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Daniel González-Arribas, Manuel Soler, Manuel Sanjurjo-Rivo, Maryam
Kamgarpour, Juan Simarroa,b,c,d,e

aDepartment of Bioengineering and Aerospace Engineering, Universidad Carlos III de
Madrid, Leganés, Spain. e-mail: daniel.gonzalez.arribas@ing.uc3m.es (corresponding

author). Avenida de la Universidad, 30, Leganés (28911 Madrid), Spain
bDepartment of Bioengineering and Aerospace Engineering, Universidad Carlos III de

Madrid, Leganés, Spain. e-mail: masolera@ing.uc3m.es
cDepartment of Bioengineering and Aerospace Engineering, Universidad Carlos III de

Madrid, Leganés, Spain. e-mail: msanjurj@ing.uc3m.es
dAutomatic Control Lab, ETH Zurich, Zurich, Switzerland. e-mail:

mkamgar@control.ee.ethz.ch
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Abstract

Convective weather, and thunderstorm development in particular, represents a

major source of disruption, delays and safety hazards in the Air Traffic Manage-

ment system. Thunderstorms are challenging to forecast and evolve on relatively

rapid timescales; therefore, aircraft trajectory planning tools need to consider

the uncertainty in the forecasted evolution of these convective phenomena. In

this work, we use data from a satellite-based product, Rapidly Developing Thun-

derstorms, to estimate a model of the uncertain evolution of thunderstorms. We

then introduce a methodology based on numerical optimal control to generate

avoidance trajectories under uncertain convective weather evolution. We design

a randomized procedure to initialize the optimal control problem, explore the

different resulting local optima, and identify the best trajectory. Finally, we

demonstrate the proposed methodology on a realistic test scenario, employing

actual forecast data and an aircraft performance model.

Keywords: optimal control, robust planning, convective weather, aircraft

trajectory planning
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1. Introduction

Convective weather, in particular thunderstorm development, creates major

challenges for the Air Traffic Management (ATM) system. Flying through a

thunderstorm entails multiple risks to the aircraft, such as strong turbulence,

wind shear, downbursts, icing, lightning or hail. Consequently, aircraft should

avoid them, and pilots are thus instructed to deviate from their flight plans to

avoid strong convective activity. These deviations, when aggregated over mul-

tiple flights, amount to significant air traffic disruptions. Such disruptions must

then be managed by Air Traffic Control (ATC) and Air Traffic Flow Manage-

ment (ATFM) authorities, often by holding, delaying or cancelling other flights.

Just to provide a quantification of its impact, authors in [1] estimate the

cost of ATFM delay in 100 Euros per minute. Looking into data, it should be

remarked that weather phenomena added 0.61 minutes of primary delay1 to each

flight taking place in the European Civil Aviation Conference (ECAC) airspace

in 2017, resulting in around 6.5 million minutes of primary delay2, amounting

to 17% of all primary delay not due to airlines. For the same year in the US, the

data from the Federal Aviation Administration’s OPSNET portal3 attributes

around 60% of the delays greater than 15 minutes per flight (which represent

a total of 22.6 million minutes) to weather. Convective weather is one of the

leading causes, with almost half of weather related delays in the busy summer

months being caused by it.

A key reason behind the disruption caused by thunderstorms is the diffi-

culty of forecasting their birth and evolution with precision at flight planning

timescales (in this paper, 1-3 hours before departure). Therefore, taking them

into account represents a challenge for flight dispatchers, air traffic controllers

1“Primary delay” refers to delay that is not reactionary, i.e., it is not attributable to late

arrivals of aircraft, crew or connecting flights because of delays earlier in the day.
2CODA Digest 2017: http://www.eurocontrol.int/sites/default/files/publication/

files/coda-digest-annual-2017.pdf
3https://aspm.faa.gov/opsnet/sys/Delays.asp
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and flow management authorities. While some meteorological conditions are re-

quired for thunderstorm formation and can be forecasted in advance [2], the spe-

cific location and timing of its initiation is harder to identify. The characteristic

sizes and lifespans of thunderstorms are small compared with the spatiotempo-

ral resolution of medium-range Numerical Weather Prediction (NWP) models,

and the chaoticity of the atmospheric dynamics compounds the challenge.

