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Abstract
Using the theory introduced by Casper and Yakimov, we
investigate the structure of algebras of differential and
difference operators acting on matrix valued orthogonal
polynomials (MVOPs) onℝ, andwe derive algebraic and
differential relations for these MVOPs. A particular case
of importance is that of MVOPs with respect to a matrix
weight of the form 𝑊(𝑥) = 𝑒−𝑣(𝑥)𝑒𝑥𝐴𝑒𝑥𝐴

∗ on the real
line, where 𝑣 is a scalar polynomial of even degree with
positive leading coefficient and 𝐴 is a constant matrix.
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1 INTRODUCTION

Matrix valued orthogonal polynomials (MVOPs) were introduced by Krein in the 1940s and they
appear in different areas of mathematics and mathematical physics, including spectral theory,1
scattering theory,2 tiling problems,3 integrable systems,4–7 and stochastic processes.8–10 There
is also a fruitful interaction between harmonic analysis of matrix valued functions on compact
symmetric pairs and MVOPs. The first example of such an interaction is a family of MVOPs
related with the spherical functions of the compact symmetric pair (SU(3), S(U(2) × U(1)), which
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appeared in Ref. 11. Inspired by Ref. 12, the case of (SU(2) × SU(2), diag) gave a direct approach13,14
leading to a general set-up in the context of multiplicity free pairs.15,16 In this context, some prop-
erties of the orthogonal polynomials such as orthogonality, recurrence relations, and differential
equations are understood in terms of the representation theory of the corresponding symmetric
spaces, see also Ref. 17 for the quantum group case and Ref. 18 for multivariable matrix orthogo-
nal polynomials.
The interpretation of MVOPs in terms of the representation theory of a certain symmetric pair

is typically only for a limited (discrete) number of the parameters involved. It is then necessary to
develop analytic tools to extend to a general set of parameters. In this context, shift operators for
MVOPs turned out to be very useful.7,19–22
In the last two decades, there has been significant progress in understanding how the differ-

ential and algebraic properties of the classical scalar orthogonal polynomials can be extended to
the matrix valued setting. A. Durán and M. Ismail23 introduced first-order lowering and raising
operators forMVOPs, and these results were rederived later on using the Riemann–Hilbert formu-
lation by Grünbaum and coauthors.24 This Riemann–Hilbert formulation is a powerful method-
ology to obtain algebraic and differential identities for MVOPs, as well as for the functions of
the second kind, and it has been extensively used in the last few years, we refer the reader to
Refs. 25–27 and to Refs. 28, 29 for matrix orthogonal polynomials of Hermite and Laguerre type
on the real line or the positive half-line. From the perspective of integrable systems, a very rel-
evant result is the connection with matrix analogues of Painlevé equations for the recurrence
coefficients, a theme that is well explored in the scalar case, see, for instance, the monograph.30
There is also extensive work on orthogonal polynomial solutions of matrix valued differential

equations of second order from an analytic point of view, we refer the reader, for instance, to Refs.
31–36.
Very recently, Casper and Yakimov37 developed a general framework to solve the matrix

Bochner problem, that is, the classification of 𝑁 ×𝑁 weight matrices 𝑊(𝑥) whose associated
MVOPs are eigenfunctions of a second-order differential operator. Themain purpose of this paper
is to apply the theory proposed in Ref. 37 to MVOPs defined on the real line. This approach is an
alternative to the Riemann–Hilbert methodology and has the advantage of being more transpar-
ent in the derivation of differential and difference identities for MVOPs.
Given 𝑁 ∈ ℕ, we denote by𝑀𝑁(ℂ) the space of all 𝑁 ×𝑁 matrices with complex entries. Let

𝑊 ∶ ℝ → 𝑀𝑁(ℂ) be a positive definite matrix weight supported in the (possibly infinite) interval
[𝑎, 𝑏]. For𝑀𝑁(ℂ)-valued functions𝐻,𝐺, we define the matrix valued inner product

⟨𝐻,𝐺⟩ = ∫
𝑏

𝑎
𝐻(𝑦)𝑊(𝑦)𝐺(𝑦)∗ 𝑑𝑦 ∈ 𝑀𝑁(ℂ). (1)

Using standard arguments it can be shown that there exists a unique sequence (𝑃(𝑥, 𝑛))𝑛 ofmonic
MVOPs with respect to𝑊, in the following sense:

⟨𝑃(𝑥, 𝑛), 𝑃(𝑥,𝑚)⟩ = (𝑛)𝛿𝑛,𝑚, (2)

where the squared norm(𝑛) is a positive definite matrix, see, for instance, Refs.38,39 As a direct
consequence of orthogonality, the polynomials 𝑃(𝑥, 𝑛) satisfy the following three-term recurrence
relation:

𝑥𝑃(𝑥, 𝑛) = 𝑃(𝑥, 𝑛 + 1) + 𝐵(𝑛)𝑃(𝑥, 𝑛) + 𝐶(𝑛)𝑃(𝑥, 𝑛 − 1), (3)
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where 𝐵(𝑛), 𝐶(𝑛) ∈ 𝑀𝑁(ℂ). Note that thesematrix coefficients multiply theMVOPs from the left.
From the orthogonality relations, we also obtain that

𝐵(𝑛) = 𝑋(𝑛) − 𝑋(𝑛 + 1), 𝐶(𝑛) = (𝑛)(𝑛 − 1)−1,

where 𝑋(𝑛) is the one-but-leading coefficient of 𝑃(𝑥, 𝑛), i.e., 𝑃(𝑥, 𝑛) = 𝑥𝑛 + 𝑥𝑛−1𝑋(𝑛) +⋯.
We note that the previous MVOPs can be related to the matrix biorthogonal polynomials pre-

sented recently in Ref. 25, namely, the Hermitian case (Section 2.4) because the weight satisfies
𝑊(𝑥) = 𝑊(𝑥)∗. As a consequence, the MVOPs that we study coincide with 𝑃L𝑛 in their notation.
The structure of this paper is the following: in Section 2, following the approach of Casper

and Yakimov in Ref. 37, we discuss differential and difference operators for these MVOPs. In this
noncommutative setting, operators can act both from the right and from the left. We consider
two isomorphic algebras of operators acting on MVOPs, one algebra of matrix valued differential
operators acting from the right, 𝑅(𝑃), and a second algebra of matrix valued discrete operators
acting from the left, 𝐿(𝑃). In this construction, a differential operator  ∈ 𝑅(𝑃) acts naturally
on the variable of the MVOPs, whereas a difference operator𝑀 ∈ 𝐿(𝑃) acts on its degree.
In Section 3, we fix the form of two differential operators  = 𝜕𝑥 + 𝐴, with 𝐴 an arbitrary

matrix, and† = − + 𝑣′(𝑥), with 𝑣(𝑥) a scalar polynomial, and we work out the corresponding
difference operators 𝑀 and 𝑀† using the techniques in Section 2; the form of these operators is
motivated by the exponential-type weights onℝ that appear later on the paper, but the results that
we obtain in Section 3 hold in a more general setting, just by prescribing the form of the opera-
tors. We also investigate the structure of the Lie algebra generated by and†, as well as discrete
string equations for the recurrence coefficients of the corresponding family of MVOPs.
The approach proposed in Ref. 37 is particularly explicit in the case of exponential weights

defined on the real line; these weights are studied in Section 4 and written in the form𝑊(𝑥) =
𝑒−𝑣(𝑥)𝑒𝑥𝐴𝑒𝑥𝐴

∗ , with 𝑥 ∈ ℝ, where the potential 𝑣(𝑥) is an even polynomial with positive leading
coefficient and 𝐴 is a constant matrix. In this case, the differential operator  = 𝜕𝑥 + 𝐴 has an
uncomplicated adjoint † = − + 𝑣′(𝑥), with respect to the matrix valued inner product given
by𝑊. By adjoint we mean that

⟨𝑃 ⋅, 𝑄⟩ = ⟨𝑃,𝑄 ⋅†⟩, (4)

for all matrix-valued polynomials 𝑃 and 𝑄. The actions of and† on the MVOPs are

(𝑃 ⋅)(𝑥, 𝑛) = 𝑃′(𝑥, 𝑛) + 𝑃(𝑥, 𝑛)𝐴,

(𝑃 ⋅†)(𝑥, 𝑛) = −𝑃′(𝑥, 𝑛) − 𝑃(𝑥, 𝑛)𝐴 − 𝑣′(𝑥)𝑃(𝑥, 𝑛),

which will imply that,† ∈ 𝑅(𝑃). Our first result states that,† induce ladder relations:

𝑃 ⋅(𝑥, 𝑛) =
0∑

𝑗=−𝑘+1

𝐴𝑗(𝑛)𝑃(𝑥, 𝑛 + 𝑗), 𝑃 ⋅†(𝑥, 𝑛) =
𝑘−1∑
𝑗=0

𝐴𝑗(𝑛)𝑃(𝑥, 𝑛 + 𝑗),

where 𝑘 = deg 𝑣, with some matrix coefficients 𝐴𝑗(𝑛) and 𝐴𝑗(𝑛). These operators are closely
related to the creation and annihilation operators given in Ref. 23, with the advantage that 
and † are each other’s adjoint. This property is crucial to show that the Lie algebra generated
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by the operators  and † is finite dimensional and it is isomorphic to the algebra generated
by the ladder operators for the scalar weight 𝑤(𝑥) = 𝑒−𝑣(𝑥), see, for instance,40 [Ref. 41, Chapter
3]. From the ladder relations, we obtain nonlinear algebraic equations for the coefficients of the
recurrence relation (3). In the literature, these identities are often called discrete (or Freud) string
equations. We include two examples: Hermite-type weights with 𝑣(𝑥) = 𝑥2 + 𝑡𝑥 and 𝑡 ∈ ℝ, and
Freud-type weights with 𝑣(𝑥) = 𝑥4 + 𝑡𝑥2, and in this last case the discrete string equations can be
seen as a matrix analogue of the discrete Painlevé I equation.30 We remark that this kind of iden-
tity, which is very relevant in integrable systems, is obtained here as a result of the relation between
the two Fourier algebras of operators and in particular from the fact that 𝐿(𝑃) and 𝑅(𝑃) are
isomorphic.
Section 5 is devoted to the detailed study of Hermite-typematrix valued weights. In this setting,

we show first that the ladder relations, written in terms of the squared norms of themonicMVOPs,
in fact characterize thismatrix valuedweight. Next, for aHermite-typeweight of the form𝑊(𝑥) =
𝑒−𝑥

2
𝐿(𝑥)𝐿(𝑥)∗, with 𝐿 a lower triangular matrix constructed from scalar Hermite polynomials,

we find a second-order differential operator 𝐷 that, together with , † and 𝐼, generate a Lie
algebra of dimension 4 known as the Harmonic oscillator algebra. Using the Casimir  of this
Lie algebra, we can diagonalize the norms(𝑛) of the MVOPs and combining this with a ladder
relation characterization, we propose a computational method for these Hermite MVOPs that is
more efficient that the standard Gram–Schmidt procedure.
In Section 6, we further specify a Hermite type weight in such a way that there exists a matrix

valued Pearson equation for the weight𝑊, for specific choices of the matrix 𝐴. This setting gives
extra ladder relations for the corresponding MVOPs.
Complementing the previous results, in Section 7we investigate similar identities of differential

and algebraic type for a deformation of the matrix weight with respect to extra parameters. Exam-
ples include the non–Abelian Toda and Langmuir lattice equations, which appear, for instance,
in Refs. 42–45. For the particular case of a multitime Toda deformation, we give a Lax pair formu-
lation, analogous to [Ref. 41, (2.8.5)] for the scalar case.
In the Appendix, we establish the link between the ladder relations obtained with this method-

ology and the ladder operators previously considered by A. Durán and M. Ismail in Ref. 23.

2 PRELIMINARIES

In this section, we introduce the left and right Fourier algebras related to the sequence of monic
MVOPs, following a recent work of Casper and Yakimov.37 Some of the results in this section
have already appeared in amore general form in Ref. 37, but we include them to keep our descrip-
tion self-contained.
We view the sequence 𝑃(𝑥, 𝑛) as a function 𝑃 ∶ ℂ × ℕ0 → 𝑀𝑁(ℂ). It is, therefore, natural to

consider the space of functions

 = {𝑄 ∶ ℂ × ℕ0 → 𝑀𝑁(ℂ) ∶ 𝑄(𝑥, 𝑛) is rational in 𝑥for fixed n}.

A differential operator of the form

 =
𝑛∑
𝑗=0

𝜕
𝑗
𝑥𝐹𝑗(𝑥), 𝜕

𝑗
𝑥 ∶=

𝑑𝑗

𝑑𝑥𝑗
, (5)



DEAÑO et al. 467

where 𝐹𝑗 ∶ ℂ → 𝑀𝑁(ℂ) is a rational function of 𝑥, acts on an element 𝑄 ∈  from the right by

(𝑄 ⋅)(𝑥, 𝑛) =
𝑛∑
𝑗=0

(𝜕
𝑗
𝑥𝑄)(𝑥, 𝑛) 𝐹𝑗(𝑥).

