
 

 
 

Working Paper 08-60 Departamento de Economía  

Economic Series (27) Universidad Carlos III de Madrid 

November 2008 Calle Madrid, 126 

 28903 Getafe (Spain) 

 Fax (34) 916249875 

 

Exact optimal and adaptive inference in regression models 

under heteroskedasticity and non-normality of unknown 

forms∗∗∗∗

 

 
 Jean-Marie Dufour†  Abderrahim Taamouti‡ 
 McGill University  Universidad Carlos III de Madrid 
 
Abstract 

In this paper, we derive simple point-optimal sign-based tests in the context of linear and 

nonlinear regression models with fixed regressors. These tests are exact, distribution-free, robust 

against heteroskedasticity of unknown form, and they may be inverted to obtain confidence 

regions for the vector of unknown parameters. Since the point-optimal sign tests depend on the 

alternative hypothesis, we propose an adaptive approach based on split-sample techniques in 

order to choose an alternative such that the power of point-optimal sign tests is close to the 

power envelope. The simulation results show that when using approximately 10% of sample to 
estimate the alternative and the rest to calculate the test statistic, the power of point-optimal sign 

test is typically close to the power envelope. We present a Monte Carlo study to assess the 

performance of the proposed “quasi”-point-optimal sign test by comparing its size and power to 

those of some common tests which are supposed to be robust against heteroskedasticity. The 

results show that our procedures are superior. 
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1. Introduction

Most economic data are heteroskedastic and non-normally distributed. In the presence of several
types of heteroskedasticity, parametric tests proposed toimprove inference may not control size and
have very low power. This is the case, in particular, for common tests based on White (1980) vari-
ance correction – which is supposed to be robust against heteroskedasticity – when there is a break
in the disturbance variance or with a GARCH structure with one or several outliers.1 At the same
time, manyexactparametric tests developed in the literature typically assume normal disturbances.
The latter assumption is unrealistic and in the presence of heavy tails and asymmetric distributions
these tests may not perform very well in terms of power. Furthermore, the statistical procedures
developed for the inference on parameters ofnonlinear models are typically based on asymptotic
approximations and there are only a few exact inference methods outside linear models framework.
However, these approximations may be invalid in small samples and even in large samples [see
Dufour (2003)]. The present paper aims to propose exact optimal tests which work under more
realistic assumptions. We derive simple point-optimal sign-based tests which are valid under weak
distributional assumptions such as heteroskedascticity of unknown form and non-normality.

Several authors have provided theoretical arguments for why the existing parametric tests about
the mean ofi.i.d. observations fail under weak distributional assumptions such as non-normality
and heteroskedasticity of unknown form. Bahadur and Savage(1956) show that under weak dis-
tributional assumptions on the error terms, it is not possible to obtain a valid test for the mean of
i.i.d. observations even for large samples. Many other hypothesesabout various moments ofi.i.d.
observations lead to similar difficulties. This can be explained by the fact that the moments are not
empirically meaningful in nonparametric models or models with weak assumptions. More discus-
sion about the statistical inference problems in nonparametric models can be find in Dufour (2003).
Further, Lehmann and Stein (1949) and Pratt and Gibbons (1981) show that sign methods were the
only possible way of producing valid inference for finite sample procedures under conditions of
heteroskedasticity of unknown form and non-normality.

This paper introduces new sign-based tests in the context oflinear and nonlinear regression
models with fixed regressors. The proposed tests are exact, distribution-free, robust against het-
eroskedasticity of unknown form, and they may be inverted toobtain confidence regions for the
vector of unknown parameters. These tests are derived underassumptions that the disturbances
in regression models are independent, but not necessarily identically distributed, with zero median
conditional on the explanatory variables. A number of sign-based test procedures have been de-
veloped in the literature. In the presence of only one explanatory variable, Campbell and Dufour
(1995) and Campbell and Dufour (1997) propose nonparametric analogues oft-test, based on sign
and signed rank statistics, that are applicable to a specificclass of feedback models including both
Mankiw and Shapiro (1986) and random walk models. These tests are exact even when the dis-
turbances are asymmetric, non-normal, and heteroskedastic. Boldin, Simonova and Tyurin (1997)

1See the simulation results in Section 6 of this paper. Financial markets are characterized by the presence of episodic
occasional of crashes and rallies. The latter can be viewed as introducing outliers in volatility. Moreover, it may occur
that financial returns series contain other atypical observations such as additive or innovation outliers. The reader can
consult Hotta and Tsay (1998) for a recent classification of outliers in GARCH volatility models and Friedman and
Laibson (1989) for the economic arguments for the possible presence of atypical observations.
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propose locally optimal sign-based inference and estimation for linear models. Coudin and Dufour
(2008) extend the work by Boldin et al. (1997) to some forms ofstatistical dependence in the data.
Wright (2000) proposes variance-ratio tests based on the signs and ranks to test the null hypothesis
that the series of interest is a martingale difference sequence.

The present paper address the issue of optimality and seeks to derive point-optimal tests based
on sign statistics. Point-optimal tests are useful in a number of ways and they are most attractive for
problems in which the size of the parameter space can be restricted by theoretical considerations.
Because of their power properties, these tests are particularly attractive when testing one economic
theory against another, for example a new theory against an existing theory. They would ensure
optimal power at given point and, depending on the structureof the problem, could give power over
the entire parameter space. Another interesting feature ofthese tests is they can be used to trace out
the maximum attainablepower envelopefor a given testing problem. This power envelope provides
an obvious benchmark against which test procedures can be evaluated. More discussion about the
usefulness of point-optimal tests can be found in King (1987-88). Many papers have proposed point-
optimal tests to improve inference. Dufour and King (1991) use point-optimal tests to do inference
on the autocorrelation coefficient of a linear regression model with first-order autoregressive normal
disturbances. Elliott, Rothenberg and Stock (1996) derivethe asymptotic power envelope for point-
optimal tests of a unit root in the autoregressive representation of a Gaussian time series under
various trend specifications. Jansson (2005) derives an asymptotic Gaussian power envelope for
tests of the null hypothesis of cointegration and proposes afeasible point-optimal cointegration
test whose local asymptotic power function is found to be close to the asymptotic Gaussian power
envelope.

Since point-optimal sign (hereafter POS) tests depend on the alternative hypothesis, we propose
an adaptive approach based on split-sample technique to choose an alternative that makes the power
curve of the POS test close to the power envelope.2 The idea consists in dividing the sample into
two independent parts and use the first one to estimate the value of the alternative hypothesis and
the second to compute the point-optimal sign test statistic. The simulation results show that using
approximately10% of sample to estimate the alternative yields a power which istypically very close
to the power envelope. We present a Monte Carlo study to assess the performance of the proposed
“quasi”-point-optimal sign test by comparing its size and power to those of some common tests
which are supposed to be robust against heteroskedasticity. The results show that our procedures
are superior.

The plan of the paper is as follows. In Section 2, we present a general framework for deriving
POS tests. In Section 3, we derive POS tests in the context of linear and nonlinear regression models.
In Section 4, we study the power properties of the POS tests and propose an adaptive approach to
choose the optimal alternative. In Section 5, we discuss theconstruction of the point-optimal sign
confidence regions using projection technique. In Section 6, we present a Monte Carlo simulation
to assess the performance of POS tests by comparing their size and power to those of some popular
tests. We conclude in Section 7. Technical proofs and simulation results are presented in appendices
A and B, respectively.

2For more details about split-sample technique, the reader can consult Dufour and Torrès (1998) and Dufour and
Jasiak (2001).
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2. General framework

This section aims to introduce a framework for deriving point-optimal sign-based tests in the context
of general hypothesis testing problem. The point-optimal tests are useful in a number of ways and
they are most attractive for problems in which the size of theparameter space can be restricted by
theoretical considerations. They would ensure optimal power at given point and, depending on the
structure of the problem, they could give power over the entire parameter space. In what follows,
we consider a random sample{yt}n

t=1 such that

y1, ..., yn are independent (2.1)

and we define the following vector of signs

U(n) = (s(y1), ..., s(yn))
′

where

s(yt) =

{

1, if yt ≥ 0
0, if yt < 0

, for t = 1, ..., n,

we assume that there is no probability mass at zero, which is true if yt is a continuos variable. In
the next two subsections, we use Neyman-Pearson lemma [see e.g. Lehmann (1959), page 65] to
derive point-optimal sign-based tests to test simple constant and nonconstant hypotheses.

2.1. Point-optimal sign test for constant hypotheses

Let (y1, ..., yn)
′

be an observablen × 1 vector of independent random variables such thatP[yt ≥
0] = p. Suppose we wish to test the null hypothesis

H0 : p = p0, (2.2)

against the alternative hypothesis
H1 : p = p1 (2.3)

wherep0 andp1 are fixed and known. In what follows, we consider optimal tests, in the Neyman-
Pearson sense, which maximize the power function (minimizethe Type II error) under the constraint

P [rejectH0 | H0] ≤ α.

