaviors holds in general or is specific to the services considered in Figure
3.3.

We first make an attempt at grouping our 20 selected services based on similarity
of their time series. Even if the original number of services is limited, a simple visual
inspection of their time series can lead to subjective observations, challenging the
validity and reproducibility of conclusions. We thus favor a sounder approach, and
relay on a suitable clustering algorithm to carry out the classification task. Our choice
is k-shape, which is the current state-of-the-art unsupervised technique for time series
clustering, as proven by extensive tests [66]. We then carry out an exhaustive search for
mobile service clusters, by testing k-shape on all possible values of k, in combination
with multiple indices of clustering quality.

The latter are the Davies-Bouldin, modified Davies-Bouldin (top, minimum is
best) and Dunn, Silhouette (bottom, maximum is best) indices , which constitute
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a representative selection of popular indices used in the literature to rank different
cluster sets generated from the same original elements [67]. Unfortunately, the
outcome is inconclusive. As shown in Figure 3.5, none of the indices pinpoints a
value of k as a clear winner. Instead, all indices indicate steadily decreasing clustering
quality as k grows. Also, a thorough manual examination of the internal structure
of the clusters generated by k-shape for different k does not reveal any consistent
grouping of mobile services. We interpret these results as an indication that the
temporal dynamics of our considered mobile services may be very distinctive, which
makes them not easily equated.
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Figure 3.5. Clustering quality indices versus the cluster number, in downlink (left)
and uplink (right).

The observations from Figure 3.4 suggest that the cause for the above behaviour
may lie in the different patterns of activity peaks that characterize each service. In
order to verify this possibility, we detect the activity peaks in the per-service time
series using the smoothed z-score algorithm3. It compares the original signal versus
a smoothed version of its z-score, and tags values higher than a threshold as peaks.
It takes three parameters, controlling the threshold value (threshold) and the z-score
smoothing, via the interval of past samples (lag) and their weight with respect to the
current sample (influence). We set these parameters to 3 z-scores, 2 hours and 0.4,
respectively, upon an extensive tuning process. An illustration of smoothed z-score
peak detection is provided in Figure 3.6, for the Facebook case.

Traffic
Smoothed
Threshold

We Wd

Peaks

Figure 3.6. Example of smoothed z-score algorithm operation: Facebook.

3Implementation available at https://gist.github.com/ximeg/.
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The top plot portrays the original signal, its smoothed version, and the range
around it determined by the z-score threshold: when the original signal exceeds the
range boundaries, a peak is detected in the bottom plot.

Examples of peaks inferred by the smoothed z-score are in the plots of Figure 3.4,
where vertical red lines denote the rising front of peaks. Interestingly, by applying
this methodology to all mobile services, we find that peaks only appear at seven
specific moments during the week: at midday (around 1pm) and evenings (9pm)
during weekends, and during the morning commuting time (8am), morning break
(10am), midday (1pm), afternoon commuting time (6pm) and evenings (9pm) during
working days.

This lets us summarize the peak patterns observed for all services as done in Figure
3.7. In this Figure, each sector refers to one mobile service, and each ring to a different
topical time, as per the legend. We remark that: (i) individual services tend to have
very diverse patterns even when looking only at when they show peaks of activity; (ii)
this heterogeneity also separates services that belong to a same category, e.g., video
streaming behaves quite differently in YouTube, Facebook, Instagram, NetFlix and
iTunes platforms.
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Figure 3.7. Activity peak times of mobile services.

Other specific behaviors have interesting implications. For instance, almost all
services show increased usage on midday of working days. Similarly, large (different)
sets of services have activity peaks during the afternoon commuting time and during
weekend evenings. In all these cases, the increased usage affects services of various
nature, indicating that subscribers with different interests all tend to consume mobile
services at those times. On the contrary, we speculate that morning break activity
peaksmay highlight services that are popular among students, who access themduring
the pause between classes: coherently, these include SnapChat, Instagram, Facebook,
and Twitter.

Figure 3.8 offers an in-depth view of the activity peaks: it displays, for each topical
time, the actual activity peak intensity of every service. This is computed as the
ratio between the maximum and minimum traffic volumes recorded during the peak
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intervals as detected by the smoothed z-score algorithm. The key observation here is
that services with demand peaks at a same time in fact undergo very diverse variations
of activity.

Overall, the diversity of activity peaks, both in timing and intensity, corroborates
the intuition that temporal fluctuations in the usage of individual mobile services are
very heterogeneous. These results explain the poor outcome of a clustering based on
time series, and ultimately demonstrate how eachmobile service has unique dynamics,
dictated by the classes of subscribers consuming it.
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Figure 3.8. Peak-to-average ratiosmeasured for eachmobile service at different topical
times.
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3.4 Service usage geography

Mobile services show significant peaks of activity not only in time, but also in space. An
example is provided in Figure 3.9 for the specific case of Twitter. The left plot shows
the cumulative weekly downlink and uplink traffic recorded in the ranked communes.
We observe that the top 1% and 10% of the communes generate over 50% and 90% of
the Twitter traffic, respectively.

The strong imbalance in the demand recorded across communes is expected,
considering the high heterogeneity of population density that characterizes France.
What is less obvious is that such variability remains strong also when considering the
average traffic generated by a subscriber, obtained as the ratio of the traffic volume
to the average number of users in each commune. The right plot in Figure 3.9 shows
the Cumulative Density Function (CDF) of the per-subscriber Twitter usage over all
communes. The distribution is highly skewed: subscribers in half of the communes
consume a negligible weekly Twitter load of a few 1 Kbytes, whereas users in other
areas download tens of Mbytes of Twitter contents per week. Basically, individual
mobile users who live in distinct areas of France tend to use Twitter services in very
different quantity.
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Figure 3.9. Cumulative traffic on ranked communes (left). CDF of per-subscriber
traffic on all communes (right).

The left plot in Figure 3.12 reports a map of the weekly per-subscriber Twitter
traffic in downlink, and helps to visualize this phenomenon. The map evidences
how users living in large cities (e.g., Paris, Lyon and Marseille) and traveling along
major transportation arteries (e.g., the high-speed ”Train à Grande Vitesse” train
(TGV) lines connecting the three cities above) tend to generate significant demands.
Instead, subscribers in rural areas located far from major cities and transportation
infrastructures are prone to make little use of mobile services.

The considerations above refer toTwitter, but they are valid for anymobile service.
This is shown in Figures 3.10 and 3.11. The plot in Figure 3.10 is a CDF of the
geographical correlation of mobile service usage: we represent each mobile service as
a vector of the weekly per-subscriber traffic recorded in each commune, and compute
the coefficient of determination between the vectors of each pair of services. The
majority of values in the CDF are strongly positive, with an average of 0.60 and 0.53
for downlink and uplink respectively.

The plots in 3.11 detail the correlation among specific service pairs: low
correlations are only experienced with NetFlix (almost completely absent in rural
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Figure 3.10. Pearsons’ r2 CDF computed between the per-user traffic maps of all
service pairs.

areas) and iCloud (pushing uplink data from all iPhones, and thus more uniformly
distributed over the country). These outlier cases apart, our results let us conclude
that mobile services tend to be consumed similarly over the French territory (see
Figure 3.12). Such mobile data consumption features geographical distributions of
the per-user traffic that are highly skewed, as in Figure 3.9, with subscribers within
cities and on inter-city routes that tend to be more active than those in other areas,
as per the first plot (a) in Figure 3.12.

The second plot (b) in Figure 3.12 provides instead additional detail on the NetFlix
outlier, showing the corresponding map of weekly per-subscriber traffic. Densely
inhabited city centers and major transportation lines stand out much more clearly
than in the typical case, in the left plot (a) of the same figure. This occurs also because
NetFlix usage is dramatically low, or even absent, in large regions of rural France. We
partly ascribe such a strong duality of adoption to the high-end nature of NetFlix as
a mobile service, with users in cities more prone to embrace novel applications. In
addition, the NetFlix case also gives us the opportunity to discuss how the mobile
network technology is an important factor that can further explain the success of
specific services. Streaming high-quality long-duration videos requires substantial
capacity and quality of service, and indeed the 3G and 4G coverage in France, in the
bottom-right plot of Figure 3.12, seems to drive NetFlix usage over the country. In
the case of other services, such as Twitter, the spatial distribution is more uniform;
when looking at the 3G and 4G coverage, this suggests that (pervasive) 3G already
provides sufficient performance, and makes demands less dependent on the cellular
technology.

In order to further explore the impact of urbanization on thewaymobile services are
consumed, we group communes in France into urban, semi-urban and rural, according
to classifications of theFrenchNational Institute of Statistics4; in addition, we consider
rural communes that are crossed by a high-speed train line into a separate TGV
category. We then aggregate all traffic recorded in the communes of a same group,
and investigate their relationships.

The top plot in Figure 3.13 summarizes, for each service, how much traffic is
generated by the average individual subscriber in semi-urban, rural and TGV regions

4https://www.insee.fr/fr/information/2115011
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Figure 3.11. Pairwise coefficients of Pearsons’ r2 for downlink (top) and uplink
(bottom).

with respect to a typical user located in a urban area of France. More precisely, each
bar represents the slope of the linear least square regression of per-subscriber time
series in urban and (from darker to lighter) semi-urban, rural and TGV regions. The
plot highlights that: (i) semi-urban and urban areas present similar individual service
usage levels, i.e., the coefficient is close to 1; (ii) subscribers in rural areas consume
around a half of the mobile service data than their counterparts in urban zones do;
(iii) users on high-speed trains generate on average twice or more the volume of traffic
of urban users.

Interestingly, all these results are fairly consistent across services. They unveil how
users in cities, from medium-sized towns to large metropolis, show equivalent mobile
services consumptions. On the other hand, urban mobile service consumptions are
twice as large as those of people living in the countryside, which may be covered by
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Figure 3.12. Maps of the average per-subscriber activity for downlink traffic.

3G connectivity only. That trend is exacerbated for passengers on high speed trains,
who are much more prone to use mobile services during their travels: rural communes
belonging to the TGV category show completely opposite relative consumption trends
when compared to non-TGV ones.

The bottom plot in Figure 3.13 assesses instead if the urbanization level plays a
role in when the typical subscriber access mobile services. The bars represent the
mean coefficient of determination between the time series of a same service recorded
in one type of region and those of the other types. Across the vast majority of services,
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Figure 3.13. Per-user traffic volume ratios among urbanization levels (top).
Correlation of per-user traffic time series among urbanization levels (bottom).

correlations are high for combinations involving urban, semi-urban and rural areas;
thus, we conclude that the level of urbanization has very little impact on the temporal
dynamics of service usage. Instead, subscribers on TGV have quite different temporal
patterns than users in the rest of France. We argue that the cause is a combination of
train schedules (constraining usages in time), and the intrinsic nature of some services
(e.g., TGV seats are probably not the best environment for adult websites browsing).
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Our previous analysis about the time and spatial components of the time-series
was useful to understand trends associated to mobile services, but a more automated
way of classifying them may be derived based on a frequency analysis. In fact, we
show that the spectral components reveal significant common properties in the time
series of data traffic generated by many diverse mobile services. Such shared traits
emerge in the form of periodicity in the demand fluctuations: we find that most apps
have activity peaks occurring at similar frequencies. Therefore, our results indicate
the existence of temporal regularities in the consumption of mobile services, which are
most likely driven by the frequency of the same underlying human routines. As such,
they are a first step towards a comprehensive classification of mobile service based on
how they are used in time.

The chapter is organized as follows. We present the new data in Section 4.1, and
detail preliminary denoising steps in Section 4.2. The spectral analysis of time series
inferred from such data is in Section 4.3. Section 4.4 presents the results of a dedicated
clustering of the harmonics returned by the spectral analysis.
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4.1 Dataset

Our analysis relies on measurement data collected in the mobile network of Orange
again, but in this occasion the data was recorded during three consecutive months in
Fall 2016, following the same methodology as in Section 3.1.

The dataset employed in our study describes mobile service traffic generated in the
metropolitan area of Paris, France. This is one of the largest conurbations in Europe,
covering an area of over 100 km2 and more than 2 million inhabitants. Orange had a
2016market penetration of around 34% in the region, hence our data are representative
of a large fraction of the local population. As aforementioned in the previous chapter,
we remark that the localization accuracy of ULI is known to be limited due to irregular
updates to the field; however, the typical precision, in the order of km [17], is sufficient
to correctly locate the traffic produced within a large city such as Paris. The data
have a temporal granularity of 5 minutes.

We focus our study on 37mobile services. The rationale for this choice is that traffic
volumes generated by mobile apps follow a well-studied power law [1, 49], hence only
a very limited set of services yield considerable demands that are worth investigating.
Our choice of mobile services includes heterogeneous applications that rank among
the top 50 in terms of traffic load, and encompass video and audio streaming (e.g.,
YouTube and iTunes), social media (e.g., Facebook and Instagram), messaging (e.g.,
Snapchat and WhatsApp), stores (e.g., Apple Store and Google Play), gaming (e.g.,
Pokemon Go and Supercell), as well as traffic generated by generic digital activities
(e.g., web browsing and electronic mail). Further details are in Section 6.5.1.

4.2 Preprocessing

Our analysis focuses on understanding typical patterns of mobile service demands.
The raw time series of app traffic recorded over three months definitely capture such
patterns, yet they also feature fast-varying noise (due to the inherent randomness
of user access), and long-timescale trends (due to, e.g., holiday periods or diverse
daylight intervals). In order to filter out such phenomena, and work with cleaner time
series, we preprocess the data, by computing a median week traffic demand for each
mobile service [11].

Let the demand for a given mobile service s be described by a three-month time
series ds(t), where t > 0 has a resolution matching some time unit, e.g., minutes. The
median week is an ordered vector ws = (ws

n), n ∈ [0, N − 1 = ⌊W/T ⌋) ⊂ Z, where
W is the duration of one week in the considered time unit, e.g., 10,080 in minutes,
and T is the duration of one time slot in the same unit. In our analysis we consider
five-minute time slots, hence T = 5. Each element of ws is expressed as:

ws
n = µ1/2

{︄
τ+T−1∑︂
t=τ

ds(t)
⃓⃓⃓ τ mod W

T
= n

}︄
, (1)

where the operator µ1/2 denotes the median of the value set in the argument.
Equation (1) divides each week into slots spanning T , and computes the overall traffic
observed for service s within each such slot; then, slot n of the median week ws is
assigned a single value ws

n equal to the median of (sum) values associated with the
n-th slot of each week.
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(b) Median week time series

Figure 4.1. Traffic time series generated by YouTube during four consecutive weeks,
and corresponding median week.

The preprocessing above has the effect of eliminating noise and seasonal effects and
returning a more accurate representation of the ordinary demand generated by each
mobile service. Note that we use the median instead of other statistical measures since
it is more robust to strong outliers that risk for instance to bias averages. Figure 4.1
shows an example of a three-month time series (a) in the target metropolitan area
compressed into a median week representation (b).

