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Abstract

In this paper, we derive simple point-optimal sign-based tests in the context of linear and
nonlinear regression models with fixed regressors. These tests are exact, distribution-free, robust
against heteroskedasticity of unknown form, and they may be inverted to obtain confidence
regions for the vector of unknown parameters. Since the point-optimal sign tests depend on the
alternative hypothesis, we propose an adaptive approach based on split-sample techniques in
order to choose an alternative such that the power of point-optimal sign tests is close to the
power envelope. The simulation results show that when using approximately 10% of sample to
estimate the alternative and the rest to calculate the test statistic, the power of point-optimal sign
test is typically close to the power envelope. We present a Monte Carlo study to assess the
performance of the proposed “quasi”-point-optimal sign test by comparing its size and power to
those of some common tests which are supposed to be robust against heteroskedasticity. The
results show that our procedures are superior.
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1. Introduction

Most economic data are heteroskedastic and non-normatgitdited. In the presence of several
types of heteroskedasticity, parametric tests proposedpmve inference may not control size and
have very low power. This is the case, in particular, for camrtests based on White (1980) vari-
ance correction — which is supposed to be robust againgis&zlasticity — when there is a break
in the disturbance variance or with a GARCH structure wite on several outliers. At the same
time, manyexactparametric tests developed in the literature typicallyass normal disturbances.
The latter assumption is unrealistic and in the presenceaihtails and asymmetric distributions
these tests may not perform very well in terms of power. Furttore, the statistical procedures
developed for the inference on parametersiaflinear models are typically based on asymptotic
approximations and there are only a few exact inference adethutside linear models framework.
However, these approximations may be invalid in small sempihd even in large samples [see
Dufour (2003)]. The present paper aims to propose exacinaptiests which work under more
realistic assumptions. We derive simple point-optimahdigsed tests which are valid under weak
distributional assumptions such as heteroskedasctitimlinown form and non-normality.

Several authors have provided theoretical arguments fgrtidiexisting parametric tests about
the mean of.i.d. observations fail under weak distributional assumptiamshsas non-normality
and heteroskedasticity of unknown form. Bahadur and Sa{E@fe6) show that under weak dis-
tributional assumptions on the error terms, it is not pdedib obtain a valid test for the mean of
i.i.d. observations even for large samples. Many other hypothasast various moments af.d.
observations lead to similar difficulties. This can be exyd by the fact that the moments are not
empirically meaningful in nonparametric models or modeithweak assumptions. More discus-
sion about the statistical inference problems in nonpatiéen®odels can be find in Dufour (2003).
Further, Lehmann and Stein (1949) and Pratt and Gibbond JX®w that sign methods were the
only possible way of producing valid inference for finite gdenprocedures under conditions of
heteroskedasticity of unknown form and non-normality.

This paper introduces new sign-based tests in the contelkbesr and nonlinear regression
models with fixed regressors. The proposed tests are exatribation-free, robust against het-
eroskedasticity of unknown form, and they may be invertedttain confidence regions for the
vector of unknown parameters. These tests are derived @sdemptions that the disturbances
in regression models are independent, but not necessaeihfically distributed, with zero median
conditional on the explanatory variables. A number of digged test procedures have been de-
veloped in the literature. In the presence of only one exgitany variable, Campbell and Dufour
(1995) and Campbell and Dufour (1997) propose nonparamatidlogues of-test based on sign
and signed rank statistics, that are applicable to a spet#fss of feedback models including both
Mankiw and Shapiro (1986) and random walk models. These st exact even when the dis-
turbances are asymmetric, non-normal, and heterosked&kstidin, Simonova and Tyurin (1997)

1See the simulation results in Section 6 of this paper. Fiahntarkets are characterized by the presence of episodic
occasional of crashes and rallies. The latter can be viewéat@ducing outliers in volatility. Moreover, it may oacu
that financial returns series contain other atypical olzggms such as additive or innovation outliers. The reader c
consult Hotta and Tsay (1998) for a recent classificationufiers in GARC H volatility models and Friedman and
Laibson (1989) for the economic arguments for the possitdsgnce of atypical observations.



propose locally optimal sign-based inference and estomdtr linear models. Coudin and Dufour
(2008) extend the work by Boldin et al. (1997) to some formstafistical dependence in the data.
Wright (2000) proposes variance-ratio tests based on g¢ims sind ranks to test the null hypothesis
that the series of interest is a martingale difference sezpie

The present paper address the issue of optimality and seelesive point-optimal tests based
on sign statistics. Point-optimal tests are useful in a remobways and they are most attractive for
problems in which the size of the parameter space can béctedtby theoretical considerations.
Because of their power properties, these tests are pantig@ttractive when testing one economic
theory against another, for example a new theory againskiating theory. They would ensure
optimal power at given point and, depending on the struatfitee problem, could give power over
the entire parameter space. Another interesting featutteese tests is they can be used to trace out
the maximum attainablgower envelopéor a given testing problem. This power envelope provides
an obvious benchmark against which test procedures canabgaéed. More discussion about the
usefulness of point-optimal tests can be found in King (188Y. Many papers have proposed point-
optimal tests to improve inference. Dufour and King (1994¢ point-optimal tests to do inference
on the autocorrelation coefficient of a linear regressiodehwith first-order autoregressive normal
disturbances. Elliott, Rothenberg and Stock (1996) deheeasymptotic power envelope for point-
optimal tests of a unit root in the autoregressive repregient of a Gaussian time series under
various trend specifications. Jansson (2005) derives angetic Gaussian power envelope for
tests of the null hypothesis of cointegration and proposésasible point-optimal cointegration
test whose local asymptotic power function is found to beelm the asymptotic Gaussian power
envelope.

Since point-optimal sign (hereafter POS) tests dependealtarnative hypothesis, we propose
an adaptive approach based on split-sample technique tselam alternative that makes the power
curve of the POS test close to the power envefoée idea consists in dividing the sample into
two independent parts and use the first one to estimate the wélthe alternative hypothesis and
the second to compute the point-optimal sign test statigtiee simulation results show that using
approximatelyl0% of sample to estimate the alternative yields a power whitypigally very close
to the power envelope. We present a Monte Carlo study to afiseperformance of the proposed
“quasi’-point-optimal sign test by comparing its size armvpr to those of some common tests
which are supposed to be robust against heteroskedasfidity results show that our procedures
are superior.

The plan of the paper is as follows. In Section 2, we presemn&i@l framework for deriving
POS tests. In Section 3, we derive POS tests in the contexieairland nonlinear regression models.
In Section 4, we study the power properties of the POS testpeopose an adaptive approach to
choose the optimal alternative. In Section 5, we discussdhstruction of the point-optimal sign
confidence regions using projection technique. In Sectjomebpresent a Monte Carlo simulation
to assess the performance of POS tests by comparing theiasizpower to those of some popular
tests. We conclude in Section 7. Technical proofs and simulaesults are presented in appendices
A and B, respectively.

2For more details about split-sample technique, the reaalerconsult Dufour and Torrés (1998) and Dufour and
Jasiak (2001).



2. General framework

This section aims to introduce a framework for deriving paiptimal sign-based tests in the context
of general hypothesis testing problem. The point-optireats are useful in a number of ways and
they are most attractive for problems in which the size ofgtheameter space can be restricted by
theoretical considerations. They would ensure optimalgyaat given point and, depending on the
structure of the problem, they could give power over therergarameter space. In what follows,

we consider a random samgle; };-_; such that

Y1, ---, Yn are independent (2.2)

and we define the following vector of signs

!/

U(n) = (s(y1), - 5(yn))

where

S(yt)—{ 0.ify <0 ,fort=1,...,n,

we assume that there is no probability mass at zero, whidhesity; is a continuos variable. In
the next two subsections, we use Neyman-Pearson lemma.fsekahmann (1959), page 65] to
derive point-optimal sign-based tests to test simple emnistnd nonconstant hypotheses.

2.1. Point-optimal sign test for constant hypotheses

Let (y1, ..., y») be an observable x 1 vector of independent random variables such Btg >
0] = p. Suppose we wish to test the null hypothesis

HO * P = Do, (22)

against the alternative hypothesis
Hi:p=pm (2.3)

wherepy andp; are fixed and known. In what follows, we consider optimalgest the Neyman-
Pearson sense, which maximize the power function (minithiedype Il error) under the constraint

P [rejectHy | Hy| < a.