If we denote the likelihood function ofy = (y1, ..., yn)
′

under the null byf(y | H0) and its
likelihood function under the alternative byf(y | H1), then the Neyman-Pearson lemma [see e.g.
Lehmann (1959), page 65] implies that rejectingH0 for large values of likelihood ratio

s =
f(y | H1)

f(y | H0)
(2.4)
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corresponds to the most powerful test. A critical value, sayc, of test statistic (2.4) is given by the
smallest constantc such that

P[s > c | H0] ≤ α,

whereα is the desired level of significance or a Type I error. The choice of a significance levelα
is usually somewhat arbitrary, since in most situations there is no precise limit to the probability of
a Type I error that can be tolerated. Standard values, such as0.01 or 0.05, were originally chosen
to effect a reduction in the tables needed for carrying out various test. However, the choice of
significance level should take into account the power that the test will achieve against the alternative
of interest. Rules for choosingα in relation to the attainable power are discussed in Lehmann(1958),
Arrow (1960), Sanathanan (1974), and Lehmann and Romano (2005). For our testing problem, the
likelihood function is given by:

L (U(n), p) =
n

Π
t=1

P[yt ≥ 0]s(yt) (1 − P[yt ≥ 0])1−s(yt) (2.5)

and the likelihood ratio is defined as follows:

L1(U(n), p1)

L0(U(n), p0)
=

n
∏

t=1

{

(

p1

p0

)s(yt)(1 − p1

1 − p0

)1−s(yt)
}

=

(

p1

p0

)Sn
(

1 − p1

1 − p0

)n−Sn

, (2.6)

where

Sn =
n
∑

t=1

s(yt),

L0(.) and L1(.) represent the values of likelihood function (2.5) under thenull and alternative
hypotheses, respectively. For simplicity of exposition weassume thatp0, p1 6= 0, 1. The latter
allows us to work with the log-likelihood function and simplify the expression of test statistics.
However, forp0 = 0, 1 we could work directly with likelihood function rather thanlog-likelihood
function. We deduce the following log-likelihood ratio:

ln

{

L1(U(n), p1)

L0(U(n), p0)

}

= Sn

{

ln

(

p1

p0

)

− ln

(

1 − p1

1 − p0

)}

+ n ln

(

1 − p1

1 − p0

)

.

According to Neyman-Pearson lemma, the best test ofH0 againstH1, based on the vector of signs
(s(y1), ..., s(yn))′ , rejectsH0 when

ln

{

L1(U(n), p1)

L0(U(n), p0)

}

> c. (2.7)

Forp1 > p0 > 0, the test (2.7) is equivalent to rejectingH0 when

Sn >
c − n ln (1−p1

1−p0
)

ln (p1

p0
) − ln (1−p1

1−p0
)
≡ c1, (2.8)
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wherec1 satisfies
P[Sn > c1 | H0] ≤ α.

The test (2.8) is the same for allp1 > p0. Further, under assumption (2.1) and forp1 > p0 > 0 the
test with critical region

C =
{

(y1, ..., yn)′ : Sn > c1

}

is the best POS test for the null hypothesis (2.2) against thealternative hypothesis (2.3). Similarly,
for 0 < p1 < p0, the test (2.7) is equivalent to rejectingH0 when

Sn <
c − n ln (1−p1

1−p0
)

ln (p1

p0
) − ln (1−p1

1−p0
)
≡ c̄1, (2.9)

wherec̄1 satisfies
P[Sn < c̄1 | H0] ≤ α.

The critical region which corresponds to the test (2.9) is defined as follows:

C̄ =
{

(y1, ..., yn)′ : Sn < c̄1

}

,

where the critical valuēc1 is chosen so that

P
[

(y1, ..., yn)′ ∈ C̄ | H0

]

≤ α.

In both cases, i.e. forp1 > p0 > 0 and0 < p1 < p0, the test statistic is given by:

Sn =
n
∑

t=1

s(yt). (2.10)

UnderH0, Sn follows a binomial distributionBi(n, p0), i.e.

P(Sn = i) = Ci
n pi

0 (1 − p0)
n−i,

whereCi
n = n!

[i!(n−i)!] . Since the tests statistic (2.10) does not depend on the alternative hypothesis
p1, the above test correspond touniformly most powerfultests.

Example 2.1 (Backtesting Value-at-Risk)Consider time series of daily ex post portfolio returns,
sayRt, and daily ex ante Value-at-Risk forecasts, sayV aRt(p), with promised coverage ratep,
such thatPt−1(Rt < V aRt(p)) = p. Define the hit sequence ofV aRt(p) violations as

It =

{

1, if Rt < V aRt(p),
0, otherwise

.

Backtesting Value-at-Risk consists in testing if on average the coverage rate of Value-at-Risk (VaR)
is correct [see Christoffersen (1998)]. It is a key part of the internal model’s approach to market
risk management as laid out by the Basel Committee on BankingSupervision (1996). Testing the
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unconditional coverage of VaR is equivalent to testing the null hypothesis

H0 : It ∼ i.i.d : Bernoulli(p) (2.11)

against the alternative hypothesis

H1 : It ∼ i.i.d : Bernoulli(p̄). (2.12)

UnderH0, the likelihood function of random sequence{It}T
t=1 is given by:

L0(I1, ...IT , p) =
T

Π
t=1

pIt(1 − p)1−It = pST (1 − p)n−ST ,

where

ST =
T
∑

t=1

It,

and under the alternative it is given by:

L1(I1, ...IT , p̄) = p̄ST (1 − p̄)n−ST .

Using Neyman-Pearson lemma and the previous results, a teststatistic for testing the null hypothesis
(2.11) against the alternative hypothesis (2.12) is definedas follows:

ST =

T
∑

t=1

It,

where, underH0, ST follows a binomial distributionBi(T, p).

2.2. Point-optimal sign test for nonconstant hypotheses

Let (y1, ..., yn)
′

be an observablen × 1 vector of independent random variables such thatP[yt ≥
0] = pt. Suppose we wish now to test the null hypothesis

H0 : P[s(yt) = 1] = pt,0, t = 1, ..., n, (2.13)

against the alternative hypothesis

H1 : P[s(yt) = 1] = pt,1, t = 1, ..., n. (2.14)

For simplicity of exposition we assume again thatpt,0, pt,1 6= 0, 1. Following the same steps as
in Section 2.1, a point-optimal sign test to test the null hypothesis (2.13) against the alternative
hypothesis (2.14) is given by the following theorem.
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Theorem 2.2 Under assumption (2.1) the test with critical region

C =

{

(y1, ..., yn)′ :

n
∑

t=1

ln

[

pt,1(1 − pt,0)

pt,0(1 − pt,1)

]

s(yt) > c1

}

is the best point-optimal sign test for the null hypothesis (2.13) against the alternative hypothesis
(2.14). The critical valuec1 is chosen such that

P
[

(y1, ..., yn)′ ∈ C | H0

]

≤ α,

whereα is an arbitrary significance level.

See proof of Theorem2.2 in Appendix A. The corresponding test statistic is given by:

S∗
n =

n
∑

t=1

[

pt,1(1 − pt,0)

pt,0(1 − pt,1)

]

s(yt). (2.15)

Next section proposes exact optimal sign-based tests in thecontext of linear and nonlinear regression
models with fixed regressors. The hypothesis testing problem in this section corresponds to a special
case of the one defined before, since the null hypothesispt,0 and the alternative hypothesispt,1 take
particular forms.

3. Point-optimal sign tests in linear and nonlinear regression models

In the presence of some types of heteroskedasticity, the parametric tests proposed to improve in-
ference may not control size and have very low power. For example, when there is a break in
the disturbances’ variance the usual test statistic based on White (1980) variance correction, which
is supposed to be robust against heteroskedasticity, has very poor power [see Section 6]. Other
forms of heteroskedasticity for which the usual tests are less powerful are exponential variance and
GARCH with one or several outliers [see Section 6]. At the same time, manyexactparametric tests
developed in the literature typically assume normal disturbance. The latter assumption is unrealistic
and in the presence of heavy tails and asymmetric distributions these tests may not perform very
well in terms of power. Furthermore, the statistical procedures developed for the inference on pa-
rameters ofnonlinearmodels are typically based on asymptotic approximations and there are only
a few exact inference methods outside linear models framework. However, these approximations
may be invalid in small samples and even in large samples [seeDufour (1997)].

In this section, we propose exact optimal sign-based tests in the context of linear and nonlin-
ear regression models with fixed regressors. The proposed tests are valid under weak distributional
assumptions such as heteroskedascticity of unknown form and non-normality. In the next first sub-
section we derive POS tests to test zero coefficient hypothesis in the context of linear regression
model, and in the second and last subsection, we propose POS tests to test nonzero coefficient
hypothesis in the context of nonlinear regression model.