4.3 Frequency analysis

We employ Fourier decomposition on the time series presented before. We remark
that spectral methods have already been applied to mobile data traffic time series [5];
however, they were only used for data denoising and not for interpretation, and
considering aggregate traffic instead of service-level demands. Our approach allows
deriving the frequency spectra of mobile service demands, as outlined in Section 4.3.1,
and discuss how they decompose into harmonics of different importance, as set forth
in Section 4.3.2.

4.3.1 Service demand spectra

Fourier decomposition allows approximating complex time series as sums of simple
trigonometric functions. Specifically, since our median week representations describe
a discrete-time process over a finite interval, we apply a Discrete Fourier Transform
(DFT). Given the signal ws for service s, its DFT is a complex-valued function of
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discrete frequency, Xs = (Xs
k), k ∈ [0, N) ⊂ Z. The granularity of the DFT in the

frequency space is the reciprocal of the duration of the time signal, hence 1/(NT ) in
our case. Then, the k-th component of the DFT describes the value of the function at
frequency k/(NT ), as:

Xs
k =

N−1∑︂
n=0

ws
n exp

(︃
−i 2π
NT

kn

)︃
. (2)

The DFT is a linear and invertible operation, and the inverse DFT allows
reconstructing the time series from its DFT. Formally, the value of the median week
demand for service s at each time slot n can be derived from Xs as:

ws
n =

1

N

N−1∑︂
k=0

Xs
k exp

(︃
i
2π

NT
kn

)︃
. (3)

Intuitively, upon inversion, each DFT component translates to a sinusoidal function of
timewith frequency k/NT , and amplitude and phase described by the phasorXs

k. The
time series of s is expressed in Equation (3) as the sum of such sinusoidal functions.

We compute theDFTof all mobile service demands, so as to reveal their underlying
frequency components. TheDFT returnsN components for any given service s, where
N is typically large; however, these components have very different Xs

k values. As
mentioned above, these values embed the amplitude of the inverted sinusoidal function
for component k, and only components with sufficiently high amplitude contribute in
a significant manner to the original signal. In order to understand the importance of
each component for mobile service demand, we resort to the DFT power spectrum,
which is computed as |Xs|2 and describes the distribution of power across frequency
components.

Figure 4.2 shows a representative subset of the power spectra for a selection of
services. The spectra are centered at zero frequency, and the central value |Xs

0 |2 is
the power1 associated with the constant mean of the time series ws. As one moves
away from the central value, the spectra portray the power of increasingly higher
frequencies, up to (N − 1)/NT ∼ 1/T for large N . All plots in Figure 4.2 have very
similar shapes that highlight how the power spectra of median week traffic demands
are dominated by low-frequency components for all services: as highlighted by the
logarithmic ordinate, central frequencies have much higher |Xs

k|2 values. This implies
that the traffic demand for any service is strongly characterized by regular patterns
with periods in the order of hours and days.

Faster dynamics with periods in the order of tens of minutes or less have a much
reduced power. However, we also remark that the spectra flatten around the central
peak, indicating that the original signals are also fairly noisy, and all high-frequency
components are needed to perfectly reconstruct the time series.

1Note that power values in all figures are normalized with respect to the total signal power, so
as to make them more easily understood.
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Figure 4.2. Power spectra of the DFT of selected mobile services.

4.3.2 Component filtering

In order to provide better insights on themost important components, Figure 4.3 offers
a detailed view of the central frequencies of the spectra in Figure 4.2, for k ∈ [0, 50].
This is equivalent to looking at periodicities NT/k of roughly 4 hours or longer, as
marked on the abscissa. These plots make it clear that diversity exists even among
central components: for each service, specific frequencies have peaking |Xs

k|2 values,
i.e., are especially critical to the temporal dynamics of the demand.

Given that components have heterogeneous power, and the vast majority only
marginally contributes to the original signal, it makes sense to limit our analysis to a
subset of relevant components for each service. To this end, we retain the minimum
number of components whose summed |Xs

k|2 values preserve at least 99% of the total
signal power, excluding all components whose contribution is below 0.1%. This is
equivalent to ranking components for each service based on their associated power,
in descending order, and then computing the cumulative sum of such power following
the ranking.
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Figure 4.3. Low-frequency components (k ∈ [0, 50]) of the power spectra of the DFT
of the selected mobile services in Figure 4.2.

Figure 4.4 illustrates the result for the services in Figure 4.2. The component
ranking first is invariably that associatedwith themean of the time series and accounts
for the vast majority of the signal power. More importantly, the number of additional
components needed to attain the 99% threshold is small in the vast majority of cases.
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Figure 4.4. The cumulative sum of the power associated to ranked components, for
the selected mobile services in Figure 4.2.

Table 4.1 summarizes the number of components needed to reach the target
cumulative power, for all mobile services. Less than 10 components are sufficient
to attain the 99% threshold in almost all cases, and the traffic demands of many
popular applications such as YouTube, Instagram or Facebook are mostly influenced
by recurring patterns at five or six different frequencies. In light of these results, in
the remainder of our analysis, we focus on the high-power frequencies listed in the
Table only and discard all other noisy components. Also, we do not consider the zero-
frequency components in subsequent discussions, since the mean is a service-specific
constant value that only captures the volume of traffic associated to each service, and
is irrelevant to the temporal dynamics we are interested in. Ultimately, we retain 326
components across all service traffic demands for further analysis.
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Services # Components Retained Power
WhatsApp (m2) 3 99.34 %

MMS (m4) 4 99.51 %
iCloud (c3) 5 98.87 %
YouTube (s1) 5 99.37 %

Generic messaging (m5) 5 99.42 %
Instagram (n4) 5 99.49 %

Instagram video (s4) 5 99.57 %
News (w3) 6 98.79 %

Generic video (s7) 6 99.32 %
Facebook (n1) 6 99.42 %

Google Services (n3) 6 99.42 %
Ads (w1) 6 99.43 %

DailyMotion video (s6) 7 98.50 %
E-commerce (w2) 7 98.74 %

iTunes (s2) 7 99.26 %
Facebook video (s3) 7 99.38 %
Generic web (w6) 7 99.51 %

NetFlix (s6) 8 98.97 %
Encrypted web (w5) 8 99.38 %

Twitter (n2) 8 99.40 %
Apple Store (c1) 8 99.43 %

VoIP (x3) 9 95.25 %
Google Drive (c4) 9 98.98 %
Generic cloud (c5) 9 99.29 %
Google Play (c2) 9 99.39 %
Snapchat (m1) 9 99.44 %
Supercell (g4) 9 99.47 %

Generic gaming (g6) 9 96.63 %
Gameloft (g2) 10 85.15%
Mail (m3) 10 99.37%
Adult (w4) 11 98.67%
P2P (x2) 15 96.31%

Gaming platforms (g5) 17 88.83 %
Audio streaming (s8) 17 98.72 %

King (g1) 17 98.85 %
Updates (x1) 18 96.72 %

Pokemon Go (g3) 19 99.09 %
Total number of components 326

Average retained power 98.24 %

Table 4.1
Minimum number of components retaining at least 99% of the total signal power.

A detailed view of the retained components is provided in Table 4.2 for the specific
case of the YouTube median week demand. The consumption of YouTube follows four
main periodicities in time, namely every day, half-day, 8 and approximately 5 hours.
The daily pattern, which is in fact determined by the circadian rhythm of human
activities, has a clearly higher impact than the other dynamics in this case.

Figure 4.5 offers an intuitive illustration of the quality of the component filtering
process above. Each plot refers to one representative service, and reports: (i) the
original median week demand (blue) and the inverse DFT (gold) computed using only
the components in Table 4.1; and, (ii) the residual traffic that is not captured by
the inverse DFT (red). In all cases, the inverse DFT allows reproducing the main
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Component number Power Phase (degrees) Period
1 7.13% 126.81 24h
2 1.51% -132.97 12h
3 0.29% 43.95 4.8h
4 0.17% -85.98 8h

Table 4.2
Example of retained components for the YouTube service.

temporal fluctuations of the original demand, and residuals are limited to low-volume
noise. Remarkably, such a good approximation of the traffic time series is obtained
with just a few components per service, as detailed in Table 4.1.
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Figure 4.5. Reconstructed traffic demands via the inverse DFT on retained
components in Table 4.1.
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4.4 Component analysis

By looking at the power spectra in Figure 4.3, it is apparent that many peaks are
common to different services. This hints at the fact that the time dynamics of the
demands for diverse servicesmay yield patterns that recur at similar periodicity. Next,
we design a systematic approach to explore this phenomenon, by developing a simple
but efficient clustering algorithm for DFT components in Section 4.4.1, and applying
it to our reference service demands in Section 4.4.2.

4.4.1 Clustering components

As explained in Section 4.3.1, each component is characterized by a frequency,
an amplitude, and a phase. We implicitly used the amplitude to filter relevant
components above, since the power |Xs

k|2 associated to each component is proportional
to the square of its amplitude. However, the amplitude is not relevant to the clustering
problem; indeed, the amplitude is a measure of the magnitude of a given repetitive
pattern, while our objective is to identify similar temporal periodicities across service
demands, independently of their magnitude. In other words, if two services feature
regular traffic peaks at, e.g., noon every day, we would like to cluster together
the components responsible for the peaks, no matter whether they have dissimilar
amplitudes because the two services generate different traffic volumes.

Therefore, our clustering algorithm considers only the frequency and phase of
each component. The two attributes are in fact processed in two separate steps:
in a first step, we group components that have identical frequencies; in the second
step, components in the same group are further clustered based on their phase. The
rationale for this design is that even slightly different frequencies lead to an increasing
misalignment of the components in time, no matter what their phases are: during
one week, misaligned components can determine peaks at very different times, which
should not be assimilated in our analysis. As a result, we do not want to cluster
components with non-identical frequency, even if they have phases that perfectly
match. The constraint on equal frequency makes a clustering based on the joint
frequency and phase inappropriate, and let us favor a simpler two-step approach
instead.

In the first step, we cluster components on their frequency. For the reasons
explained above, we require that only identical frequencies are grouped together.
Therefore, the clustering operation is straightforward, and we simply gather
components based on frequency identity.

The second step focuses on components within each frequency category. In this
case, phases that are close but not perfectly matching may be clustered together, since
recurring patterns with the same periodicity and small constant shifts in time capture
semantically equivalent activity peaks during the whole observation time. Also, the
distance measure for phases should be maximum in opposition of phase (i.e., when
the value difference is Kπ,K ∈ Z), and null for phases that are K2π apart, K ∈ Z.
To fulfill these specifications, we first map phases to a Cartesian plan; let us denote
by ϕs

k the phase of the k-th DFT component for the demand of service s, then the
Cartesian coordinates are

x = cosϕs
k

y = sinϕs
k.

(4)
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The transformation above places components along a circle of unity radius, at an angle
that it is proportional to their phase.

We then run Density-Based Spatial Clustering of Applications with Noise
(DBSCAN), a well-known density-based clustering algorithm [68], on the bi-
dimensional points that represent the components. We parametrize the algorithm
so that at least 3 points shall be grouped to form a cluster, and the maximum distance
between the two closest points in the same cluster is ϵ = 0.1, which maps to a phase
difference of roughly 5°.
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Figure 4.6. Clusters of the 326 components from the demands for the 37 service
considered in our study.

4.4.2 Commonalities and outliers in mobile service demands

Figure 4.6 illustrates the 16 clusters obtained with the two-step algorithm above. In
order to show the quality of the result jointly for the frequency and phase attributes,
we map the frequency to the distance from the origin, and the phase to the angle
as per (4). Colors denote points, i.e., components, labelled in the same cluster.
This representation outlines clear groups of points, which are well identified by the
algorithm, which thus assimilates components with the same frequency (i.e., along
the same circle) and close phases as desired.

Figure 4.7 provides a complementary view of the same clustering result. The four
plots represent four different clusters, whose period (inverse of frequency) and phase
(in °) are indicated below each image. In each plot, every component belonging to
the cluster is represented as a sinusoidal function of time (in gold). We can observe
that the sinusoids in the same cluster are very similar, hence they correspond to
equivalent temporal patterns of activity peaks. The components differ in terms of
amplitude, but, as previously mentioned, this is due to the heterogeneous popularity
and traffic volume associated with each service. What is relevant to our analysis is
the agreement in frequency and phase, which is confirmed by the regular pattern of
the sum of components (in blue).
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(a) 24 hours, 115° (b) 12 hours period, 50°

(c) 4.8 hours period, 62° (d) 8 hours period, 17°

Figure 4.7. Components in four different clusters, portrayed as sinusoidal functions
of time.

A comprehensive summary of the 16 clusters is provided in Table 4.3. Columns
in the Table correspond to clusters, identified by their frequency and phase indicated
in the first row. Subsequent rows refer to each of the 37 services we consider in our
analysis. The number in each element (x, y) indicates the fraction of power associated
with the component of service x that is sorted in cluster y. The fractional power is
calculated with respect to all service components retained for analysis, according to
Table 4.1; a value zero in element (x, y) thus indicates that the demand for service
x does not have any relevant component with the frequency and phase associated to
cluster y. The last column refers to outlier components that could not be associated
to any cluster. The last two rows list the number of components in each cluster and
the percent power of the whole cluster with respect to all clusters. Table 4.3 lets us
provide the following insights.

I. Almost all (33 out 37) of services have a largely dominant component with a
24-hour periodicity. It is easy to map such a component to the circadian rhythm of
human activities, which alternates low traffic overnight and high demand during the
day.

II. Most (32 out of 37) services also show the same significant dynamic at a 12-
hour periodicity. Many (22 out of 37) also share components that highlight regular
patterns at every one week, 4.8 hours. An investigation of the causes for these sub-
daily patterns is out of the scope here, and an object for future research; yet, we
speculate that commuting affects the demands for many services and may be behind
these dynamics.