We denote the algebra of all differential operators of the form (5) by 𝑁 . Now we consider a
left action on  by discrete operators. For 𝑗 ∈ ℤ, let 𝛿𝑗 be the discrete operator, which acts on a
sequence 𝐴 ∶ ℕ0 → 𝑀𝑁(ℂ) by

(𝛿𝑗 ⋅ 𝐴)(𝑛) = 𝐴(𝑛 + 𝑗),

where we take the value of a sequence at a negative integer to be equal to the zero matrix. A
discrete operator

𝑀 =
𝑘∑

𝑗=−𝓁

𝐴𝑗(𝑛)𝛿
𝑗, (6)

where 𝐴−𝓁,… ,𝐴𝑘 are sequences, acts on elements of  from the left by

(𝑀 ⋅ 𝑄)(𝑥, 𝑛) =
𝑘∑

𝑗=−𝓁

𝐴𝑗(𝑛) (𝛿
𝑗 ⋅ 𝑄)(𝑥, 𝑛) =

𝑘∑
𝑗=−𝓁

𝐴𝑗(𝑛)𝑄(𝑥, 𝑛 + 𝑗).

We denote the algebra of all discrete operators of the form (6) by 𝑁 , and we adapt the con-
struction given in [Ref. 37, Definition 2.20] to our setting:

Definition 1. For the sequence (𝑃(𝑥, 𝑛))𝑛 of MVOPs we define:

𝐿(𝑃) = {𝑀 ∈ 𝑁 ∶ ∃ ∈ 𝑁, 𝑀 ⋅ 𝑃 = 𝑃 ⋅} ⊂ 𝑁,

𝑅(𝑃) = { ∈ 𝑁 ∶ ∃𝑀 ∈ 𝑁, 𝑀 ⋅ 𝑃 = 𝑃 ⋅} ⊂ 𝑁.
(7)

Using these Fourier algebras, we prove the following uniqueness result:

Lemma 1. Given ∈ 𝑅(𝑃), there exists a unique𝑀 ∈ 𝐿(𝑃) such that𝑀 ⋅ 𝑃 = 𝑃 ⋅. Conversely,
given𝑀 ∈ 𝐿(𝑃), there exists a unique ∈ 𝑅(𝑃) such that𝑀 ⋅ 𝑃 = 𝑃 ⋅.
Proof. Let us assume that there exist𝑀1,𝑀2 ∈ 𝐿(𝑃) such that

(𝑀1 ⋅ 𝑃)(𝑥, 𝑛) = (𝑃 ⋅)(𝑥, 𝑛), (𝑀2 ⋅ 𝑃)(𝑥, 𝑛) = (𝑃 ⋅)(𝑥, 𝑛),
then ((𝑀1 −𝑀2) ⋅ 𝑃)(𝑥, 𝑛) = 0. Suppose that𝑀1 −𝑀2 has the following expression:

((𝑀1 −𝑀2) ⋅ 𝑃)(𝑥, 𝑛) =
𝑘∑

𝑗=−𝓁

𝐴𝑗(𝑛) 𝑃(𝑥, 𝑛 + 𝑗). (8)
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By taking the leading coefficient of (8) we obtain that 𝐴𝑘(𝑛) = 0. Proceeding recursively we con-
clude that 𝐴𝑗(𝑛) = 0 for all 𝑗 = −𝓁,… , 𝑘. The converse is proven in a similar way. ▪

It follows directly from the definition that the elements of 𝐿(𝑃) are related to the elements of𝑅(𝑃). Lemma 1 shows that the map

𝜑 ∶ 𝐿(𝑃) → 𝑅(𝑃), defined by 𝑀 ⋅ 𝑃 = 𝑃 ⋅ 𝜑(𝑀),

is in fact a bijection. In Ref. 37 this map is called the generalized Fourier map. As in Ref. 37, we
introduce the bispectral algebras 𝐿(𝑃) and 𝑅(𝑃):

𝐿(𝑃) = {𝑀 ∈ 𝐿(𝑃) ∶ order(𝜑(𝑀)) = 0},

𝑅(𝑃) = {𝐷 ∈ 𝑅(𝑃) ∶ order(𝜑−1(𝐷)) = 0},
(9)

where a differential operator of order zero is a rational function 𝐹 ∶ ℂ → 𝑀𝑁(ℂ) and a discrete
operator of order zero is a sequence 𝐴 ∶ ℕ0 → 𝑀𝑁(ℂ).

Remark 1. For𝑀1,𝑀2 ∈ 𝐿(𝑃) we have that

𝑀1𝑀2 ⋅ 𝑃 = 𝑀1 ⋅ 𝑃 ⋅ 𝜑(𝑀2) = 𝑃 ⋅ 𝜑(𝑀1)𝜑(𝑀2), (10)

which implies that 𝑀1𝑀2 ∈ 𝐿(𝑃). Therefore the linear space 𝐿(𝑃) is a subalgebra of 𝑁 . A
similar computation shows that 𝑅(𝑃) is an algebra. We shall refer to 𝐿(𝑃) and 𝑅(𝑃) as the left
and right Fourier algebras, respectively.
Now it follows from (10) that𝑀1𝑀2 ⋅ 𝑃 = 𝑃 ⋅ 𝜑(𝑀1)𝜑(𝑀2) for all𝑀1,𝑀2 ∈ 𝐿(𝑃). On the other

hand, by the definition of 𝜑, we have that𝑀1𝑀2 ⋅ 𝑃 = 𝑃 ⋅ 𝜑(𝑀1𝑀2) and, because 𝜑 is bijective, we
conclude that 𝜑 is an isomorphism of algebras.
In Ref. 37, it is shown that this map 𝜑 is an isomorphism of algebras in a more general setting

as well. The crucial requirement there is that 𝑃 only has trivial left and right annihilators.

Remark 2. We can write the three-term recurrence relation (3) as

𝑥𝑃 = 𝑃 ⋅ 𝑥 = 𝐿 ⋅ 𝑃, where 𝐿 = 𝛿 + 𝐵(𝑛) + 𝐶(𝑛)𝛿−1.

Therefore, 𝑥 ∈ 𝑅, 𝐿 ∈ 𝐿 and 𝜑(𝐿) = 𝑥. Moreover, for every polynomial 𝑣 ∈ ℂ[𝑥], we have

𝑃 ⋅ 𝑣(𝑥) = 𝑃 ⋅ 𝑣(𝜑(𝐿)) = 𝑣(𝐿) ⋅ 𝑃.

The main result from Ref. 37 that we use in this paper is the existence of an adjoint operation †
in the Fourier algebras 𝐿(𝑃) and 𝑅(𝑃), see [Ref. 37, §3.1]. To introduce the adjoint on 𝐿(𝑃), we
first note that the algebra of discrete operators𝑁 has a ∗-operation given by

(
𝑘∑

𝑗=−𝓁

𝐴𝑗(𝑛) 𝛿
𝑗

)∗
=

𝑘∑
𝑗=−𝓁

𝐴𝑗(𝑛 − 𝑗)∗ 𝛿−𝑗, (11)
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where 𝐴𝑗(𝑛 − 𝑗)∗ denotes the conjugate transpose of 𝐴𝑗(𝑛 − 𝑗). The adjoint of𝑀 ∈ 𝑁 is

𝑀† = (𝑛)𝑀∗(𝑛)−1, (12)

where the squared norm(𝑛), given by (2), is viewed as a sequence. The following relation holds:

⟨(𝑀 ⋅ 𝑃)(𝑥, 𝑛), 𝑃(𝑥,𝑚)⟩ = ⟨𝑃(𝑥, 𝑛), (𝑀† ⋅ 𝑃)(𝑥,𝑚)⟩.
In Ref. 39, A. Grünbaum and J. Tirao introduce an adjoint in the algebra of all differential oper-

ators having the orthogonal polynomials as eigenfunctions. This was recently extended in [Ref.
37, Corollary 3.8] where the authors show that for every differential operator 𝐷 ∈ 𝑅(𝑃), there
exists a unique operator† ∈ 𝑅(𝑃) such that

⟨𝑃 ⋅, 𝑄⟩ = ⟨𝑃,𝑄 ⋅†⟩,
for all 𝑃,𝑄 ∈ 𝑀𝑁(ℂ)[𝑥]. We say that † is the adjoint of . Moreover, 𝐿(𝑃) is closed under the
adjoint operation † and 𝜑(𝑀†) = 𝜑(𝑀)† for all𝑀 ∈ 𝐿(𝑃).

Definition 2. Given a pair (𝑀,) with𝑀 ∈ 𝐿(𝑃) and ∈ 𝑅(𝑃), a relation of the form

𝑀 ⋅ 𝑃 = 𝑃 ⋅, where 𝑀 =
𝑘∑

𝑗=−𝓁

𝐴𝑗(𝑛) 𝛿
𝑗.

is called a ladder relation. If the operator𝑀 only contains nonpositive (nonnegative) powers of 𝛿,
we say that it is a lowering (raising) relation.

Observe that if a pair (𝑀,) gives a raising relation, then it follows from (12) and (11) that
(𝑀†,†) gives a lowering relation and viceversa.

3 LADDER RELATIONS FORMVOPsWITH PRESCRIBED
DIFFERENTIAL OPERATORS

In this section, we study ladder relations for MVOPs in a general setting, where we only prescribe
the formof the differential operators and†. Our choice ismotivated by the exponentialweights
on the real line that we study next in Section 4, but we emphasize that the results that we obtain
hold in a more general setting. First we need the following notation:

Remark 3. Given the difference operator 𝐿 corresponding to the three-term recurrence relation,
see (2), and any polynomial 𝑞, we denote by (𝑞(𝐿))𝑗(𝑛) the coefficient of the difference operator
𝑞(𝐿) of order 𝑗 in 𝛿. In other words, we have

𝑞(𝐿) =
deg 𝑞∑

𝑗=−deg 𝑞

(𝑞(𝐿))𝑗(𝑛) 𝛿
𝑗. (13)

The calculation of (𝑞(𝐿))𝑗(𝑛) can be carried out following the scheme shown in Figure 1:
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F IGURE 1 Scheme for the calculation of(𝑞(𝐿))𝑗(𝑛)

(𝑞(𝐿))𝑗(𝑛) is equal to the sum over all possible paths from 𝑃(𝑥, 𝑛) to 𝑃(𝑥, 𝑛 + 𝑗) in deg 𝑞 steps,
where in each path we multiply the coefficients corresponding to each arrow.
For example, if 𝑞(𝑥) = 𝑥3 we have 𝑞(𝐿) = 𝐿3, and to compute (𝐿3)−1(𝑛) we have a total of six

paths from 𝑃(𝑥, 𝑛) to 𝑃(𝑥, 𝑛 − 1) in three steps:(
𝐿3
)
−1
(𝑛) = 𝐶(𝑛)𝐵(𝑛 − 1)2 + 𝐵(𝑛)𝐶(𝑛)𝐵(𝑛 − 1) + 𝐵(𝑛)2𝐶(𝑛)

+ 𝐶(𝑛 + 1)𝐶(𝑛) + 𝐶(𝑛)𝐶(𝑛 − 1) + 𝐶(𝑛)2.

Theorem 1. Let𝑊 be a matrix weight with monic MVOPs 𝑃(𝑥, 𝑛) such that

 = 𝜕𝑥 + 𝐴, and † = − + 𝑣′(𝑥), (14)

for some polynomial 𝑣(𝑥) of degree 𝑘 and some constant matrix 𝐴. Then the monic polynomials
𝑃(𝑥, 𝑛) satisfy the lowering relation

𝑃 ⋅ = 𝑀 ⋅ 𝑃, 𝑀 =
0∑

𝑗=−𝑘+1

𝐴𝑗(𝑛)𝛿
𝑗, (15)

where, using the notation (13), we have

𝐴0(𝑛) = 𝐴, 𝐴𝑗(𝑛) =
(
𝑣′(𝐿)
)
𝑗
(𝑛), 𝑗 ≠ 0. (16)

Proof. It follows from [Ref. 37, Theorem 3.7] that ∈ 𝑅(𝑃). Notice that (𝑃 ⋅ 𝜕𝑥)(𝑥, 𝑛) is a polyno-
mial of degree 𝑛 − 1. Furthermore (𝑃 ⋅)(𝑥, 𝑛) is a polynomial of degree 𝑛 with 𝐴 as its leading
coefficient. Therefore

(𝑃 ⋅)(𝑥, 𝑛) =
0∑

𝑗=−𝑛

𝐴𝑗(𝑛)
(
𝛿𝑗 ⋅ 𝑃
)
(𝑥, 𝑛).