If we denote the likelihood function of = (y1, ..., y,) under the null byf(y | Hy) and its
likelihood function under the alternative by{y | Hy), then the Neyman-Pearson lemma [see e.qg.
Lehmann (1959), page 65] implies that rejectifig for large values of likelihood ratio

_ Sy | Hy)
f(y | Ho)

S

(2.4)



corresponds to the most powerful test. A critical value, sayf test statistic (2.4) is given by the
smallest constant such that
Pls > ¢ | Hy] < a,

wherecq is the desired level of significance or a Type | error. The chaf a significance level

is usually somewhat arbitrary, since in most situationsetfieno precise limit to the probability of
a Type | error that can be tolerated. Standard values, suglyhsr 0.05, were originally chosen
to effect a reduction in the tables needed for carrying oubua test. However, the choice of
significance level should take into account the power thatdht will achieve against the alternative
of interest. Rules for choosingin relation to the attainable power are discussed in Lehn(iE@68),
Arrow (1960), Sanathanan (1974), and Lehmann and Roma@b)2Bor our testing problem, the
likelihood function is given by:

n

L (U(n),p) — tglp[yt > O]s(yt) (1 _ P[yt > 0])178(%) (25)

and the likelihood ratio is defined as follows:

M B n <Z£>S(yt) <1_p1>18(yt) B <&>Sn <1_p1>nSn
LO(U(H),po) _tl;[l{ Do 1 — po - Do 1 — o 5 (26)

where

3

3

Sy = Z S(Qt),

t=1

Lo(.) and L (.) represent the values of likelihood function (2.5) under tindl and alternative
hypotheses, respectively. For simplicity of exposition agsume thapy, p1 # 0,1. The latter
allows us to work with the log-likelihood function and sirifplthe expression of test statistics.
However, forpy = 0, 1 we could work directly with likelihood function rather thdmg-likelihood
function. We deduce the following log-likelihood ratio:

LI(U(n)vpl)} { <p1> <1—p1>} (1—291)

In{ ————~3=5,<In{— | —1In +nln .
{LO(U(’”)’po) Po 1 —po 1 —po

According to Neyman-Pearson lemma, the best tegfpagainstH;, based on the vector of signs
(s(y1), ..., 5(yn)), rejectsHy when

LMY _
1“{L0<U<n>,po>} > @7

Forp, > po > 0, the test (2.7) is equivalent to rejectingy when

c—nln (=&
S, > SETD =i, (2.8)

P 1-p
In (B2) —In (=51




wherec; satisfies
P[Sn > C ‘ Ho] < a.

The test (2.8) is the same for @ > pg. Further, under assumption (2.1) and fer> py > 0 the
test with critical region

C= {(ylw'-ayn), : Sn > Cl}

is the best POS test for the null hypothesis (2.2) againstlteenative hypothesis (2.3). Similarly,
for 0 < p1 < po, the test (2.7) is equivalent to rejectidfy, when

1-p1 )

1—po =
1= =, (29)
I (2)—m (=2

c—nln (

n

whereg¢; satisfies
P[Sn < ‘ Ho] < a.

The critical region which corresponds to the test (2.9) finee as follows:
C={(y1,ryn) s Sn < &1},

where the critical valué; is chosen so that
P [(y1,-yn) € C | Ho) < au.

In both cases, i.e. far; > py > 0 and0 < p; < py, the test statistic is given by:

n

Sn=>_s(u). (2.10)

t=1

Under Hy, S,, follows a binomial distributionBi(n, py), i.€.
P(Sy =) = Cy, pp (1 —po)" ™",

whereC? = 2 Since the tests statistic (2.10) does not depend on thexaiiez hypothesis

-0

p1, the above test corresponduaiformly most powerfulests.

Example 2.1 (Backtesting Value-at-Risk) Consider time series of daily ex post portfolio returns,
say R;, and daily ex ante Value-at-Risk forecasts, $ayR,(p), with promised coverage raig
such thaP;_; (R; < VaR:(p)) = p. Define the hit sequence dfaR;(p) violations as

[ 1if Ry < VaR(p),
£~ 1 o, otherwise '

Backtesting Value-at-Risk consists in testing if on avertige coverage rate of Value-at-Risk (VaR)
is correct [see Christoffersen (1998)]. It is a key part @& thternal model's approach to market
risk management as laid out by the Basel Committee on Bartkinpgervision (1996). Testing the



unconditional coverage of VaR is equivalent to testing thiémypothesis

Hy : I ~i.i.d : Bernoulli(p) (2.11)
against the alternative hypothesis

Hi : I} ~i.i.d : Bernoulli(p). (2.12)

Under Hy, the likelihood function of random sequen({e[t}f:1 is given by:

T
Lo(Iy, ..Ir,p) = Hp'" (1 —p)'~1 = p>r (1 —p)"~°r,
where
T
St = Z I,
t=1
and under the alternative it is given by:
Ll(-[h IT:ﬁ) = ﬁST(l - ﬁ)n_ST'

Using Neyman-Pearson lemma and the previous results, stagistic for testing the null hypothesis
(2.11) against the alternative hypothesis (2.12) is defasefbllows:

T
St = Z I,
t=1
where, under, St follows a binomial distributionBi(T', p).

2.2. Point-optimal sign test for nonconstant hypotheses

Let (y1,..., yn) be an observable x 1 vector of independent random variables such Bigt >
0] = p;. Suppose we wish now to test the null hypothesis

Ho : Pls(y) = 1] = pro, t =1,...,1m, (2.13)
against the alternative hypothesis
Hy:Pls(ye) =1 =py1, t=1,...,n. (2.14)

For simplicity of exposition we assume again that, p;1 # 0,1. Following the same steps as
in Section 2.1, a point-optimal sign test to test the nulldipesis (2.13) against the alternative
hypothesis (2.14) is given by the following theorem.



Theorem 2.2 Under assumption2(1) the test with critical region

C = {(yl, e Yn) Zln [M} s(y) > cl}

—~ |peo(l —pe1)

is the best point-optimal sign test for the null hypothe&id 3 against the alternative hypothesis
(2.14. The critical valuec; is chosen such that

P[(1,9n) € C | Ho| <a,
whereq is an arbitrary significance level.

See proof of Theorer@.2in Appendix A. The corresponding test statistic is given by:

5=y [’Ll - p“’)] s(y). (2.15)

— [pro(l —pea)

Next section proposes exact optimal sign-based tests ootitext of linear and nonlinear regression
models with fixed regressors. The hypothesis testing pnobiehis section corresponds to a special
case of the one defined before, since the null hypothgsiand the alternative hypothegig; take
particular forms.

3. Point-optimal sign tests in linear and nonlinear regres®n models

In the presence of some types of heteroskedasticity, theapric tests proposed to improve in-
ference may not control size and have very low power. For @kanwhen there is a break in
the disturbances’ variance the usual test statistic basétihite (1980) variance correction, which
is supposed to be robust against heteroskedasticity, hgspwer power [see Section 6]. Other
forms of heteroskedasticity for which the usual tests asg powerful are exponential variance and
GARCH with one or several outliers [see Section 6]. At the séime, manyexactparametric tests
developed in the literature typically assume normal distnce. The latter assumption is unrealistic
and in the presence of heavy tails and asymmetric distabstithese tests may not perform very
well in terms of power. Furthermore, the statistical praged developed for the inference on pa-
rameters ohonlinearmodels are typically based on asymptotic approximatiomstia@are are only

a few exact inference methods outside linear models framewdowever, these approximations
may be invalid in small samples and even in large sampledséaur (1997)].

In this section, we propose exact optimal sign-based tadfsei context of linear and nonlin-
ear regression models with fixed regressors. The propostdaee valid under weak distributional
assumptions such as heteroskedascticity of unknown fochman-normality. In the next first sub-
section we derive POS tests to test zero coefficient hypistiireshe context of linear regression
model, and in the second and last subsection, we propose €BStd test nonzero coefficient
hypothesis in the context of nonlinear regression model.