III. Common regular behaviors are present also at periods longer than one day
for many (18-21 out of 37) services. One week and 28 hours are the most relevant
periods, and we consider that those are linked with different dynamics occurring
during weekends.
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Cluster period 24h 12h 1w 4.8h 1w 28h 84h 8h 21h21h 8h 84h 8h 84h 33.6h 42h none

Cluster phase 115° 50° -137° 62° -162°-67°-87° 17° 8° 21° -31°-71°-55°-115° -107° -150°
Ads 84.3 9.2 3.4 2.3 0 0.9 0 0 0 0 0 0 0 0 0 0 0

Adult 19.9 0 12.0 0 0 0 0 0 0 0 0 2.5 0 0 0 0 65.6

Apple Store 61.4 11.6 0 1.0 22.0 1.8 0 0 0 0 0 0 0 0 0 0 2.2

Audio streaming 54.6 0 0 4.9 2.8 1.5 0 0 0 0 0 0 0 1.3 1.1 0 33.8

DailyMotion video 62.2 1.3 22.7 4.0 0 0 4.1 0 0 0 0 0 0 0 0 1.3

E-commerce 65.3 25.5 2.4 3.0 0 0 1.1 0 0 0 0 0 0 0 0 0 2.8

Encrypted web 76.0 9.6 8.3 2.4 0 1.9 0 0 1.1 0 0 0 0.9 0 0 0 0

Facebook 82.1 13.0 1.8 2.1 0 1.0 0 0 0 0 0 0 0 0 0 0 0

Facebook video 79.4 13.3 0 2.7 2.5 0 1.2 0 0 0 1.0 0 0 0 0 0 0

Gameloft 88.7 2.0 0 1.1 0 0 0 0 0 0 0 0 0 0 0 0 8.2

Gaming platforms 80.7 4.6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 14.7

Generic cloud 76.4 9.7 7.5 0 0 1.5 1.7 0 0 1.0 0 0 1.3 0 0.9 0 0

Generic gaming 86.8 3.5 0 1.5 3.6 1.6 0 0 0 0 0 0 0 0.9 0 0.9 1.3

Generic messaging 96.1 2.3 0 0 1.0 0.6 0 0 0 0 0 0 0 0 0 0 0

Generic video 66.6 22.3 4.3 3.2 0 0 0 3.6 0 0 0 0 0 0 0 0 0

Generic web 83.0 8.5 4.8 1.9 0 1.0 0 0 0 0 0.8 0 0 0 0 0 0

Google Drive 80.3 10.1 0 0 2.6 1.8 0 0 0 0 0 0 0 1.1 1.2 0 2.8

Google Play 61.8 8.5 0 0 20.4 3.6 0 0 1.2 0 0 0 1.4 0 0 0 3.1

Google+ 93.3 4.1 0 0.8 0 0.8 0 0 0 0 0 0 0 0 0 0 1.0

Instagram 88.1 9.1 0.8 1.9 0 0 0 0 0 0 0 0 0 0 0 0 0

Instagram video 82.2 14.7 0 1.6 0 0 0 0 0 0 0 0 0 0 0 0 1.6

King 57.8 0 9.1 3.5 0 0 8.2 0 0 0 0 0 0 0 0 0 21.3

MMS 95.1 3.3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1.6

Mail 66.1 1.3 15.6 0 0 5.1 3.8 0 3.3 0 0 0 0 0 0 0 4.8

NetFlix 0 17.3 0 4.7 0 0 0 2.1 0 0 0 0 0 0 0 0 75.9

News 73.7 13.6 6.6 4.8 0 1.4 0 0 0 0 0 0 0 0 0 0 0

P2P 36.3 0 0 0 0 0 0 0 0 0 0 1.3 0 0 0 0 62.4

Pokemon Go 79.0 0 1.5 4.5 0 0.5 0 0 0 0 0 0 0 0 0 0 14.5

Snapchat 88.7 3.6 0 0 0 1.8 0 0 0 0 0 0 0 0 0 0.9 5.0

Supercell 81.8 3.6 6.3 0 0 2.2 2.3 0 0 1.5 0 0 0 0 0 0 2.3

Twitter 76.5 11.4 6.19 2.1 0 1.5 0 0 0 0 1.4 0.8 0 0 0 0 0

Updates 50.8 10.6 16.9 0 0 2.8 0 0 0 2.9 0 0 0 0 0 0.7 15.4

VoIP 78.7 9.5 5.9 0 0 1.4 1.5 0 0.7 0 0 0 0 0 0 0 2.3

WhatsApp 93.6 6.4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

YouTube 78.3 16.6 0 3.2 0 0 0 0 0 0 1.9 0 0 0 0 0 0

iCloud 88.7 7.6 0 0 2.1 1.7 0 0 0 0 0 0 0 0 0 0 0

iTunes 0 31.7 3.1 3.5 0 0 0 7.1 0 0 0 0 0 0 0 0 54.6

Total components 35 32 18 22 9 21 7 4 4 3 4 3 3 3 3 3 115

Percent power 70.7 9.2 3.1 1.7 1.6 1.0 0.5 0.5 0.2 0.1 0.1 0.1 0.1 0.1 0.1 0.1 10.8

Table 4.3
Overview of the 16 clusters grouping the 326 retained service demand components.
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IV. Several services tend to defy classification, and (i) have no ormuch less relevant
components in the 24-hour cluster, (ii) have an unusually high weight associated
with specific clusters, and/or (iii) have a high incidence of components that are not
included in any cluster (i.e., are outliers). Services in this category include games
(King, Pokemon Go, generic Gaming platforms), audio streaming services (iTunes,
generic Audio streaming), NetFlix, peer-to-peer, and adult web traffic. These are
fairly specific categories of mobile applications, with different but reasonable reasons
for their diversity. For instance, NetFlix is a fairly unique service providing long-lived
video streams to niche mobile users. Audio streaming applications are the sole that do
not need visual attention by the user. Or, adult web traffic is characterized by unique
patterns due to its socially inconvenient nature.
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The spatio-temporal analysis performed in Section 3.3 unveiled the mobile service
heterogeneity, while the frequency domain analysis performed in Section 4 allows for
a very compact representation of each service time series (i.e., with less than ten
components we can almost perfectly reconstruct the original service demand).

However, by using a pure frequency domain analysis, we are not able to properly
capture fine-grainedmetrics such as the variation of the fundamental frequencies along
a given period of time. For instance, this occurs when trying to understand weekend -
weekdays patterns or variation of the night - day behaviour on subsequent days. Such
an effect could be achieved by considering shorter time intervals for the Fast Fourier
Transform (FFT) analysis (e.g., one day), but then the selection of the analyzed time
fraction may introduce biases in the analysis (e.g., which day is chosen).

We describe in this chapter a hybrid time-frequency analysis that hinges the two
proposed approaches to provide a comprehensive view of the services’ behaviour,
taking into account the intrinsic restrictions of the time - frequency duality (i.e.,
by observing the frequency only, one cannot evince time variations and vice-versa).
We divide the chapter as follows. First, we describe the new analysis methodology
in Section 5.1. Then, we show the characterization of data (see Section 5.2), the
clusterization of service demands (see Section 5.3) and the spatial variability given
this approach (see Section 5.4). Finally, we present the applicability of the insights
found with this hybrid time-frequency analysis in Section 5.5
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5.1 Flexible analysis combining time and frequency via
wavelets

As we are interested in understanding the details of the frequency of the signal in a
specific moment in time, we focused in the Wavelet Transformation (WT) analysis as
the next step in our study. We look for hidden behavioural patterns inside our data
set and the WT provides the flexibility required to slice our signal and analyze its
behaviour at the same time both in the time and frequency domain.

It is possible to consider the WT a signal decomposition of the original time series
signal onto a group of basis functions [69]. Those basis functions are called wavelets,
and are the equivalent of the sinusoidal signals in the frequency analysis with the
Fourier transform. The main difference of WT with respect to FFT is the fact that,
while the sine waves used in the Fourier analysis have an infinite support (thus they
do not discriminate on the temporal dimension), wavelets have a finite response on
time and a bounded energy. Thus they are a viable tool to understand time dynamics
on the frequency domain.

As wavelets have a finite time domain support, the concept of frequency is replaced
by the concept of scale. This measure relates to the way each wavelet is dilated,
contracted and shifted during the WT computation. Thus, it can be seen as a
representation of the “instantaneous frequency” of each service demand time series.

Being the definition of Wavelets less stringent than the sine waves used in FFTs,
there are several families of wavelets available, as thoroughly discussed in [70]. In our
analysis we employed the most popular family of wavelet, i.e., the Morlet wavelet,
that is defined by:

ψ(t) = π−1/4eiwte−t2/2 (5)

When applying a WT to a time domain signal such as the services demands
considered in Chapter 4, the output is a scaleogram: a bidimensional (i.e., time
and scale) view of the originally single dimensional data. An example scaleogram
is depicted in Figure 5.1, where we show the demand of three services in a period of 7
days. Since our samples are captured every five minutes, a total of 2016 samples are
available.

Before applying the WT, the service demand is de-trended (i.e., we subtract the
mean and divide by the standard deviation) to avoid any possible distortion in our
output. The time resolution for the transformation is configured to 1 sample by
default, and the frequency resolution to 20 voices per octave.

Once applied the WT, we obtain the scaleogram of the signal (as represented in
Figure 5.1). The x-axis thus shows the time domain information, while on the vertical
axis, the scale has been transformed to represent the periods detected in the signal in
hours.

5.2 Wavelet scaleogram characterization

In this section we discuss the similarity assessment across services using the WT
based on the comparison of the generated scaleograms. More specifically, we perform
a characterization of the scaleograms by identifying their ridges (similarly to the
methodology we employed in Section 3.3, in which we were detecting peaks).

42



5 HYBRID TIME-FREQUENCY ANALYSIS: A DEEPER VIEW WITH WAVELETS

Mon Tue Wed Thu Fri Sat Sun

0h

1h

5h

21h

(a) Apple Store

Mon Tue Wed Thu Fri Sat Sun

0h

1h

5h

21h

(b) YouTube

Figure 5.1. Power Scaleogram

A sample scaleogram with ridges looks like the ones in Figure 5.2, and we follow
the methodology originally introduced in [71] and subsequently implemented in the
WaveletComp R package [72]. For the scope of our research, we ported and adapted
the R code 1 to Python.
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1h
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(a) Apple Store
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0h

1h

5h

21h

(b) YouTube

Figure 5.2. Scalogram with power ridge

As previously discussed, the power scaleogram contains the “signature” of a service
demand along time, but due to its very large support, it does not provide a compact
representation of the time series as, e.g., we could achieve with the FFT. When we do
a visual inspection of some signatures, we realize that some services exhibit a similar
pattern that could result in a potential clusterization. In Figure 5.3 we can see that
some services likeGoogle Play andGenericWeb, thatwere not clusterizable in the time
domain, seem to be grouped together in the same slice when we take into account the
hybrid time-frequency approach. Thus, we intend to characterize the service demand
time series by their power ridges. To this end, we apply the following algorithm.

Our algorithm analyzes all scale values registered for all the times to find the local
maxima. If the value is above a predefined percentage θ (in our case 0.05) of the power
peak value, a ridge is detected and stored. This computation is done for each time
sample, thus generating a newmatrix with the ridges of the signal that can be overlaid
over the “original” one.

By applying this algorithm we can extract the salient features of each service
demand, compressing though the representation of a time varying service demand

1The code is available at https://www.github.com/wnluc3m
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Figure 5.3. Wavelet vs Service demand

into a binary matrix with ones representing the location in the time-scale domain of a
power ridge.

As shown in Figure 5.4 for a selected number of services, we can identify consistent
usage patterns around several periods of 4h, 8h, 12h, and 24h. We remark that this
characterization is more flexible than the one used in the FFT representation, which
has to resort to a very compact, yet coarser, representation of the different components.

Mon Tue Wed Thu Fri Sat Sun

0h

4h
12h
24h

(a) YouTube

Mon Tue Wed Thu Fri Sat Sun

0h

4h
12h
24h

(b) Audio streaming

Figure 5.4. Scalogram with power ridge
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5.3 Ridge-based service demand clustering

Despite being quite compact (i.e., a binary matrix), the dimensionality of the ridge
representation is still high. Hence, in order to study commonalities across services,
we further compress the resulting ridges matrix to feed a clustering algorithm.

Our approach consists of a split of the ridges representation into several partitions
of size τ along the time domain. The target is to summarize each partition with the
relevant scales that feature a ridge, reducing thus the number of input data from
several thousands values per range (i.e., the full scale support), to tens of values.

As an example, we show the output of this algorithm for the ridge representation of
YouTube discussed before, by selecting partitions of τ = 24 hours (see Table 5.1). We
can see a clear dichotomy between weekdays (that exhibit ridges for scales of 8h, 10h,
and 12h), Saturday’s ridges at 10h, and 12h, up to Sundays, that can be condensed
into just two ridges components at 12h. With this compact yet flexible representation,
we proceed to cluster the service demand time series looking for similarities.

Service Ridge 1 Ridge 2 Ridge 3
Monday 8h 10h 12h
Tuesday 8h 10h 12h

Wednesday 8h 10h 12h
Thursday 8h 10h 12h
Friday 8h 10h 12h

Saturday 10h 12h -
Sunday 12h - -

Table 5.1
Ridge found on Figure 5.2 with τ =24h

Similarly to the methodology employed for the FFT analysis, we hence define a
similarity metric between services according to the placement of their ridges along the
week. Again, as also performed in Chapter 4, instead of defining an ad-hoc similarity
metric, we simply use euclidean distances computed on a transformation of the data
points extracted from the ridge sampling, as detailed in Table 5.1.

Thus, we condensate the n-dimensional feature vector of each service (where the
features are the ridge locations, juxtaposed day by day) by applying a Principal
Component Analysis (PCA) with number of dimensions equals to 2. Besides retaining
most of the variability of each service (the explained variance ratio is equal to 0.83),
having just two dimensions allows for a powerful representation of each service into a
two dimensional plane.

Also in this case, we use DBSCAN as a clustering algorithm with default
parameters (min samples = 2 , eps = 2), obtaining 4 clusters plus an additional
one for outliers, as detailed in Table 5.2.

From Table 5.2, it is clear that clustering 37 distinct service demands is possible in
a few clusters, but the result is not optimum. As we can observe in Figure 5.5, there
are some services that have similar ridge behavior, but some others could be clustered
much better. The reasoning behind this ”sub-optimal result” is that we are trying to
cluster together services that represent 37 dimensions into only 2 dimensions. Hence,
in the next section we explore an alternative clustering approach which considers how
close base stations are in the city under study. To this end, we divide it into 16 areas
and consider a similar volume of traffic.
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Cluster Services
1 Supercell, P2P
2 Generic video, Audio streaming, VoIP

Facebook video, NetFlix, DailyMotion
3

Google Play, Generic messaging, Generic gaming
E-commerce, Generic web, Apple Store, iCloud

4
Google Drive, Instagram, Twitter, Updates, Pokemon Go

YouTube, iTunes, Instagram video, Facebook
Google Services, Ads, News, Adult, Encrypted web
Generic cloud, King, Gameloft, Gaming platforms

Outliers

Snapchat, WhatsApp, Mail, MMS

Table 5.2
Clusterization of ridges found like on Figure 5.2 with τ =24h
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Figure 5.5. Example of services’ ridges in Cluster 4 from table 5.5.

5.4 Spatial variability of temporal analysis

As in [3], our evaluation we assume that our area under study could be divided in
hierarchical network structures. Since we are studying the reference scenario of the
metropolis, the operator is able to deploy a number Nℓ of nodes at the generic level ℓ,
each responsible for a subset of the antenna sites at the radio access level. We assume
the same methodology as in [3], where the operator deploys generic level-ℓ nodes and
links based on two criteria: (i) the offered load shall be similar at all nodes; (ii) the
subset of antennas servedby the samenode shall be geographically contiguous. Jointly,
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these criteria represent a plausible strategy that aims at maximizing the performance
of network slicing, ensuring load balancing and reducing latency between antenna
sites and nodes.