Using the definition of given in (29), it is clear that 𝐴0(𝑛) = 𝐴. Moreover for 𝑗 < 0, we have

𝐴𝑗(𝑛) = ⟨𝑃 ⋅, 𝛿𝑗 ⋅ 𝑃⟩(𝑛 − 𝑗)−1 = ⟨𝑃, 𝛿𝑗 ⋅ 𝑃 ⋅†⟩(𝑛 − 𝑗)−1

= ⟨𝑃, 𝛿𝑗 ⋅ 𝑃 ⋅ 𝑣′(𝑥)⟩(𝑛 − 𝑗)−1 = ⟨𝑃 ⋅ 𝑣′(𝑥), 𝛿𝑗 ⋅ 𝑃⟩(𝑛 − 𝑗)−1

= ⟨𝑣′(𝐿) ⋅ 𝑃, 𝛿𝑗 ⋅ 𝑃⟩(𝑛 − 𝑗)−1,
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where we have used that ⟨𝑃, 𝛿𝑗 ⋅ 𝑃 ⋅⟩ = 0 for 𝑗 < 0 in the third equality, and the fact that 𝑣′(𝑥)
is a scalar function in the fourth equality. Using (13) we get

𝐴𝑗(𝑛) =
(
𝑣′(𝐿)
)
𝑗
(𝑛).

To complete the proof we note that (𝑣′(𝐿))𝑗(𝑛) = 0 for all 𝑗 ≤ −𝑘. ▪

Corollary 1. There exists a unique𝑀† ∈ 𝐿(𝑃) such that

𝑀 ⋅ 𝑃 = 𝑃 ⋅ and 𝑀† ⋅ 𝑃 = 𝑃 ⋅†. (17)

Moreover, we can write

𝑀† = (𝑛)
𝑘−1∑
𝑖=0

𝐴−𝑖(𝑛 + 𝑖)∗(𝑛 + 𝑖)−1𝛿𝑖, (18)

in terms of the coefficients of𝑀 in (15) and the squared norms of the MVOPs given by (2).

Proof. The result follows directly from formulas (11) and (12) applied to the operator𝑀. ▪

If a Riemann–Hilbert formulation for matrix orthogonal polynomials can be used, then the
previous theorem can be compared with the results in Ref. 24. We note that our approach gives
an elementary proof for the lowering relation and we also obtain the exact degree of the lowering
operator𝑀 and the raising operator𝑀†.
Next we investigate the properties of the Lie algebra generated by the operators and† con-

structed before. Using the explicit expressions of and†, we find that[†,] = 𝑣′′(𝑥),  +† = 𝑣′(𝑥). (19)

In the scalar case 𝐴 = 0, 𝑁 = 1, the differential operators  and † generate a finite dimen-
sional Lie algebra, see, for instance, [Ref. 40, Theorem 3.1]. Moreover it is conjectured in [Ref. 41,
§24.5] that this is a characterizing property of the weight. In the following proposition, we prove
that in thematrix valued setting, the operators and† generate a finite dimensional Lie algebra
𝔤which is independent of the matrix 𝐴 and is isomorphic to the Lie algebra corresponding to the
scalar case.

Proposition 1. The differential operators and† generate a Lie algebra 𝔤 of dimension 𝑘 + 1.

Proof. Let 𝑣(𝑗) be the 𝑗-th derivative of 𝑣. Using that 𝑣(𝑗) is scalar, and so it commutes with the
matrix 𝐴, we first observe that [, 𝑣(𝑗)] = −𝑣(𝑗+1). Then for any𝑀𝑁(ℂ)-valued smooth function
𝐹 we have

𝐹 ⋅ [, 𝑣(𝑗)] = 𝐹 ⋅𝑣(𝑗) − (𝐹𝑣(𝑗)) ⋅ = −𝑣(𝑗+1)𝐹.

Because† = − + 𝑣′(𝑥), we obtain that the Lie algebra generated by and† is generated by
{, 𝑣′(𝑥), … , 𝑣(𝑘)}, and is, therefore, (𝑘 + 1)-dimensional. ▪
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Remark 4. If we take 𝑣(𝑥) = 𝑥2, the Lie algebra 𝔤 generated by  and † is three-dimensional
and we have the following relations:

 +† = 2𝑥 + 𝑡,
[†,] = 2. (20)

In this case, 𝔤 is isomorphic to the Lie algebra of the three-dimensional Heisenberg group, which
can be identifiedwith the 3 × 3 strictly upper triangularmatrices.We canmap the operators,†

and the identity to a basis of the Lie algebra as follows:

 ⟷
⎛⎜⎜⎝
0 1 0
0 0 0
0 0 0

⎞⎟⎟⎠ , † ⟷
⎛⎜⎜⎝
0 0 0
0 0 1
0 0 0

⎞⎟⎟⎠ , 𝐼 ⟷
⎛⎜⎜⎝
0 0 1∕2
0 0 0
0 0 0

⎞⎟⎟⎠ .
In Section 5.2, we extend 𝔤 to a four-dimensional Lie algebra 𝔥 with a nonrivial Casimir element
in the center of  (𝔥). This operator induces a new difference operator having the MVOPs as
eigenfunctions. Whether 𝔤 can be exploited in a similar way in the case of 𝑣(𝑥) of degree greater
than two will require further investigation.

From the previous results, we obtain nonlinear relations for the coefficients of the three-term
recurrence relation. These identities can be seen as a non-Abelian analogue of the discrete string
or Freud equations, see, for instance, [Ref. 46, §4.1.1.5]. To obtain them,we observe that the second
equation of (19) and Remark 2 imply that

𝜑−1( +†) = 𝑀 +𝑀† = 𝑣′(𝐿).

explicitly in terms of the difference operator coming from the three-term recurrence relation.
Using the explicit formula for in Proposition 1 and the definition of𝑀† in (12), we verify

(𝑣′(𝐿))0(𝑛) =
(
𝜑−1( +†)

)
0
(𝑛) =
(
𝑀 +𝑀†

)
0
(𝑛)

= 𝐴 +(𝑛)𝐴∗(𝑛)−1,
(21)

using the notation (13) again.

Theorem 2. Let𝑊 be a matrix weight with monic MVOPs 𝑃(𝑥, 𝑛) such that

 = 𝜕𝑥 + 𝐴 ∈ 𝑅(𝑃), and † = − + 𝑣′(𝑥),

for some polynomial 𝑣(𝑥) of degree 𝑘. Then the coefficients of the three term recurrence relation for
𝑃(𝑥, 𝑛) satisfy the following discrete string relations:

[𝐵(𝑛), 𝐴] = 𝐼 +
(
𝑣′(𝐿)
)
−1
(𝑛) −
(
𝑣′(𝐿)
)
−1
(𝑛 + 1), 𝑛 ≥ 0,

[𝐶(𝑛), 𝐴] = 𝐶(𝑛)
(
𝑣′(𝐿)
)
0
(𝑛 − 1) −

(
𝑣′(𝐿)
)
0
(𝑛)𝐶(𝑛), 𝑛 ≥ 1.

(22)
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Proof. The coefficients of 𝑥𝑛−1 in

(𝑃 ⋅)(𝑥, 𝑛) = (𝑀 ⋅ 𝑃)(𝑥, 𝑛).

give

𝑛𝐼 + 𝑋(𝑛)𝐴 = 𝐴𝑋(𝑛) + 𝐴−1(𝑛). (23)

Taking the difference of (23) for 𝑛 + 1 and 𝑛 we obtain

[𝐵(𝑛), 𝐴] − 𝐼 = 𝐴−1(𝑛) − 𝐴−1(𝑛 + 1),

which together with Proposition 1 gives the first desired result.
For the second commutation relation we take (21) with 𝑛 replaced by 𝑛 − 1 and multiplied by

𝐶(𝑛) from the left, and we subtract from it (21) with parameter 𝑛 and multiplied by 𝐶(𝑛) from the
right. The result follows after cancelation of(𝑛)𝐴∗(𝑛 − 1)−1 terms. ▪

Example 1. Let 𝑣(𝑥) = 𝑥2 + 𝑡𝑥 and 𝐴 a generic matrix, then (14) gives the operators

 = 𝜕𝑥 + 𝐴, † = −𝜕𝑥 − 𝐴 + 2𝑥 + 𝑡. (24)

Using Theorem 1 with 𝑣′(𝑥) = 2𝑥 + 𝑡, we obtain

𝐴−1(𝑛) = 2𝐶(𝑛) = 2(𝑛)(𝑛 − 1)−1.

Therefore,

𝑀 = 𝐴 + 2𝐶(𝑛)𝛿−1, 𝑀† = 2𝛿 +(𝑛)𝐴∗(𝑛)−1 = 2𝛿 + 2𝐵(𝑛) − 𝐴 + 𝑡𝐼, (25)

using (21) and the fact that (𝑣′(𝐿))0(𝑛) = 2𝐵(𝑛) + 𝑡𝐼 in the last equality.
The discrete string equations from Theorem 2 are

[𝐵(𝑛), 𝐴] = 2(𝐶(𝑛) − 𝐶(𝑛 + 1)) + 𝐼, 𝐶(0) ∶= 0

[𝐶(𝑛), 𝐴] = 2(𝐶(𝑛)𝐵(𝑛 − 1) − 𝐵(𝑛)𝐶(𝑛)).
(26)

Additionally, if we sum the first identity from 0 to 𝑛 − 1, we obtain

𝑛−1∑
𝑘=0

[𝐵(𝑘), 𝐴] = 𝑛 − 2𝐶(𝑛).

because 𝐶(0) = 0.

Example 2. Let 𝑣(𝑥) = 𝑥4 + 𝑡𝑥2 and 𝐴 a generic matrix, then (14) gives the operators

 = 𝜕𝑥 + 𝐴, † = −𝜕𝑥 − 𝐴 + 4𝑥3 + 2𝑡𝑥.
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The following relations hold true:[†,] = 12𝑥2 + 2𝑡,
[[†,],] = 24𝑥,

[[[†,],],] = 24.

The relation 𝑃 ⋅ = 𝑀 ⋅ 𝑃 in Theorem 1 is written explicitly as follows:

𝑃′(𝑥, 𝑛) + 𝑃(𝑥, 𝑛)𝐴 =
(
𝐴 + 𝐴−1(𝑛)𝛿

−1 + 𝐴−2(𝑛)𝛿
−2 + 𝐴−3(𝑛)𝛿

−3
)
𝑃(𝑥, 𝑛).

where the coefficients are computed using that 𝐴𝑗(𝑛) = (𝑣′(𝐿))𝑗(𝑛) and the scheme in Figure 1:

𝐴−1(𝑛) = 4(𝐶(𝑛)𝐶(𝑛 − 1) + 𝐶(𝑛)
2
+ 𝐶(𝑛 + 1)𝐶(𝑛) + 𝐵(𝑛)

2
𝐶(𝑛)

+ 𝐵(𝑛)𝐶(𝑛)𝐶(𝑛 − 1) + 𝐶(𝑛)𝐵(𝑛 − 1)
2
) + 2tC(𝑛)

𝐴−2(𝑛) = 4 (𝐵(𝑛)𝐶(𝑛)𝐶(𝑛 − 1) + 𝐶(𝑛)𝐵(𝑛 − 1)𝐶(𝑛 − 1))

(+ 𝐶(𝑛)𝐶(𝑛 − 1)𝐵(𝑛 − 2)) ,

𝐴−3(𝑛) = 4𝐶(𝑛)𝐶(𝑛 − 1)𝐶(𝑛 − 2).

Furthermore, we use Theorem 2 to compute the discrete string equations

[𝐶(𝑛), 𝐴] = 𝐶(𝑛)(𝑣′(𝐿))0(𝑛 − 1) − (𝑣′(𝐿))0(𝑛)𝐶(𝑛), [𝐵(𝑛), 𝐴]

= 𝐼 + (𝑣′(𝐿))−1(𝑛) − (𝑣′(𝐿))−1(𝑛 + 1).

If we replace (𝑣′(𝐿))0(𝑛) = 𝐴 +(𝑛)𝐴∗(𝑛)−1 in the first equation, we obtain a trivial identity,
however in terms of the coefficients of the recurrence relation we have(

𝑣′(𝐿)
)
0
(𝑛) = 𝐵(𝑛)(𝐶(𝑛) + 𝐶(𝑛 + 1)) + (𝐶(𝑛) + 𝐶(𝑛 + 1) + 𝐵(𝑛)2 + 2𝑡)𝐵(𝑛),

which implies the identity

[𝐶(𝑛), 𝐴] = 𝐶(𝑛)𝐵(𝑛 − 1)(𝐶(𝑛 − 1) + 𝐶(𝑛))

+ 𝐶(𝑛)(𝐶(𝑛 − 1) + 𝐶(𝑛) + 𝐵(𝑛 − 1)2 + 2𝑡)𝐵(𝑛 − 1)

− 𝐵(𝑛)(𝐶(𝑛) + 𝐶(𝑛 + 1))𝐶(𝑛)

− (𝐶(𝑛) + 𝐶(𝑛 + 1) + 𝐵(𝑛)2 + 2𝑡)𝐵(𝑛)𝐶(𝑛).