3.1. Testing zero coefficient hypothesis in linear regressn model

We consider that the variablg can be linearly explained by another variable veeator
Y = ﬁ/l't +ep, t=1,...,n, (3.2)

wherey;, fort = 1,...,n, are independent random variables but not necessarilyiédéiyn distrib-
uted,z; is an observablé x 1 vector of fixed explanatory variables,e R¥ is an unknown vector
of parameters, ang is an error term such that

e | X ~F(.] X) (3.2)
and

P[5t20|X]:P[5t<O|X]:%, (3.3)

whereF,(.) is a distribution function an& = [z, ..., z,,] is ann x k matrix. Suppose we wish to
test the null hypothesis
Hy:8=0 (3.4)

against the alternative hypothesis
Hy: 5= 0. (3.5)

Under assumption (3.1), the hypothesis testing problemngby (3.4)-(3.5) is a special case of the
one defined by (2.13)-(2.14) [see Section 2.2], where now

pe=Ply >0 X]=1-Ple; < —f 2 | X].

UnderHy ,
pt,ozp[yt20|X]:1—P[€t<0|X]:§ (3.6)

and underH;
pia=Plye 20 X]=1—-Ple; <=2 | X]. (3.7)

Consequently, a sign-based test for the null hypothesi3 &8jainst the alternative hypothesis (3.5)
can be deduced from Theor&r? using equations (3.6) and (3.7). We have the following tesul

Proposition 3.1 Under assumptions2(1), (3.3), and @.1) the best point-optimal sign test for the
null hypothesis3.4) against the alternative hypothesi3.§) rejects @.4) when

> ai(0/1)s(ye) > (),
t=1

where

1
a;(0/1) =1In |: T - 1] . (3.8)

1—Ple:<—f 4| X]



The critical valuec; (3, ) is chosen such that

P> a(0/1)s(y) > er(8y) | Ho| < a,

t=1
whereq is an arbitrary significance level.

The POS test of Propositidh 1 controls size for any distribution ef which satisfies the condition
(3.3). Under the null hypothesis, the test is distributitee and robust against heteroskedasticity
of unknown form. However, under the alternative hypothéises power function of the test will
depend on the form of the distribution functionapf

We assume that under the alternative hypothesis the ernos fellow an homoskedastic normal
distribution. In other words, we substitute the optimal g (3.8) by the weights derived from
an homoskedastic normal distribution. The latter asswnptnay affect the power of POS test,
however our simulation results [see tables 7 and 8] showtkiese is almost no power loss when
we misspecify the distribution function ef. If we assume that under the alternative

Et ~ N(O, 1),
then the test statistic is given by:
) - 1
Sp(61) =) In — | W) (3.9)
t=1 gZi(ﬁ/1$t)

whered(.) is the standard normal distribution function.
We use quantiles of random variable (3.9) to implement th& R&3t. Since the test statistic
(3.9) is a continuous variable, its quantiles are easy tgpeen To simulate (3.9) we first generate

n

a sequencés(y:)};—, under the null hypothesis. In particular, we generate aesgtp{s(c;)};
which satisfies the condition (3.3). The variable;) takes only two value$ and 1, thus the
computation of test statistic (3.9) reduces to generatisgcaience of Bernoulli random variables
of given length with subsequent summation and the correpgnweights. The algorithm for

implementing the POS test can be described as follows:
1. Compute the test statisti (3, ) based on the observed data, $4y3,)°;
2. Generate a sequence of Bernoulli random variaptés)}"_; satisfying (3.3);

3. Compute S;(3,)? using the sequence{s(e;)}, and the corresponding weights
{ai(0/1)}izy s
4. ChooseB such thatv(B + 1) is an integer and repeat steps- 3 B times;

B

5. Compute thel(— )% quantile, say:(3, ), of the sequencésS; (5,)’ }j:1 ;

6. Reject the null hypothesis at levelf S*(3,)" > c(5;).



3.2. Testing Nonzero coefficient hypothesis in nonlinear gression model

We consider now the following nonlinear regression model

yt:f(xtvﬂ)—l_gta = 17"'7’”’: (310)

wherey,, fort = 1,...,n, are independent random variables but not necessarilyiéady dis-
tributed, z; is an observablé x 1 vector of fixed explanatory variableg(.) is a scaler function,
B € R¥ is an unknown vector of parameters, ands an error term which satisfies the condition
(3.3). Suppose now we wish to test the null hypothesis

Hy: =B, (3.11)

against the alternative hypothesis
Hy:38=0. (3.12)

A test for Hy againstH; can be constructed in the same way as in the previous SecfiorrBst,
notice that the model (3.10) is equivalent to the followirensformed model

9t = g(xt, B, By) + €t

where

,gt =Yt — f(xtvﬂO) and g(xtaﬁaﬁO) = f(xtaﬁ) - f(xtvﬂO)‘

Under assumption (2.1) and conditional nwe have
71, ..., Un are independent.
Second, testing (3.11) against (3.12) is equivalent to test

Hy:g(z,8,8,) =0, fort =1,..n

against )
Hy : g(x, B, 80) = f(x4,81) — f(z4, Bp), fort =1, ..n.

Finally, the likelihood function of new random samglg };._, is given by:
L(U(n), 8, X) = tﬁlp[gt > 0] X]*W)(1 - Plg, > 0] X))t 00,

where the new vector of sigrig(n) is defined as follows:

for

) Lifg >0
S(yt)_{ O)ngt<0

10



Thus, a sign-based test for the null hypothesis (3.11) ag#ie alternative hypothesis (3.12) can
be derived using the above Proposit®d. We have the following result.

Proposition 3.2 Under assumptiong2(1), (3.3), and 3.10 the best point-optimal sign test for the
null hypothesis3.11) against the alternative hypothesi3.12 reject 3.12 when

1

1

In [ T ] s (ye — f(xt, Bg)) > c1(By)-
i—1 T—Plee<f(zt,B0)— [ (@e.BIX]

The critical valuec; (3,) is chosen so that

P [Z a0(0/1)s (g — F(21,80)) > e1(By) | H] <a
t=1

and« is an arbitrary significance level.

If we consider a linear functiorf (z, 5) = Bz, and assume that under the alternative hypothesis
the error terne; follows N (0, 1) distribution, then the test statistic is given by:

. = 1 ,
Si(B) =3 { — 1] s (i — Bot) (3.13)
t=1 | 2((8:—Bo) x1)

where®(.) is the standard normal distribution function. The testistiat(3.13) depends on a par-
ticular alternative hypothesijs,. In practice, the latter is supposed to be unknown which ke
proposed POS test unfeasible. In the next section, we pecgm®e additional techniques that we
can use in order to choose an optimal alternaflyat which the power of test is maximized.

4. Choice of the optimal alternative hypothesis

In this section, we study the power properties of the propd¥®S test. We derive its power en-
velope and analyze the impact of the alternative hypoth@gisn its power function. Since the
latter depends on the alternative hypothesis, we propos@@moach (hereafter adaptive approach)
to choose the alternative, at which the power of POS test is close to the power envelope.

4.1. Power envelope of point-optimal sign test

We derive an upper bound (hereafter power envelope) of thepfunction of point-optimal sign
test. Itis well known that point-optimal tests can be usetlaoce out the maximum attainable power
envelope for a given testing problem. This power envelopwiges a natural benchmark against
which test procedures can be compared.
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According to Section 3, the test statistic of POS test is atfan of 3,

Sn(B1) = Zln {11 — 1] s(ye)-
t=1 ]

17P[5t§7ﬁ/1:ct|X

Its power function, sayI (3, 3;), is also a function of3,

(B, 51) = PS,(81) > a1l

wherec; satisfies
PIS;(B1) > 1 | Ho) < o

The following theorem provides a theoretical formula fommgo function of POS test.

Theorem 4.1 Under assumption22(1) and @3.3), the power function of POS test/f is given by
+ l/ Mdu7
0

1
2 7 U

H(ﬂaﬂl) =

where, foru € R,

= 1nm - ex —iuc—l exp | wu | In L _a
= (oo (- (] 2

i = v/—1 andIm{z} denotes the imaginary part of a complex numbeiThe critical valuec; is
chosen so that

P[S7(B1) > e1 | Ho| < v,
whereq is an arbitrary significance level.