In this section, we focus on ℓ= 8 (i.e.,Nℓ = 16), allocating a static (and arbitrarily
set) amount of resources. However, our model can easily accommodate different
definitions of the number of nodes determining the load balance, which would apply
to specific network hierarchies. We remark that a static allocation of resources may
be acceptable in the current 4G monolithic architecture, but will become extremely
expensive across the high number of network slices expected to characterize next-
generation systems.

From Table 5.3, we can see that in most of the defined regions, it makes sense to
have at least two clusters for distinct service’s behaviors. We illustrate the case in the
first region. This region presents two sub-clusters of services, meaning that we can
find two different temporal patterns between applications in the same area. As we
can observe in Figure 5.6, the services clearly exhibit two distinct behaviors inside
the same cluster, each of them correctly clustered. Besides, if we compare the ridges
of Generic Web that come from the first region (the ones from Figure 5.5) versus the
GenericWeb ridges version of the full city in Figure 5.5, we can also see that the ridges
vary. This means that each service could behave differently depending on the area.
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Figure 5.6. Similarities of ridges per region in Cluster 1.1 (top) and Cluster 1.2
(bottom) from Table 5.3.
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Region Clustered services (wavelet fingerprint)
1 (w6) (w5) (w3) (s3) (s4) (m4) (m1) (m3) (g4)

(g3) (n1) (n2) (n3) (n4)
1 (w4) (g6) (g2) (x2) (x3)
2 (w6) (m4) (m1) (g4)
2 (w4) (g6) (g5) (g2) (x3)
2 (s3) (n1) (n2)
3 (w1) (s3) (n1) (n2)
3 (m4) (m1) (g4) (n3)
3 (g6) (g5) (g2) (x3)
4 (w6) (w5) (w1) (s4) (m5) (m4) (m1) (g4) (n2) (n3) (n4)
4 (g6) (g5) (g2) (x3) (x1)
5 (w6) (w5) (w1)
5 (s3) (s1) (s4) (n1) (n2) (n4)
5 (g2) (x2) (x3)
6 (w6) (w1) (n4)
6 (g6) (g5) (g2) (x3)
7 (w3) (w1) (s3) (s4) (c4) (n1) (n2)
7 (m4) (m1) (g4) (n3)
8 (w6) (m4) (m3) (g4) (n3)
8 (w5) (m1) (n2) (n4)
8 (w4) (g5) (g2) (x3)
9 (w4) (g6) (g5) (g2) (x3)
9 (w1) (n1) (n2)
9 (m1) (m3) (g4)
10 (w6) (w1) (s3) (s4) (m4) (m1) (c4) (n1) (n2) (n3) (n4)
10 (w5) (w3) (m3) (g4)
10 (g6) (g5) (g2) (x3)
11 (s1) (s4) (n1) (n4)
11 (c3) (g2) (x2) (x3) (x1)
12 (w6) (w5) (w3) (w2) (w1) (s3) (s1) (s4) (m4) (m1)

(c4) (n1) (n2) (n3) (n4)
12 (w4) (g6) (g5) (g2) (x2)
12 (m3) (g4) (c1)
13 (w6) (w1) (n1)
13 (m1) (g4) (n2) (n3) (n4)
13 (g6) (g5) (g2) (x3)
14 (w6) (w5) (w1) (s3) (s1) (s4) (n1) (n2) (n4)
14 (w4) (g6) (g5) (g2) (x3) (x1)
15 (w4) (g6) (g5) (g2) (x3)
16 (g6) (g5) (g2) (x2) (x3)

Table 5.3
Similarities of ridges per region. Service shortening is described in Table 4.1.
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5.5 Applications to composability

As the accelerated digital era will result in a gigantic increase of mobile data traffic,
it is of paramount importance to develop distinct techniques that could be adopted
by network operators to handle this load within the context of 5G networks. Since
network slicing is one of the preferred techniques that would allow them to orchestrate
their complex network structures, it is crucial to manage resources efficiently.

Our first spatio-temporal approach (see Chapter 3) revealed that service
requirements are heterogeneous, and the clustering based on it would not be the
best approach. However, our next data-driven clustering results are significantly
meaningful for network orchestration and planning purposes, as the operator decides
the number of antennas that are required to process all the data and the region where
a data center is needed. The proposed techniques, complementary to the definition
of network slices and hierarchies in the related work, provide some light in regards
to take informed decisions. We not only fill the gap on current possible clustering
methodologies with reasonable performance, but also show the trade-off between
complexity and efficiency in data’s computational effort. We emphasize that for the
static scenarios, the hybrid approach implies a reduction of the data with PCA, in
order to achieve a high-speed performance. However, for the frequency approach the
task that consumes more effort resides in tuning the parameters to have a reasonable
number of discarded components without biasing the result.

Moreover, we should mention that such data reductions when implementing slices
will be key in dynamic 5G scenarios, where a quick reconfiguration of the network is
expected. In particular, wavelets have shown the best applicability for understanding
service requirements geographically. The decomposition of service’s traffic data in
several patterns, exhibited distinct behaviors even for a specific service. This fact
allows the operator to define clusters based on similar patterns and less time periods
than the spectral approach, aiming to complement the one-side spectral proposal that
defined many additional clusters.

Hence, the trade-off between the complexity of the defined virtual network
structure and the number of slices depends upon a new variable: the number of
regions where a service has a similar usage pattern. For instance, we can observe
that YouTube has up to 8 different patterns, and therefore the network operator could
tune the network slice not only considering the number of clusters of a city, but also
taking into account the number of regions to cover (see left graph in Figure 5.7).

Figure 5.7. Similarities of ridges per region for YouTube (left) and Instagram (right).

In fact, the wavelet signature of a service can be clusterized over space given its own
patterns, and this is illustrated in Figure 5.7. In these graphs, we can clearly identify
that both YouTube and Instagram services have analogous areas defined for their
hybrid time-frequency characterization. This means that an operator could decide
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to cluster together both services (i.e., group them in the same customized network
slice) over those regions that share the same color for orchestration purposes, as long
as their network requirements are compatible.

Under this scheme, services that are clusterized together tend to usemore resources
during the same period of time, as they are synchronized, whereas the non-clusterized
services potentially do not suffer this effect. Whilewe leave the orchestration algorithm
for future work, in the next section we quantify the efficiency of putting together
different services in the cloud.

Last but not least, we claim that the novel methodology to generate and work
with synthetic data solves data privacy derived issues stated in the GDPR. This
technique, combined with the wavelets approach and forecasting algorithms would
allow operators to design their network infrastructure in advance, reducing the
over-provisioning risk and boosting new networks based on distinct data traffic
consumption.
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Multi-service networks [20] are a key building block for the implementation of the
network slicing paradigm [26] that, in turn, will enable new business models such
as multi-tenancy [40] and finally pave the way to 5G. At this stage, the bulk of the
work on next generation network sharing architectures is already available, ranging
from novel visions of the network [73] to specific architectures proposals [74]. More
specifically, research work already addressed the extension to multi-service settings of
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fundamental parts of the 5G system, such as the RAN [75,76], the core network [77], or
the management and orchestration components [78]. Such research effort is already
making its way into standardization: 3GPP considered multi-service and network
slicing aspects for the next Release 15 [79].

On top of the architectural research work, enabling multi-service networks has
also been considered from an algorithmic point of view. The focal point of research in
this area has been RAN resource allocation [39, 80, 81], as oversubscribing spectrum
is especially difficult. However, resource sharing has also been tackled for other kinds
of virtualized functions [32].

Despite the attention thatmulti-service networks, network slicing andmulti-tenant
networks have been receiving for the last few years, little attention has been paid to
how such network slices will behave in practical scenarios. Understanding the system
efficiency in the wild has only been possible in reduced scenarios involving very few
devices [39], or by making assumption on the real patterns, modelling user movements
and service requests with random processes [82]. The only works that employ a data
source comparable to ours are the one in [83] and our seminal work in [4].

Our work sheds light on this overlooked aspect in this chapter, and it is organized
as follows. First, we introduce an empirical evaluation of slicing efficiency for large-
scale scenarios in Section 6.1. Second, we describe the slice specification in 6.2. Third,
we define two possible methods for resource allocation in terms of time slot and traffic
volume in Section 6.3, followed by the multiplexing efficiency in presence of realistic
multi-service demands (see Section 6.4). Next, we discuss our reference scenarios
in Section 6.5, where we perform several data-driven evaluations (see Section 6.6).
Finally, we summarize all the conclusions extracted from the distinct experiments in
Section 6.7.

6.1 Network slicing scenario and metrics

In this section we expose our network model, as well as our representation of the slice
QoS requirements and their associated resource allocation strategy. We also introduce
the metrics we adopt to evaluate the resource sharing performance.

Slice a 
Slice b 

Figure 6.1. Mobile network architecture. The mobile traffic in each slice (e.g., a or b)
is increasingly aggregated as it flows from radio access to network core.
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Let us consider amobile network providing coverage to a geographical regionwhere
mobile subscribers consume a variety of services. The network operator implements
slices s ∈ S, each dedicated to a different subset of services.

We assume that each slice can be implemented according to any of the strategies
in Figure 2.1. To capture such a general scenario, we model the mobile network
architecture as a hierarchy composed by a fixed number of levels (ℓ = 1, . . . , L) ordered
from the most distributed (ℓ = 1) to the most centralized (ℓ = L), as illustrated in
Figure 6.1. Every network level ℓ is composed by a set Cℓ of network nodes, each serving
a given number of base stations. In the two extremes, we have ℓ = 1, where network
nodes in C1 have a bijective mapping to individual antennas, and ℓ = L, where CL
contains a single network node controlling all antennas in the whole target region. In
between, for 1 < ℓ < L, the number of network nodes in Cℓ decreases with ℓ, whereas
that of base stations served by each such node increases accordingly. Note that, in
general, a node c ∈ Cℓ will operate on data flows that are increasingly aggregated with
ℓ, which, as we will see, has a significant impact on resource management.

This hierarchical representation allows considering a variety of node types, along
with their associated (possibly virtual) network functions. At the most distributed
level (ℓ = 1), each node runs functions that operate at the antenna level, e.g., concern
spectrum or airtime resources. In intermediate cases (1 < ℓ < L), nodes are at first
in charge of a small number of antenna sites, e.g., C-RAN datacenters running VNFs
such as dedicated baseband processing or radio resource management. As ℓ grows,
VNFs are pushed further towards the network core, into telco-cloud datacenters that
tunnel traffic to and from large sets of antenna sites: there, VNFs customize VM
resources for large traffic volumes associated to the services delivered by each tenant
to subscribers in wide geographical areas. In the limit case (ℓ = L), all traffic in the
target region is managed in a fully-centralized fashion at a single datacenter.

Ultimately, the layered network model allows generalizing our analysis to diverse
VNFs, by studying the system performance at different network levels. This also
implicitly accommodates all of the network slicing strategies outlined in Figure 2.1.
Slices of type-D and type-E deal with the lowest network layers that are implemented
at the antennas, hence correspond to ℓ = 1. Slices of type-A refer to VNFs operating
at higher network layers that are deployed at centralized cloud datacenters, hence
correspond to high values of the network level ℓ. Slices of type-B and type-C are
concerned with VNFs at radio access, i.e., at base stations (ℓ = 1), or at higher
architectural levels (1 < ℓ < L) in a C-RAN implementation.

Note that we do not require that a single network deploys virtualization
technologies at all network levels. Instead, by taking a large number of levels and
considering each of them in isolation, this approach lets us cover a wide range of
deployment options and provide insights for all of them.

6.2 Slice specifications

Network slicing primarily aims at letting the operator fulfill the QoS requirements
requested by each tenant. To model such requirements, we consider discrete-time
demands associated to slices, by averaging traffic over time slots denoted by t. Let
vc,s(t) be the traffic demand associated to slice s at node c during slot t, as in Figure 6.2.
We capture the QoS requirements of s as a slice specification z defined by two features.
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6.2.1 Guaranteed demand δ

The operator engages to guarantee that the total traffic demand of the slice is fully
serviced for a portion at least δ ∈ [0, 1], which can be expressed in terms of time or
traffic. In the first case, the operator assures that the slice demand is fulfilled during
a fraction δ of time slots, as in Figure 6.2a. In the second case, the slice demand is
serviced for a fraction at least δ of its volume, as in Figure 6.2b.

Traffic	serviced	
in	slice	

Guaranteed	1me	slots	δ	=	0.9	 Allocated	1me	slots				–	Overbooking	penalty	π	=	0.2		

Traffic	serviced	
as	best-effort	

Traffic	not	
serviced	

}

}
}
}

}

(a) Time slot δ

Traffic	serviced	
in	slice	

Guaranteed	traffic	volume	δ	=	0.9	 Allocated	traffic	volume				–	Overbooking	penalty	π	=	0.2		

Traffic	serviced	
as	best-effort	

Traffic	not	
serviced	

}
}
}

}
}
}}
}
}}
}
}}
}
}

(b) Traffic volume δ

Figure 6.2. Example of resource allocation to a slice s at node c, under guaranteed
demand δ = 0.9 and overbooking penalty π = 0.2, during one reconfiguration period
n.

6.2.2 Overbooking penalty π

The operator can decide to overbook network resources to multiple slices, transpar-
ently to the tenants [84]. Similar to common practices in the airline or hotel industries,
this management model allocates the same resources to multiple tenants, expecting
that somewill ultimately not use all of their booked capacity; if this is not the case, and
services actually require all of the reserved capacity, overbooking leads to violations
of the guaranteed demand δ.

Through overbooking, the operator can maximize its revenues by properly bal-
ancing the cost of allocated resources and the penalty associated with violations [84].
In our model, we do not adopt a specific overbooking strategy; instead, we consider
that the strategy selected by the operator produces violations for a portion π ≤ δ of
the total traffic demand. This implies that only a fraction of traffic δ − π is actually
serviced by the slice, while the portion π of violated demand is treated as best-effort
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traffic by the operator. This approach can capture any overbooking strategy, and lets
us investigate how violations of δ affect savings in allocated resources. We remark that
π may be a fraction of time slots or a fraction of traffic volume, consistently with the
representation of δ: the two situations are illustrated in Figure 6.2a and Figure 6.2b,
respectively.

In the first case, the slice specification is expressed in terms of time slots, hence the
discrete-time traffic of the slice, vc,s(t), is serviced for 90% of the time slots, denoted by
the filled (yellow) temporal interval below the abscissa. Due to overbooking, demand
δ is violated in 20% of the total time slots, highlighted by the (red) pattern intervals
below the abscissa.

In the second case, the slice specification is expressed in terms of traffic, hence
vc,s(t) is serviced for 90% of its volume, denoted by the filled (yellow) area under the
time series. Due to overbooking, demand δ is violated for 20% of the total volume,
highlighted by the (red) pattern region.

6.3 Resource allocation to one slice

We denote a slice specification characterized by a guaranteed demand δ and an
overbooking penalty π as z = (δ, π), which becomes more stringent for higher values
of δ and smaller π. The operator shall then ensure that enough resources are dedicated
to the slice so as to meet z. We now expound the expression of the resources allocated
to a slice s by the mobile network operator under a generic z = (δ, π).