As a consequence, both thunderstorm weather forecasting and avoidance

take place at shorter timescales. Prediction is usually performed in the form of

deterministic nowcasts4. Instead of NWP based methods, thunderstorm now-

casting has been traditionally based on extrapolation of radar echoes [3], which

has been improved by the usage of satellite data and Doppler radars. This is due

to the fact that extrapolation is more effective than NWP at short timescales (1

to 2 hours). Nonetheless, the quality of extrapolation nowcasts degrades rapidly

as the forecasting horizon increases (and particularly so for smaller convective

cells). One extrapolation based nowcasting system of particular interest for avi-

ation is the Corridor Integrated Weather System (CIWS)[4], which covers the

Conterminous United States (CONUS) and is in use by the Federal Aviation

Administration (FAA).

More recently, extrapolation based nowcasting methods have started to in-

clude NWP forecasts in order to improve their accuracy beyond the 1 to 2-hour

mark, where the statistical skill of extrapolation techniques in nowcasting drops

below that of NWP forecasting due to the characteristic timescales of convection

initiation, growth and decay [5, 6]. These combined systems blend the extrap-

olation and a high-resolution NWP forecast whose initial conditions have been

improved by data assimilation. By placing higher weight in the extrapolation for

4Within a meteorological context, “nowcasting” refers to forecasting for short ranges (6

hours at most, according to the World Meteorological Organization (WMO)) at the mesoscale

(weather phenomena of sizes between a few kilometers and a few hundred kilometers), and

relying more on extrapolation of current sensor data (radar echoes, mainly) than on NWP

techniques.

3



short horizons and the NWP forecast for longer horizons, it is possible to com-

bine the strengths of both approaches. One such combined system, designed for

aviation purposes, is CoSPA[7]. It integrates CIWS data with forecasts from the

National Oceanic and Atmospheric Administration (NOAA) and the National

Center for Atmospheric Research (NCAR). Additionally, the trend towards in-

creasing computational power has increased the interest in higher resolution,

convection-permitting NWP forecasts in the last years. In [8], the AROME

ensemble forecast from Météo-France is employed in conjunction with statisti-

cal post-processing techniques in order to forecast reflectivity (a variable that

is highly correlated to convective weather hazards) in a probabilistic fashion.

Nevertheless, the statistical performance of such blended systems is still limited

and research is ongoing at meteorological centres around the world to improve

in this aspect.

A different trend is the study of thunderstorm forecasting with data-driven

methods with or without extrapolation, eschewing the use of NWP modelling.

In [9], the authors conducted a characterization of the uncertainty in the move-

ment of thunderstorms, as detected by a radar-based system, for usage in air-

craft routing problems. Approaches to convection forecasting based on machine

learning are also starting to be employed; for example, classifiers with Support

Vector Machines (SVM) [10] or predictors with neural networks[11].

Finally, an alternative aviation-oriented approach focuses on analyzing and

forecasting “weather avoidance fields”, i.e., regions of space that pilots will

try to avoid. This can be performed by using statistical analysis to identify

relationships between processed convection-related meteorological variables and

weather-caused deviations of aircraft from the planned route. An important

system of this kind is the Convective Weather Avoidance Model (CWAM) [12,

13, 14], covering the CONUS. The CWAM assigns a probability of deviation

to each point in space according to spatially filtered values of the Vertically

Integrated Liquid (VIL) metric and the difference between the flight altitude

and the echo top of the storm. The work in [15] develops probabilistic deviation

thresholds based on the NCWF-6 convective forecasts. Thus, CWAM has been
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extensively studied and employed in US-based ATM research, but no model of

this kind has been developed to the same extent for other regions of the world.

A different approach is taken in [16]; instead of employing flown trajectories

as data source, a forecast-based scenario is presented to pilots, who are then

asked to design avoidance trajectories in order to characterize pilot behaviour.

It was found that pilots are willing to take more safety margins when it is easy

to do so and fly closer to the storms when avoidance is difficult. The authors

conclude that there might be a trade-off between efficiency and comfort that

could be derived empirically.