See proof of Theorerd.1in Appendix A. Since the test statisti (5,) is optimal against an
alternative3,, the envelope power function, sdy(/3), is a function which associates the value
I1(33, 3,) to each element ¢ R¥,

I(B) = 1(B,8) = P [S;(B) > e1]. (4.1)

The objective now is to find some value@f at which the power curve of POS test remains close to
the relevant power envelope. For given vallieof power function and levek of POS test, we can
find an alternative, sag, (I1, ), by inverting the power envelope functidid(3). For any given
valuell € (a, 1), the family of POS test statistics can be written as follows

{s;;(n) =3 m { ! 1] s(yr), for IT € (a, 1)} .
t=1

1-Ples<—B,(ILe) 2| X]

12



Although every member of this family is admissible, it is pibde that some values éf may yield
tests whose power functions lie close to the power envelgpeaconsiderable range. Past research
suggests that values éf near one-half often have this property, see for example Ki8§7-88),
Dufour and King (1991), and Elliott et al. (1996). Consedlyrone can choose as an optimal
alternative the one which corresponds/fo= 0.5. Based on Theorem.1 and equation (4.1), the
value of3; which corresponds tél = 0.5 is the solution of the following equatién

H [exp (—ius) + exp (zu (ln [ L _1] - %))]
o =1 1=Pley<— B} 27| X]
Im du=0. (4.2
0

u

An exact solution for equation (4.2) is not feasible, sircis inot easy to find an expression for
Im{.} and the integralf;™ Im{.}du is difficult to evaluate. The latter can be approximated gisin
results from Imhof (1961), Bohman (1972), Davies (1973} Bravies (1980), who propose a nu-
merical approximation for the distribution function usitig characteristic function. The proposed
approximation introduces two types of errors: discreikimatnd truncation errors. Davies (1973),
proposes a criterion to control for discretization erraw ®avies (1980) proposes three different
bounds to control for truncation error. Another alternatio solve the power envelope function for
[, is to use simulations [see Elliott et al. (1996)]. We coulé@ sgnulations to approximate the
power envelope function and calculate the optimal altéreathich corresponds to the value of
II1(3;) near one-half.
Let’'s now examine the impact of the alternative hypothgsi®n the power function. We use

simulations and plot the power curves of POS test underrdiifealternatives and compare them to
the power envelope. Our results are presented in figures 1-3.

Insert Figures 1-3.

The above figures compare the power curves of POS test to thermmvelope under different
alternatives and using different data generating prosedsmreafter DGPs). We consider a linear
regression model with one regressor and an error term whbltdwis one of the following distribu-
tions (DGPs): normal distribution, Cauchy distributiorixtare of normal and Cauchy distributions,
and normal distribution with a break in variance. We alscstber other DGPs (normal distribution
with GARCH(1, 1) plus jump variance and normal distribution with non stesighGARCH(1, 1)
variance) which do not satisfy they key assumption (2.1)thedesults are interesting. A descrip-
tion of these DGPs is given in Section 6. Based on simula@sults, we find that the alternative
hypothesis affects the power function. Particularly, wtienalternative is far from the null hypoth-
esis, hergs = 0, the power curve of POS test moves away from the power enveiope.

Since the previous approach to finding the optimal altevea somewhat arbitrary way, in the

3Using the properties of the cumulative density function ifiwtonically increasing, continuoudim Pr(z <c¢) =
0, and lir+n P.(z < ¢) = 1) we can show that equation (4.2) has a unique solution.
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next subsection we propose an adaptive approach basedivsaspple technique to estimate the
optimal alternative.

4.2. An adaptive approach to choose the optimal alternative

Existing adaptive statistical methods use the data to m@terwhich statistical procedure is most
appropriate for a specific testing problem. These methoglsisumally performed in two steps. In
the first step a selection statistic is computed that estisntite shape of the error distribution. In
the second step the selection statistic is used to deteraniredfective statistical procedure for the
error distribution. For more details about the adaptivéistieal methods, the reader can consult
O’Gorman (2004).

The adaptive approach that we consider is somewhat diffen@an the existing adaptive statisti-
cal approaches. We propose split-sample technique to elavoalternative hypothesis such that
the power of POS test is close to the power envefofée alternative hypothesjs; is unknown
and a practical problem consists in finding its independstitn@te. To make size control easier, we
estimate3; from a sample which is independent from the one that we usertpate the POS test
statistic. This can be easily done by splitting the samplee i@iea is to divide the sample into two
independent parts and use the first one to estimate the viatie alternative and the second one to
compute the POS test statistic.

Consider again the model given by (3.1) and det= n; + no, y = (yél), y22))l, X =
(X('l),X('Q))/, ande = (5;1), 5;2))/ where the matriceg;), X(;), ande(; haven;, i = 1,2, rows.
We use the firsh; observationsy ;) and X(;, to estimate the alternative hypothegisusing OLS

51 (X(1 X(l)) (1)y(1)

and becau:s@1 is independent ofX(,), we can use the last; observationsy,) and X ), to
calculate the test statistic and get a valid POS test

SH(B,) = Z In T ! — s(yt)-

t=ni+1 1-Plet<— ((X y X))~ y(l))l‘t\X]

However, the OLS estimator is known to be very sensitive ttieda and non-normal errors, con-
sequently it is important to choose a more appropriate ndethe@stimate3;. In the presence of
outliers many estimators are proposed to estimate the ceeffs in regression model such that the
least median of squares (LMS) estimator [see Rousseeuw enay [1987)], the S-estimators [see
Rousseeuw and Yohai (1984)], and thestimators [see Yohai and Zamar (1988)].
Different choices fom; andns are clearly possible. Alternatively, we could select ranfjo

the observations assigned to the vectgis andy ;). As we will show latter the number of obser-
vations retained for the first and the second subsamplesadirect impact on the power of the

“For more details about split-sample technique, the reaalerconsult Dufour and Torrés (1998) and Dufour and
Jasiak (2001).
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test. In particular, it seems that we could get more powedst when we use a relatively small
number of observations for computing the alternative hypsis and keep more observations for
the calculation of test statistic. This point is illustrteelow using simulation experiments. We use
simulations to compare the power curves of split-sampgetdOS test (hereafter SS-POS test) to
the power envelope (hereaftBr”) under different split-sample sizes and using differentfi3¢see
Section 6]. The results are presented in figures 4-6.

Insert Figures 4-6.

>From the above figures we see that using approximatg&ly of sample to estimate the alternative
yields a power which is typically very close to the power doge. This is true for all DGPs that
we consider in the simulation study.

5. Point-optimal sign confidence regions

In this section, we briefly describe how to build confidenagiares with known significance level
a, sayCg(a), for a vector of unknown parametegsusing the proposed POS tests. Consider the
previous linear regression model (3.1) and suppose we wishst (3.11) against (3.12), then the
idea consists in finding all the values @f < R* such that

S:OB) = {ln [ ! Js(ye — ﬁ’oxo} < c(By),
1-Ple<—(

1 -1
=1 51—ﬁ0),$i|X}

wheres;:? (6,) is the observed value of' (/3;) and the critical value(3,) is given by the smallest
constant(3;) such that

P[S5(81) > c(By) | B=Bo] < c.

The confidence regio@'s(«) of the vector of parameterscan be defined as follows:

Cola) = {80+ S1O(81) < c(81) | PIS3(8)) > e(B1) | B =Fo] < o}

Further, given the confidence regi6fy(«), we can also derive confidence intervals for the compo-
nents of vector using the projection techniquésThe latter can be used to find confidence sets,
sayg(Cs(a)), for general transformationgof 3 in R™. Since, for any set’s(«),

B e Cgla) = g(B) € 9(Cp(a)) (5.1)

we have
P8 € Cs(a)] =1 —a=Plg(B) € g(Cs(e))] =21 - a, (5.2)

SMore details about the projection technique can be find iroDuf1997), Abdelkhalek and Dufour (1998), Dufour
and Kiviet (1998), Dufour and Jasiak (2001), and Dufour aadriouti (2005).
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where
9(Cp(a)) ={6 eR™: 3B € Cg(a), g(B) =6}

>From (5.1) and (5.2), the sg{Cj3(«)) is a conservative confidence set ig13) with level 1 — a.
If g(B) is a scalar, then we have

P [inf {g(8),for By € Cp(a)} < g(B) < sup{g(Bo), for Gy € Cp(a)}] > 1 —a.

6. Monte Carlo study

We present simulation results illustrating the perforneaoitthe statistical procedures defined in the
previous sections. Since the number of tests and alteenatodels is so large, we have limited our
results to two groups of data generating processes (DGHshwbrrespond to different symmetric
and asymmetric distributions and different forms of hedkealasticity.