In presence of algorithms that enable a dynamic reconfiguration of VNFs, the
resource allocation can be re-modulated over time. In practice, however, the
periodicity of reconfiguration is limited by the technological constraints of the slicing
strategy adopted (see Figure 2.1). For instance, when network slicing is performed
at the antenna level, times in the order of minutes are needed to turn on and off
the radio-frequency front-end and reset the transport network. When dealing with
radio resource management algorithms (i.e., dynamic spectrum or multi-provider
scheduling), re-assignments are constrained by signalling overhead. Or, in the case of
VM orchestration, the timescale is limited by instantiation and migration delays [85].

Let us assume that τ is the minimum amount of time steps needed for resource
reallocation, which we refer to as a reconfiguration period. We denote by n ∈ T
the nth reconfiguration period within the set T of all reconfiguration periods that
compose the system observation time; n can be then seen as the set of τ time steps
it encompasses, i.e., n = {t, . . . , t + τ − 1}. During period n, we name rδc,s(n) the
minimum amount of resources that allow meeting the guaranteed demand δ for slice s
at node c. Equivalently, rzc,s(n) is the amount of resources that fulfill z, accounting for
both δ and the overbooking penalty π. The formalism is the same when δ is a fraction
of time or traffic, as shown in Figure 6.2. Then, our objective is the computation of
rzc,s(n), which represents the resources actually allocated by the operator to slice s at
node c, based on vc,s(t) and z. Since calculations are different depending on whether δ
(hence π) is expressed in terms of time or traffic, below we discuss these two instances
separately. For the sake of readability, in the followingwe drop the c, s, and n notation,
and refer to a generic slice, network node, and reconfiguration interval; hence v(t) and
rz stand for vc,s(t) and r

z
c,s(n), respectively.
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6.3.1 Time slot fraction δ

In this case, the allocation of resources in the target reconfiguration period is such that
the offered load v(t) exceeds rz for a fraction δ−π of the time slots in the reconfiguration
period, as shown in Figure 6.2a. This can be formalized as P

(︁
v(t) ≤ rz

)︁
= δ − π,

∀t, where P (·) denotes the probability of the argument. Let fv be the Probability
Density Function (PDF) of the demand, i.e., fv(x) = P

(︁
v(t) = x

)︁
. Then, the CDF of

the demand v(t) in the reconfiguration period is Fv(x) =
∑︁x

y=0 fv(y) = P
(︁
v(t) ≤ x

)︁
.

Therefore, the original condition above isFv

(︁
rz
)︁
= δ−π, and theminimum r satisfying

the actual guaranteed demand is rz = F−1
v (δ − π).

Figure 6.3a illustrates this concept in a practical example. Top left graph shows
the weekly time series of the mobile traffic demand for a slice s at a network node c.
The horizontal lines denote the minimum resources rδ and rz to be allocated when
τ = 1 week. Top middle graph (a) shows a representation of fv(x). In addition, we
present Fv(x) (left graph) with cuts at δ and δ − π that identify the needed resource
rδ and rz, respectively 1.
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Figure 6.3. Example of resource allocation to a slice with specification z = (δ, π) =
(0.9, 0.1)

.

6.3.2 Traffic volume fraction δ

When the operator guarantees (and overbooks) a fraction of traffic, we do not reason
in time slots anymore, but account for the effective demand volume associated to each
time slot. For this purpose, we introduce a water-filling function, that computes the
overall fraction of served traffic as a function of the assigned resources r. Specifically,
we define G(x) =

∑︁
t (min (v(t), x)) /

∑︁
t v(t), for all time slots t in the target

1Traffic volumes in Figure 6.3 as well as in the rest of the result reported in the thesis are
normalized with respect to the minimum average traffic recorded at a 4G antenna sector in our
reference scenarios presented in Section 6.5.
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reconfiguration period. Through the above expression of G(x) ∈ [0, 1], the value
of x maps to the upper limit of a water-filling algorithm. The minimum rz satisfying
the actual guaranteed demand is then rz = G−1

v (δ − π).
Figure 6.3b illustrates this concept in a practical case. Left graph (b) shows the

weekly time series of the mobile traffic demand for a slice s at a network node c. As
aforementioned, the horizontal lines denote the minimum resources rδ and rz to be
allocated when τ = 1 week. Besides, we describe G(x) on the right plot (b) with cuts
at δ and δ − π that identify the needed resource rδ and rz, respectively.

Note that in both cases above, the expressions of r assume that the amount
resources needed to serve a given slice is directly proportional to the mobile traffic
demand in that slice. While this clearly holds for some types of resources (e.g., radio),
we acknowledge that it may be a strong simplification in other settings. We argue,
however, that it is a reasonable assumption for many practical VNFs. Moreover, this
choice allows us to investigate through a unified framework different network levels
ℓ, where resources map to diverse physical assets (such as spectrum, airtime, Central
Processing Unit (CPU) time, computational power, or memory) depending on ℓ.

6.4 Multiplexing efficiency definition

Having computed rzc,s(n) according to either model in Section 6.3, we can define the
amount of dedicated resources that the operator allocates to network slices at network
level ℓ, over the entire system observation period, as

Dz
ℓ,τ =

∑︂
s∈S

∑︂
c∈Cℓ

∑︂
n∈T

τ · rzc,s(n). (6)

Equation (6) covers the demand that receives dedicated resources within slices.
However, under overbooking, a fraction π of traffic is penalized, i.e., is treated as
best-effort. Such traffic is not isolated anymore, and can be aggregated into a single
time series described, at node c and during period n, as

vc(t) =
∑︂
s∈S

max
{︁
0,min

{︁
rδc,s(n), vc,s(t)

}︁
− rzc,s(n)

}︁
. t ∈ n, (7)

This equation computes the penalized traffic in a slice s as the difference between
the resources dedicated to the slice, rzc,s(n), and those that would be actually needed
to accommodate the guaranteed demand, rδc,s(n). As exemplified in Figures 6.3a and
6.3b, rδc,s(n) can be computed by the strategy in Section 6.3, as F−1

v (δ) or G−1
v (δ), for

the cases where δ is a fraction of time slots or traffic volume, respectively. Then, the
shared resources required to serve all traffic penalized by overbooking are, trivially,
rc(n) = maxt∈n vc(t). Finally, we can calculate the total amount of resources that the
operator needs to allocate at network level ℓ, in order to meet specifications z, as

Rz
ℓ,τ = Dz

ℓ,τ +
∑︂
c∈Cℓ

∑︂
n∈T

τ · rc(n). (8)

Equation (8) returns the total amount of resources that the operator needs to
provision at network level ℓ in order to satisfy its commitments with all tenants, when
dynamically re-configuring2 the allocation with periodicity τ , and according to its

2Equation (8) maps to the special case where no reconfiguration is possible at level ℓ, when τ
is the total system observation time, i.e., |T | = 1.
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designated overbooking strategy. In order to unveil the implications of this value, we
compare it against a perfect sharing benchmark. In perfect sharing, the allocated
resources correspond to those required when there is no isolation among different
services, hence traffic multiplexing is maximum.

Let uc(t) =
∑︁

s∈S vc,s(t) be the total demand for mobile data traffic at node c,

summed over all slices. We then denote by r̂δc(n) the resources needed to accommodate
uc(t) during reconfiguration period n. For the sake of fairness, the same requirement
δ on guaranteed demand is enforced here as well3. Thus, adopting the methodology
presented in Section 6.3, r̂δc(n) can be computed as F−1

u (δ) or G−1
u (δ), where Fu(x)

and Gu(x) are the CDF of the total demand u(t), t ∈ n, expressed in time slots and
traffic volume, respectively. The resources allocated under perfect sharing are then
computed as

Pδ
ℓ,τ =

∑︂
c∈Cℓ

∑︂
n∈T

τ · r̂δc(n). (9)

Taking the above benchmark, we define the multiplexing efficiency as the ratio
between the resources required with perfect sharing and those needed under network
slicing, i.e.,

Ez
ℓ,τ = Pδ

ℓ,τ/ Rz
ℓ,τ . (10)

In summary, Ez
ℓ,τ quantifies the efficiency of network slicing in terms of resource

management at network level ℓ, under resource reconfiguration intervals of duration
τ , and with slice specification z = (δ, π). As Ez

ℓ,τ approaches one, the total amount
of slice-isolated resources tends to that assured by a perfect sharing. As slicing
the network becomes increasingly capacity-demanding, the efficiency drops instead
towards zero.

Let us illustrate the operation of multiplexing efficiency in Figure 6.4, when δ is
expressed as a fraction of time slot (top) or of traffic volume (bottom). The left column
depicts the time series of the mobile traffic demand for a set S of five slices, observed
at a single network node c, during one reconfiguration interval n (τ = 1 week). A
slice specification z = (δ, π) = (0.9, 0) commits the operator to allocate, for each slice
s, at least the capacity marked by the grey horizontal lines, which are computed as
discussed in Section 6.3. Their sum, in thick gold, denotes

∑︁
s∈S r

z
c,s(n) + rc(n), i.e.,

the value that, once multiplied by τ , returns the resources specified by Equation (8),
at a single node c and during reconfiguration interval n.

The right column, instead, shows the time series of the traffic demand aggregated
over all slices in S. By applying the specification z, we get a value r̂zc(n), highlighted
by the horizontal thick gold line. Its multiplication by τ gives the equivalent capacity
needed under perfect sharing as per Equation (9). Then, the multiplexing efficiency
is the ratio between the values highlighted by the thick gold lines on the right and left
plots, respectively. In this toy example, the value on the left is only slightly higher
than that on the right, hence E ∼ 1 and resource isolation is efficient. This is not
necessarily the case in practical scenarios, as we will detail later.

3We remark that the notion of overbooking penalty is meaningless under perfect sharing, as all
traffic is aggregated and treated as best-effort already.
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Figure 6.4. Examples of multiplexing efficiency, when δ = 0.9 expressed in time slots
(top) and traffic volume (bottom).

6.5 Reference scenarios

In this chapter, we evaluate the efficiency of resource management in a sliced network
by considering two modern metropolitan-scale network scenarios. As mentioned in
Section 1, today’s mobile services already offer a variety of requirements that makes
it meaningful to investigate the impact of slice isolation on network efficiency with
present traffic.

Our two reference urban regions are the large metropolis of several millions of
inhabitants considered in Section 4, and a typical medium-sized city with a population
of around 500,000, both situated in Europe. Service-level measurement data was
collected in the target areas by Orange. Details are in Section 6.5.1. On top of this,
we model the hierarchical network infrastructures in the target regions by assuming
a deployment of nodes that balances load and reduces latency. This is discussed in
Section 6.5.2.

6.5.1 Mobile service demands

The real-world demands generated by individual mobile services in the two reference
regions were collected during threemonths in late 2016. The informationwas gathered
by the proprietary, as well as aggregated geographically (per antenna sector) and
temporally (over 5-minute time intervals), so as to make the data non-personal and
to preserve user privacy; all operations were carried out within the operator premises,
under control of the local DPO, and in compliance with applicable regulations (see
Section 2.4).
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The resulting measurement data describe downlink and uplink traffic for hundreds
of prominent mobile services consumed in the target regions. Building on such
information, we define potential slices by identifying mobile services that meet two
requirements: (i) they generate a substantial offered load (above 0.1% of the total
network traffic), sufficient to justify a dedicated network slice; and (ii) they have clear
KPIs and QoS requirements. We identify 37 services that meet the criteria above, and
associate them to a different network slice each.
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Figure 6.5. Percentage of the mobile traffic generated by the selected services.
Different colors denote downlink and uplink traffic. Left: large metropolis. Right:
medium-sized city.

Our choice of services represents well the heterogeneous nature of today’s mobile
traffic. It encompasses many popular services, such as YouTube, NetFlix, Snapchat,
Pokemon Go, Facebook or Instagram, and covers a wide range of classes with diverse
network requirements, including mobile broadband (e.g., long-lived and short-lived
video streaming), low-latency (e.g., gaming, messaging), and best effort (e.g., web
browsing, social media), which are representative forerunners of 5G services [86].
Figure 6.5 provides basic information on our selection of services. It outlines the
downlink-dominated, highly skewed traffic split among the services, whose percent
traffic can differ of more than two orders of magnitude.
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Figure 6.6. PDF of the traffic demands across all antenna sectors. Left: large
metropolis. Right: medium-sized city.

A strong diversity also emerges in theway the selected services are consumed across
the geographical space within the two urban regions. Figure 6.6 portrays the PDF of
the total offered load at individual antenna sectors, which again spans several orders
of magnitude. The main cause of heterogeneity is the radio access technology: our
measurement data captures 2G, 3G, and 4G access, and 4G antennas accommodate
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much larger fractions of the demand and generate the rightmost bell-shaped lob of
the distributions. Still, 10-time differences in the traffic volume appear even across
4G antenna sectors, implying substantial location-based demand variability.

6.5.2 Hierarchical network structure

Figure 6.7. Antenna deployments in the target regions. Left: large metropolis. Right:
medium-sized city.

The deployment of antennas in the target regions is shown in Figure 6.7, which
highlights the diversity of the case studies in terms of network infrastructure, owing to
the different geographical span and user population density of the two areas. While we
do not have information on the architecture of the mobile networks beyond the radio
access, we model the hierarchical structure exemplified in Figure 6.1 after current
proposals for cloudified network slicing [73], as follows.

At the generic level ℓ, the operator deploys a number Nℓ = |Cℓ| of nodes, each
responsible for a subset of the antenna sites at the radio access level. Every node will
thus run VNFs (whose nature will depend on ℓ) on the mobile data traffic incoming
from or outgoing to its associated antennas. We assume that the operator deploys
generic level-ℓ nodes and links based on two criteria: (i) the offered load shall be similar
at all nodes; (ii) the subset of antennas served by a same node shall be geographically
contiguous. The first criterion ensures load balancing, and the second reduces latency
between antenna sites and nodes. Jointly, these criteria represent a plausible strategy
that aims at maximizing the performance of network slicing. We remark that the
resulting node deployment is static and does not change during our experiments;
instead, the node resources allocated to each slice may change under dynamic resource
allocation schemes.