7



3.1. Testing zero coefficient hypothesis in linear regression model

We consider that the variableyt can be linearly explained by another variable vectorxt

yt = β
′
xt + εt, t = 1, ..., n, (3.1)

whereyt, for t = 1, ..., n, are independent random variables but not necessarily identically distrib-
uted,xt is an observablek × 1 vector of fixed explanatory variables,β ∈ R

k is an unknown vector
of parameters, andεt is an error term such that

εt | X ∼ Ft(. | X) (3.2)

and

P[εt ≥ 0 | X] = P[εt < 0 | X] =
1

2
, (3.3)

whereFt(.) is a distribution function andX = [x1, ..., xn]
′
is ann× k matrix. Suppose we wish to

test the null hypothesis
H0 : β = 0 (3.4)

against the alternative hypothesis
H1 : β = β1. (3.5)

Under assumption (3.1), the hypothesis testing problem given by (3.4)-(3.5) is a special case of the
one defined by (2.13)-(2.14) [see Section 2.2], where now

pt = P[yt ≥ 0 | X] = 1 − P[εt < −β
′
xt | X].

UnderH0

pt,0 = P[yt ≥ 0 | X] = 1 − P[εt < 0 | X] =
1

2
(3.6)

and underH1

pt,1 = P[yt ≥ 0 | X] = 1 − P[εt < −β
′

1xt | X]. (3.7)

Consequently, a sign-based test for the null hypothesis (3.4) against the alternative hypothesis (3.5)
can be deduced from Theorem2.2using equations (3.6) and (3.7). We have the following result.

Proposition 3.1 Under assumptions (2.1), (3.3), and (3.1) the best point-optimal sign test for the
null hypothesis (3.4) against the alternative hypothesis (3.5) rejects (3.4) when

n
∑

t=1

at(0/1)s(yt) > c1(β1),

where

at(0/1) = ln





1
1

1−P[εt≤−β
′
1xt|X]

− 1



 . (3.8)
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The critical valuec1(β1) is chosen such that

P

[

n
∑

t=1

at(0/1)s(yt) > c1(β1) | H0

]

≤ α,

whereα is an arbitrary significance level.

The POS test of Proposition3.1controls size for any distribution ofεt which satisfies the condition
(3.3). Under the null hypothesis, the test is distribution-free and robust against heteroskedasticity
of unknown form. However, under the alternative hypothesisthe power function of the test will
depend on the form of the distribution function ofεt.

We assume that under the alternative hypothesis the error terms follow an homoskedastic normal
distribution. In other words, we substitute the optimal weights (3.8) by the weights derived from
an homoskedastic normal distribution. The latter assumption may affect the power of POS test,
however our simulation results [see tables 7 and 8] show thatthere is almost no power loss when
we misspecify the distribution function ofεt. If we assume that under the alternative

εt ∼ N(0, 1),

then the test statistic is given by:

S∗
n(β1) =

n
∑

t=1

ln





1
1

Φ(β
′
1xt)

− 1



 s(yt), (3.9)

whereΦ(.) is the standard normal distribution function.
We use quantiles of random variable (3.9) to implement the POS test. Since the test statistic

(3.9) is a continuous variable, its quantiles are easy to compute. To simulate (3.9) we first generate
a sequence{s(yt)}n

i=1 under the null hypothesis. In particular, we generate a sequence{s(εi)}n
i=1

which satisfies the condition (3.3). The variables(εt) takes only two values0 and 1, thus the
computation of test statistic (3.9) reduces to generating asequence of Bernoulli random variables
of given length with subsequent summation and the corresponding weights. The algorithm for
implementing the POS test can be described as follows:

1. Compute the test statisticS∗
n(β1) based on the observed data, sayS∗

n(β1)
0;

2. Generate a sequence of Bernoulli random variables{s(εi)}n
i=1 satisfying (3.3);

3. Compute S∗
n(β1)

j using the sequence{s(εi)}n
i=1 and the corresponding weights

{ai(0/1)}n
i=1 ;

4. ChooseB such thatα(B + 1) is an integer and repeat steps1 − 3 B times;

5. Compute the (1 − α)% quantile, sayc(β1), of the sequence
{

S∗
n(β1)

j
}B

j=1
;

6. Reject the null hypothesis at levelα if S∗
n(β1)

0 ≥ c(β1).

9



3.2. Testing Nonzero coefficient hypothesis in nonlinear regression model

We consider now the following nonlinear regression model

yt = f(xt, β) + εt, t = 1, ..., n, (3.10)

whereyt, for t = 1, ..., n, are independent random variables but not necessarily identically dis-
tributed,xt is an observablek × 1 vector of fixed explanatory variables,f(.) is a scaler function,
β ∈ R

k is an unknown vector of parameters, andεt is an error term which satisfies the condition
(3.3). Suppose now we wish to test the null hypothesis

H0 : β = β0 (3.11)

against the alternative hypothesis
H1 : β = β1. (3.12)

A test forH0 againstH1 can be constructed in the same way as in the previous Section 3.1. First,
notice that the model (3.10) is equivalent to the following transformed model

ỹt = g(xt, β, β0) + εt,

where
ỹt = yt − f(xt, β0) and g(xt, β, β0) = f(xt, β) − f(xt, β0).

Under assumption (2.1) and conditional onX we have

ỹ1, ..., ỹn are independent.

Second, testing (3.11) against (3.12) is equivalent to test

H̄0 : g(xt, β, β0) = 0, for t = 1, ...n

against
H̄1 : g(xt, β, β0) = f(xt, β1) − f(xt, β0), for t = 1, ...n.

Finally, the likelihood function of new random sample{ỹt}n
t=1 is given by:

L(Ũ (n), β,X) =
n

Π
t=1

P[ỹt ≥ 0 | X]s(ỹt)(1 − P[ỹt ≥ 0 | X])1−s(ỹt),

where the new vector of signs̃U(n) is defined as follows:

Ũ(n) = (s(ỹ1), ..., s(ỹn))
′
,

for

s(ỹt) =

{

1, if ỹt ≥ 0
0, if ỹt < 0

.
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Thus, a sign-based test for the null hypothesis (3.11) against the alternative hypothesis (3.12) can
be derived using the above Proposition3.1. We have the following result.

Proposition 3.2 Under assumptions (2.1), (3.3), and (3.10) the best point-optimal sign test for the
null hypothesis (3.11) against the alternative hypothesis (3.12) reject (3.12) when

n
∑

i=1

ln

[

1
1

1−P[εt≤f(xt,β0)−f(xt,β1)|X] − 1

]

s (yt − f(xt, β0)) > c1(β1).

The critical valuec1(β1) is chosen so that

P

[

n
∑

t=1

ãt(0/1)s (yt − f(xt, β0)) > c1(β1) | H0

]

≤ α

andα is an arbitrary significance level.

If we consider a linear functionf(xt, β) = β
′
xt and assume that under the alternative hypothesis

the error termεt follows N(0, 1) distribution, then the test statistic is given by:

S∗
n(β1) =

n
∑

t=1

ln





1
1

Φ((β1−β0)
′
xt)

− 1



 s
(

yt − β
′

0xt

)

, (3.13)

whereΦ(.) is the standard normal distribution function. The test statistic (3.13) depends on a par-
ticular alternative hypothesisβ1. In practice, the latter is supposed to be unknown which makes the
proposed POS test unfeasible. In the next section, we propose some additional techniques that we
can use in order to choose an optimal alternativeβ1 at which the power of test is maximized.

4. Choice of the optimal alternative hypothesis

In this section, we study the power properties of the proposed POS test. We derive its power en-
velope and analyze the impact of the alternative hypothesisβ1 on its power function. Since the
latter depends on the alternative hypothesis, we propose anapproach (hereafter adaptive approach)
to choose the alternativeβ1 at which the power of POS test is close to the power envelope.

4.1. Power envelope of point-optimal sign test

We derive an upper bound (hereafter power envelope) of the power function of point-optimal sign
test. It is well known that point-optimal tests can be used totrace out the maximum attainable power
envelope for a given testing problem. This power envelope provides a natural benchmark against
which test procedures can be compared.
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According to Section 3, the test statistic of POS test is a function ofβ1

S∗
n(β1) =

n
∑

t=1

ln





1
1

1−P[εt≤−β
′
1xt|X]

− 1



 s(yt).

Its power function, sayΠ(β, β1), is also a function ofβ1

Π(β, β1) = P [S∗
n(β1) > c1] ,

wherec1 satisfies
P[S∗

n(β1) > c1 | H0] ≤ α.

The following theorem provides a theoretical formula for power function of POS test.