6.1. Size and Power

We assess the performance of the proposed POS test by campiarsize and power to those of
some other tests, under various general DGPs. We choose@ias D illustrate performance in
different contexts that one can encounter in practice. Wisider the following regression model

Yt :/8$t+5t, t= 17"’7”7 (61)

where 5 is an unknown parameter and the error tegpsfor t = 1,...,n, are independent and
follow different distributions (DGPSs), so they are not n&saily identically distributed. The first
group of DGPs that we examine represents different symonatid asymmetric distributions of the
error terme;:
1. Normal distribution

gt ~ N(O, 1);

2. Cauchy distribution
g¢ ~ Cauchy

3. Student’s distribution with two degrees of freedom
g¢ ~ Student(2);
4. Mixture of normal and Cauchy distributions
s lef | —(1—s0) | e |,
wheree¢ follows Cauchy distributions}¥ follows N (0, 1) distribution and

P(stzl):P(st:0):%.
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The second group of DGPs represents different forms of bstedasticity:

5. Break in variance
. N(0,1) for t #25
K VI000N(0,1) for ¢ =25 °

6. Exponential variance
ee ~ N(0,02(t))

and
o:(t) = exp(0.51).

7. GARCH(1, 1) plus jump variance

_J N(0,0%(t)) for t#25
“t 50 N (0, 02(t)) for t = 25

and
o2(t) = 0.00037 4 0.0888¢2_; + 0.90240%(t — 1);

8. Non stationary GARCIHL, 1) variance
ee ~ N(0,02(t))

and
o2(t) = 0.75¢7_; + 0.7502(t — 1).

We use POS test and other tests, which are supposed to be agauisst heteroskedasticity and
non-normality, to test the null hypothesis

Hozﬂ:O.

We run Monte Carlo simulations to compare the size and poWwd0% split-sample POS test
(hereafterl0% SS-POS test) to those of T-test, T-test based on White'sDj1@&iance correction
(hereafter WT-test), and sign-based test proposed by Celhgoid Dufour (1995) (hereafter CD
(1995) test). In what follows, the notations CT-test and CWT-testrespond to the T-test and
WT-test after size correction, respectively. For some DAP®st and WT-test may not control
size and we adjust the power functions such that CT-test &ld-t@st control their sizes. In our
simulations the explanatory variablg is generated from a mixture of normal agé distributions.
We performM; = 10000 simulations to evaluate the probability distribution of st statistic
and M, = 5000 simulations to estimate the power functions of POS test dhdrdests. All
simulated samples are of size= 50. The sign-based test statistic of Campbell and Dufour (1995)
has a discrete distribution and it is not possible (withamidomization) to obtain test whose size is
precisely5%. In our simulations study, the size of this tesbi85% for n = 50.
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6.2. Results

Monte Carlo simulation results are presented in tables dadbfigures 7-10 of Appendix B. These
results correspond to different DGPs described in Sectitn §o summarize, tables 1-6 of Ap-
pendix B show the power envelope of POS test, the size andrpoineOS test under different
alternative hypotheses and using different split-samipkssand size and power of T-test (CT-test)
WT-test (CWT-test), and CD (1995) test. Figures 7-10 of Auje B compare the power ao%
SS-POS test, T-test (CT-test), WT-test (CWT-test), and CIDP) test to the power envelope. The
results are detailed below.

First, Table 1 and Panel A of Figure 7 correspond to the caszewtne error term; in the
model (6.1) is normally distributed. Table 1 shows that tlevgr of POS test depends on the
alternative hypothesig,. When the latter is far from the null hypothesis, hére= 0, the POS
test power’s curve moves away from the power envelope [seeRdnel A of Figure 1]. However,
using approximately 0% of sample to estimatg; yields a power which is typically very close to
the power envelope. Thus, split-sample approach repesegbod way to select the appropriate
alternative hypothesis at which the power of POS test is mizeid.

The T-test based on White’s (1980) variance correction Vgastest, does not control size and
its power after size correction is presented in the lastmalof Table 1. Panel A of Figure 7 shows
that T-test is more powerful tha% SS-POS test, CWT-tesind CD (1995) test. We expect to get
the latter result, since under normality T-test is the mastqrful test. However, the power 0%
SS-POS test is very close to the power envelope and does thetteCD (1995) test.

Second, Table 2 and Panel B of Figure 7 and Panel A of Figureofi@spond to the cases
where the error term; follows Cauchy distribution and Student’s distributiontiviwo degrees of
freedom, respectively. We see again that the power of P@8dpends on the alternative hypothesis
(. Particularly, when the alternative hypothesis is far frtiva null hypothesis, the power curve
of POS test moves away from the power envelope [see Table 8]al¥d see thalt0% represents
the appropriate proportion of sample that we need to usehtoestimation of3;. Further, Panel
B of Figure 7 and Panel A of Figure 10 shows tha¥; SS-POS test is more powerful than T-test,
WT-test, and CD (1995) test, and is close to the power eneelop

Third, Table 3 and Panel A of Figure 8, Table 5 and Panel A afifé®, and Table 6 and Panel B
of Figure 9 correspond to the cases where the error égfollows a mixture of normal and Cauchy
distributions, normal distribution with GARCH, 1) plus jump variance, and normal distribution
with non stationary GARCHL, 1) variance, respectively. The results, in terms of the impagt;
on the power function of POS test and the appropriate priguoof sample to use in estimatiriy,
are similar to those of previous cases. Further, Panel Agirgi8 and Panels A and B of Figure
9 show thatl0% SS-POS test is again more powerful than T-test, WT-teBt (1995) test, and is
very close to the power envelope. Wherfollows the mixture distribution, WT-test and T-test do
not control size and we adjust their power functions such @& T-test and CT-test control size.
Interestingly, even if GARCKL, 1) and non stationary GARCH, 1) models do not satisfy they
key assumption (2.1), POS test still controls size and hesg@od power.

Finally, Table 4 and Panel B of Figure 8 and Panel B of Figuredrdespond the cases where
¢ follows normal distribution with a break in variance and ap@nential variance, respectively. In
these cases, the powers of T-test and WT-test are very wekbflaarwhereas thé0% SS-POS test
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does well and is more powerful than sign-based test propmgé&hmpbell and Dufour (1995).

>From the previous results we draw the following conclusioRirst, it is clear that the alter-
native hypothesis has an impact on the power function of RGIS Second, the adaptive approach
based on split-sample technique allows to choose an optiata¢ of the alternative hypothesis at
which the power of POS test is maximized. We should use a guadl] approximatelyi0%, of
sample to estimate the alternative hypothesis and thedf@st,to compute the test statistic of POS
test. Third, when the error term follows normal and heteroskedastic distributions, the groof
10% SS-POS test is close to the power envelope. For non-normaisehis is not the case and
the power ofl0% SS-POS test is somewhat far from the power envelope. Firdbept for a nor-
mally and homoskedastic distributed errthy% SS-POS test performs better than T-test (CT-test),
WT-test (CWT-test), and CD (1995) test

We also use simulations to compare the powet @ SS-POS test calculated using the true
weights with the power ol10% SS-POS test computed using normal weighthe results are
presented in tables 7 and 8 of Appendix B. We see that usingridkeweights may improve the
power of10% SS-POS test. However, the power loss when we substituteuhekights by normal
weights is very small.

7. Conclusion

We propose exact point-optimal sign-based tests to tegidtemeters in the context of linear and
nonlinear regression models with fixed regressors. Theste &ee distribution-free, robust against
heteroskedasticity of an unknown form, and they may be iadeto obtain confidence sets for the
vector of unknown parameters.

Since the proposed point-optimal sign test maximizes theepat a given value of the alterna-
tive, we suggest an approach based on split-sample teétogqthoose an optimal alternative such
that the power of point-optimal sign test is close to the posvwelope. The simulation results show
that using approximately0% of sample to estimate the alternative hypothesis and th¢a@s) to
compute the test statistic of point-optimal sign test,dgeh power which is typically very close to
the power envelope.

To assess the performance of point-optimal sign test we mutorte Carlo simulation study
and compare its size and power to those of some other tesiey warious general DGPs. We
consider different DGPs to illustrate different contextattone can encounter in practice. We use
two groups of DGPs which correspond to different symmetrid asymmetric distributions and
different heteroskedasticity forms. The results show &t split-sample point-optimal sign test
is more powerful than T-test, Campbell and Dufour’'s (1996ph<ased test, T-test with White's
(1980) variance correction, and it is close to the power lepe

The present paper could be generalized to the case whengpllh@atory variables are stochastic
by relaxing the assumption (2.1). This issue is the topicefoing research.