Under these criteria, the problem of associating the level-ℓ nodes with the original
antenna sites in Figure 6.7 is a special case of balanced graph k-partitioning. Let
us consider a graph where each vertex v ∈ V maps to one antenna site, and has an
associated cost c(v) equal to the mobile traffic demand recorded at the site; also, let an
edge e = {u, v} ∈ E connect vertices u and v only if the corresponding antenna sites
are geographically adjacent4. The problem of level-ℓ node-to-antenna site association

4Multiple notions of adjacency are possible. We opt for one that leverages the common practice
of approximating antenna coverage areas via a Voronoi tessellation: two sites are then adjacent if
they share one Voronoi cell side.
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translates into dividing the graph into Nℓ sub-graphs, such that the sum of costs of
nodes in each partition is balanced. We introduce decisions variables

euv =

{︄
1 if e is a cut edge

0 otherwise
∀e ∈ E, (11)

xv,k =

{︄
1 if v is in partition k

0 otherwise
∀v ∈ V, ∀k, (12)

and formulate an Integer Linear Programming (ILP) problem:

min
∑︂
euv∈E

euv (13)

s.t.
∑︂
v∈V

xv,k · c(v) ≤ (1 + ϵ) ·
∑︁

v∈V c(v)

Nℓ

, ∀k (14)

∑︂
v∈V

xv,k · c(v) ≥ (1− ϵ) ·
∑︁

v∈V c(v)

Nℓ

, ∀k (15)∑︂
k

xv,k = 1, ∀v ∈ V. (16)

euv ≥ xu,k − xv,k, ∀e ∈ E,∀k (17)

euv ≥ xv,k − xu,k, ∀e ∈ E,∀k (18)

The objective function given by Equation (13) aims at minimizing the number of
cut edges that join vertices in separate partitions, so as to generate graph subsets that
are as compact as possible. Our goal in terms of load balancing is ensured by the
constraints given by Equations (14) and (15), which bound the load difference among
the various subsets of antennas: each partition is forced to have a total cost that is
within a fraction ϵ from the ideal case of a perfectly even cost

∑︁
v∈V c(v)/Nℓ. The

constraint given by Equation (16) ensures that each vertex is in exactly one partition,
while those given by Equations (17) and (18) determine the value of decision variables
euv based on whether vertices u and v belong to a same partition as defined by xu,k
and xv,k.

Figure 6.8. Association of antenna sites to level-ℓ nodes in the large metropolis
scenario. The plots refer to ℓ = 8 (16 nodes, left), ℓ = 9 (8 nodes, middle) and
ℓ = 10 (4 nodes, right).

The resulting optimization problem is NP-hard. We use a suitably configured
version of the Karlsruhe Fast Flow Partitioner (KaFFPa) heuristic [87] to solve it,
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which previously requires a Delaunay tesselation structure [88] in order to compute
the total number of edges and neighbors of the antennas under study given their
coordinates. In doing so, we allow for ±10% imbalance among the load served by
nodes at every level ℓ, i.e., ϵ = 0.1 in Equations (14) and (15). Figure 6.8 shows three
examples of antenna site partitioning among network nodes, for a selection of levels ℓ
in the large metropolis scenario. 5

Table 6.1 summarizes instead the main features of the partitions obtained in our
two urban scenarios. Rows are (i) the level ℓ ∈ {1, . . . , 12}, (ii) the corresponding
normalized mobile traffic per node, and (iii)-(iv) the number of nodesNℓ serving each
urban region at network level ℓ. At ℓ = 1, nodes map to 4G antenna sectors, and
the traffic per node is an average. From ℓ = 2 to ℓ = L, we consider the partitions
obtained by solving the optimization problem given by Equation (13), where L = 12
for the large metropolis and L = 10 for the medium-sized city.

ℓ 1 2 3 4 5 6 7 8 9 10 11 12

Traffic per node 5 10 15 30 60 75 100 150 300 600 1167 2334

Nℓ
Metropolis 422 230 160 80 40 32 23 16 8 4 2 1

City 122 60 40 20 10 8 6 4 2 1

Table 6.1
Hierarchical network structures for two urban scenarios.

6.6 Data-driven evaluation

Our performance evaluation is organized as follows. First, we investigate worst-case
settings where very stringent slice specifications are enforced and no reconfiguration
is possible (Section 6.6.1). We then relax these constraints, and assess efficiency
as slice specifications are moderated (Section 6.6.2), as well as under a dynamic
orchestration of network resources (Section 6.6.3). We then investigate the impact
of a varying number of slices on efficiency (Section 6.6.4). Afterwards, we
explore a number of meaningful, specific case studies among all possible system
configurations (Section 6.6.5), and finally we discuss the efficiency from a different
view (Section 6.6.6).

6.6.1 Slicing efficiency in worst-case settings

The least efficient sliced network scenario implies (i) strict slice specifications, where
the mobile network operator commits to guarantee the whole traffic demand (δ = 1)
for all slices, (ii) no possibility of overbooking (π = 0), and (iii) a static allocation
of resources without option for reconfiguration over time (τ spans the whole three-
month observation time in our measurement dataset, and |Tτ | = 1). With this
configuration, the operator trades efficiency for simplicity: it replicates physical
resources for different slices, and statically allocates to each slice the resources needed
tomeet the associated offered load. This strategy yields the lowest efficiency in terms of
occupied physical resources, but does not require any advanced solution for dynamic
resource management to be implemented in the network. It could be a pragmatic
approach to practical network slicing, if the loss of efficiency is small.

5Note that graph partitioning is only used to outline plausible deployments where node load is
reasonably balanced, yet, as we do not require a perfect balance, the specific partitioning algorithm
is of no particular relevance.
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Figure 6.9. Efficiency of slice multiplexing versus the normalized mobile traffic served
by one node (bottom x axis) at level ℓ (top x axis) in the two reference urban scenarios.

Figure 6.9 portrays themultiplexing efficiency of slicing as a function of the network
hierarchy level ℓ (top x axis); for the sake of clarity, the latter is mapped to the
normalized mobile traffic demand observed by a level-ℓ node (bottom x axis), as per
Table 6.1. The two curves refer to our two reference urban scenarios, and outline the
fluctuation of the efficiency as one moves from resources at the antenna level (dot on
the left) to those in a fully centralized cloud (triangle on the right). Results are for the
static resource assignment previously described, i.e., |Tτ | = 1, and slice specification
z = (δ, π) = (1, 0). Dots denote ℓ = 1 and triangles ℓ = L, for each scenario. Scattered
grey points around ℓ = 1 denote the efficiency and traffic measured at all level-1 nodes
(i.e., individual 4G antenna sectors) separately. These results, and all others unless
stated otherwise, refer to the case where the 16 mobile services that generate the most
network traffic are allocated to independent slices each; the rationale for this choice
will be apparent when discussing the effect of a varied number of slices, in Section 6.6.4.

The curves inFigure 6.9 confirm the intuition that the efficiency grows as onemoves
from very distributed resources at the antenna level to more centralized ones. This
trend roots in the temporal dynamics of traffic in the difference slices: the demands for
each slice are typically very bursty at individual antenna sectors, whereas aggregating
demands over a growing number of base stations results in increasingly smoother
time series. The coefficients of variation of the traffic time series substantiate this
conjecture: their values range in [1.487, 2.363] for ℓ = 1 and in [0.511, 0.587] for
ℓ = L, with intermediate levels resulting in midway ranges. The erratic, high activity
peaks that occur at the antenna level (ℓ = 1) force the allocation of substantial
static resources in order to accommodate the per-slice traffic. For higher ℓ values,
peak-to-average ratios are instead substantially reduced, mitigating these effects and
increasing the overall efficiency.

In addition to the qualitative trend with ℓ, Figure 6.9 lets us appreciate the
following quantitative results on the efficiency.

• The efficiency is very low (∼0.19) at the antenna level: ensuring physical resource
isolation across slices in absence of dynamic reconfiguration capabilities would
require more than 5 times the capacity of a legacy architecture where no network
slicing is implemented. The grey points highlight that such a poor efficiency
affects all 4G antenna sectors, independently of their specific offered load.
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• The efficiency grows slowly when aggregating traffic at the network edge (ℓ = 2
to ℓ = 6). Some gain starts to be appreciable as one moves above ℓ = 7 in our
reference scenarios, i.e., at network nodes that accommodate the demands from
many tens of antenna sectors at least.

• However, in absolute terms, even when considering that all traffic generated
in each of our two urban scenarios is aggregated at a single level-L node
(L = {12, 10} in the large metropolis and medium-sized city, respectively, see
Table 6.1), the efficiency stays fairly low, at 0.54–0.74.

We note that, although the method presented in Section 6.3 operates on individual
levels separately, Figure 6.9 offers a complete view of end-to-end efficiency across the
network, and the result covers all of the different types of slices presented in Section 1.
For instance, a type-A slicing in Figure 2.1 limits the analysis to the rightmost part of
the plot: implementing the most basic form of slicing requires roughly doubling the
resources deployed in the network core cloud with respect to a legacy non-sliced case.
More complicated slices that reach deeper into the network architecture encompass
larger portions of the curves in Figure 6.9. As an example, let us image that a type-C
slice in Figure 2.1 corresponds to a network level ℓ = 6 in a specific infrastructure
layout: then, the plot details the loss of efficiency that the operator can expect at all
intermediate nodes, down to a threefold increase of required resources at the C-RAN
datacenters that lie at the very edge of the slice. Furthermore, when considering an
end-to-end network slice, we have that the slice can be associated to resources located
at different levels of the network infrastructure (e.g., some resources at the antenna
ℓ = 1 and others at the core ℓ = L). In this case, the resulting overall efficiency of the
network slice is the combination of the individual efficiencies of the resources deployed
at different levels.
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Figure 6.10. Efficiency of slice multiplexing, in the same settings of Figure 6.9,
separating downlink and uplink. Left: large metropolis. Right: medium-sized city.

The results can be further disaggregated for the downlink and uplink directions,
as shown in Figure 6.10. Downlink traffic dominates the total demand, as previously
seen in Figure 6.5: therefore, the associated efficiency curves are very close to those in
Figure 6.9. However, the trend of efficiency during uploads is sensibly different from
the global one: slicing traffic in uplink tends to become remarkably (40% to 60%) less
efficient as one moves towards more centralized network levels. We argue that the
reason lies in the small uplink traffic volume, which results in bursty time series with
high peak-to-average ratios, even upon aggregation over multiple antennas.
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The distinct trends for downlink and uplink are especially important in the light
of the different costs associated to the demands in the two directions. By looking
at the sheer traffic load, the overall resource assignment should be driven by the
downlink behavior, since it currently dominates the aggregate data volumes, as per
Figure 6.5. However, specific applications, hence slices, heavily rely on uplink traffic:
for instance, the fact that efficiency at the antenna level is also low in uplinkmeans that
services with strong requirements on access network latency (e.g., mobile gaming) are
as hard to accommodate as downlink bandwidth-eager ones (e.g., video streaming).
As another example, baseband processing at a virtualized radio access is remarkably
more CPU-intensive for uplink traffic [89]: the very low efficiency recorded in uplink
at the network edge can make resources assignment challenging when dealing with
type-C, type-D or type-E slices in Figure 2.1.

An interesting final remark on the results in Figures 6.9 and 6.10 is that we do not
observe substantial differences between the two reference cities. Minor discrepancies
only emerge for high values of ℓ, and can be easily imputed to the intrinsic topological
and demographic differences that characterize the two scenarios. The affinity of results
in the two different urban regions is in fact a constant across all results, as it will be
observed in the remainder of this section.

6.6.2 Configuring slice specifications

Severe slice specifications may represent a major cause for the poor efficiency recorded
in Section 6.6.1. To gain insight on this, we investigate the impact that the QoS
requirements imposed on each slice have on the opportunities for multiplexing slice
demands. Note that here we still consider a static allocation of resources, and no
possibility of reconfiguration.
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Figure 6.11. Efficiency of slice multiplexing versus slice specifications when π = 0.
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Figure 6.11 offers a complete overview of sensible resource configuration schemes,
in which we vary the overall QoS that each tenant is provided by the operator. It is
important to remember that similar plots to this Figure will use the following format
in this thesis. Thick dashed and solid lines represent the extreme network levels ℓ = 1
and ℓ = L, while thin solid lines are for an intermediate network level (i.e., Mobile
Edge Computing (MEC)), for the large metropolis (purple) and medium-sized city
(gold).

Consistently with our system model, different QoS levels are reflected by diverse
values of δ and π, hence we explore the impact of those two parameters on the
multiplexing efficiency. The first configuration is depicted in the top pair of plots
in Figure 6.11, which portray efficiency as a function of the guaranteed demand δ
expressed as a time slot fraction, with no overbooking (π = 0). As one would expect,
efficiency grows when not all the traffic demand for each slice has to be served. The
increase is much more evident in the case of antenna-level resources (ℓ = 1) than in
the network core (ℓ = L).

The good news is that a large fraction of the gain is achieved close to δ = 1,
i.e., a slight reduction from a fully guaranteed demand may yield a large gain: in
the best case, reducing δ from 1 to 0.99 raises efficiency from 0.35 to 0.6 (a 71%
increase) when ℓ = 7 in the medium-sized city scenario. The bad news is instead that
efficiency values that are actually serviceable for the operator are only reached when
significant amounts of traffic are not accommodated: figures above 0.8 (implying that
implementing network slicing requires no more than 25% additional resources) are
achieved in all configurations only when δ = 0.9, and 10% of the demand is denied.

Trends are similar when the same slice specification parameters (varying δ, and
π = 0) are defined as a traffic volume fraction, in the bottom pairs of plots in
Figure 6.11. The major differences are at the antenna level (ℓ = 1), where the
multiplexing efficiency is substantially lower than in the case of δ and π expressed
as time slot fractions. Indeed, imposing QoS constraints in terms of time slots or
traffic volume leads to comparable efficiency when all time slots contribute a similar
amount of traffic volume, and the demand is even over time. Centralized cases with
high ℓ are closer to this situation.

However, we already noted in Section 6.6.1 that demands are much more irregular
close to the radio access: here, most of the traffic volume is contributed by high activity
peaks, and volume-based thresholds must still accommodate a significant portion
of such peaks, instead of ignoring them completely as in the time slot-based case.
Thus, volume-based service specifications at the antenna level force the operator to
deploy a substantial amount of resources per slice even under more relaxed guaranteed
demands.

Statistics are very different when including overbooking in the picture. Figure 6.12
illustrates the impact of the overbooking penalty (π), when the full demand is
guaranteed, i.e., δ = 1. The plots refer again to pairs of scenarios, under slice
specifications expressed in terms of time slots (top pair) and traffic volume (bottom
pair). In almost all settings, the multiplexing efficiency quickly rises beyond 0.8 by
just having 3% of the slice traffic not served in isolation. The only exception occurs
for traffic volume-based guarantees at the antenna level: in this case, the efficiency
gain with π is lower, yet the improvement with respect to the case where δ is varied
(bottom pair in Figure 6.11) is dramatic.
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Figure 6.12. Efficiency of slice multiplexing versus slice specification when δ = 1 .

These results let us conclude that an overbooking that leads to serving a small
portion of traffic peaks in a best-effort fashion is an interesting strategy for the
operators, maintaining high standards (δ = 1) with a reasonable increment of
resources (≤ 25%).

6.6.3 Slicing under dynamic resource orchestration

All previous results refer to cases where resources are statically allocated. We
now investigate the multiplexing efficiency of network slicing when the operator can
orchestrate network resources in an adaptive way, by re-allocating them to different
slices over time.