Theorem 4.1 Under assumptions (2.1) and (3.3), the power function of POS test atβ1 is given by

Π(β, β1) =
1

2
+

1

π

∫ ∞

0

I(u)

u
du,

where, foru ∈ R,

I(u) =

(

1

2

)n

Im







n
∏

t=1



exp
(

−iu
c1

n

)

+ exp



iu



ln





1
1

1−P[εt≤−β
′
1xt|X]

− 1



− c1

n



















,

i =
√
−1 and Im{z} denotes the imaginary part of a complex numberz. The critical valuec1 is

chosen so that
P[S∗

n(β1) > c1 | H0] ≤ α,

whereα is an arbitrary significance level.

See proof of Theorem4.1 in Appendix A. Since the test statisticS∗
n(β1) is optimal against an

alternativeβ1, the envelope power function, saȳΠ(β), is a function which associates the value
Π(β, β1) to each elementβ ∈ R

k,

Π̄(β) = Π(β, β) = P [S∗
n(β) > c1 ]. (4.1)

The objective now is to find some value ofβ1 at which the power curve of POS test remains close to
the relevant power envelope. For given valueΠ of power function and levelα of POS test, we can
find an alternative, sayβ1(Π,α), by inverting the power envelope function̄Π(β). For any given
valueΠ ∈ (α, 1), the family of POS test statistics can be written as follows







S∗
n(Π) =

n
∑

t=1

ln





1
1

1−P[εt≤−β1(Π,α)
′
xt|X]

− 1



 s(yt), for Π ∈ (α, 1)







.
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Although every member of this family is admissible, it is possible that some values ofΠ may yield
tests whose power functions lie close to the power envelope over a considerable range. Past research
suggests that values ofΠ near one-half often have this property, see for example King(1987-88),
Dufour and King (1991), and Elliott et al. (1996). Consequently, one can choose as an optimal
alternative the one which corresponds toΠ = 0.5. Based on Theorem4.1 and equation (4.1), the
value ofβ1 which corresponds toΠ = 0.5 is the solution of the following equation3

∫ ∞

0
Im























n
∏

t=1

[

exp
(

−iu c1
n

)

+ exp

(

iu

(

ln

[

1
1

1−P[εt≤−β
′
1xt|X]

−1

]

− c1
n

))]

u























du = 0. (4.2)

An exact solution for equation (4.2) is not feasible, since it is not easy to find an expression for
Im{.} and the integral

∫∞
0 Im{.}du is difficult to evaluate. The latter can be approximated using

results from Imhof (1961), Bohman (1972), Davies (1973), and Davies (1980), who propose a nu-
merical approximation for the distribution function usingthe characteristic function. The proposed
approximation introduces two types of errors: discretization and truncation errors. Davies (1973),
proposes a criterion to control for discretization error, and Davies (1980) proposes three different
bounds to control for truncation error. Another alternative to solve the power envelope function for
β1 is to use simulations [see Elliott et al. (1996)]. We could use simulations to approximate the
power envelope function and calculate the optimal alternative which corresponds to the value of
Π̄(β1) near one-half.

Let’s now examine the impact of the alternative hypothesisβ1 on the power function. We use
simulations and plot the power curves of POS test under different alternatives and compare them to
the power envelope. Our results are presented in figures 1-3.

Insert Figures 1-3.

The above figures compare the power curves of POS test to the power envelope under different
alternatives and using different data generating processes (hereafter DGPs). We consider a linear
regression model with one regressor and an error term which follows one of the following distribu-
tions (DGPs): normal distribution, Cauchy distribution, mixture of normal and Cauchy distributions,
and normal distribution with a break in variance. We also consider other DGPs (normal distribution
with GARCH(1, 1) plus jump variance and normal distribution with non stationary GARCH(1, 1)
variance) which do not satisfy they key assumption (2.1) andthe results are interesting. A descrip-
tion of these DGPs is given in Section 6. Based on simulation results, we find that the alternative
hypothesis affects the power function. Particularly, whenthe alternative is far from the null hypoth-
esis, hereβ = 0, the power curve of POS test moves away from the power envelopecurve.

Since the previous approach to finding the optimal alternative is somewhat arbitrary way, in the

3Using the properties of the cumulative density function (monotonically increasing, continuouslim
c→−∞

Pr(z < c) =

0, and lim
c→+∞

Pt(z < c) = 1) we can show that equation (4.2) has a unique solution.
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next subsection we propose an adaptive approach based on split-sample technique to estimate the
optimal alternative.

4.2. An adaptive approach to choose the optimal alternative

Existing adaptive statistical methods use the data to determine which statistical procedure is most
appropriate for a specific testing problem. These methods are usually performed in two steps. In
the first step a selection statistic is computed that estimates the shape of the error distribution. In
the second step the selection statistic is used to determinean effective statistical procedure for the
error distribution. For more details about the adaptive statistical methods, the reader can consult
O’Gorman (2004).

The adaptive approach that we consider is somewhat different from the existing adaptive statisti-
cal approaches. We propose split-sample technique to choose an alternative hypothesisβ1 such that
the power of POS test is close to the power envelope.4 The alternative hypothesisβ1 is unknown
and a practical problem consists in finding its independent estimate. To make size control easier, we
estimateβ1 from a sample which is independent from the one that we use to compute the POS test
statistic. This can be easily done by splitting the sample. The idea is to divide the sample into two
independent parts and use the first one to estimate the value of the alternative and the second one to
compute the POS test statistic.

Consider again the model given by (3.1) and letn = n1 + n2, y = (y
′

(1), y
′

(2))
′
, X =

(X
′

(1),X
′

(2))
′
, andε = (ε

′

(1), ε
′

(2))
′

where the matricesy(i), X(i), andε(i) haveni, i = 1, 2, rows.
We use the firstn1 observations,y(1) andX(1), to estimate the alternative hypothesisβ1 using OLS

β̂1 = (X
′

(1)X(1))
−1X

′

(1)y(1)

and becausêβ1 is independent ofX(2), we can use the lastn2 observations,y(2) and X(2), to
calculate the test statistic and get a valid POS test

S∗
n(β̂1) =

n
∑

t=n1+1

ln





1
1

1−P[εt≤−((X
′
(1)

X(1))−1X
′
(1)

y(1))
′
xt|X]

− 1



 s(yt).

However, the OLS estimator is known to be very sensitive to outliers and non-normal errors, con-
sequently it is important to choose a more appropriate method to estimateβ1. In the presence of
outliers many estimators are proposed to estimate the coefficients in regression model such that the
least median of squares (LMS) estimator [see Rousseeuw and Leroy (1987)], the S-estimators [see
Rousseeuw and Yohai (1984)], and theτ -estimators [see Yohai and Zamar (1988)].

Different choices forn1 andn2 are clearly possible. Alternatively, we could select randomly
the observations assigned to the vectorsy(1) andy(2). As we will show latter the number of obser-
vations retained for the first and the second subsamples havea direct impact on the power of the

4For more details about split-sample technique, the reader can consult Dufour and Torrès (1998) and Dufour and
Jasiak (2001).
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test. In particular, it seems that we could get more powerfultest when we use a relatively small
number of observations for computing the alternative hypothesis and keep more observations for
the calculation of test statistic. This point is illustrated below using simulation experiments. We use
simulations to compare the power curves of split-sample-based POS test (hereafter SS-POS test) to
the power envelope (hereafterPE) under different split-sample sizes and using different DGPs [see
Section 6]. The results are presented in figures 4-6.

Insert Figures 4-6.

>From the above figures we see that using approximately10% of sample to estimate the alternative
yields a power which is typically very close to the power envelope. This is true for all DGPs that
we consider in the simulation study.

5. Point-optimal sign confidence regions

In this section, we briefly describe how to build confidence regions with known significance level
α, sayCβ(α), for a vector of unknown parametersβ using the proposed POS tests. Consider the
previous linear regression model (3.1) and suppose we wish to test (3.11) against (3.12), then the
idea consists in finding all the values ofβ0 ∈ R

k such that

S∗(0)
n (β1) =

n
∑

t=1







ln [
1

1
1−P[εt≤−(β1−β0)′xt|X]

− 1
]s(yt − β

′

0xt)







< c(β1),

whereS
∗(0)
n (β1) is the observed value ofS∗

n(β1) and the critical valuec(β1) is given by the smallest
constantc(β1) such that

P[S∗
n(β1) > c(β1) | β = β0] ≤ α.

The confidence regionCβ(α) of the vector of parametersβ can be defined as follows:

Cβ(α) =
{

β0 : S∗(0)
n (β1) < c(β1) | P [S∗

n(β1) > c(β1) | β = β0] ≤ α
}

.

Further, given the confidence regionCβ(α), we can also derive confidence intervals for the compo-
nents of vectorβ using the projection techniques.5 The latter can be used to find confidence sets,
sayg(Cβ(α)), for general transformationsg of β in R

m. Since, for any setCβ(α),

β ∈ Cβ(α) ⇒ g(β) ∈ g(Cβ(α)) (5.1)

we have
P[β ∈ Cβ(α)] ≥ 1 − α ⇒ P[g(β) ∈ g(Cβ(α))] ≥ 1 − α, (5.2)

5More details about the projection technique can be find in Dufour (1997), Abdelkhalek and Dufour (1998), Dufour
and Kiviet (1998), Dufour and Jasiak (2001), and Dufour and Taamouti (2005).
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where
g(Cβ(α)) = {δ ∈ R

m : ∃ β ∈ Cβ(α), g(β) = δ} .