®Weightsa:(0/1) computed using homoskedastic and normal distribution.
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A. Appendix: Proofs
PROOF OFTHEOREM 2.2. The likelihood function of random sampfe; }}, is defined as follows:
LUn),pe) = 11 Plye > 0] (1 = Ply, > 0])! ). (A1)
Under the null hypothesi#, the likelihood function (A.1) is given by:
Lo(U(n), pro) = 1T {p}"(1 = pro)' =0} (A2)

and under the alternative hypotheéls it is given by:

L ptl

’:]:

{pf(f” )1*3(“)} - (A.3)

t=1

For simplicity of exposition we assume thal, p: 1 # 0, 1. However, forp; o, p:1 # 0,1 we could
work directly with likelihood function rather than log-gkhood function. From equations (A.2)
and (A.3), the log-likelihood ratio is given by:

L(U®),p) _ N o n
= { LO(U(n),pt’O)} = ; [g:(1) — q:(0)] s(ye) + ;qt(O), (A.4)

D1 1—pea
=In andg:(0) =1 ).
a(1) (m) 2(0) n(l_pw)

The log-likelihood ratio (A.4) can also be written as follaw
LI(U(n)>p1)} Z”

Ing ————=~<~ ) = a;(0/1)s + b(n),

{LO(U(n)>p0) {(0/L)swe) +blm)

t=1

where

where

ar(0/1) = q:(1) — ¢:(0) andb(n ZQt

Using Neyman-Pearson lemma [see e.g. Lehmann (1959), [Bhgen® best test offy againstH,
rejectsHy when

21 [p“l_p“))} s(ye) +b(n) > ¢

— |pro(l —pea)

or equivalently when

Z [M} s(y) > 1 =c—b(n).

—  [pro(l—pea)
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i.e. Theoren®.2 O

PROOF OFTHEOREM4.1 Conditionally onX the characteristic function & (3, ) is given by:

¢gx (u) = Ex lexp(iu S, (61))] = Ex [Hexp (zu In { T ! - 1] s(yt))} , VueR
1-P] ]

t=1 e <—pha X

where a complex numbér= /—1. Sincey;, fort = 1, ..., n, are independent

. 1
HEX exp | iu In T ! s(ye)
1-Pler<—Bla|X]

t=1
n 1
= HZP(s(yt):ﬂX)exp (Zu ln|: 11 1:|j)

t=1 j=0 1—Ple;<—8] x| X]

1\" 1~ ‘ 1
= — 1+exp|iuln T .
2 — 1
t=1 17P[€t§7ﬁ1xt‘X]

According to Gil-Pelaez (1951), the conditional distribatfunction of S} (3, ) evaluated at;, for
c1 € R, is given by:

¢S;; (u)

Psi) < | X) =5 - [~ a5)

1" - e . 1 ¢
I(u) = <§> Im {tl_ll |:eXp (—Zuﬁ) + exp (zu(ln |:1P[&<1M — 1} _ ;)} } .

Im{z} denotes the imaginary part of a complex numherhus, the power function of POS test is
given by the following probability function:

(B, 81) = P[Sp(B1) > e1(B))] =1 =P [S(B1) < cr(By)] = 1 + 1 /OOO Mdu,

2 7 U
where
I(u) = 1 nIm H ex (_wc_l) +exp | tu(ln ! -2
2 P n P —— -1 " ‘
t=1 1-Plet <= 2¢| X]
i.e. Theoren®.l O
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B. Appendix: Simulation results
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Figure 1.Power comparison under different alternatives.

Panel A. Power comparison under different alternatives (Nomal case)
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Panel B. Power comparison under different alternatives (Cachy case)
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Note: This figure compares the power of POS test under differéetradtives. Panel A corre-
sponds to the case where the error tegrim the model (6.1) is homoskedastic and normally distrib-
uted and Panel B corresponds to the case where this errowfoCauchy distribution.
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Figure 2.(Continued). Power comparison under different alternatives

Panel A. Power comparison under different alternatives (Mkture case)
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Panel B. Power comparison under different alternatives (Beak in variance case)
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Note: This figure compares the power of POS test under differéetradtives. Panel A corresponds
to the case where the error temmin the model (6.1) follows a mixture of normal and Cauchy
distributions and Panel B corresponds to the case wherentusfollows normal distribution with
break in variance.
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Figure 3.(Continued). Power comparison under different alternatives.

Panel A. Power comparison under different alternatives (GARCH (1, 1) plus jump case)
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Panel B. Power comparison under different alternatives (No stationary GARCH (1, 1) case)
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Note: This figure compares the power of POS test under differeetraltives. Panel A corresponds
to the case where the error teeprin the model (6.1) follows normal distribution with GARGH 1)
plus jump variance and Panel B corresponds to the case wiigestor follows normal distribution
with non stationary GARCH, 1) variance.
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Figure 4.Power comparison using different split-samples.

Panel A. Power comparison using different split-samples (brmal case)
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Note: This figure compares the power of POS test using differelittsgmples 4%, 10%, 20%,
40%, 60%, and80%). Panel A corresponds to the case where the error tgiimthe model (6.1)

is homoskedastic and normally distributed and Panel B spards to the case where this error
follows Cauchy distribution.
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Figure 5.(Continued). Power comparison using different split-samges.

Panel A. Power comparison using different split-samples (lkture case)
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Note: This figure compares the power of POS test using differelittsgmples 4%, 10%, 20%,
40%, 60%, and80%). Panel A corresponds to the case where the error tgiimthe model (6.1)
follows a mixture of normal and Cauchy distributions and étd$ corresponds to the case where
this error follows normal distribution with break in varize
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Figure 6.(Continued). Power comparison using different split-samges.

Panel A. Power comparison using different split-samples (BRCH (1, 1) plus jump case)
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Note: This figure compares the power of POS test using differelittsgmples ¢%, 10%, 20%,
40%, 60%, and80%). Panel A corresponds to the case where the error ¢gimthe model (6.1)
follows normal distribution with GARCKL, 1) plus jump variance and Panel B corresponds to the
case where this error follows normal distribution with néatienary GARCH1, 1) variance.

28



Figure 7.Power comparison using different tests.

Panel A. Power comparison using different tests (Normal cas
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Note: This figure compares the power envelope to the power curfvé8% split-sample POS test
[10% SS-POS test], T-test (or CT-test), sign-based test prapbgeCampbell and Dufour (1995)
[CD (1995) test], and the T-test based on White's (1980)aver@ correction [WT-test or CWT-
test]. Panel A corresponds to the case where the errordemthe model (6.1) is homoskedastic
and normally distributed and Panel B corresponds to the wémze this error follows Cauchy
distribution.
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Figure 8.(Continued). Power comparison using different tests.

Panel A. Power comparison using different tests (Mixture cae)
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Note: This figure compares the power envelope to the power curfvé8% split-sample POS test
[10% SS-POS test], T-test (or CT-test), sign-based test prapbgeCampbell and Dufour (1995)
[CD (1995) test], and the T-test based on White's (1980)aver@ correction [WT-test or CWT-
test]. Panel A corresponds to the case where the errordeimthe model (6.1) follows a mixture
of normal and Cauchy distributions and Panel B correspoadie case where this error follows
normal distribution with break in variance.
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Figure 9.(Continued). Power comparison using different tests.

Panel A. Power comparison using different tests (GARCKIL, 1) plus jump case)
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Panel B. Power comparison using different tests (Non statimary GARCH (1, 1) case)

100
90 - 1
80 | -
70 I
60 |- —
2
= b50f s
o
40 -
30 -
PE
>0l / ——k— 10% SS—POS test| |
— = CD (1995) test
10 fy ——— T—test .
& —o— WT—test
o . . : I
o 0.02 0.04 0.06 0.08 0.1

Beta

Note: This figure compares the power envelope to the power curfvé8% split-sample POS test
[10% SS-POS test], T-test (or CT-test), sign-based test prapbgeCampbell and Dufour (1995)
[CD (1995) test], and the T-test based on White's (1980)aver@ correction [WT-test or CWT-
test]. Panel A corresponds to the case where the errordgeimthe model (6.1) follows normal
distribution with GARCH]1, 1) plus jump variance and Panel B corresponds to the case wtisre t
error follows normal distribution with non stationary GARCL, 1) variance.
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Figure 10.(Continued). Power comparison using different tests.