As discussed in Section 6.3, this is equivalent to considering a resource reconfig-
uration interval τ that is shorter than the system observation time in our system
model. Specifically, we assume that the operator can reconfigure the resources at each
network level ℓ with a fixed periodicity τ which depends on the capabilities of the
underlying virtualization technology. In our study, the operator allocates resources
optimally to meet all slice specifications in each reconfiguration interval of duration
τ . This is equivalent to assuming the availability of an oracle algorithm that, at the
beginning of a reconfiguration interval, has perfect knowledge of the future demand
for each service over the rest of the interval. Then, the operator can reserve for each
slice the minimum amount of resources to abide by the requirements, as detailed in
Section 6.3 and exemplified in Figure 6.2.
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Figure 6.13. Efficiency of slice multiplexing (left y axis) and percent gain over static
assignment (right y axis) versus the normalized mobile traffic served by one node
(bottom x axis) at level ℓ (top x axis) in the two reference urban scenarios.

Our baseline result, in Figure 6.13, refers to τ = 30 minutes, which can be
regarded as a fairly high resource reconfiguration frequency for several scenarios. For
instance, VNF management in the network core cloud has typically larger time scales
of hours or even days [90]. At radio access, instead, faster dynamic reassignments are
technically possible; however, forecasting the demand over short time scales ofminutes
is challenging and easily leads to slice specification violations, hence reconfiguration
intervals in the order of hours are more credible [41].

In these settings, dynamic allocation mechanisms and a perfect prediction of
the demand over the future 30 minutes can substantially improve the efficiency of
slice multiplexing. Indeed, when comparing the curves in Figure 6.13 (under slice
specification z = (1, 0)) with their equivalent in Figure 6.9, the gain is evident. We
explicitly portray the benefit as the grey region in Figure 6.13: it ranges between 90%
(ℓ = L) and 250% (ℓ = 1). The cause of such a significant advantage roots in that
different mobile services allocated to separate slices tend to peak at different times
of the day, as discussed in details in recent analyses of mobile service dynamics [1].
The temporal diversity of peaks across slices lets a perfect orchestrator reuse the
same resources to cover time-disjoint high-activity periods in multiple slices, hence
increasing the system efficiency.

Despite the much higher gain at the antenna level, there is still a large gap between
the efficiency at the radio access and in the network core. An order-of-minute dynamic
orchestration of resources allows for near-perfect slicemultiplexing at a datacenter that
fully centralizes the traffic in our large metropolis scenario. In contrast, efficiency is
bounded at around 0.6 for levels close to ℓ = 1, i.e., at individual antenna sectors or
at nodes serving small groups of a few antennas each. This implies that the operator
still has to nearly double the capacity to isolate slices at network levels close to the
radio access.

A more comprehensive picture is provided by Figure 6.14, which encompasses a
wide set of reconfiguration intervals τ , from the 30-minutes case we just analyzed in
detail up to 3 months, i.e., the entire timespan of the dataset, which maps to the
static resource configuration case considered in Section 6.6.1. As one could expect,
the multiplexing efficiency of slices is decreased as τ grows, since the system becomes
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Figure 6.14. Efficiency of slice multiplexing versus the resource reconfiguration
periodicity τ . Left: large metropolis. Right: medium-sized city.

less flexible. Interestingly, the loss of efficiency is steeper at lower values of τ : reducing
the frequency of reallocation from once every 30 minutes to once every day yields an
efficiency loss comparable to that caused by increasing τ from one day to 3 months.
This is consistent with the typical duration of human activities, in the order of tens of
minutes, which reflects on similar timescales of mobile service demand fluctuations [1].
Therefore, predicting traffic and allocating resources at longer periodicity rapidly
reduces the system efficiency: either the operator is able to deploy virtualization
technologies that enable such a reconfiguration frequency, or it is probably not worth
considering dynamic resource allocation at all.

6.6.4 Varying number of slices

Up to now, we assumed that the slicing strategy adopted by the operator involved
assigning one slice to each of the 16 services that generate the most traffic. In fact,
the mapping of services into specific network slice instances is a business-driven choice
that is based on several factors, such as the requirements of the services in terms of
isolation, the specific policies implemented by the operator [91], or the practice of the
tenants, which may decide to group multiple services into a same slice for economic
reasons. The number of slices and the demands associated to each will have an impact
on the overall multiplexing efficiency, which we investigate next.

We first analyze a business-driven scenario where network slices are dedicated to
sets of services of a same category, i.e., streaming, social media, web, cloud, gaming,
messaging and miscellanea, respectively. Here, we set δ = 1 and π = 0 for all slices.
In this scenario, we study the impact of the system reconfiguration dynamics, as
displayed in Figure 6.15. Trends are similar to those observed for a per-service slicing
in Figure 6.14. Despite a higher efficiency in general, the fractional gain brought by
increasingly faster resource orchestration is comparable under the two different slicing
policies.

70



6 DATA-DRIVEN RESOURCE MANAGEMENT

30
 m 1 h2 h 8 h 24
 h 1 w 3 M

Reconfiguration interval span 

0
0.2
0.4
0.6
0.8

1
M

ul
tip

le
xi

ng
 e

ffi
cie

nc
y = 1 = 9 = L

30
 m 1 h2 h 8 h 24
 h 1 w 3 M

Reconfiguration interval span 

0
0.2
0.4
0.6
0.8

1

M
ul

tip
le

xi
ng

 e
ffi

cie
nc

y = 1 = 7 = L

Figure 6.15. Efficiency of slice multiplexing with per-category slicing. The plot
semantics are the same as in Figure 6.14.
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Figure 6.16. Efficiency of slice multiplexing as a function of the number of slices k+1
(on the x axis), when the k services with the highest traffic load have a dedicated slice
and the remaining services are aggregated into a common slice.

We then explore different slicing strategies according to a hierarchical scheme
where the k services that generate the highest traffic loads acquire a dedicated slice
each. The demands for all remaining services are instead aggregated into a common,
non-customized, slice. Figure 6.16 shows the resulting multiplexing efficiency as a
function of the total number k + 1 of slices in the network, when the reconfiguration
period τ is set to 1 hour, δ = 1 and π = 0 for all slices. Increasing the number k
of isolated mobile services entails a reduction of efficiency: this is expected, since a
larger k moves traffic from the common slice, within which multiplexing is perfect,
to dedicated slices that require isolated resources. Interestingly, however, the loss of
efficiency is accumulated in the first half of the plots, i.e., considering a number of
slices larger than 16 does not affect efficiency anymore. Therefore, most of the resource
utilization cost for the operator comes from the very few mobile services that generate
the largest demands, and multiplexing efficiency is only increased when such services
are treated as best-effort traffic. Incidentally, these results also motivate our choice of
focusing on 16 slices in previous experiments: this setting maps to a lower bound on
performance in terms of efficiency with our dataset.

71



6 DATA-DRIVEN RESOURCE MANAGEMENT

A second sensible slice configuration assumes that the providers of the services
that generate the highest traffic load acquire a dedicated slice tailored to their service,
while the remaining services are aggregated into a common, non-customized, slice. In
Figure 6.16, we analyze the multiplexing efficiency resulting from this configuration
as a function of the total number of slices in the network (including the dedicated
slices and the common one) when the reconfiguration period τ is of 1 hour and f = 1
for all slices. Results show that the trend becomes almost flat after 15 slices, which
implies that efficiency is only improved when the services with the largest demands
are brought into the common slice.

Figure 6.17. Savings obtained by relaxing the service guarantees of the common slice,
corresponding to the difference between the resources required when f = 1 for the
common slice, and those required when f = 0.9 for that slice.

In the above slice configuration, it may be reasonable to expect that those tenants
acquiring dedicated slices are provided a stricter guarantees than the ones in the
common slice. In order to evaluate the benefits resulting from such a strategy,
Figure 6.17 illustrates the resource savings resulting from providing the common slice
with a guaranteed time fraction f = 0.9, computed as the relative percentage of
resources spared with respect to those required in the configuration where all slices
have f = 1. Results show that savings remain very low in the network core (when
ℓ ∼ L), but can be significant for resources located close to the radio access (when
ℓ ∼ 1). In the latter case, savings are important (up to 20-40%) when the top-10
services are included in the non-customized, low-QoS common slice. Indeed, as these
account for 65%of the overall traffic (seeFigure 6.5), they have amuchhigher incidence
on the system performance.
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6.6.5 Case studies

In our evaluation, we have studied each system parameter in isolation. In this section,
we investigate the multiplexing efficiency under network slicing in a number of specific
case studies. This analysis lets us detail particular settings of practical interests,
and complements the previous results. Each case study focuses on a specific service
category (e.g., video streaming), where we assume that different applications (e.g.,
YouTube, iTunes, DailyMotion, NetFlix, etc.) are allocated to isolated slices. The
detailed configurations and the associated efficiency results are provided in Table 6.2,
for both the large metropolis (LM) and medium-sized city (MC) scenarios.

Slice specification Efficiency
Category Slices Network level τ

Guarantee δ π LM MC

Streaming 8 Antenna (ℓ = 1) 1h Volume 1 0 0.35 0.35
Streaming 8 MEC (ℓ = 9, 7) 4h Volume 1 0 0.74 0.59
Streaming 8 Core (ℓ = L) 10h Volume 1 0 0.84 0.73

Web 6 Antenna (ℓ = 1) 1h Volume 1 0.02 0.71 0.71
Web 6 MEC (ℓ = 9, 7) 4h Volume 1 0.02 0.97 0.85
Web 6 Core (ℓ = L) 10h Volume 1 0.02 1 0.96

Social media 4 Core (ℓ = L) 10h Time slot 0.99 0.05 0.90 0.96
Social media 4 Antenna (ℓ = 1) 1h Time slot 0.99 0.05 0.81 0.81
Social media 4 MEC (ℓ = 9, 7) 4h Time slot 0.99 0.05 0.92 0.89
Gaming 6 MEC (ℓ = 9, 7) 4h Volume 1 0 0.57 0.59
Gaming 6 Antenna (ℓ = 1) 1h Volume 1 0 0.58 0.59
Gaming 6 Core (ℓ = L) 10h Volume 1 0 0.57 0.65

Messaging 5 MEC (ℓ = 9, 7) 4h Volume 0.99 0.03 0.68 0.80
Messaging 5 Antenna (ℓ = 1) 1h Volume 0.99 0.03 0.5 0.45
Messaging 5 Core (ℓ = L) 10h Volume 0.99 0.03 0.91 0.89

Table 6.2
Case studies. Each row maps to one configuration.

Our analysis below addresses one network level in each case study, highlighted in
bold in Table 6.2. For the sake of completeness, the Table also includes additional
levels for each scenario, which allow appreciating, for each case study, the efficiency
of end-to-end slicing across the network architecture.
Case study #1 – High QoS at the access network. The first case study
focuses on slicing at the antenna level, and on capacity-demanding services such as
video streaming and web access. These are challenging settings for the operator, who
must provide high-quality support for a large volume of bursty traffic; a quite fast
reconfiguration (τ = 1 h) is thus a reasonable relief. The efficiency is nonetheless low
if hard-QoS requirements (δ = 1) are to be met, e.g., for video streaming slices: the
operator shall commit up to threefold the resources needed in a non-sliced scenario – a
high cost considering that radio access resources such as spectrum or RAN processing
capacity can be very expensive. In less strict slices like those dedicated to web access,
paying minimal overbooking penalties (π = 0.02) is an appealing option, as it may
reduce costs considerably by raising efficiency to 0.71.
Case study #2 – Large traffic flows in the core. This case study shifts the focus
to datacenters in the network core, and targets social media services that generate high
demands but are less latency-dependent. The large traffic volumes observed at this
level allow achieving high efficiency (above 0.90) under looseQoS (δ = 0.99, π = 0.05),
and with limited reconfiguration possibilities (τ = 10 h). These results further prove
the benefits of centralization for the effective implementation of network slicing.
Case study #3 – Computing at the edge. Gaming services with strong QoS
requirements are likely candidates to be among the first services to be delivered over
edge deployments [92], hence they represent a sensible target for MEC-level slicing.
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We consider 6 popular mobile games, to which we allocate dedicated slices with firm
specifications (δ = 1, π = 0). Although we allow for quite fast reconfiguration (τ
= 4h), the price that the operator has to pay is high in both urban scenarios: the
required resources are almost doubled with respect to a non-sliced network. Similar
considerations hold for messagging services, although in this case QoS requirements
can be moderated to δ = 0.99 π = 0.03, with a 20-30% efficiency gain with respect to
the gaming case.

6.6.6 Equipment deployment efficiency

To conclude our analysis, we look at the problem of resource multiplexing efficiency
in a sliced network from a rather different perspective. The expressions (6) and (9)
derived in Section 6.4 assume that the relevant metric for the operator is the amount
of resources utilized to accommodate the demand for mobile services aggregated over
time. Therefore, the analysis carried out in Sections 6.6.1–6.6.5 is appropriate to
evaluate OPerating EXpense (OPEX), which increase when the available resources
are used more intensively, and can be applied, e.g., to electric power consumption,
management overheads, or deterioration of assets with use.

However, another interesting viewpoint is the efficiency in terms of equipment
to be deployed to meet the instantaneous demand. This relates to the CAPital
EXpenditure (CAPEX) incurred by the mobile network operator, typically hardware
and infrastructure. In this case, the cost expressions are slightly different, and capture
the fact that the equipment must be dimensioned so as to match the peak demand.
Formally, let r̂zc,s(n) be the resources needed to satisfy specifications z for slice s ∈ S
at node c ∈ Cℓ during reconfiguration interval n ∈ T , computed as indicated in
Section 6.3. Then, the equipment resources needed to accommodate the traffic activity
peak in slice s at network level ℓ are computed as

D⋆z
ℓ,τ =

∑︂
s∈S

∑︂
c∈Cℓ

max
n∈T

(︁
r̂zc,s(n)

)︁
. (19)

Similarly, the equivalent resources needed under perfect sharing in the same
settings are

P⋆δ
ℓ,τ =

∑︂
c∈Cℓ

max
n∈T

(︁
r̂δc(n)

)︁
, (20)

where r̂zc (n) is the amount of resources needed to accommodate the total demand
aggregated over all slices in S at node c and reconfiguration interval n, under
requirements z. The multiplexing efficiency for deployed equipment is then

E⋆z
ℓ,τ = P⋆δ

ℓ,τ/R⋆z
ℓ,τ . (21)

The equipment deployment efficiency in (21) is shown in Figure 6.18. The
figure summarizes results in our reference urban scenarios, under a wide range of
reconfiguration time interval durations τ , and across all network architectural levels
ℓ. We highlight the following aspects.

(i) In absence of mechanisms that allow for dynamic reconfiguration, the efficiency
is very much comparable to that observed in the previous analysis, as shown by the
values for τ = 3 months in Figures 6.14 and 6.18. This is a clear indication that
deploying hardware and infrastructure to provide resource isolation across slices risks
to have an unbearable cost for operators if no dynamic resource reallocation is possible.
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Figure 6.18. Efficiency of slice multiplexing for an equipment deployment perspective
versus the resource reconfiguration periodicity τ .