>From (5.1) and (5.2), the setg(Cβ(α)) is a conservative confidence set forg(β) with level1 − α.
If g(β) is a scalar, then we have

P [inf {g(β0), for β0 ∈ Cβ(α)} ≤ g(β) ≤ sup {g(β0), for β0 ∈ Cβ(α)}] > 1 − α.

6. Monte Carlo study

We present simulation results illustrating the performance of the statistical procedures defined in the
previous sections. Since the number of tests and alternative models is so large, we have limited our
results to two groups of data generating processes (DGPs) which correspond to different symmetric
and asymmetric distributions and different forms of heteroskedasticity.

6.1. Size and Power

We assess the performance of the proposed POS test by comparing its size and power to those of
some other tests, under various general DGPs. We choose our DGPs to illustrate performance in
different contexts that one can encounter in practice. We consider the following regression model

yt = βxt + εt, t = 1, ..., n, (6.1)

whereβ is an unknown parameter and the error termsεt, for t = 1, ..., n, are independent and
follow different distributions (DGPs), so they are not necessarily identically distributed. The first
group of DGPs that we examine represents different symmetric and asymmetric distributions of the
error termεt:
1. Normal distribution

εt ∼ N(0, 1);

2. Cauchy distribution
εt ∼ Cauchy;

3. Student’s distribution with two degrees of freedom

εt ∼ Student(2);

4. Mixture of normal and Cauchy distributions

εt ∼ st | εC
t | −(1 − st) | εN

t |,

whereεC
t follows Cauchy distribution,εN

t follows N(0, 1) distribution, and

P (st = 1) = P (st = 0) =
1

2
.
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The second group of DGPs represents different forms of heteroskedasticity:
5. Break in variance

εt ∼
{

N(0, 1) for t 6= 25√
1000N(0, 1) for t = 25

;

6. Exponential variance
εt ∼ N(0, σ2

ε(t))

and
σε(t) = exp(0.5 t).

7. GARCH(1, 1) plus jump variance

εt ∼
{

N(0, σ2
ε(t)) for t 6= 25

50 N(0, σ2
ε(t)) for t = 25

and
σ2

ε(t) = 0.00037 + 0.0888ε2
t−1 + 0.9024σ2

ε(t − 1);

8. Non stationary GARCH(1, 1) variance

εt ∼ N(0, σ2
ε(t))

and
σ2

ε(t) = 0.75ε2
t−1 + 0.75σ2

ε(t − 1).

We use POS test and other tests, which are supposed to be robust against heteroskedasticity and
non-normality, to test the null hypothesis

H0 : β = 0.

We run Monte Carlo simulations to compare the size and power of 10% split-sample POS test
(hereafter10% SS-POS test) to those of T-test, T-test based on White’s (1980) variance correction
(hereafter WT-test), and sign-based test proposed by Campbell and Dufour (1995) (hereafter CD
(1995) test). In what follows, the notations CT-test and CWT-test correspond to the T-test and
WT-test after size correction, respectively. For some DGPs, T-test and WT-test may not control
size and we adjust the power functions such that CT-test and CWT-test control their sizes. In our
simulations the explanatory variablext is generated from a mixture of normal andχ2 distributions.
We performM1 = 10000 simulations to evaluate the probability distribution of POS test statistic
and M2 = 5000 simulations to estimate the power functions of POS test and other tests. All
simulated samples are of sizen = 50. The sign-based test statistic of Campbell and Dufour (1995)
has a discrete distribution and it is not possible (without randomization) to obtain test whose size is
precisely5%. In our simulations study, the size of this test is5.95% for n = 50.
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6.2. Results

Monte Carlo simulation results are presented in tables 1-6 and figures 7-10 of Appendix B. These
results correspond to different DGPs described in Section 6.1. To summarize, tables 1-6 of Ap-
pendix B show the power envelope of POS test, the size and power of POS test under different
alternative hypotheses and using different split-sample sizes, and size and power of T-test (CT-test),
WT-test (CWT-test), and CD (1995) test. Figures 7-10 of Appendix B compare the power of10%
SS-POS test, T-test (CT-test), WT-test (CWT-test), and CD (1995) test to the power envelope. The
results are detailed below.

First, Table 1 and Panel A of Figure 7 correspond to the case where the error termεt in the
model (6.1) is normally distributed. Table 1 shows that the power of POS test depends on the
alternative hypothesisβ1. When the latter is far from the null hypothesis, hereβ = 0, the POS
test power’s curve moves away from the power envelope [see also Panel A of Figure 1]. However,
using approximately10% of sample to estimateβ1 yields a power which is typically very close to
the power envelope. Thus, split-sample approach represents a good way to select the appropriate
alternative hypothesis at which the power of POS test is maximized.

The T-test based on White’s (1980) variance correction, sayWT-test, does not control size and
its power after size correction is presented in the last column of Table 1. Panel A of Figure 7 shows
that T-test is more powerful than10% SS-POS test, CWT-test, and CD (1995) test. We expect to get
the latter result, since under normality T-test is the most powerful test. However, the power of10%
SS-POS test is very close to the power envelope and does better than CD (1995) test.

Second, Table 2 and Panel B of Figure 7 and Panel A of Figure 10 correspond to the cases
where the error termεt follows Cauchy distribution and Student’s distribution with two degrees of
freedom, respectively. We see again that the power of POS test depends on the alternative hypothesis
β1. Particularly, when the alternative hypothesis is far fromthe null hypothesis, the power curve
of POS test moves away from the power envelope [see Table 2]. We also see that10% represents
the appropriate proportion of sample that we need to use for the estimation ofβ1. Further, Panel
B of Figure 7 and Panel A of Figure 10 shows that10% SS-POS test is more powerful than T-test,
WT-test, and CD (1995) test, and is close to the power envelope.

Third, Table 3 and Panel A of Figure 8, Table 5 and Panel A of Figure 9, and Table 6 and Panel B
of Figure 9 correspond to the cases where the error termεt follows a mixture of normal and Cauchy
distributions, normal distribution with GARCH(1, 1) plus jump variance, and normal distribution
with non stationary GARCH(1, 1) variance, respectively. The results, in terms of the impactof β1

on the power function of POS test and the appropriate proportion of sample to use in estimatingβ1,
are similar to those of previous cases. Further, Panel A of Figure 8 and Panels A and B of Figure
9 show that10% SS-POS test is again more powerful than T-test, WT-test, CD (1995) test, and is
very close to the power envelope. Whenεt follows the mixture distribution, WT-test and T-test do
not control size and we adjust their power functions such that CWT-test and CT-test control size.
Interestingly, even if GARCH(1, 1) and non stationary GARCH(1, 1) models do not satisfy they
key assumption (2.1), POS test still controls size and has very good power.

Finally, Table 4 and Panel B of Figure 8 and Panel B of Figure 10correspond the cases where
εt follows normal distribution with a break in variance and an exponential variance, respectively. In
these cases, the powers of T-test and WT-test are very weak and flat, whereas the10% SS-POS test
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does well and is more powerful than sign-based test proposedby Campbell and Dufour (1995).
>From the previous results we draw the following conclusions. First, it is clear that the alter-

native hypothesis has an impact on the power function of POS test. Second, the adaptive approach
based on split-sample technique allows to choose an optimalvalue of the alternative hypothesis at
which the power of POS test is maximized. We should use a smallpart, approximately10%, of
sample to estimate the alternative hypothesis and the rest,90%, to compute the test statistic of POS
test. Third, when the error termεt follows normal and heteroskedastic distributions, the power of
10% SS-POS test is close to the power envelope. For non-normal errors this is not the case and
the power of10% SS-POS test is somewhat far from the power envelope. Finally, except for a nor-
mally and homoskedastic distributed error,10% SS-POS test performs better than T-test (CT-test),
WT-test (CWT-test), and CD (1995) test.

We also use simulations to compare the power of10% SS-POS test calculated using the true
weights with the power of10% SS-POS test computed using normal weights.6 The results are
presented in tables 7 and 8 of Appendix B. We see that using thetrue weights may improve the
power of10% SS-POS test. However, the power loss when we substitute the true weights by normal
weights is very small.

7. Conclusion

We propose exact point-optimal sign-based tests to test theparameters in the context of linear and
nonlinear regression models with fixed regressors. These tests are distribution-free, robust against
heteroskedasticity of an unknown form, and they may be inverted to obtain confidence sets for the
vector of unknown parameters.