Panel A. Power comparison using different tests (Student c®)
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Panel B. Power comparison using different tests (Exponerdl variance case)
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Note: This figure compares the power envelope to the power curfvé8% split-sample POS test
[10% SS-POS test], T-test (or CT-test), sign-based test prapbgeCampbell and Dufour (1995)
[CD (1995) test], and the T-test based on White's (1980)aver@ correction [WT-test or CWT-
test]. Panel A corresponds to the case where the errordgimthe model (6.1) follows student
distribution with degree of freedom 2 and Panel B correspdodhe case where this error follows
normal distribution with exponential variance
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Table 1. Power comparison: Normal distribution

POS test SS-POS test Other tests

i) PE 6,=02 | 3,=04 4% [ 10% | 20% | 40% CD (1995) test| T-test | WT-test| CWT-test

0 5.2 5.14 5.34 4.82 4.88 5.36 4.78 5.94 4.88 7.52 4.94
0.0005 7.44 5.96 6.5 7.58 7.44 6.62 6.78 6.96 7.42 10.7 7.3

0.001 9.2 8.24 7.96 9.98 9.82 9.48 8.2 8.24 114 15.4 11.5
0.0015 12.78 11.28 10.24 12.6 12.9 12.76  11.04 10.06 16.24 20.08 16.5
0.002 16.34 13.34 11.96 16.28 16.18 17.26 13.18 11.02 21.7 26.78 20.68
0.0025 21.38 16.36 14.02 20.56  21.8 21.7 15.76 14.12 29.42 34.42 27.74
0.003 27.74 20.74 17.62 26.08 25.84 27.26 18.74 17.02 39.32 41.2 34.24
0.0035 33.26 23.48 20.86 32.44 32.08 3142 23.28 19.22 45.22 49.16 43.48
0.004 38.14 28.28 23.46 36.4 39.08 37.52 24.88 21.56 55.36 58.52 52.38
0.0045 44.68 32.68 27.68 43.28 44.1 44.3 28.14 23.46 62.38 66.96 57.44
0.005 52.2 36.68 29.7 49.44 51.74 50.6 35.24 27.5 71.04 73.16 67.32
0.0055 57.76 40.78 33.5 55.42  56.68 56.06 38.64 29.8 79.16 79.92 74.7
0.006 63.92 45.44 37.26 60.78 63.12 62.62 42.44 32.3 84.18 85.7 80.84
0.0065 69.22 47.66 40.68 66.44 68 68.9 46.74 34.78 89.58 89.74 85.06

Note: This table shows the power envelope of POS test (PE) andst@ower of point-optimal sign test under different alédnre
hypotheses (POS test), point-optimal sign test using reéiffiesplit-sample sizes (SS-POS test), sign-based tesawip6ell and
Dufour (1995) [CD (1995) test], T-tesI-test based on White’s (1980) variance correction (WT}tesd WT-test after size correction
(CWT-test). These results correspond to the case wherertirderme, in the model (6.1) is homoskedastic and normally distribute
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Table 2. Power comparison: Cauchy distribution

POS test SS-POS test Other tests

8 PE 6, =02 | 6, =04 4% | 10% | 20% | 40% CD (1995) test| T-test| WT-test
0 5.1 4.88 4.8 5.02 5.3 5.48 4.46 5.78 5.68 3.94
0.005 34.22 25.18 20.94 26.72  33.3 30.86 23.48 18.44 9.5 15
0.01 66.38 48.42 39.58 50.46 61.74 62.28 47.86 35.16 16.6 28.92
0.015 84.44 62.56 52.94 64.74 76.24 T77.02 64.38 48.9 25.76  43.82
0.02 92.2 74.3 63.08 74.36 84.9 85.14 73.7 60.36 36.28  54.72
0.025 96.44 79.62 69.6 79.06 89.88 88.82 81.78 69.58 42.74  62.08
0.03 98.12 82.86 74.3 81.08 92.92 92.58 84.7 76.6 50.14 67.06
0.035 99 86.02 78.36 82.86  93.7 93.1 88.38 81.88 56 70.72
0.04 99.36 89.16 79.6 85.62  94.7 94.3 90.76 86.42 60.56  73.34
0.045 99.68 89.92 81.88 85.74 94.92 95.74 92.24 88.84 63.3 77.18
0.05 99.8 91.12 84.24 86.76 95.92 95.92 93 91.18 66.6 78.7
0.055 99.98 91.94 86.2 87.14 96.42 96.48 94.56 92.98 69.88 81.3
0.06 99.94 92.5 86.38 87.08 97.02 96.18 95.96 94.16 72.72  82.96
0.065 99.94 93.08 86.84 88.02 96.86 96.9 96.92 94.68 74.1 83.22

Note: This table shows the power envelope of POS test (PE) andst@ower of point-optimal sign test under different alédnre
hypotheses (POS test), point-optimal sign test using reéiffiesplit-sample sizes (SS-POS test), sign-based tesawip6ell and
Dufour (1995) [CD (1995) test], T-tesand T-test based on White’s (1980) variance correction (@¢1)}. These results correspond
to the case where the error teemin the model (6.1) follows Cauchy distribution.
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Table 3. Power comparison: Mixture distribution

POS test SS-POS test Other tests
& PE B =026, =04 4% 1 10% | 20% | 40% CD(1995) test| T-test| WT-test| CT-test| CWT-test
0 4.96 5.3 4.9 4.58 4.7 5.02 5.18 5.98 9.92 10.74 5.08 5.04
0.001 9.96 8.08 8.14 8.86 9.98 9.16 8.02 8.94 11.28 13.12 5.9 7.92
0.002 15.7 11.52 11.3 14.46 15.9 14.6 12.24 11.76 13.98  18.88 7.5 12.94
0.003 25.26 18.48 14.24 22 24.76  24.6 19.64 15.72 16.9 25.76 10.1 18.74
0.004 35.46 23.84 18.12 29.6 34.08 34.28 27.36 21 20.68 31.76 11.82 25.68
0.005 46.08 28.7 23.66 39.16 44.14 4296 34.6 26.24 24.32  40.04 14.64 31.74
0.006 56.68 35.52 27.56 4744 51.78 52.06 41.22 29.72 28.24  47.06 18.16 37.82
0.007 67.64 40.66 32.3 55.34 61.9 61.84 51.16 34.06 33 51.22 21.92 44.76
0.008 75 45.32 37.46 60.44 69.48 69.5 60.1 38.96 36.62  56.7 24.56 49.14
0.009 82.06 50.4 39.64 67.28 76.52 75.32 66.68 44.22 40.16  60.5 30.18 54.6
0.01 88.48 54.9 43.24 70.7 80.84 79.9 73.68 49.58 4586 63.74 33.64 58.8
0.011 90.68 58.48 45.24 73.92 84.16 84.94 79.92 52.4 48.6 66.9 38.06 61.7
0.012 94.38 62.44 50.78 77.44 87.66 87.42 85.18 58.54 51.16 69.26 39.72 65.62
0.013 95.7 65.76 53.12 78.82 90.54 89.22 88.64 60.1 55.26  72.16 43.66 67.42

Note: This table shows the power envelope of POS test (PE) andst@ower of point-optimal sign test under different alédnre
hypotheses (POS test), point-optimal sign test using reiffiesplit-sample sizes (SS-POS test), sign-based tesawip6ell and
Dufour (1995) [CD (1995) test], T-tesT-test based on White's (1980) variance correction (WT}té&stest after size correction
(CT-test), and WT-test after size correction (CWT-testhede results correspond to the case where the errorsteimthe model
(6.1) follows a mixture of normal and Cauchy distributions.
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Table 4. Power comparison: Normal distribution with Breakariance