On the other hand, we can sum the second identity from 0 to 𝑛 − 1, to obtain

𝑛−1∑
𝑘=0

[𝐵(𝑘), 𝐴] = 𝑛 +
(
𝑣′(𝐿)
)
−1
(0) −
(
𝑣′(𝐿)
)
−1
(𝑛) = 𝑛 −

(
𝑣′(𝐿)
)
−1
(𝑛) = 𝑛 − 𝐴−1(𝑛),
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using (16) as well as the fact that 𝐶(0) = 0. Therefore, we obtain

𝑛−1∑
𝑘=0

[𝐵(𝑘), 𝐴] = 𝑛 − 4
(
𝐶(𝑛)𝐶(𝑛 − 1) + 𝐶(𝑛)2 + 𝐶(𝑛 + 1)𝐶(𝑛) + 𝐵(𝑛)2𝐶(𝑛)

+ 𝐵(𝑛)𝐶(𝑛)𝐶(𝑛 − 1) + 𝐶(𝑛)𝐵(𝑛 − 1)2
)
− 2𝑡𝐶(𝑛).

If 𝐴 = 0 then the weight is scalar and even, therefore 𝐵(𝑛) = 0 and the recurrence coefficients
commute. In this case, the previous equality reduces to

𝑛 = 4𝐶(𝑛)(𝐶(𝑛 − 1) + 𝐶(𝑛) + 𝐶(𝑛 + 1) + 2𝑡),

which is the discrete Painlevé I equation, see, e.g., [Ref. 30, §1.2.2].

4 LADDER RELATIONS FOR EXPONENTIALWEIGHTS

In this section, we investigate the existence of lowering and raising relations for a class of matrix
valued weights of exponential type on the real line. This is an important example that fits into the
general theory presented in Section 2.

Definition 3. An 𝑁 ×𝑁 weight matrix supported on ℝ is called an exponential type weight if it
is of the form

𝑊(𝑥) = 𝑒−𝑣(𝑥)𝑒𝑥𝐴𝑒𝑥𝐴
∗
, 𝑣(𝑥) = 𝑥𝑘 + 𝑣𝑘−1𝑥

𝑘−1 +⋯+ 𝑣0, (27)

where 𝑣 is a scalar polynomial, 𝑘 is even and 𝐴 is a constant matrix.

Remark 5. If we consider more general weights

𝑊(𝐴,𝑇,𝐿)(𝑥) = 𝑒−𝑣(𝑥)𝐿𝑒𝑥𝐴𝑇𝑒𝑥𝐴
∗
𝐿∗, (28)

for some constant positive definite matrix 𝑇 and constant invertible matrix 𝐿, then using the
Cholesky decomposition 𝑇 = 𝐾𝐾∗, we get the following similarity:

𝑊(𝐴,𝑇,𝐿)(𝑥) = 𝑒−𝑣(𝑥)𝐿𝐾𝑒𝑥𝐾
−1𝐴𝐾𝑒𝑥(𝐾

−1𝐴𝐾)∗(𝐿𝐾)∗ = 𝐿𝐾𝑊(𝐾−1𝐴𝐾,𝐼,𝐼)(𝑥)(𝐿𝐾)
∗.

If we denote by 𝑃(𝑥, 𝑛; 𝐴, 𝑇, 𝐿) the monic MVOPs with respect to𝑊(𝐴,𝑇,𝐿)(𝑥), then

𝑃(𝑥, 𝑛; 𝐴, 𝑇, 𝐿) = 𝐿𝐾𝑃(𝑥, 𝑛; 𝐾−1𝐴𝐾, 𝐼, 𝐼)(𝐿𝐾)−1.

Because of this, the weight𝑊(𝐴,𝑇,𝐿)(𝑥)will be called exponential weight as well, and we conclude
that it suffices to consider only weights of the form (27).
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If we start with the matrix valued differential operator used before,

 = 𝜕𝑥 + 𝐴, (29)

we can prove the form of the adjoint in accordance with Section 3:

Proposition 2. The adjoint of the differential operator (29) with respect to𝑊 is

† = −𝜕𝑥 − 𝐴 + 𝑣′(𝑥) = − + 𝑣′(𝑥).

Proof. For polynomials 𝑃,𝑄 ∈ 𝑀𝑁(ℂ)[𝑥], we have from (1) and (29) that

⟨𝑃 ⋅, 𝑄⟩ = ⟨𝑃′, 𝑄⟩ + ⟨𝑃𝐴,𝑄⟩.
Integrating ⟨𝑃′, 𝑄⟩ by parts and using that𝑊 is invertible and self-adjoint, we obtain

⟨𝑃′, 𝑄⟩ = −⟨𝑃,𝑄′⟩ − ⟨𝑃,𝑄𝑊′𝑊−1⟩ = ⟨𝑃,−𝑄′ − 𝑄𝑊′𝑊−1⟩. (30)

Observe that the boundary terms on the right-hand side of (30) vanish because of the exponential
decay of the matrix weight at ±∞. Taking into account that ⟨𝑃𝐴,𝑄⟩ = ⟨𝑃,𝑄𝑊𝐴∗𝑊−1⟩, we have

⟨𝑃 ⋅, 𝑄⟩ = ⟨𝑃,−𝑄′ − 𝑄𝑊′𝑊−1 + 𝑄𝑊𝐴∗𝑊−1⟩.
Therefore † = −𝜕𝑥 −𝑊′(𝑥)𝑊(𝑥)−1 +𝑊(𝑥)𝐴∗𝑊(𝑥)−1, which is the essentially the formal 𝑊-
adjoint used in Ref. 37 for our weight. Putting back the explicit expression for𝑊 completes the
proof of the proposition. ▪

Corollary 2. Let𝑊 be a matrix weight as in (27), then = 𝜕𝑥 + 𝐴 ∈ 𝑅(𝑃).

Proof. This follows directly from Proposition 2 and [Ref. 37, Theorem 3.7]. ▪

Remark 6. If a weight𝑊(𝑥) as in Theorem 2 is differentiable, then the equation† = − + 𝑣′(𝑥)
implies that𝑊(𝑥) solves the following first-order linear matrix differential equation:

𝑊′(𝑥) = (𝐴 − 𝑣′(𝑥))𝑊(𝑥) +𝑊(𝑥)𝐴∗,

and it follows that𝑊(𝑥) is an exponential type weight.

Remark 7. Following the lines of Ref. 25, it is clear that a weight of the form (27) can be factorized
in a very natural way as𝑊(𝑥) = 𝑊L(𝑥)𝑊R(𝑥), with

𝑊L(𝑥) = 𝑒
−
𝑣(𝑥)

2 𝑒𝑥𝐴, 𝑊R(𝑥) = 𝑒
−
𝑣(𝑥)

2 𝑒𝑥𝐴
∗
. (31)
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We note that this factorization is not unique. This leads to the following logarithmic derivatives:

ℎL(𝑥) =
(
𝑊L(𝑥)

)′
𝑊L(𝑥)−1 = −

𝑣′(𝑥)
2

+ 𝐴,

ℎR(𝑥) =
(
𝑊R(𝑥)

)′
𝑊R(𝑥)−1 = −

𝑣′(𝑥)
2

+ 𝐴∗.

(32)

Thiswould allowus to rederive some of the results obtained later in the paper, using theRiemann–
Hilbert formulation. However, in this paper we adopt a different approach, based on the use of a
specific differential operator and its adjoint, which is very well suited to this type of exponential
weights and bypasses the lengthy calculations needed in the Riemann–Hilbert formulation of
more general cases of MVOPs.
In particular, if we let 𝑣(𝑥) = 𝑥2 + 𝑡𝑥 as in Example 1, and we set 𝑡 = 0, then (32) gives ℎL(𝑥) =

𝐴 − 𝑥, ℎR(𝑥) = 𝐴∗ − 𝑥. We identify 𝐴L = 𝐴R = −𝐼 and 𝐵L = 𝐴, 𝐵R = 𝐴∗ in the notation used in
[Ref. 25, Section 6.1]. Then, the general equations at the end of that section simplify considerably
and are fully consistent with (26).

5 HERMITE-TYPEWEIGHTS

If we replace 𝑣(𝑥) = 𝑥2 + 𝑡𝑥 in (27), then we recover the results in Example 1. We say that this
is a Hermite-type weight. In this section, we investigate further properties of these Hermite-type
matrix weights. First, we will show that an arbitrary matrix weight having operators and† as
in Theorem 2 and with a specific moment of order zero is equivalent to a Hermite-type weight, in
a sense that we specify later on. We also investigate a particular case of the matrix 𝐴 that leads to
the Harmonic oscillator algebra and has a link with a quantum mechanical composite system.

5.1 Characterization of Hermite-type weights with a ladder relation

The proof of this characterization follows the lines of themain result in Ref. 47, where the authors
discuss a scalar Freud weight. First, we present a recursive equation for the norms ̃(𝑛):

Lemma 2. Let𝑊 be a matrix weight, supported on ℝ, and let (𝑃(𝑥, 𝑛))𝑛 be the sequence of monic
orthogonal polynomials. Let 𝐴 be a matrix such that

 = 𝜕𝑥 + 𝐴 ∈ 𝑅(𝑃), † = − + 2𝑥 + 𝑡. (33)

Then the square norms,

̃(𝑛) = ∫
∞

−∞
𝑃(𝑛, 𝑥)𝑊(𝑥)𝑃(𝑛, 𝑥)∗𝑑𝑥, 𝑛 ≥ 0

satisfy the following recursion:

̃(𝑛 + 1) =
1
2
̃(𝑛) + ̃(𝑛)̃(𝑛 − 1)−1̃(𝑛)

−
1
4
̃(𝑛)𝐴∗̃(𝑛)−1𝐴̃(𝑛) +

1
4
𝐴̃(𝑛)𝐴∗, (34)
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for 𝑛 > 0. Moreover, 𝐶(0) = 0 gives the initial condition

̃(1) =
1
2
̃(0) −

1
4
̃(0)𝐴∗̃(0)−1𝐴̃(0) +

1
4
𝐴̃(0)𝐴∗.

Proof. We write the string equations (22) in terms of the squared norms. Using the isomorphism
𝜑−1 and (20) we verify that 2𝐿 = 𝑀 +𝑀† − 𝑡 and using (25) we obtain

2𝐵(𝑛) = 𝐴 + ̃(𝑛)𝐴∗̃(𝑛)−1 − 𝑡. (35)

If we replace (35) in the first identity of (26), we obtain

𝐶(𝑛) − 𝐶(𝑛 + 1) =
1
4

[̃(𝑛)𝐴∗̃(𝑛)−1, 𝐴
]
−
1
2
. (36)

Because 𝐶(𝑛) = ̃(𝑛)̃(𝑛 − 1)−1 for all 𝑛 > 0, we get (34). ▪

Using this result, we can prove the following characterization of Hermite-type weights in terms
of the(𝑛):

Theorem 3. Let𝑊 be a matrix weight as in Lemma 2 and assume that

̃(0) = ∫
∞

−∞
𝑒−𝑥

2−𝑥𝑡𝑒𝑥𝐴𝑒𝑥𝐴
∗
𝑑𝑥.

Then there is an invertible constant matrix 𝐾 such that𝑊(𝑥) = 𝐾𝑊(𝑥)𝐾∗, where

𝑊(𝑥) = 𝑒−𝑥
2−𝑥𝑡𝑒𝑥𝐴𝑒𝑥𝐴

∗
, (37)

almost everywhere with respect to Lebesgue measure onℝ.

Proof. In this proof, we first show that the string equations determine uniquely, up to the zeroth
moment, the coefficients of the recurrence relation for themonicMVOPswith respect to𝑊. Then
the theorem follows by showing that thematrix weight (37) corresponds to a determinatemoment
problem, in the sense of Ref. 48.
From the previous lemma, the squared norms ̃(𝑛) for 𝑛 > 0 are completely determined

by the choice of ̃(0). Furthermore, using the identities 𝐶(𝑛) = ̃(𝑛)̃(𝑛 − 1)−1 and 2𝐵(𝑛) =
𝐴 + ̃(𝑛)𝐴∗̃(𝑛)−1, we find that the coefficients of the recurrence relation and, thus, the monic
orthogonal polynomials are completely determined as well.
Finally we need to prove that the moment problem for the Hermite weight 𝑊 has a unique

solution. By [Ref. 48, Theorem 3.6], it suffices to show that the diagonal entries of the matrix
valued measure 𝑊(𝑥)𝑑𝑥 are determinate. We follow the approach given by Freud in [Ref. 49,
Theorem 5.1 and 5.2]: We observe that

|||||∫
∞

−∞
𝑒𝛽|𝑥|𝑊(𝑥)𝑖,𝑖𝑑𝑥

||||| ≤
‖‖‖‖‖∫

∞

−∞
𝑒𝛽|𝑥|𝑒−𝑥2−𝑥𝑡𝑒𝑥𝐴𝑒𝑥𝐴∗

𝑑𝑥
‖‖‖‖‖1

≤ ∫
∞

−∞
𝑒𝛽|𝑥|𝑒−𝑥2−𝑥𝑡𝑒𝑥‖𝐴‖1𝑒𝑥‖𝐴∗‖1𝑑𝑥 ≤ 𝑀 < ∞,
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for any 𝛽 > 0. Therefore by [Ref. 49, Theorem 5.2], the diagonal measures𝑊(𝑥)𝑖,𝑖𝑑𝑥 are determi-
nate and so is𝑊. ▪

5.2 The harmonic oscillator algebra

We consider a weight related to the one studied in Ref. 7, of the form

𝑊(𝑥) = 𝑒−𝑥
2
𝐿(𝑥)𝐿(𝑥)

∗
, 𝐿(𝑥)𝑗,𝑘 =

⎧⎪⎨⎪⎩
𝐻𝑗−𝑘(𝑥)

(𝑗 − 𝑘)!