Since the proposed point-optimal sign test maximizes the power at a given value of the alterna-
tive, we suggest an approach based on split-sample technique to choose an optimal alternative such
that the power of point-optimal sign test is close to the power envelope. The simulation results show
that using approximately10% of sample to estimate the alternative hypothesis and the rest (90%) to
compute the test statistic of point-optimal sign test, yields a power which is typically very close to
the power envelope.

To assess the performance of point-optimal sign test we run aMonte Carlo simulation study
and compare its size and power to those of some other tests, under various general DGPs. We
consider different DGPs to illustrate different contexts that one can encounter in practice. We use
two groups of DGPs which correspond to different symmetric and asymmetric distributions and
different heteroskedasticity forms. The results show that10% split-sample point-optimal sign test
is more powerful than T-test, Campbell and Dufour’s (1995) sign-based test, T-test with White’s
(1980) variance correction, and it is close to the power envelope.

The present paper could be generalized to the case where the explanatory variables are stochastic
by relaxing the assumption (2.1). This issue is the topic of on-going research.

6Weightsat(0/1) computed using homoskedastic and normal distribution.
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A. Appendix: Proofs

PROOF OFTHEOREM 2.2. The likelihood function of random sample{yt}n
t=1 is defined as follows:

L(U(n), pt) =
n

Π
t=1

P[yt ≥ 0]s(yt)(1 − P[yt ≥ 0])1−s(yt). (A.1)

Under the null hypothesisH0 the likelihood function (A.1) is given by:

L0(U(n), pt,0) =
n

Π
t=1

{

p
s(yt)
t,0 (1 − pt,0)

1−s(yt)
}

(A.2)

and under the alternative hypothesisH1 it is given by:

L1(U(n), pt,1) =
n
∏

t=1

{

p
s(yt)
t,1 (1 − pt,1)

1−s(yt)
}

. (A.3)

For simplicity of exposition we assume thatpt,0, pt,1 6= 0, 1. However, forpt,0, pt,1 6= 0, 1 we could
work directly with likelihood function rather than log-likelihood function. From equations (A.2)
and (A.3), the log-likelihood ratio is given by:

ln

{

L1(U(n), pt,1)

L0(U(n), pt,0)

}

=

n
∑

t=1

[qt(1) − qt(0)] s(yt) +

n
∑

t=1

qt(0), (A.4)

where

qt(1) = ln

(

pt,1

pt,0

)

andqt(0) = ln

(

1 − pt,1

1 − pt,0

)

.

The log-likelihood ratio (A.4) can also be written as follows:

ln

{

L1(U(n), p1)

L0(U(n), p0)

}

=
n
∑

t=1

at(0/1)s(yt) + b(n),

where

at(0/1) = qt(1) − qt(0) andb(n) =
n
∑

t=1

qt(0).

Using Neyman-Pearson lemma [see e.g. Lehmann (1959), page 65], the best test ofH0 againstH1

rejectsH0 when
n
∑

t=1

ln

[

pt,1(1 − pt,0)

pt,0(1 − pt,1)

]

s(yt) + b(n) > c.

or equivalently when
n
∑

t=1

ln

[

pt,1(1 − pt,0)

pt,0(1 − pt,1)

]

s(yt) > c1 ≡ c − b(n).
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i.e. Theorem2.2.

PROOF OFTHEOREM 4.1. Conditionally onX the characteristic function ofS∗
n(β1) is given by:

φS∗
n
(u) = EX [exp(iu S∗

n(β1))] = EX





n
∏

t=1

exp



iu ln





1
1

1−P[εt≤−β
′
1xt|X]

− 1



 s(yt)







 , ∀ u ∈ R

where a complex numberi =
√
−1. Sinceyt, for t = 1, ..., n, are independent

φS∗
n
(u) =

n
∏

t=1

EX



exp



iu ln





1
1

1−P[εt≤−β
′
1xt|X]

− 1



 s(yt)









=
n
∏

t=1

1
∑

j=0

P (s(yt) = j | X) exp



iu ln





1
1

1−P[εt≤−β
′
1xt|X]

− 1



 j





=

(

1

2

)n n
∏

t=1



1 + exp



iu ln





1
1

1−P[εt≤−β
′
1xt|X]

− 1











 .

According to Gil-Pelaez (1951), the conditional distribution function ofS∗
n(β1) evaluated atc1, for

c1 ∈ R, is given by:

P(S∗
n(β1) ≤ c1 | X) =

1

2
− 1

π

∫ ∞

0

I(u)

u
du, (A.5)

where

I(u) =

(

1

2

)n

Im







n
∏

t=1



exp
(

−iu
c1

n

)

+ exp



iu(ln





1
1

1−P[εt≤−β
′
1xt|X]

− 1



− c1

n















.

Im{z} denotes the imaginary part of a complex numberz. Thus, the power function of POS test is
given by the following probability function:

Π(β, β1) = P [S∗
n(β1) > c1(β1)] = 1 − P [S∗

n(β1) ≤ c1(β1)] =
1

2
+

1

π

∫ ∞

0

I(u)

u
du,

where

I(u) =

(

1

2

)n

Im







n
∏

t=1



exp
(

−iu
c1

n

)

+ exp



iu(ln





1
1

1−P[εt≤−β
′
1xt|X]

− 1



− c1

n















.

i.e. Theorem4.1.
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B. Appendix: Simulation results
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Figure 1.Power comparison under different alternatives.

Panel A. Power comparison under different alternatives (Normal case)
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Panel B. Power comparison under different alternatives (Cauchy case)
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Note: This figure compares the power of POS test under different alternatives. Panel A corre-
sponds to the case where the error termεt in the model (6.1) is homoskedastic and normally distrib-
uted and Panel B corresponds to the case where this error follows Cauchy distribution.

23



Figure 2.(Continued). Power comparison under different alternatives.

Panel A. Power comparison under different alternatives (Mixture case)
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Panel B. Power comparison under different alternatives (Break in variance case)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
0

10

20

30

40

50

60

70

80

90

100

Beta

Po
we

r

 

 

PE
POS test for beta=0.2
POS test for beta=0.4
POS test for beta=0.6
POS test for beta=1

Note: This figure compares the power of POS test under different alternatives. Panel A corresponds
to the case where the error termεt in the model (6.1) follows a mixture of normal and Cauchy
distributions and Panel B corresponds to the case where thiserror follows normal distribution with
break in variance.
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Figure 3.(Continued). Power comparison under different alternatives.

Panel A. Power comparison under different alternatives (GARCH(1, 1) plus jump case)
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Panel B. Power comparison under different alternatives (Non stationary GARCH(1, 1) case)
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Note: This figure compares the power of POS test under different alternatives. Panel A corresponds
to the case where the error termεt in the model (6.1) follows normal distribution with GARCH(1, 1)
plus jump variance and Panel B corresponds to the case where this error follows normal distribution
with non stationary GARCH(1, 1) variance.
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Figure 4.Power comparison using different split-samples.

Panel A. Power comparison using different split-samples (Normal case)
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Panel B. Power comparison using different split-samples (Cauchy case)
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Note: This figure compares the power of POS test using different split-samples (4%, 10%, 20%,
40%, 60%, and80%). Panel A corresponds to the case where the error termεt in the model (6.1)
is homoskedastic and normally distributed and Panel B corresponds to the case where this error
follows Cauchy distribution.
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Figure 5.(Continued). Power comparison using different split-samples.

Panel A. Power comparison using different split-samples (Mixture case)
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Panel B. Power comparison using different split-samples (Break in variance case)
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Note: This figure compares the power of POS test using different split-samples (4%, 10%, 20%,
40%, 60%, and80%). Panel A corresponds to the case where the error termεt in the model (6.1)
follows a mixture of normal and Cauchy distributions and Panel B corresponds to the case where
this error follows normal distribution with break in variance.
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Figure 6.(Continued). Power comparison using different split-samples.

Panel A. Power comparison using different split-samples (GARCH(1, 1) plus jump case)
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Panel B. Power comparison using different split-samples (Non stationary GARCH(1, 1) case)
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Note: This figure compares the power of POS test using different split-samples (4%, 10%, 20%,
40%, 60%, and80%). Panel A corresponds to the case where the error termεt in the model (6.1)
follows normal distribution with GARCH(1, 1) plus jump variance and Panel B corresponds to the
case where this error follows normal distribution with non stationary GARCH(1, 1) variance.
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Figure 7.Power comparison using different tests.

Panel A. Power comparison using different tests (Normal case)
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Panel B. Power comparison using different tests (Cauchy case)
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Note: This figure compares the power envelope to the power curves of 10% split-sample POS test
[10% SS-POS test], T-test (or CT-test), sign-based test proposed by Campbell and Dufour (1995)
[CD (1995) test], and the T-test based on White’s (1980) variance correction [WT-test or CWT-
test]. Panel A corresponds to the case where the error termεt in the model (6.1) is homoskedastic
and normally distributed and Panel B corresponds to the casewhere this error follows Cauchy
distribution.
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Figure 8.(Continued). Power comparison using different tests.