(ii) Flexibility in the orchestration of resources pays off also in terms of equipment
deployment efficiency, which can be increased up to 0.8–0.95 when fast reconfiguration
over 30-minute intervals is possible. These values correspond to an additional 5%–25%
cost in terms of network infrastructure over the perfect sharing benchmark.

(iii) The main difference between efficiency of resource usage, given by (10), and
equipment deployment, given by (21), is observed at architectural levels closer to radio
access. When ℓ is close to 1, a dynamic reconfiguration of resources allows improving
deployed infrastructure efficiency much faster than resource usage efficiency. In other
words, resource isolation across slices has a sensibly lower impact on equipment
installation costs than on operating expenses. For instance, at the antenna level
(ℓ = 1), efficiency is 0.6 in Figure 6.14 and 0.8 in Figure 6.18, implying that the extra
cost over perfect sharing is high for resource utilization (over 60%) and much lower
for equipment deployment (below 25%).

(iv) In contrast to the above, in the network core (i.e., for ℓ that tends to L) trends
are similar in Figure 6.14 and Figure 6.18.

Overall, our results stress how multiplexing efficiency of slice resources is largely
consistent across the different perspectives entailed by the expressions (10) and (21).
That is, the OPEX and CAPEX incurred by the operators to support network
slicing have comparable trends with respect to the different system parameters, with
the notable exception of lower deployment costs for a radio-access infrastructure
supporting high reconfigurability.
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6.7 Takeaways

Our data-driven analysis unveils how real-world service usage patterns may affect the
deployment of a key paradigm for future-generation mobile networks such as network
slicing, and the impact it has on resource management. Specifically, we retain the
following main takeaway messages:
Multi-service requires more resources. Building a network that is capable of
providing different services (possibly associated to several tenants) will necessarily
reduce efficiency in resource utilization. We quantify this loss in almost one order of
magnitude if considering distributed resources (such as spectrum), yet the efficiency
loss stays as high as 20% even in large datacenters in the core network. These figures
translate into high costs for the infrastructure provider, who must compensate for
them by aggressively monetizing on the new business models enabled by a multi-
service scenario (e.g., Network Slice as a Service, Infrastructure as a Service).
Traffic direction is a factor. Uplink and downlink traffic exhibit similar efficiency
trends across network levels, but uplink exacts a much higher efficiency degradation
to meet equivalent QoS requirements. Although uploads account for a small fraction
of the overall load, the lower efficiency of uplink may entail additional challenges for
the operators. Indeed, uplink QoS requirements are key to specific services such as
mobile gaming, and it is likely that multiple instances of such services belonging to
different tenants have to be served in a resource-isolated fashion in parallel.
Loose service level agreements may not help. Although slice specifications
may be moderated, the overall efficiency grows only when guarantees on the serviced
demand are very much lowered, up to a point that they may not be suitable for certain
services (needing, e.g., “5 nines reliability”, or strict bandwidth requirements over
very short time slots).
Overbooking is a key strategy. While downgrading the requirements in terms
of served fraction of traffic only helps when brought to extreme levels, flexibly
serving small portions of the individual slice demands via a non-customized common
slice provides high benefits. Therefore, overbooking solutions that only marginally
underserve slices may yield substantial economic gains for the operators, as they allow
trading off substantial resource deployment costs with negligible penalty fees due to
slight SLA violations. This corroborates the importance of recent approaches for
practical end-to-end resource overbooking in sliced 5G networks [84].
Guaranteeing traffic volumes at the antenna is costly. If operators define
SLAs in terms of assured traffic volumes, they shall note that meeting the QoS
requirements will need substantial additional resources at the radio access, even if
guarantees are loose and overbooking is in place. SLAs defined in terms of guaranteed
time slots allowmuchmore flexibility in balancing efficiency and QoS for each network
slice.
Dynamic resource assignment must be rapid. The design of dynamic
resource allocation algorithms is crucial to increase the efficiency of future sliced
networks. However, substantial gains will only be attained if the virtualization
technologies enable a fast enough re-orchestration of network resources. While current
Management and Orchestration (MANO) frameworks provide such capabilities,
intelligent algorithms able to forecast mobile service demands and anticipate resource
reconfiguration are also required, Artificial Intelligence (AI) and Machine Learning
(ML) are promising techniques to accomplish this [93], and are also being brought
into the network management landscape by standards [94].
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Aggregating services is beneficial. Aggregating similar services into a same
slice increases the system efficiency significantly, yet it comes at the price of losing
the ability to customize treatment to each service. This implies that operators may
face a business trade-off between providing dedicated support to highly remunerative,
popular services, and incurring high management costs to implement the associated
slices.
Deployment is slightly more efficient than operation. We analyzed the
sharing efficiency from both a continuous resource usage and an infrastructure
deployment perspective. While they have similar trends in the network core, the
efficiency at the radio access is higher for installed hardware in presence of high-
frequency resource reallocation.
Urban topography has limited impact. The fact that all of our results are very
consistent in two urban areas with a quite different nature lets us provide general
insights that hold beyond one particular scenario. More precisely, as usage demands
are eventually driven by human factors, we expect that our considerationsmight apply
to other metropolitan regions in (and possibly beyond) Europe.
Efficiency under uncertain load demands. Our analysis concerns resource
management efficiency under known loads, as slices are allocated the exact resources
needed tomeet the corresponding service demands. This lets us investigate the impact
of the limited reconfigurability of resources, which forces the operator to provision a
constant amount of resources during the following reconfiguration period. In a real
system, however, the network slices demands are not known a priori, and resources
have to be allocated based on a forecast of the expected demand during the next
re-orchestration interval. This introduces a second source of inefficiency, i.e., the
inaccuracy of traffic predictions, which imposes some overprovisioning in the allocated
capacity to combat the uncertainty associated with the future load information. This
second aspect has been recently analyzed by the authors in [95], where an approach
is developed that forecasts the capacity needed to accommodate the traffic of a slice.
Figures about the expected global performance of a practical system can then be
obtained by summing the effects of both sources of inaccuracy. For instance, if the
resource reconfiguration periodicity imposes allocating 100% extra resources (which is
a typical case according to the results in the previous sections), and capacity predictors
entail 10% overprovisioning (a likely number according to [95]), then the overall
additional resources required will amount to 110%. This extra capacity can then
be served with a mixture of guaranteed demand and overbooking, as discussed in
Section 6.1.
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This thesis has analyzed several factors involving the mobile service usage and
network slicing models in diverse scenarios. Particularly, the clusterization of
mobile services in distinct domains (i.e., the temporal, spatial, spectral and wavelet
approaches), and the network trade-offs of network slicing according to different
parameters (such as the guaranteed time fraction, the reconfiguration interval span or
the number of slices, level of aggregation, or the percentage of overbooked resources)
in two urban scenarios have been addressed.

This chapter synthetizes the contributions in this thesis and presents the main
conclusions as follows. The first section presents the conclusions of the research. The
second section details the possible future work based on the findings of this thesis.

7.1 Conclusions

As the volume of data, digital transformation, and the pace of technological change
accelerate, the ability of organizations and professionals to keep up and capitalize on
the opportunity is becoming more challenging. In particular, traditional software-
based approaches cannot deal with the new heterogeneity of service’s demands in
the 5G paradigm. It is in this framework where SDN and NFV technologies appear,
as part of the new set of equipment and techniques needed. Among them, network
slicing seems to be the most promising tool for the allocation of needed resources when
customization of services, KPIs and QoS guarantees are essential.

Given this new reality, operators and tenants will work in a multi-domain network
context, where adaptability and programmability are paramount, as well as data
isolation and management automation. Our data-driven study contemplates an
extensive dataset with a high-granularity, discussing two main areas that will help
decision makers to base their investments in real-world information and address issues
before they become problems.
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On the one hand, we identify the following classes of components in the time series
of the demands of multiple popularmobile services: (i) non-composable, i.e., recurrent
patterns that are found in all time series, hence are inherently impossible to compose
(their sum is just a scaling of the pattern observed in each time series); (ii) composable,
i.e., recurrent patterns that are specific to each time series (which are the portion we
can actually sum with some hope to obtain near-constant load); and (iii) noise, non-
recurrent patterns that are excluded from our analysis, small in magnitude. Then, we
correlate and apply clustering algorithms to the relevant features in three dimensions
(i.e., time, space and frequency) to classify the service’s behaviour and be able to
provide recommendations on how to allocate network resources for distinct clusters.

A first finding from this research is that no two services exhibit similar time
patterns in their nationwide aggregate traffic: although expected for different service
categories, this is less obvious for akin services, e.g., diverse applications that all
provide video streaming. A second key insight is that mobile services have very
comparable geographical distributions of both total and the per-user traffic demands.
That is, different services have different temporal patterns (i.e., they are consumed
at different times), but their geographical patterns (i.e., locations where they are
consumed) are very similar. Our third takeaway message is that spatial distributions
of per-subscriber service usage are in fact driven by land use, i.e., the urbanization
level plays a major role in influencing how much mobile services users consume.
Nonetheless, it has amuch lower impact on when they do so, as the average subscribers
in urban, semi-urban and rural regions all follow similar service access patterns; a
notable exception is represented by users on high-speed trains, who show unique time
dynamics. Along these lines, we could identify common periodic behaviors in the real-
world traffic generated by a large set of applications by leveraging spectral methods.

On the other hand, we carry a profound analysis on quantifying resource
management efficiency and cost-effectiveness of the system showing the trade-off
between (i) assigning dedicated resources for service customization purposes, and (ii)
resource sharing practices among services. Particularly, our results provide insights
on the achievable efficiency of network slicing architectures, their dimensioning,
and their interplay with resource management algorithms at different locations and
reconfiguration timescales.

First, we prove that network providers will face challenges in scenarios where the
reconfiguration of their networks should be fast (i.e., at timescales shorter than a
few hours), drastically reducing the time to act, for an increasing number of mobile
services. Second, we observe that traffic direction is a factor, and it should be taken
into account when deciding where to increase or decrease the number of slices (e.g.,
aggregating services only has an effect when the top-10 services are concerned in the
downlink direction). We remark that a multi-service scenario in general requires more
resources, but the monetary investment and the gains related to network slicing usage
depend on the network level (e.g., antenna or cloud level).

Moreover, we scrutinize that QoS specifications must be reduced vastly to achieve
high efficiency. Even loosing SLAs may not help, as efficiency could be achieved when
requirements may not be suitable for certain services. However, overbooking is a key
strategy to increase operators revenues with slight penalty fees. Last but not least,
our results are consistent in the audited urban scenarios, meaning that the impact of
urban topologies is limited.
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While a thorough analysis of the overall efficiency resulting from considering both
effects is left as future work, it is worth mentioning that, according to the results
presented in this thesis and in [95], it is expected that the overall efficiency will be
dominated by the resource allocation dynamics analyzed in this thesis.

To conclude, ours does not pretend to be a fully comprehensive analysis, rather one
that lays the foundations to a better understanding of the new trade-offs introduced by
network slicing in terms of resource management efficiency. The empirical bounds we
derived represent a starting point for deeper investigations of an unexplored subject
with strong implications for the future generations of mobile networks.

7.2 Future work

This work provides an original perspective on the temporal analysis of mobile
applications. By leveraging distinct methods, we could identify common behaviors
in the real-world traffic generated by a large set of services, which were not detected
by previous studies. Our results pave the road for further investigations, aimed at
explaining the root causes for these temporal similarities, at assessing their generality
at different spatial and geographical scales, and at exploiting them for applications
in network planning and resource management. For instance, new and improved
data plans, widespread broadband availability, and services anticipate and meet the
demands, will boost new lifestyles where connectivity and mobility are paramount.

Besides, the proposedmethodology to generate andworkwith synthetic data solves
privacy derived issues stated in the GDPR. The combination of this methodology,
the hybrid time-frequency approach, and forecasting algorithms on data traffic
consumption becomes an opportunity to help professionals close the gap and harness
the full potential of data, creating new tools to improve their network infrastructure
and outcomes. Consequently, the risk of over-provisioning would be reduced.

However, our work is meaningful for domains beyond networking, as it will help to
establish a symbiosis between the Telecommunications and Transportation industries
to improve the mobile coverage and the transport connection at under served regions.
Hence, society will have additional tools to fight social segregation issues and avoid
self-contained residential areas. In addition, as mentioned before, when new mobility
and lifestyle trends appear, it will affect other fields of study such Sociology, Education
or Medicine. For example, the digital transformation will modify how we work and
study, or it will allow us to receive telesurgery treatments and telemedicine diagnosis.

On a side note, as the dataset is from 2016, it would be interesting to update
the information up to the present day and study the main changes found between [1]
and [4], as well as to perform historical evaluations in different countries that consume
other mobile services (e.g., Line messaging service). Also, we can integrate current
algorithms in systems and work on the algorithms that leverage our analysis, while we
keep track on how the parameters defined in our models evolve with respect to them.

Of course, this is out of the scope of this thesis, but it would be of significant value
as it would allow to study both the composability of resources, and the flexible SLA
adherence for future 5G networks. For example, we could quantify the network effi-
ciency of resources when clustering together services that are synchronized in distinct
regions, as they tend to consumemore resources over the same period, while this effect
could not be exhibited by the non-clustered ones.
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sharing efficiency in network slicing,” IEEE Transactions on Network and
Service Management, vol. 16, no. 3, pp. 909–923, 2019. [Online]. Available:
https://ieeexplore.ieee.org/document/8737701

[4] C. Marquez, M. Gramaglia, M. Fiore, A. Banchs, and X. Costa-
Perez, “How Should I Slice My Network? A Multi-Service Empirical
Evaluation of Resource Sharing Efficiency,” in Proceedings of the 24th
Annual International Conference on Mobile Computing and Networking (ACM
MobiCom 2018), New Delhi, India, 2018, p. 191–206. [Online]. Available:
https://dl.acm.org/doi/10.1145/3241539.3241567

[5] B. Cici, M. Gjoka, A. Markopoulou, and C. T. Butts, “On the Decomposition
of Cell Phone Activity Patterns and Their Connection with Urban Ecology,”
in Proceedings of the 16th ACM International Symposium on Mobile Ad
Hoc Networking and Computing (ACM MobiHoc 2015). Hangzhou, China:
Association for Computing Machinery, Jun. 2015, p. 317–326.

[6] E.Peltonen, E. Lagerspetz, J.Hamberg, A.Mehrotra,M.Musolesi, P.Nurmi, and
S. Tarkoma, “The Hidden Image ofMobile Apps: Geographic, Demographic, and
Cultural Factors inMobileUsage,” inProceedings of the 20th ACM International
Conference on Human-Computer Interaction with Mobile Devices and Services
(ACM MobileHCI 2018), Barcelona, Spain, 2018.

[7] N. Oliver, B. Lepri, H. Sterly, R. Lambiotte, S. Deletaille, M. De Nadai,
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