POS test SS-POS test Other tests
Ié] PE 6, =0.2 | 6, =04 4% | 10% | 20% | 40% CD (1995) test| T-test| WT-test
0 5.4 4.98 4.92 4.84 5.24 5.1 4.96 5.78 0.01 0.16
0.0008 9.22 7.96 7.9 8.28 9.32 8.38 7.68 8.24 0.04 0.42
0.0016 14.78 12 10.18 13.12 13.76 12.98 10.42 10.44 0.06 0.6
0.0024 20.16 15.88 14.62 18.2 20.12 19.86 15.58 12.98 0.12 1.08
0.0032 29.32 22.12 19.6 25.24 28.34 28.26 19.64 17.34 0.3 1.62
0.004 39.04 27.96 25.38 35.72 38.32 38.68 25.24 21.4 0.22 1.86
0.0048 49.78 35.7 29.12 43.98 47 48.06 32.38 26.12 046 2.3
0.0056 59.66 41.62 34.12 52.82 59.16 58.24 39.78 30.42 0.84 3.6
0.0064 68.88 48.5 39.14 62.3 67.9 67.28 45.96 34.78 0.78 4.58
0.0072 77.32 55.9 45.3 68.78 T75.66 76.5 53.54 38.38 0.94 4.88
0.008 83.96 61.9 51.68 76.14 83.14 82.2 60.92 42.72 0.94 5.88
0.0088 88.76 65.9 55.52 80.14 88 88.5 67.46 47.04 1.22 6.54
0.0096 92.22 72.94 60.32 85.6 91.7 93.02 73.06 51.76 1.5 8.14
0.0104 95.42 78.52 64.48 87.42 94.68 95.34 79.76 55.02 142 7.88

Note: This table shows the power envelope of POS test (PE) andst@ower of point-optimal sign test under different alédnre
hypotheses (POS test), point-optimal sign test using reéiffiesplit-sample sizes (SS-POS test), sign-based tesawip6ell and
Dufour (1995) [CD (1995) test], T-tesand T-test based on White’s (1980) variance correction (@¢1)}. These results correspond
to the case where the error teemin the model (6.1) follows a normal distribution with breakvariance.
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Table 5. Power comparison: Normal distribution with GARQHL) plus jump variance

POS test SS-POS test Other tests

E PE B, =02]06,=04 4% [ 10% | 20% | 40% CD (1995) test| T-test | WT-test
0 5.07 5.74 4.98 4.7 5.24 5.4 5.04 6.42 1.22 4.96
0.0003 11.98 9.06 9.16 11.18 11.02 10.76 7.86 8.06 2.36 8.92
0.0006 21.28 15.5 12.9 19.38 19.2 18.84 10.74 12.18 5 14.6
0.0009 32.8 21 18.14 33.12  31.34 32.12 15.98 17.24 8.9 21.2
0.0012 46.28 28.14 23.9 42.46  42.46 42.72 19.98 21.9 13.36 27.16
0.0015 53.62 34.62 28.2 53.52  52.7 52.2 24.56 25.86  16.76 30.86
0.0018 62.24 39.1 33.74 61.36 59 60.4 28.8 30.12 19.06 36.58
0.0021 70.22 46.06 38.1 67.52 6644 66.14 31.96 34.44  24.2 42.58
0.0024 74.66 48.74 40.72 73.66 7194 718 36.28 37.68  27.26 45.1
0.0027 78.28 50.88 43.94 77.36 7598 7544 38.98 40.12  29.22 48.82
0.003 80.72 54.04 47.76 79.96 79.22 79.66 41.54 44.32 324 51.02
0.0033 84.22 56.12 51.8 82.76 81.38 82.62 44.96 46.72  36.1 55.08
0.0036 85.42 58.82 53.44 84.46 83.52 84.5 47 47.84  38.32 56.42
0.0039 87.66 60.52 54.78 86.58 85.76 85.94 49.18 51.04 41.22 60.18

Note: This table shows the power envelope of POS test (PE) andst@ower of point-optimal sign test under different alédnre
hypotheses (POS test), point-optimal sign test using reéiffiesplit-sample sizes (SS-POS test), sign-based tesawip6ell and
Dufour (1995) [CD (1995) test], T-tesand T-test based on White’s (1980) variance correction (@¢1)}. These results correspond
to the case where the error teegin the model (6.1) follows a normal distribution with GARCH 1) plus jump variance.
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Table 6. Power comparison: Normal distribution with nortisteary GARCH1, 1) variance

POS test SS-POS test Other tests

Ié] PE 6, =02 | B, =04 4% | 10% | 20% | 40% CD (1995) test| T-test| WT-test
0 5.95 5.58 6.08 6.02 5.76 6.04 6.16 6.26 0.94 5
0.005 37.34 29.68 27.72 39.04 40.28 39 28.78 23.58 14.26  34.18
0.01 57.36 44.54 41.36 58.86 56.58 58.04 42.64 39.78 27 51.22
0.015 67.3 56.54 53.58 67.92 66.54 68 49.7 49.84 35 60.44
0.02 73.46 63.76 60.56 73.64 73.16 73.36 58.74 58.04 42.04 67.28
0.025 79.02 67.86 64.7 80.6 77.64 78.04 62.34 65.88 47.16  72.36
0.03 81.66 72.5 69.38 82.18 80.88 81.88 66.6 69.72 50.9 75.14
0.035 84.58 74.72 72.56 85.4 83.42 82.8 69.18 74.78 54.22  78.24
0.04 85.82 77.86 75.08 86.86  85.3 84.82 71.84 77.82 57.52  80.04
0.045 88.46 80.52 77.2 87.98 86.9 86.12  75.46 80.44 61.18 82.96
0.05 89.02 81.48 79.22 89.92 89.1 88.98 77.84 83.04 62.48 84.34
0.055 90.04 83.2 81 89.94 89.94 89.22 79.08 83.82 64.16  84.88
0.06 91.76 84.52 81.96 91.14 90.1 90.5 80.86 85.7 67.2 87.26
0.065 91.82 85.22 83.22 91.3 90.86 91.12 82.38 87 68.8 88.22

Note: This table shows the power envelope of POS test (PE) andst@ower of point-optimal sign test under different alédnre
hypotheses (POS test), point-optimal sign test using reéiffiesplit-sample sizes (SS-POS test), sign-based tesawip6ell and
Dufour (1995) [CD (1995) test], T-tesand T-test based on White’s (1980) variance correction (@¢1)}. These results correspond
to the case where the error teegin the model (6.1) follows a normal distribution with nontgtaary GARCH1, 1) variance.
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Table 7. True weights versus normal weights: Cauchy digioh

SS — POS test using true weights | SS — POS test using normal weights
Jé] PE 10% 20% 10% 20%
0 5.1 5.16 5.16 5.3 5.48
0.005 34.22 33.58 31.18 33.3 30.86
0.01 66.38 61.94 62.47 61.74 62.28
0.015 84.44 80.32 80.32 76.24 77.02
0.02 92.2 89.76 89.76 84.9 85.14
0.025 96.44 95.22 95.22 89.88 88.82
0.03 98.12 96.98 96.98 92.92 92.58
0.035 99 98.26 98.26 93.7 93.1
0.04 99.36 99.14 99.14 94.7 94.3
0.045 99.68 99.3 99.3 94.92 95.74
0.05 99.8 99.44 99.44 95.92 95.92
0.055 99.98 99.7 99.7 96.42 96.48
0.06 99.94 99.82 99.82 97.02 96.18
0.065 99.94 99.9 99.9 96.86 96.9

Note: This table summarizes the results of the comparison bettreepower ofl 0% split-sample POS test calculated using the true
weightsa,(0/1) with the power oft0% split-sample POS test calculated using normal weights.titleeweights correspond to the
case where the error tersp follows Cauchy distribution. The term SS-POS test corradpdo split-sample point-optimal sign test.
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Table 8. True weights versus normal weights: Mixture disiibn

SS — POS test with true weighty SS — POS test with normal weightg
16} PE 10% 20% 10% 20%
0 4.96 4.74 5.26 4.7 5.02
0.001 9.96 8.96 9.08 9.98 9.16
0.002 15.7 14.34 16.7 15.9 14.6
0.003 25.26 24.84 24.67 24.76 24.6
0.004 35.46 34.52 34.46 34.08 34.28
0.005 46.08 44.26 44.06 44.14 42.96
0.006 56.68 53.24 54.96 51.78 52.06
0.007 67.64 62.92 62.88 61.9 61.84
0.008 75 71.66 70.14 69.48 69.5
0.009 82.06 79.24 79.54 76.52 75.32
0.01 88.48 85.52 84.34 80.84 79.9
0.011 90.68 88.8 89.22 84.16 84.94
0.012 94.38 92.06 91.5 87.66 87.42
0.013 95.7 94.32 94.62 90.54 89.22

Note: This table summarizes the results of the comparison bettveepower ofi0% split-sample POS test calculated using the true
weightsa,(0/1) with the power ofl0% split-sample POS test calculated using normal weights.titleeweights correspond to the
case where the error terpfollows a mixture of normal and Cauchy distributions. Then&S-POS test corresponds to split-sample
point-optimal sign test.
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