𝛼𝑗
𝛼𝑘

𝑗 ≥ 𝑘,

0 𝑗 < 𝑘
(38)

where 𝛼 is vector of positive parameters (𝛼𝑗)𝑁𝑗=1 and 𝐻𝑛(𝑥) are the standard scalar Hermite poly-
nomials.
This weight matrix 𝑊(𝑥) in (38) is of exponential type, as defined in Definition 3; this result

follows from the fact that 𝐿(𝑥) satisfies the matrix ODE

𝑑
dx

𝐿(𝑥) = 𝐿(𝑥)𝐴 = AL(𝑥), 𝐴𝑗,𝑘 =

{ 2𝛼𝑘+1

𝛼𝑘
𝑘 = 𝑗 − 1

0 else
.

Then, we can write 𝐿(𝑥) = 𝐿(0)𝑒𝑥𝐴, and we can recast (38) in the form of an exponential type
weight as given in (28).

Remark 8. The exponential weight considered in (38) is taken in such a way that the 0-th square
norm (of the monic MVOP) is diagonal; moreover, using the recurrence relation for the norms
in Theorem 2, the special structure of the matrix 𝐴 implies that all square norms are diagonal
as well.

Lemma 3. The squared norms (𝑛) of the monic MVOPs with respect to (38) and the three-term
recursion coefficient 𝐶(𝑛) are diagonal for all 𝑛 ∈ ℕ0.

Proof. We first show that(0)𝑗,𝑗 is a diagonal matrix:

((0))𝑗,𝑘 =
𝑁∑
𝓁=1

∫
∞

−∞
𝑒−𝑥

2
𝐿(𝑥)𝑗,𝓁(𝐿(𝑥)

∗)𝓁,𝑘𝑑𝑥

=
min(𝑗,𝑘)∑
𝓁=1

∫
∞

−∞
𝑒−𝑥

2 𝐻𝑗−𝓁(𝑥)

(𝑗 − 𝓁)!

𝛼𝑗
𝛼𝓁

𝐻𝑘−𝓁(𝑥)

(𝑘 − 𝓁)!

𝛼𝑘
𝛼𝓁

𝑑𝑥

= 2𝑗𝛼2𝑗𝛿𝑗,𝑘

𝑗∑
𝓁=1

2−𝓁

(𝑗 − 𝓁)!

1

𝛼2
𝓁

.

Next, if we denote the square norms in (34) with 𝑡 = 0 as ̃(𝑛), and by(𝑛) the square norms of
the monic polynomials with respect to the weight (38), then

𝐿(0)̃(𝑛)𝐿(0)∗ = (𝑛). (39)
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Therefore, the(𝑛) satisfies the same second-order recursion (34). Finally, because our matrix𝐴
in this section only has nonzero entries on the first subdiagonal, it follows that all the terms in the
recursion (34) are diagonal. The result for𝐶(𝑛) follows from the formula𝐶(𝑛) = (𝑛)(𝑛 − 1)−1.
▪

The next proposition is a direct consequence of [Ref. 7, Proposition 3.5]:

Proposition 3. The monic MVOPs 𝑃(𝑥, 𝑛) that correspond to (38) satisfy

(𝑃 ⋅ 𝐷)(𝑥, 𝑛) = Γ(𝑛)𝑃(𝑥, 𝑛), (40)

with the self-adjoint second-order differential operator

𝐷 = −
1
2
𝜕2𝑥 + 𝜕𝑥(𝑥𝐼 − 𝐴) + 𝐽, 𝐽 ∶= diag(1, 2, … ,𝑁), (41)

that acts from the right and with eigenvalues Γ(𝑛) = 𝑛𝐼 + 𝐽.

Proposition 4. The identity operator and the differential operators,†, 𝐷 given in (33) and (41)
generate a four-dimensional Lie algebra called the harmonic oscillator algebra, that we denote by 𝔥.

Proof. The differential operators introduced in this section satisfy the following commutation
relations:

[𝐷,] = , [𝐷,†] = −†, [,†] = −2, (42)

that follow from direct calculation. Note that they act from the right. With the identification

 ⟷
√
2 +, † ⟷

√
2 −, 𝐷 ⟷  3, 𝐼 ⟷  ,

we find that 𝔥 is isomorphic to the four-dimensional Lie algebra (𝑎, 𝑏) given in [Ref. 50, §2.5]
with parameters 𝑎 = 0 and 𝑏 = 1, see also [Ref. 51, Chapter 10, (1.1)]. ▪

Remark 9. Because 𝐷, , † are elements of 𝑅(𝑃), we have that 𝔥 ⊂ 𝑅(𝑃). Moreover the Lie
algebra 𝔤 in Theorem 1 is a three-dimensional ideal of the Lie algebra 𝔥. The isomorphism 𝜑
immediately gives an isomorphic subalgebra 𝜑−1(𝔥) ⊂ 𝐿(𝑃).

The Casimir operator of this Lie algebra 𝔥 is given by

 = 𝐷 −
1
2
† = 𝐽 − 𝑥𝐴 +

1
2
𝐴2, (43)

using the explicit expressions for 𝐷, , and †. It can be easily seen from the commutation rela-
tions (42) that  commutes with ̃, ̃†, and 𝐷. The Casimir operator is useful to derive another
differential identity for the MVOPs, that we present below.

Lemma 4. The Casimir operator is self-adjoint and it acts on the monic MVOPs as

(𝑃 ⋅ )(𝑥, 𝑛) = (𝜑−1() ⋅ 𝑃)(𝑥, 𝑛),
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with

𝜑−1() = −𝐴𝛿 +

(
𝑛𝐼 + 𝐽 − 2𝐶(𝑛) − 𝐴𝐵(𝑛) +

1
2
𝐴2

)
+ (𝐶(𝑛)𝐴 − 2𝐶(𝑛)𝐵(𝑛 − 1))𝛿−1.

Proof. The fact that the Casimir operator is self-adjoint follows directly from the expression  =

𝐷 −
1

2
†. Now applying the Lie algebra isomorphism,

𝜑−1() = 𝜑−1(𝐷) −
1
2
𝜑−1(†)𝜑−1() = Γ(𝑛) −

1
2
𝑀†𝑀.

Now the explicit expression of 𝜑−1() follows by replacing the explicit expressions of Γ(𝑛) and
𝑀,𝑀† from Example 1, with 𝑡 = 0 and noting that (39) respect the form of the the ladder
relations. ▪

Observe that the Casimir operator 𝜑−1() of the Lie algebra 𝜑−1(𝔥) is a second-order difference
operator having the sequence of monic MVOPs as eigenfunctions with a nondiagonal eigenvalue
acting on 𝑃(𝑥, 𝑛) from the right. Therefore, 𝜑−1() is an element of the left bispectral algebra
𝐿(𝑃) given in (9).
The fact that the operator  commutes with ̃, ̃†, and 𝐷 is translated via the isomorphism 𝜑

into the following relations

[𝜑−1(), �̃�] = 0, [𝜑−1(), �̃�†] = 0, [𝜑−1(), Γ(𝑛)] = 0.

Remark 10. The scalar Hermite polynomials have a well-known application as part of the solution
to the quantum harmonic oscillator, so it is natural to seek an analogous link in our matrix valued
case. In the next section we also link the differential equation satisfied by our polynomials to a
Schrödinger equation, but it is in fact several copies of the same Schrödinger equation.

5.3 Computation of Hermite MVOPs

The nonlinear recurrence for the norms (𝑛) that we obtained before is important from a com-
putational point of view as well. If we want to compute Hermite MVOPs, (34) is a very convenient
alternative to Gram–Schmidt orthogonalization applied to the canonical basis; together with (35)
and (36) to calculate the recurrence coefficients, this gives a double recursion (first (34) and then
the recurrence relation) that can then be used to compute 𝑃(𝑥, 𝑛).
Two drawbacks of this approach are that we need to calculate the inverse (𝑛)−1 at each step

to use (34), and also that the whole procedure can be slow because of the combination of those
two matrix recursions, which generally involve full matrices. For this reason, we show next an
alternative for the class of weights that we consider in this section: we can replace the matrix
recurrence relation by a scalar recursion for some coefficients 𝜉(𝑛,𝑁, 𝑘), and additionally the
square norms (𝑛) can be easily made diagonal, significantly reducing the computation of the
inverses that occur in (34).



482 DEAÑO et al.

This result is related to the results in Ref. 7, where the MVOPs are calculated explicitly but one
needs to impose certain additional constraints on parameters in the weight matrix.
We denote by 𝑃(𝑥, 𝑛) the monic MVOPs with respect to (38), and we also define the following

auxiliary functions, which will be useful later:

𝑄(𝑥, 𝑛) = 𝑃(𝑥, 𝑛)Φ(𝑥), Φ(𝑥) = 𝑒−𝑥
2∕2𝐿(𝑥). (44)

Lemma 5. The differential operators𝑄, 𝑄, and 𝐷𝑄 defined by

𝑄 ∶= Φ(𝑥)−1Φ(𝑥), 𝑄 ∶= Φ(𝑥)−1Φ(𝑥), 𝐷𝑄 ∶= Φ(𝑥)−1𝐷Φ(𝑥), (45)

are given explicitly as follows:

𝑄 = 𝜕𝑥 + 𝑥, 𝑄 = 𝐽, 𝐷𝑄 =
1
2

(
−𝜕2𝑥 + 𝑥2 − 1

)
𝐼 + 𝐽. (46)

Proof. Because 𝐿′(𝑥) = 𝐴𝐿(𝑥), we immediately obtain (𝐿(𝑥)−1)′ = −𝐴𝐿(𝑥)−1 and therefore
(Φ(𝑥)−1)′ = (𝑥 − 𝐴)Φ(𝑥)−1. Using this expression we get

𝑄 = 𝜕𝑥 + 𝑥.

We recall from [Ref. 7, Lemma 3.4] that 𝐿(𝑥)−1𝐽𝐿(𝑥) = 𝐽 −
1

2
𝐴2 + 𝑥𝐴. Now by direct calcula-

tion we get the following equations:

[𝐽, Φ(𝑥)] = 𝑥𝐴Φ(𝑥) −
1
2
𝐴2Φ(𝑥), Φ(𝑥)−1𝐽Φ(𝑥) = 𝐽 + 𝑥𝐴 −

1
2
𝐴2.

These imply that 𝑄 = 𝐽. For the second-order operator we conjugate the terms separately.

−
1
2
Φ(𝑥)−1𝜕2𝑥Φ(𝑥) = −

1
2
𝜕2𝑥 − 𝜕𝑥(𝑥 − 𝐴) −

(
1
2
𝑥2 − 𝑥𝐴 +

1
2
𝐴2 +

1
2

)
,

Φ(𝑥)−1𝜕𝑥Φ(𝑥)(𝑥𝐼 − 𝐴) = 𝜕𝑥(𝑥 − 𝐴) + (𝑥2 − 2𝑥𝐴 + 𝐴2).

When combined, they lead to the desired expression. ▪

Proposition 5. The matrix elements of 𝑄(𝑥, 𝑛) are multiples of scalar Hermite functions

𝑄(𝑥, 𝑛)𝑗,𝑘 = 𝜉(𝑛, 𝑗, 𝑘)𝐻𝑛+𝑗−𝑘(𝑥)𝑒
−𝑥2∕2, (47)

for 𝑛 + 𝑗 − 𝑘 ≥ 0 and equal to 0 otherwise.

Proof. Equation (45) implies that 𝑄(𝑥, 𝑛)𝑗,𝑘 satisfies the Schrődinger equation for the quantum
harmonic oscillator

−
1
2
𝑄(𝑥, 𝑛)′′

𝑗,𝑘
+
1
2
𝑥2𝑄(𝑥, 𝑛)𝑗,𝑘 =

(
𝑛 + 𝑗 − 𝑘 +

1
2

)
𝑄(𝑥, 𝑛)𝑗,𝑘.