Panel A. Power comparison using different tests (Mixture case)
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Panel B. Power comparison using different tests (Break in variance case)
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Note: This figure compares the power envelope to the power curves of 10% split-sample POS test
[10% SS-POS test], T-test (or CT-test), sign-based test proposed by Campbell and Dufour (1995)
[CD (1995) test], and the T-test based on White’s (1980) variance correction [WT-test or CWT-
test]. Panel A corresponds to the case where the error termεt in the model (6.1) follows a mixture
of normal and Cauchy distributions and Panel B corresponds to the case where this error follows
normal distribution with break in variance.
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Figure 9.(Continued). Power comparison using different tests.

Panel A. Power comparison using different tests (GARCH(1, 1) plus jump case)
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Panel B. Power comparison using different tests (Non stationary GARCH (1, 1) case)
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Note: This figure compares the power envelope to the power curves of 10% split-sample POS test
[10% SS-POS test], T-test (or CT-test), sign-based test proposed by Campbell and Dufour (1995)
[CD (1995) test], and the T-test based on White’s (1980) variance correction [WT-test or CWT-
test]. Panel A corresponds to the case where the error termεt in the model (6.1) follows normal
distribution with GARCH(1, 1) plus jump variance and Panel B corresponds to the case where this
error follows normal distribution with non stationary GARCH(1, 1) variance.
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Figure 10.(Continued). Power comparison using different tests.

Panel A. Power comparison using different tests (Student case)
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Panel B. Power comparison using different tests (Exponential variance case)
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Note: This figure compares the power envelope to the power curves of 10% split-sample POS test
[10% SS-POS test], T-test (or CT-test), sign-based test proposed by Campbell and Dufour (1995)
[CD (1995) test], and the T-test based on White’s (1980) variance correction [WT-test or CWT-
test]. Panel A corresponds to the case where the error termεt in the model (6.1) follows student
distribution with degree of freedom 2 and Panel B corresponds to the case where this error follows
normal distribution with exponential variance
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Table 1. Power comparison: Normal distribution

POS test SS-POS test Other tests
β PE β

1
= 0.2 β

1
= 0.4 4% 10% 20% 40% CD (1995) test T-test WT-test CWT-test

0
0.0005
0.001
0.0015
0.002
0.0025
0.003
0.0035
0.004
0.0045
0.005
0.0055
0.006
0.0065

5.2
7.44
9.2
12.78
16.34
21.38
27.74
33.26
38.14
44.68
52.2
57.76
63.92
69.22

5.14 5.34
5.96 6.5
8.24 7.96
11.28 10.24
13.34 11.96
16.36 14.02
20.74 17.62
23.48 20.86
28.28 23.46
32.68 27.68
36.68 29.7
40.78 33.5
45.44 37.26
47.66 40.68

4.82 4.88 5.36 4.78
7.58 7.44 6.62 6.78
9.98 9.82 9.48 8.2
12.6 12.9 12.76 11.04
16.28 16.18 17.26 13.18
20.56 21.8 21.7 15.76
26.08 25.84 27.26 18.74
32.44 32.08 31.42 23.28
36.4 39.08 37.52 24.88
43.28 44.1 44.3 28.14
49.44 51.74 50.6 35.24
55.42 56.68 56.06 38.64
60.78 63.12 62.62 42.44
66.44 68 68.9 46.74

5.94 4.88 7.52 4.94
6.96 7.42 10.7 7.3
8.24 11.4 15.4 11.5
10.06 16.24 20.08 16.5
11.02 21.7 26.78 20.68
14.12 29.42 34.42 27.74
17.02 39.32 41.2 34.24
19.22 45.22 49.16 43.48
21.56 55.36 58.52 52.38
23.46 62.38 66.96 57.44
27.5 71.04 73.16 67.32
29.8 79.16 79.92 74.7
32.3 84.18 85.7 80.84
34.78 89.58 89.74 85.06

Note: This table shows the power envelope of POS test (PE) and sizeand power of point-optimal sign test under different alternative
hypotheses (POS test), point-optimal sign test using different split-sample sizes (SS-POS test), sign-based test of Campbell and
Dufour (1995) [CD (1995) test], T-test, T-test based on White’s (1980) variance correction (WT-test), and WT-test after size correction
(CWT-test). These results correspond to the case where the error termεt in the model (6.1) is homoskedastic and normally distributed.
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Table 2. Power comparison: Cauchy distribution

POS test SS-POS test Other tests
β PE β

1
= 0.2 β

1
= 0.4 4% 10% 20% 40% CD (1995) test T-test WT-test

0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
0.045
0.05
0.055
0.06
0.065

5.1
34.22
66.38
84.44
92.2
96.44
98.12
99
99.36
99.68
99.8
99.98
99.94
99.94

4.88 4.8
25.18 20.94
48.42 39.58
62.56 52.94
74.3 63.08
79.62 69.6
82.86 74.3
86.02 78.36
89.16 79.6
89.92 81.88
91.12 84.24
91.94 86.2
92.5 86.38
93.08 86.84

5.02 5.3 5.48 4.46
26.72 33.3 30.86 23.48
50.46 61.74 62.28 47.86
64.74 76.24 77.02 64.38
74.36 84.9 85.14 73.7
79.06 89.88 88.82 81.78
81.08 92.92 92.58 84.7
82.86 93.7 93.1 88.38
85.62 94.7 94.3 90.76
85.74 94.92 95.74 92.24
86.76 95.92 95.92 93
87.14 96.42 96.48 94.56
87.08 97.02 96.18 95.96
88.02 96.86 96.9 96.92

5.78 5.68 3.94
18.44 9.5 15
35.16 16.6 28.92
48.9 25.76 43.82
60.36 36.28 54.72
69.58 42.74 62.08
76.6 50.14 67.06
81.88 56 70.72
86.42 60.56 73.34
88.84 63.3 77.18
91.18 66.6 78.7
92.98 69.88 81.3
94.16 72.72 82.96
94.68 74.1 83.22

Note: This table shows the power envelope of POS test (PE) and sizeand power of point-optimal sign test under different alternative
hypotheses (POS test), point-optimal sign test using different split-sample sizes (SS-POS test), sign-based test of Campbell and
Dufour (1995) [CD (1995) test], T-test, and T-test based on White’s (1980) variance correction (WT-test). These results correspond
to the case where the error termεt in the model (6.1) follows Cauchy distribution.
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Table 3. Power comparison: Mixture distribution

POS test SS-POS test Other tests
β PE β

1
= 0.2 β

1
= 0.4 4% 10% 20% 40% CD(1995) test T-test WT-test CT-test CWT-test

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01
0.011
0.012
0.013

4.96
9.96
15.7
25.26
35.46
46.08
56.68
67.64
75
82.06
88.48
90.68
94.38
95.7

5.3 4.9
8.08 8.14
11.52 11.3
18.48 14.24
23.84 18.12
28.7 23.66
35.52 27.56
40.66 32.3
45.32 37.46
50.4 39.64
54.9 43.24
58.48 45.24
62.44 50.78
65.76 53.12

4.58 4.7 5.02 5.18
8.86 9.98 9.16 8.02
14.46 15.9 14.6 12.24
22 24.76 24.6 19.64
29.6 34.08 34.28 27.36
39.16 44.14 42.96 34.6
47.44 51.78 52.06 41.22
55.34 61.9 61.84 51.16
60.44 69.48 69.5 60.1
67.28 76.52 75.32 66.68
70.7 80.84 79.9 73.68
73.92 84.16 84.94 79.92
77.44 87.66 87.42 85.18
78.82 90.54 89.22 88.64

5.98 9.92 10.74 5.08 5.04
8.94 11.28 13.12 5.9 7.92
11.76 13.98 18.88 7.5 12.94
15.72 16.9 25.76 10.1 18.74
21 20.68 31.76 11.82 25.68
26.24 24.32 40.04 14.64 31.74
29.72 28.24 47.06 18.16 37.82
34.06 33 51.22 21.92 44.76
38.96 36.62 56.7 24.56 49.14
44.22 40.16 60.5 30.18 54.6
49.58 45.86 63.74 33.64 58.8
52.4 48.6 66.9 38.06 61.7
58.54 51.16 69.26 39.72 65.62
60.1 55.26 72.16 43.66 67.42

Note: This table shows the power envelope of POS test (PE) and sizeand power of point-optimal sign test under different alternative
hypotheses (POS test), point-optimal sign test using different split-sample sizes (SS-POS test), sign-based test of Campbell and
Dufour (1995) [CD (1995) test], T-test, T-test based on White’s (1980) variance correction (WT-test), T-test after size correction
(CT-test), and WT-test after size correction (CWT-test). These results correspond to the case where the error termεt in the model
(6.1) follows a mixture of normal and Cauchy distributions.
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Table 4. Power comparison: Normal distribution with Break in variance