So the functions 𝑄(𝑥, 𝑛)𝑗,𝑘 should each be linear combinations of the bounded and unbounded
solutions to the aboveODE.However, becauseweknow𝑄(𝑥, 𝑛) is amatrix polynomial𝑃(𝑥, 𝑛)𝐿(𝑥)
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multiplied by 𝑒−𝑥2∕2, the entries can only be equal to the bounded solution, which is the Hermite
function𝐻𝑛+𝑗−𝑘(𝑥)𝑒

−𝑥2∕2 when 𝑛 + 𝑗 − 𝑘 ≥ 0 and the zero function otherwise. ▪

Proposition 6. The constants in (47) have the special values:

𝜉(𝑛,𝑁, 𝑘) =
2−𝑛

(𝑁 − 𝑘)!

𝛼𝑁
𝛼𝑘

, (48)

𝜉(0, 𝑗, 𝑘) =
1

(𝑗 − 𝑘)!

𝛼𝑗
𝛼𝑘

, for 𝑗 ≥ 𝑘, 𝜉(0, 𝑗, 𝑘) = 0 for 𝑗 < 𝑘. (49)

Proof. For 𝑛 = 0 we simply have 𝑄(𝑥, 0) = 𝐿(𝑥)𝑒−𝑥
2∕2, so we can directly read off the desired

expression from (38).
We can determine the constants for 𝑗 = 𝑁 by using the monicity of 𝑃(𝑥, 𝑛) = 𝑥𝑛𝐼 +∑𝑛
𝑠=1 𝑝𝑠(𝑛)𝑥

𝑛−𝑠, comparing powers in 𝑥 and considering specific entries. Writing out the matrix
exponential 𝐿(𝑥) = 𝐿(0)𝑒𝑥𝐴, which is a polynomial of degree 𝑁 − 1 we have (for 𝑘 ≤ 𝑁)

𝑒𝑥
2∕2𝑄(𝑥, 𝑛) = 𝑥𝑛+𝑁−1

(
1

(𝑁 − 1)!
𝐿(0)𝐴𝑁−1

)
+ 𝑥𝑛+𝑁−2

(
1

(𝑁 − 1)!
𝑝1(𝑛)𝐿(0)𝐴

𝑁−1 +
1

(𝑁 − 2)!
𝐿(0)𝐴𝑁−2

)
⋮

+ 𝑥𝑛+𝑁−𝑘
(

1

(𝑁 − 𝑟)!
𝑝𝑞(𝑛)𝐿(0)𝐴

𝑁−𝑟 +⋯+
1

(𝑁 − 𝑘)!
𝐿(0)𝐴𝑁−𝑘

)
⋮

where 𝑞 = min(𝑘 − 1, 𝑛) and 𝑟 = 𝑘 − 𝑞. For each power we only know one term explicitly: the
right most one because it is without 𝑝𝑠(𝑛). However, the other terms only have nonzero entries in
the first 𝑘 − 1 columns1 whereas the last term has exactly one nonzero entry in column 𝑘

(
𝐿(0)𝐴𝑁−𝑘

)
𝑖,𝑘

= 𝛿𝑖,𝑁𝐿(0)𝑁,𝑁(𝐴
𝑁−𝑘)𝑁,𝑘 =

𝑁∏
𝑗=𝑘+1

2𝛼𝑗
𝛼𝑗−1

= 2𝑁−𝑘
𝛼𝑁
𝛼𝑘

.

Comparing this to the leading coefficient in (47)

𝑒𝑥
2∕2𝑄(𝑥, 𝑛)𝑁,𝑘 = 𝜉(𝑛,𝑁, 𝑘)2𝑛+𝑁−𝑘𝑥𝑛+𝑁−𝑘 + …

we conclude that

1 This relies on the fact that 𝐴𝑟 only has a nonzero 𝑟-th subdiagonal and 𝐿(0) is lower triangular.
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𝜉(𝑛,𝑁, 𝑘) =
2−𝑛

(𝑁 − 𝑘)!

𝛼𝑁
𝛼𝑘

.

▪

Proposition 7. Theauxiliary function satisfies the following first-ordermatrixODEwith coefficients
that depend on the square norms:

𝑄(𝑥, 𝑛)𝐽

=

(
𝑛𝐼 + 𝐽 −

1
2
𝑥𝐴 −

1
2
(𝑛)𝐴∗(𝑛)−1(𝑥 − 𝐴) − 2(𝑛)(𝑛 − 1)−1

)
𝑄(𝑥, 𝑛)

+
1
2
(𝐴 −(𝑛)𝐴∗(𝑛)−1)𝑄′(𝑥, 𝑛), 𝑛 ≥ 1,

and for 𝑛 = 0

𝑄(𝑥, 0)𝐽 =

(
𝐽 −

1
2
𝑥𝐴 −

1
2
(0)𝐴∗(0)−1(𝑥 − 𝐴)

)
𝑄(𝑥, 0)

+
1
2
(𝐴 −(0)𝐴∗(0)−1)𝑄′(𝑥, 0).

Proof. We start off with the equation that we got from the Casimir and eliminate any 𝑄(𝑥,𝑚)
with𝑚 ≠ 𝑛 by using the three term recurrence in the first step and the lowering relation𝑀 ⋅ 𝑄 =
𝑄 ⋅𝑄 in the second.

(𝑄 ⋅ (𝑄))(𝑥, 𝑛) = −𝐴𝑄(𝑥, 𝑛 + 1) +

(
𝑛𝐼 + 𝐽 − 2𝐶(𝑛) − 𝐴𝐵(𝑛) +

1
2
𝐴2

)
𝑄(𝑥, 𝑛)

+

(
𝐶(𝑛)𝐴 − 2𝐶(𝑛)𝐵(𝑛 − 1)

)
𝑄(𝑥, 𝑛 − 1)

=

(
𝑛𝐼 + 𝐽 − 𝑥𝐴 +

1
2
𝐴2 − 2𝐶(𝑛)

)
𝑄(𝑥, 𝑛)

+

(
𝐶(𝑛)𝐴 + 𝐴𝐶(𝑛) − 2𝐶(𝑛)𝐵(𝑛 − 1)

)
𝑄(𝑥, 𝑛 − 1)

=

(
𝑛𝐼 + 𝐽 − 𝑥𝐴 +

1
2
𝐴2 − 2𝐶(𝑛)

)
𝑄(𝑥, 𝑛)

+
1
2

(
𝐶(𝑛)𝐴 + 𝐴𝐶(𝑛) − 2𝐶(𝑛)𝐵(𝑛 − 1)

)
𝐶(𝑛)−1(𝑥 − 𝐴)𝑄(𝑥, 𝑛)

+
1
2

(
𝐶(𝑛)𝐴 + 𝐴𝐶(𝑛) − 2𝐶(𝑛)𝐵(𝑛 − 1)

)
𝐶(𝑛)−1𝑄′(𝑥, 𝑛)

=

(
𝑛𝐼 + 𝐽 − 𝐵(𝑛)𝑥 − 2𝐶(𝑛) +

1
2
(𝑛)𝐴∗(𝑛)−1𝐴

)
𝑄(𝑥, 𝑛)

+ (𝐴 − 𝐵(𝑛))𝑄′(𝑥, 𝑛)
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In the final steps we clean up the expression using the expressions for 𝐵(𝑛) and 𝐶(𝑛) in terms
of the square norms. If we leave everything in terms of the square norms we get the desired
expression. ▪

Theorem 4. We have the following (scalar) recursion for 2 ≤ 𝑗 ≤ 𝑁 − 1 and 𝑛 ≥ 1

𝜉(𝑛, 𝑗 − 1, 𝑘)

=

(
𝛼𝑗−1
𝛼𝑗

(𝑛 + 𝑗 − 𝑘) + 2
𝛼𝑗−1𝛼

2
𝑗+1

𝛼3𝑗

(𝑛)𝑗𝑗

(𝑛)𝑗+1,𝑗+1
− 2

𝛼𝑗−1
𝛼𝑗

(𝑛)𝑗𝑗

(𝑛 − 1)𝑗𝑗

)
𝜉(𝑛, 𝑗, 𝑘)

− 2(𝑛 + 𝑗 − 𝑘 + 1)
𝛼𝑗−1𝛼𝑗+1

𝛼2𝑗

(𝑛)𝑗𝑗

(𝑛)𝑗+1,𝑗+1
𝜉(𝑛, 𝑗 + 1, 𝑘),

and for 𝑗 = 𝑁 we get

𝜉(𝑛,𝑁 − 1, 𝑘) =

(
𝛼𝑁−1
𝛼𝑁

(𝑛 + 𝑁 − 𝑘) − 2
𝛼𝑁−1
𝛼𝑁

(𝑛)𝑁𝑁
(𝑛 − 1)𝑁𝑁

)
𝜉(𝑛,𝑁, 𝑘).

Proof. The proof follows from looking at the entries of result of Proposition 7 when we will in
𝑥 = 0. ▪

In conclusion, to compute 𝑃(𝑥, 𝑛) for a given 𝑛 one must

1. Compute (𝑚) for 1 ≤ 𝑚 ≤ 𝑛 using (34) and the explicit form of (0) from the proof of
Lemma 3.

2. Compute the 𝜉(𝑛, 𝑗, 𝑘) using the recursion of Theorem 4 with the boundary condition from
(48).

3. Then we have 𝑄(𝑥, 𝑛) and so 𝑃(𝑥, 𝑛) = 𝑄(𝑥, 𝑛)𝐿(𝑥)−1𝑒𝑥
2∕2, where we take an explicit expres-

sion for 𝐿(𝑥)−1 from [Ref. 7, Proposition 3.1].

6 MATRIX VALUED PEARSON EQUATIONS AND LADDER
RELATIONS

In this section we specialize the matrix𝐴 in (38) in such a way that it satisfies a Pearson equation.
This gives rise to new ladder relations and allows to obtain more explicit results for the case of
Hermite and Freud-type weights.

Remark 11. A word should be said about the name Pearson equation in the context of matrix
weights. In papers such as Refs. 7, 19, 20, 35, the name Pearson equation is used for an equation
for the matrix weight of the form

(𝑊Φ)′(𝑥) = 𝑊(𝑥)Ψ(𝑥), (50)
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with Φ and Ψ polynomials of degree two and one, respectively. In other sources, such as Ref. 25,
26, the same name is used for a more general equation of the form

𝑊′(𝑥) = 𝐴(𝑥)𝑊(𝑥) +𝑊(𝑥)𝐵(𝑥),

with matrix polynomials 𝐴 and 𝐵.

In this section we assume that we have a weight matrix𝑊, which satisfies a Pearson equation
of the form

𝑊′(𝑥) = −𝑊(𝑥)𝑉(𝑥), (51)

where𝑉(𝑥) is a matrix valued polynomial of degree 𝑘. The case where𝑉 is a polynomial of degree
one is studied in detail in Ref. 35. Using integration by parts, we prove that there exist matrix
valued sequences 𝑀−2(𝑛), … ,𝑀−𝑘(𝑛) such that the monic orthogonal polynomials 𝑃(𝑥, 𝑛) with
respect to𝑊 satisfy:

(𝑃 ⋅ 𝜕𝑥)(𝑥, 𝑛) = 𝑃′(𝑥, 𝑛) = 𝑛𝑃(𝑥, 𝑛 − 1) +𝑀−2(𝑛)𝑃(𝑥, 𝑛 − 2) +⋯+𝑀−𝑘(𝑛)𝑃(𝑥, 𝑛 − 𝑘). (52)

Therefore, 𝜕𝑥 ∈ 𝑅(𝑃) and

𝜑−1(𝜕𝑥) = 𝑛𝛿−1 +𝑀−2(𝑛)𝛿
−2 +⋯+𝑀−𝑘(𝑛)𝛿

−𝑘.

The operator 𝜕𝑥 has an adjoint 𝜕
†
𝑥 given by

𝜕†𝑥 = −𝜕𝑥 + 𝑉(𝑥)∗. (53)

Moreover, [, 𝜕𝑥] = 0 implies that [𝜑−1(), 𝜑−1(𝜕𝑥)] = 0.

6.1 Hermite-type example

We consider the weight of the previous section (38)

𝑊(𝑥) = 𝑒−𝑥
2
𝐿(𝑥)𝐿(𝑥)∗, (54)

but with a particular choice for the parameters

2𝛼𝑗
𝛼𝑗−1

=
√
(𝑗 − 1)(𝑁 − 𝑗 + 1).

In contrast to the previous section, this is now in fact a particular case of the family of weights
considered in Ref. 7. We do not seek the entries of the MVOPs as this has been done in Ref. 7, but
instead we find a simple lowering relation, which is not obvious from the explicit MVOPs.
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Proposition 8. The weight𝑊 satisfies the Pearson equation (51) where 𝑉(𝑥) is the following poly-
nomial of degree two:

−𝑉(𝑥) = (𝐿(0)∗)−1𝐴𝐿(0)∗ + 𝐴∗ + 2𝑥

(
𝐽 +

1
2
(𝐴∗)2 −

𝑁 + 3
2

)
− 𝑥2𝐴∗,

where 𝐽 is the diagonal matrix introduced in Subsection 5.2.
Proof. Using the structure of the matrix weight (54) we obtain:

𝑊(𝑥)−1𝑊′(𝑥) = −2𝑥 + (𝐿(𝑥)∗)−1𝐴𝐿(𝑥)∗ + 𝐴∗.

Now observe that

𝑑
𝑑𝑥

(
(𝐿(𝑥)∗)−1𝐴𝐿(𝑥)∗

)
= (𝐿(𝑥)∗)−1[𝐴,𝐴∗]𝐿(𝑥)∗.

On the other hand, because 1

4
[𝐴,𝐴∗]𝑗,𝑘 = (

𝛼2𝑗

𝛼2𝑗−1
−

𝛼2𝑗+1

𝛼2𝑗
)𝛿𝑗,𝑘, it follows that

4

(
𝛼2𝑗

𝛼2𝑗−1
−
𝛼2𝑗+1

𝛼2𝑗

)
= (2𝑗 − (𝑁 + 1)) ⟹ [𝐴,𝐴∗] = 2𝐽 − (𝑁 + 1),

and using the relation (𝐿(𝑥)∗)−1𝐽𝐿(𝑥)∗ = −𝑥𝐴∗ + 𝐽 +
1

2
(𝐴∗)2 we get

𝑑
𝑑𝑥

(
(𝐿(𝑥)∗)−1𝐴𝐿(𝑥)∗

)
= 2(−𝑥𝐴∗ + 𝐽 +

1
2
(𝐴∗)2) − (𝑁 + 1).

Integrating with respect to 𝑥 we complete the proof of the proposition. ▪

It follows from Example 1 and (52) that

𝜑−1() = 𝐴 + 2𝐶(𝑛)𝛿−1, 𝜑−1(𝜕𝑥) = 𝑛𝛿−1 +𝑀−2(𝑛)𝛿
−2, (55)

for a certain sequence𝑀−2(𝑛).

Proposition 9. The sequence in (55) is given by

𝑀−2(𝑛) = (𝑛)𝐴∗(𝑛 − 2)−1, 𝑛 ≥ 2.
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Proof. We start by collecting the adjoints of the two lowering differential operators from (53) and
(14)

𝜕†𝑥 = −𝜕𝑥 + 𝑉(𝑥)∗, † = −𝜕𝑥 − 𝐴 + 2𝑥.

Because 𝑉(𝑥)∗ is of degree 2 with 𝐴 as a leading coefficient and 𝑃(𝑥, 𝑛) is monic,
we have

(𝑃 ⋅ († − 𝜕†𝑥))(𝑥, 𝑛) = −𝐴𝑃(𝑥, 𝑛 + 2) + (lower order terms)

On the other hand, we can write its corresponding difference operator using Corollary 1

𝜑−1(† − 𝜕†𝑥) = −(𝑛)𝑀−2(𝑛 + 2)∗(𝑛 + 2)−1𝛿2 + (lower order terms).

So we must have

(𝑛)𝑀−2(𝑛 + 2)∗(𝑛 + 2)−1 = 𝐴,

which leads to the desired result. ▪

Corollary 3. The squared norms satisfy another second order recursion in 𝑛

2(𝑛 + 1)(𝑛 + 1)−1 − 2(𝑛 + 2)(𝑛 + 2)−1(𝑛 + 1)(𝑛)−1

+(𝑛 + 2)−1𝐴(𝑛 + 2)𝐴∗(𝑛)−1 − 𝐴∗(𝑛)−1𝐴 = 0.

Proof. Using 0 = [𝜑−1(), 𝜑−1(𝜕𝑥)], a direct computation gives
0 = (2(𝑛 − 1)𝐶(𝑛) − 2𝑛𝐶(𝑛 − 1) −𝑀−2(𝑛)𝐴 + 𝐴𝑀−2(𝑛))𝛿

−2

+ 2(𝐶(𝑛)𝑀−2(𝑛 − 1) −𝑀−2(𝑛)𝐶(𝑛 − 2))𝛿−3.

From the 𝛿−2 term we obtain

[𝑀−2(𝑛), 𝐴] = 2((𝑛 − 1)𝐶(𝑛) − 𝑛𝐶(𝑛 − 1)),

which gives the desired result when written in terms of the squared norms using Proposi
tion 9. ▪
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Remark 12. We note that we could reduce the order of the recursion by combining the result in
Corollary 3 with (34). However, from the point of view of the scalar (diagonal) entries(𝑛)𝑗𝑗 , this
severely raises the order of the recursion in 𝑗.

6.2 Freud-type example

We consider the weight matrix of Example 2 again:

𝑊(𝑥) = 𝑒−𝑥
4+𝑡𝑥2𝑒𝑥𝐴𝑒𝑥𝐴

∗
, (56)

where 𝐴 is the lower triangular nilpotent matrix defined by

𝐴𝑖,𝑗 =
√
𝜇𝑖𝛿𝑖−1,𝑗, 6𝜇𝑖 = (𝑖 − 1)(𝑁 − 𝑖 + 1)(2𝑁𝛼 + 2𝛼𝑖 + 3𝛽 + 𝛼),

and 𝛼, 𝛽 are real numbers. As in Proposition 9, we prove that the weight 𝑊 satisfies a Pearson
equation of the form

𝑊′(𝑥) = −𝑊(𝑥)𝑉(𝑥),

where 𝑉(𝑥) is a polynomial of degree three. Therefore, there exist sequences𝑀−2(𝑛) and𝑀−3(𝑛)
such that

𝑃𝑛 ⋅ 𝜕𝑥 = 𝑛𝑃𝑛−1 +𝑀−2(𝑛)𝑃(𝑥, 𝑛 − 2) +𝑀−3(𝑛)𝑃(𝑥, 𝑛 − 3).

7 PARAMETER DEFORMATION OF THEWEIGHT AND
MULTITIME TODA LATTICE

In this section, we consider an arbitrary matrix weight of the form

𝑊(𝑥, 𝑡) = 𝑒−𝑣(𝑥,𝑡)𝑊(𝑥), (57)

where 𝑣(𝑥; 𝑡) is a polynomial of even degree with positive leading coefficient depending smoothly
on a parameter 𝑡 ≥ 0. In the following theorem, we study the effect of differentiating the recur-
rence coefficients with respect to 𝑡, an idea that is natural when one considers orthogonal poly-
nomials in the context of integrable systems.

Theorem 5. If we denote by ,̇ the derivative with respect to 𝑡, then the recurrence coefficients in (3)
satisfy the following deformation equations:

�̇�(𝑛) = (�̇�(𝐿))−1(𝑛) − (�̇�(𝐿))−1(𝑛 + 1)

�̇�(𝑛) = (�̇�(𝐿))−2(𝑛) − (�̇�(𝐿))−2(𝑛 + 1)

+ (�̇�(𝐿))−1(𝑛)𝐵(𝑛 − 1) − 𝐵(𝑛)(�̇�(𝐿))−1(𝑛),

(58)
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where we use the same notation as in Remark 13.

Proof. Let 𝑃(𝑥, 𝑛) be the monic orthogonal polynomials with 𝑊(𝑥). Taking into account that⟨𝑃(𝑥, 𝑛), 𝑃(𝑥,𝑚)⟩ = 0 for 𝑛 > 𝑚, we have

0 =
𝜕
𝜕𝑡
⟨𝑃(𝑥, 𝑛), 𝑃(𝑥,𝑚)⟩ = ⟨�̇�(𝑥, 𝑛), 𝑃(𝑥,𝑚)⟩ − ⟨𝑃(𝑥, 𝑛) ⋅ �̇�(𝑥), 𝑃(𝑥,𝑚)⟩,

and then we can expand

�̇�(𝑥, 𝑛) =
𝑛−1∑
𝑚=0

⟨𝑃(𝑥, 𝑛) ⋅ �̇�(𝑥), 𝑃(𝑥,𝑚)⟩(𝑚)−1𝑃(𝑥,𝑚)

=
𝑛−1∑
𝑚=0

(�̇�(𝐿))𝑚−𝑛(𝑛)𝑃(𝑥,𝑚),

where we use the notation in Remark 13 for (�̇�(𝐿))𝑘(𝑛). On the other hand, if we differentiate the
three-term recurrence relation (3) with respect to 𝑡, we obtain

𝑥�̇�(𝑥, 𝑛) = �̇�(𝑥, 𝑛 + 1) + 𝐵(𝑛)�̇�(𝑥, 𝑛) + 𝐶(𝑛)�̇�(𝑥, 𝑛 − 1)

+ �̇�(𝑛)𝑃(𝑥, 𝑛) + �̇�(𝑛)𝑃(𝑥, 𝑛 − 1)

=
𝑛∑

𝑚=0

(�̇�(𝐿))𝑚−𝑛−1(𝑛 + 1)𝑃(𝑥,𝑚) + 𝐵(𝑛)
𝑛−1∑
𝑚=0

(�̇�(𝐿))𝑚−𝑛(𝑛)𝑃(𝑥,𝑚)

+ 𝐶(𝑛)
𝑛−2∑
𝑚=0

(�̇�(𝐿))𝑚−𝑛+1(𝑛 − 1)𝑃(𝑥,𝑚)

+ �̇�(𝑛)𝑃(𝑥, 𝑛) + �̇�(𝑛)𝑃(𝑥, 𝑛 − 1),

(59)

while on the left-hand side we get

𝑥�̇�(𝑥, 𝑛) =
𝑛−1∑
𝑚=0

(�̇�(𝐿))𝑚−𝑛(𝑛)𝑃(𝑥,𝑚 + 1)

+
𝑛−1∑
𝑚=0

(�̇�(𝐿))𝑚−𝑛(𝑛)(𝐵(𝑚)𝑃(𝑥,𝑚) + 𝐶(𝑚)𝑃(𝑥,𝑚 − 1)).

(60)
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Combining (59) and (60), isolating the derivatives of the recurrence coefficients, we get

�̇�(𝑛)𝑃(𝑥, 𝑛) + �̇�(𝑛)𝑃(𝑥, 𝑛 − 1)

=
𝑛−1∑
𝑚=0

(�̇�(𝐿))𝑚−𝑛(𝑛)𝑃(𝑥,𝑚 + 1) +
𝑛−1∑
𝑚=0

(�̇�(𝐿))𝑚−𝑛(𝑛)𝐵(𝑚)𝑃(𝑥,𝑚)

+
𝑛−1∑
𝑚=1

(�̇�(𝐿))𝑚−𝑛(𝑛)𝐶(𝑚)𝑃(𝑥,𝑚 − 1) −
𝑛∑

𝑚=0

(�̇�(𝐿))𝑚−𝑛−1(𝑛 + 1)𝑃(𝑥,𝑚)

− 𝐵(𝑛)
𝑛−1∑
𝑚=0

(�̇�(𝐿))𝑚−𝑛(𝑛)𝑃(𝑥,𝑚) − 𝐶(𝑛)
𝑛−2∑
𝑚=0

(�̇�(𝐿))𝑚−𝑛+1(𝑛 − 1)𝑃(𝑥,𝑚).

Comparing coefficients of 𝑃(𝑥, 𝑛) and 𝑃(𝑥, 𝑛 − 1) we obtain (58) for �̇�(𝑛) and �̇�(𝑛). ▪

Example 3. If �̇�(𝑥) = 𝑥, we obtain the non–Abelian Toda lattice

�̇�(𝑛) = 𝐶(𝑛) − 𝐶(𝑛 + 1), �̇�(𝑛) = 𝐶(𝑛)𝐵(𝑛 − 1) − 𝐵(𝑛)𝐶(𝑛).

Note that for 𝑣(𝑥) = 𝑥2 + 𝑥𝑡 the relations (26) give

2�̇�(𝑛) = [𝐵(𝑛), 𝐴] − 𝐼, 2�̇�(𝑛) = [𝐶(𝑛), 𝐴].

Example 4. If �̇�(𝑥) = 𝑥2, we obtain the non–Abelian Langmuir lattice

�̇�(𝑛) = 𝐵(𝑛)𝐶(𝑛) − 𝐵(𝑛 + 1)𝐶(𝑛 + 1) + 𝐶(𝑛)𝐵(𝑛 − 1) − 𝐶(𝑛 + 1)𝐵(𝑛),

�̇�(𝑛) = 𝐶(𝑛)𝐶(𝑛 − 1) − 𝐶(𝑛 + 1)𝐶(𝑛) + 𝐶(𝑛)𝐵(𝑛 − 1)2 − 𝐵(𝑛)2𝐶(𝑛).

Next, we consider a weight𝑊(𝑥, 𝑡) as in (57) with a multitime Toda deformation, namely, with
a polynomial 𝑣 of the form

𝑣(𝑥, 𝑡) = 𝑣(𝑥, 𝑡1, … , 𝑡𝑘) =
𝑘∑

𝑗=1

𝑡𝑗𝑥
𝑗.