POS test SS-POS test Other tests
β PE β

1
= 0.2 β

1
= 0.4 4% 10% 20% 40% CD (1995) test T-test WT-test

0
0.0008
0.0016
0.0024
0.0032
0.004
0.0048
0.0056
0.0064
0.0072
0.008
0.0088
0.0096
0.0104

5.4
9.22
14.78
20.16
29.32
39.04
49.78
59.66
68.88
77.32
83.96
88.76
92.22
95.42

4.98 4.92
7.96 7.9
12 10.18
15.88 14.62
22.12 19.6
27.96 25.38
35.7 29.12
41.62 34.12
48.5 39.14
55.9 45.3
61.9 51.68
65.9 55.52
72.94 60.32
78.52 64.48

4.84 5.24 5.1 4.96
8.28 9.32 8.38 7.68
13.12 13.76 12.98 10.42
18.2 20.12 19.86 15.58
25.24 28.34 28.26 19.64
35.72 38.32 38.68 25.24
43.98 47 48.06 32.38
52.82 59.16 58.24 39.78
62.3 67.9 67.28 45.96
68.78 75.66 76.5 53.54
76.14 83.14 82.2 60.92
80.14 88 88.5 67.46
85.6 91.7 93.02 73.06
87.42 94.68 95.34 79.76

5.78 0.01 0.16
8.24 0.04 0.42
10.44 0.06 0.6
12.98 0.12 1.08
17.34 0.3 1.62
21.4 0.22 1.86
26.12 0.46 2.3
30.42 0.84 3.6
34.78 0.78 4.58
38.38 0.94 4.88
42.72 0.94 5.88
47.04 1.22 6.54
51.76 1.5 8.14
55.02 1.42 7.88

Note: This table shows the power envelope of POS test (PE) and sizeand power of point-optimal sign test under different alternative
hypotheses (POS test), point-optimal sign test using different split-sample sizes (SS-POS test), sign-based test of Campbell and
Dufour (1995) [CD (1995) test], T-test, and T-test based on White’s (1980) variance correction (WT-test). These results correspond
to the case where the error termεt in the model (6.1) follows a normal distribution with break in variance.
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Table 5. Power comparison: Normal distribution with GARCH(1, 1) plus jump variance

POS test SS-POS test Other tests
β PE β

1
= 0.2 β

1
= 0.4 4% 10% 20% 40% CD (1995) test T-test WT-test

0
0.0003
0.0006
0.0009
0.0012
0.0015
0.0018
0.0021
0.0024
0.0027
0.003
0.0033
0.0036
0.0039

5.07
11.98
21.28
32.8
46.28
53.62
62.24
70.22
74.66
78.28
80.72
84.22
85.42
87.66

5.74 4.98
9.06 9.16
15.5 12.9
21 18.14
28.14 23.9
34.62 28.2
39.1 33.74
46.06 38.1
48.74 40.72
50.88 43.94
54.04 47.76
56.12 51.8
58.82 53.44
60.52 54.78

4.7 5.24 5.4 5.04
11.18 11.02 10.76 7.86
19.38 19.2 18.84 10.74
33.12 31.34 32.12 15.98
42.46 42.46 42.72 19.98
53.52 52.7 52.2 24.56
61.36 59 60.4 28.8
67.52 66.44 66.14 31.96
73.66 71.94 71.8 36.28
77.36 75.98 75.44 38.98
79.96 79.22 79.66 41.54
82.76 81.38 82.62 44.96
84.46 83.52 84.5 47
86.58 85.76 85.94 49.18

6.42 1.22 4.96
8.06 2.36 8.92
12.18 5 14.6
17.24 8.9 21.2
21.9 13.36 27.16
25.86 16.76 30.86
30.12 19.06 36.58
34.44 24.2 42.58
37.68 27.26 45.1
40.12 29.22 48.82
44.32 32.4 51.02
46.72 36.1 55.08
47.84 38.32 56.42
51.04 41.22 60.18

Note: This table shows the power envelope of POS test (PE) and sizeand power of point-optimal sign test under different alternative
hypotheses (POS test), point-optimal sign test using different split-sample sizes (SS-POS test), sign-based test of Campbell and
Dufour (1995) [CD (1995) test], T-test, and T-test based on White’s (1980) variance correction (WT-test). These results correspond
to the case where the error termεt in the model (6.1) follows a normal distribution with GARCH(1, 1) plus jump variance.
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Table 6. Power comparison: Normal distribution with non stationary GARCH(1, 1) variance

POS test SS-POS test Other tests
β PE β

1
= 0.2 β

1
= 0.4 4% 10% 20% 40% CD (1995) test T-test WT-test

0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
0.045
0.05
0.055
0.06
0.065

5.95
37.34
57.36
67.3
73.46
79.02
81.66
84.58
85.82
88.46
89.02
90.04
91.76
91.82

5.58 6.08
29.68 27.72
44.54 41.36
56.54 53.58
63.76 60.56
67.86 64.7
72.5 69.38
74.72 72.56
77.86 75.08
80.52 77.2
81.48 79.22
83.2 81
84.52 81.96
85.22 83.22

6.02 5.76 6.04 6.16
39.04 40.28 39 28.78
58.86 56.58 58.04 42.64
67.92 66.54 68 49.7
73.64 73.16 73.36 58.74
80.6 77.64 78.04 62.34
82.18 80.88 81.88 66.6
85.4 83.42 82.8 69.18
86.86 85.3 84.82 71.84
87.98 86.9 86.12 75.46
89.92 89.1 88.98 77.84
89.94 89.94 89.22 79.08
91.14 90.1 90.5 80.86
91.3 90.86 91.12 82.38

6.26 0.94 5
23.58 14.26 34.18
39.78 27 51.22
49.84 35 60.44
58.04 42.04 67.28
65.88 47.16 72.36
69.72 50.9 75.14
74.78 54.22 78.24
77.82 57.52 80.04
80.44 61.18 82.96
83.04 62.48 84.34
83.82 64.16 84.88
85.7 67.2 87.26
87 68.8 88.22

Note: This table shows the power envelope of POS test (PE) and sizeand power of point-optimal sign test under different alternative
hypotheses (POS test), point-optimal sign test using different split-sample sizes (SS-POS test), sign-based test of Campbell and
Dufour (1995) [CD (1995) test], T-test, and T-test based on White’s (1980) variance correction (WT-test). These results correspond
to the case where the error termεt in the model (6.1) follows a normal distribution with non stationary GARCH(1, 1) variance.
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Table 7. True weights versus normal weights: Cauchy distribution

SS − POS test using true weights SS − POS test using normal weights
β PE 10% 20% 10% 20%

0
0.005
0.01
0.015
0.02
0.025
0.03
0.035
0.04
0.045
0.05
0.055
0.06
0.065

5.1
34.22
66.38
84.44
92.2
96.44
98.12
99
99.36
99.68
99.8
99.98
99.94
99.94

5.16 5.16
33.58 31.18
61.94 62.47
80.32 80.32
89.76 89.76
95.22 95.22
96.98 96.98
98.26 98.26
99.14 99.14
99.3 99.3
99.44 99.44
99.7 99.7
99.82 99.82
99.9 99.9

5.3 5.48
33.3 30.86
61.74 62.28
76.24 77.02
84.9 85.14
89.88 88.82
92.92 92.58
93.7 93.1
94.7 94.3
94.92 95.74
95.92 95.92
96.42 96.48
97.02 96.18
96.86 96.9

Note: This table summarizes the results of the comparison between the power of10% split-sample POS test calculated using the true
weightsat(0/1) with the power of10% split-sample POS test calculated using normal weights. Thetrue weights correspond to the
case where the error termεt follows Cauchy distribution. The term SS-POS test corresponds to split-sample point-optimal sign test.
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Table 8. True weights versus normal weights: Mixture distribution

SS − POS test with true weights SS − POS test with normal weights
β PE 10% 20% 10% 20%

0
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.01
0.011
0.012
0.013

4.96
9.96
15.7
25.26
35.46
46.08
56.68
67.64
75
82.06
88.48
90.68
94.38
95.7

4.74 5.26
8.96 9.08
14.34 16.7
24.84 24.67
34.52 34.46
44.26 44.06
53.24 54.96
62.92 62.88
71.66 70.14
79.24 79.54
85.52 84.34
88.8 89.22
92.06 91.5
94.32 94.62

4.7 5.02
9.98 9.16
15.9 14.6
24.76 24.6
34.08 34.28
44.14 42.96
51.78 52.06
61.9 61.84
69.48 69.5
76.52 75.32
80.84 79.9
84.16 84.94
87.66 87.42
90.54 89.22

Note: This table summarizes the results of the comparison between the power of10% split-sample POS test calculated using the true
weightsat(0/1) with the power of10% split-sample POS test calculated using normal weights. Thetrue weights correspond to the
case where the error termεt follows a mixture of normal and Cauchy distributions. The term SS-POS test corresponds to split-sample
point-optimal sign test.
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