If we denote by ,̇ the derivative with respect to 𝑡𝑗 , then we have �̇�(𝐿) = 𝐿𝑗 . Theorem 57 gives the
expressions for the derivatives of the recurrence coefficients, but if 𝑗 is large, then the coefficients
(�̇�(𝐿))−1,−2 can be difficult to compute, and a much more convenient formulation is given as a
Lax pair.
In the spirit of [Ref. 41, §2.8], we identify the operator 𝐿 with the block tridiagonal matrix with

block entries (𝐿𝑛𝑚), 𝐿𝑛,𝑛+1 = 𝐼, 𝐿𝑛,𝑛 = 𝐵(𝑛), 𝐿𝑛,𝑛−1 = 𝐶(𝑛), and 𝐿𝑛,𝑚 = 0𝐼 if |𝑛 − 𝑚| ≥ 2. For a
𝑁 ×𝑁-block semi-infinite matrix 𝑆 = (𝑆𝑛𝑚), we define 𝑆+ as the matrix obtained by replacing all
the 𝑁 ×𝑁 blocks of 𝑆 below the main diagonal by zero. Analogously, we let 𝑆− to be the matrix
obtained by replacing all the 𝑁 ×𝑁 blocks above the subdiagonal by zero.
Then, we have the following result:
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Theorem 6. For 𝑗 = 1,… , 𝑘 − 1, we have

�̇� =
[
𝐿, (𝐿𝑗)+

]
= −
[
𝐿, (𝐿𝑗)−

]
.

Proof. We first observe that[
𝐿, (𝐿𝑗)+

]
+
[
𝐿, (𝐿𝑗)−

]
=
[
𝐿, (𝐿𝑗)+ + (𝐿𝑗)−

]
=
[
𝐿, 𝐿𝑗
]
= 0,

which proves the second equality. Using that �̇�(𝑛) = (�̇�)𝑛,𝑛 and �̇�(𝑛) = (�̇�)𝑛,𝑛−1, we will complete
the proof by showing that [𝐿, (𝐿𝑗)+]𝑛,𝑛 equals the right-hand side of the first equation in (58), that
[𝐿, (𝐿𝑗)+]𝑛,𝑛−1 equals the right-hand side of the second equation of (58) and that [𝐿, (𝐿𝑗)+]𝑛,𝑚 =
0 otherwise.
Note that (�̇�(𝐿))𝑚(𝑛) = (𝐿𝑗)𝑛,𝑛+𝑚 for any indices𝑚, 𝑛 so the first equation in (58) reads

�̇�(𝑛) = (𝐿𝑗)𝑛,𝑛−1 − (𝐿𝑗)𝑛+1,𝑛, 𝑛 ≥ 1.

On the other hand, bearing in mind that 𝐿 is block tridiagonal and 𝐿𝑗− is lower triangular with
zeros on the diagonal, we have[

𝐿, (𝐿𝑗)−
]
𝑛,𝑛

= 𝐿𝑛,𝑛+1(𝐿
𝑗)𝑛+1,𝑛 − (𝐿𝑗)𝑛,𝑛−1𝐿𝑛−1,𝑛 = (𝐿𝑗)𝑛+1,𝑛 − (𝐿𝑗)𝑛,𝑛−1,

because 𝐿𝑛,𝑛+1 = 𝐼 for any 𝑛 ≥ 0, which proves the result for themain diagonal. The second equa-
tion in (58) is

�̇�(𝑛) = (𝐿𝑗)𝑛,𝑛−2 − (𝐿𝑗)𝑛+1,𝑛−1 + (𝐿𝑗)𝑛,𝑛−1𝐵(𝑛 − 1) − 𝐵(𝑛)(𝐿𝑗)𝑛,𝑛−1, 𝑛 ≥ 2.

We also have [
𝐿, (𝐿𝑗)−

]
𝑛,𝑛−1

= 𝐿𝑛,𝑛(𝐿
𝑗)𝑛,𝑛−1 + 𝐿𝑛,𝑛+1(𝐿

𝑗)𝑛+1,𝑛−1

− (𝐿𝑗)𝑛,𝑛−1𝐿𝑛−1,𝑛−1 − (𝐿𝑗)𝑛,𝑛−2𝐿𝑛−2,𝑛−1

= 𝐵(𝑛)(𝐿𝑗)𝑛,𝑛−1 + (𝐿𝑗)𝑛+1,𝑛−1

− (𝐿𝑗)𝑛,𝑛−1𝐵(𝑛 − 1) − (𝐿𝑗)𝑛,𝑛−2,

which proves the result for the first subdiagonal.
Finally, if 𝑘 ≥ 𝑛 + 1 we repeat the calculation using [𝐿, (𝐿𝑗)−]𝑛,𝑘, which gives 0, consistently

with (�̇�)𝑛,𝑘, and if 𝑘 ≤ 𝑛 − 2, we compute [𝐿, (𝐿𝑗)+]𝑛,𝑘, which gives 0 on both sides again. ▪

We remark that the multitime Toda lattice (6) coincides with the one given in [Ref. 42,
Proposition 4.4].
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APPENDIX A: COMPARISON OF LADDER OPERATORS
In this article, we have taken a different approach to ladder operators for MVOPs than, for exam-
ple, the one in Ref. 23. Their approach is inspired by Ref. 40 and Ref. 52 for the scalar orthogonal
polynomials. This Appendix is meant to compare our approach with theirs for our class of weight
functions, i.e., the exponential weights in (27).
The ladder relations for exponential weights are stated in Section 4 and can be formulated as

𝑃′(𝑥, 𝑛) =
𝑘−1∑
𝑗=1

𝐴−𝑗(𝑛)𝑃(𝑥, 𝑛 − 𝑗) + [𝐴, 𝑃(𝑥, 𝑛)],

for monic polynomials 𝑃. For exponential weights on the real line, we have the following identity:

𝑊′(𝑥) = −𝑊(𝑥)𝑉(𝑥), 𝑉(𝑥) = 𝑣′(𝑥)𝐼 − 𝐴∗ − 𝜌(𝑥), (A1)

where 𝜌(𝑥) = 𝑊−1(𝑥)𝐴𝑊(𝑥). The ladder relation given in Ref. 23 for exponential weights reads

𝑃′(𝑥, 𝑛) = 𝐹(𝑥, 𝑛)𝑃(𝑥, 𝑛) − 𝐸(𝑥, 𝑛)𝑃(𝑥, 𝑛 − 1),

where the coefficients are

𝐸(𝑥, 𝑛)(𝑛 − 1) = −∫ℝ 𝑃(𝑦, 𝑛)𝑊(𝑦)
𝑉(𝑥) − 𝑉(𝑦)

𝑥 − 𝑦
𝑃(𝑦, 𝑛)∗ 𝑑𝑦, (A2)

𝐹(𝑥, 𝑛)(𝑛 − 1) = −∫ℝ 𝑃(𝑦, 𝑛)𝑊(𝑦)
𝑉(𝑥) − 𝑉(𝑦)

𝑥 − 𝑦
𝑃(𝑦, 𝑛 − 1)∗ 𝑑𝑦.

These identities are obtained in the following way: we expand the derivative of 𝑃(𝑥, 𝑛) in the basis
of MVOPs, with coefficients multiplying on the left:

𝑃′(𝑥, 𝑛) =
𝑛−1∑
𝑘=0

⟨𝑃′(𝑥, 𝑛), 𝑃(𝑥, 𝑘)⟩(𝑘)−1𝑃(𝑥, 𝑘)

https://doi.org/10.1111/sapm.12351
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=
𝑛−1∑
𝑘=0

(
∫ℝ 𝑃

′(𝑦, 𝑛)𝑊(𝑦)𝑃(𝑦, 𝑘)∗ 𝑑𝑦

)
(𝑘)−1𝑃(𝑥, 𝑘)

= ∫ℝ 𝑃
′(𝑛, 𝑦)𝑊(𝑦)

(
𝑛−1∑
𝑘=0

𝑃(𝑦, 𝑘)∗(𝑘)−1𝑃(𝑥, 𝑘)

)
𝑑𝑦.

We integrate by parts, and the boundary terms vanish because of the decay of𝑊(𝑥) at ±∞. This,
together with (A1), gives

𝑃′𝑛(𝑥) = −∫ℝ 𝑃(𝑛, 𝑦)𝑊(𝑦)(−𝑉(𝑦))
𝑛−1∑
𝑘=0

𝑃(𝑦, 𝑘)∗(𝑘)−1𝑃(𝑥, 𝑘)𝑑𝑦

= −∫ℝ 𝑃(𝑛, 𝑦)𝑊(𝑦)(𝑉(𝑥) − 𝑉(𝑦))
𝑛−1∑
𝑘=0

𝑃(𝑦, 𝑘)∗(𝑘)−1𝑃(𝑥, 𝑘)𝑑𝑦,

where we have used the fact that the integral with −𝑉(𝑥) vanishes by orthogonality. If we now
apply the Christoffel–Darboux formula

(𝑥 − 𝑦)
𝑛−1∑
𝑘=0

𝑃(𝑦, 𝑘)∗(𝑘)−1𝑃(𝑥, 𝑘) = 𝑃(𝑦, 𝑛 − 1)∗(𝑛 − 1)−1𝑃(𝑥, 𝑛)

− 𝑃(𝑦, 𝑛)∗(𝑛 − 1)−1𝑃(𝑥, 𝑛 − 1),

(A3)

we obtain the formulas (A2) for the coefficients 𝐸(𝑥, 𝑛) and 𝐹(𝑥, 𝑛). Furthermore, using the for-
mula for 𝑉(𝑥) in (A1), we can write

𝐹(𝑥, 𝑛)(𝑛 − 1) = −∫ℝ 𝑃(𝑦, 𝑛)𝑊(𝑦)𝑆(𝑥, 𝑦)𝑃(𝑦, 𝑛 − 1)∗ 𝑑𝑦, (A4)

𝐸(𝑥, 𝑛)(𝑛 − 1) = −∫ℝ 𝑃(𝑦, 𝑛)𝑊(𝑦)𝑆(𝑥, 𝑦)𝑃(𝑦, 𝑛)∗ 𝑑𝑦,

where

𝑆(𝑥, 𝑦) =
𝑣′(𝑥) − 𝑣′(𝑦)

𝑥 − 𝑦
−
𝜌(𝑥) − 𝜌(𝑦)

𝑥 − 𝑦

On the other hand, by direct computation using the fact that 𝑃(𝑥, 𝑛) is monic and (A1), we have

𝑃(𝑥, 𝑛)𝐴 − 𝐴𝑃(𝑥, 𝑛)

=
𝑛−1∑
𝑘=0

⟨𝑃𝑛𝐴, 𝑃𝑘⟩(𝑘)−1𝑃𝑘(𝑥)

=
𝑛−1∑
𝑘=0

(
∫ℝ 𝑃(𝑦, 𝑛)𝑊(𝑦)(𝜌(𝑦) − 𝜌(𝑥))𝑃(𝑦, 𝑘)∗𝑑𝑦

)
(𝑘)−1𝑃(𝑥, 𝑘).
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Therefore, applying (A3) again, we obtain

𝑃(𝑥, 𝑛)𝐴 − 𝐴𝑃(𝑥, 𝑛)

=

(
∫ℝ 𝑃(𝑦, 𝑛)𝑊(𝑦)

𝜌(𝑦) − 𝜌(𝑥)

𝑥 − 𝑦
𝑃(𝑦, 𝑛 − 1)∗𝑑𝑦

)
(𝑛 − 1)−1𝑃(𝑥, 𝑛)

+

(
∫ℝ 𝑃(𝑦, 𝑛)𝑊(𝑦)

𝜌(𝑦) − 𝜌(𝑥)

𝑥 − 𝑦
𝑃(𝑦, 𝑛)∗𝑑𝑦

)
(𝑛 − 1)−1𝑃(𝑥, 𝑛 − 1).

Comparing this last equation with (A4), we find a relation between the two ladder operators,
because

(𝐹(𝑥, 𝑛) + 𝐸(𝑥, 𝑛))(𝑛 − 1) = 𝑃(𝑥, 𝑛)𝐴 − 𝐴𝑃(𝑥, 𝑛)

− ∫ℝ 𝑃(𝑦, 𝑛)𝑊(𝑦)
𝑣′(𝑥) − 𝑣′(𝑦)

𝑥 − 𝑦
𝑃(𝑦, 𝑛 − 1)∗ 𝑑𝑦

− ∫ℝ 𝑃(𝑦, 𝑛)𝑊(𝑦)
𝑣′(𝑥) − 𝑣′(𝑦)

𝑥 − 𝑦
𝑃(𝑦, 𝑛)∗ 𝑑𝑦.

Lastly, we note that 𝐸(𝑥, 𝑛) and 𝐹(𝑥, 𝑛) are explicit for the case treated in Section 6.1. In prin-
ciple one could derive the expressions using Proposition 8, but it is simpler to deduce them from
Proposition 9:

𝐹(𝑥, 𝑛) = −(𝑛)𝐴∗(𝑛 − 1)−1,

𝐸(𝑥, 𝑛) = −𝑥(𝑛)𝐴∗(𝑛 − 1)−1 − 𝑛𝐼

+
1
2
(𝑛)𝐴∗(𝑛 − 1)−1𝐴 +

1
2
(𝑛)(𝐴∗)2(𝑛 − 1)−1.
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