All in all, a first problem of interest is to develop a data-driven probabilistic

model for thunderstorm phenomena based on existing (deterministic) products

in Europe. A second problem of interest is to incorporate such probabilistic

forecast in trajectory planning tools in order to design deviation routes that

avoid the such potentially unsafe zones.

The flight planning literature describes multiple kinds of algorithms that

have been employed for this purpose. The simplest of them are based on geo-

metric procedures [17, 18, 19]. This class of methods do not generally consider

thuderstorm evolution, uncertainty, or trajectory optimality; however, their sim-

plicity results in fast computational times (thus being compatible with real-time

usage) and easy implementation and integration with other tools and algorithms.

A second class of methods is based on graph-search algorithms such as Di-

jkstra’s shortest path algorithm, A∗ or D∗. These methods feature good com-

putational properties too, but it is harder to model time-varying costs (such

as fuel burn) and aircraft dynamics. In [20], the authors combine such a pro-

cedure with a multi-objective genetic algorithm in order to produce a set of

proposed reroutes around convective weather, as analyzed by CWAM. In [21],

CWAM weather forecasts were employed in combination with Dijkstra’s algo-

rithm to minimize a combination of fuel burn and expected cost of deviation

due to weather. In [22], a 3-D field D∗ (which avoids the optimality loss arising

from the restriction to discrete legs and, thus, discrete headings) is applied in a

receding horizon fashion in order to minimize a combination of flight time and
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accumulated probability of bad weather conditions along the route.

Alternatively, methods that consider aircraft dynamics explicitly can be em-

ployed. In [23], a receding horizon optimization scheme is employed in order to

compute avoidance trajectories. In [24], uncertainty in the dynamics and wind

is modelled through a stochastic differential equation and the resulting optimal

control problem is solved by discretizing the state space to obtain a Markov

chain, which is then optimized through Jacobi iteration. A different approach

involves formulating a stochastic reach-avoid problem [25, 26, 27], which is then

solved through dynamic programming techniques. These works rely on state

space discretization and thus are vulnerable to the “curse of dimensionality”,

i.e., the exponential scaling of the required computational resources with the

dimension of the problem.

None of the methods studied in the literature is yet able to generate real-

istic, model-based trajectories that take into account both aircraft dynamics

and uncertain thunderstorm evolution with real-time or near-real-time compu-

tational times. Therefore, in this paper we aim to develop a methodology for

aircraft trajectory planning in the presence of convective thunderstorms whose

evolution is considered uncertain. We will consider single-aircraft trajectory

segments with a duration of 15 to 90 minutes, corresponding to the convective

weather encounter. We address the problem of replanning the trajectory while

the aircraft is already flying, but around 5 to 45 minutes before the aircraft

would encounter severe adverse weather.

To that end, this study makes the following contributions. First, we develop

and fit a model of the uncertain motion of the convective weather cells on top of

a deterministic nowcasting system based on extrapolation, Rapidly Developing

Thunderstorms (RDT), which covers Europe and neighbouring regions and can

be deployed in other regions with Meteosat coverage. We then make use of

the produced probabilistic nowcast in order to formulate an optimal control

problem whose solution is an optimized aircraft trajectory that minimizes a

combination of flight cost (in terms of both time and fuel) and the probabilistic

exposition to convective weather conditions. We also introduce a randomized
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initialization scheme for the optimization algorithm that allows us to explore

different local optima of the problem, with the goals of identifying the best one

and also providing alternative trajectory options. Finally, we demonstrate the

capabilities of the proposed methodology on a realistic scenario.

We employ numerical control techniques that allow us to generate optimal

trajectories while considering nonlinear aircraft and thunderstorm dynamics at a

moderate computational cost. In addition, numerical optimal control is powerful

and versatile enough that potential future extensions (such as varying flight

altitudes) can be incorporated with manageable increments of the computational

cost.

We work within a free-routing framework, which is more appropriate for a

thunderstorm encounter than a structured airspace approach where the aircraft

trajectory is restricted to fly through certain airways and waypoints. Addition-

ally, we work on a robust control paradigm (“design a single trajectory and con-

trol history that is robust in the presence of uncertainty”) instead of a stochastic

control paradigm (“design a control policy that generates different trajectories

depending on the realization of the uncertainty”). The latter concept leads to

better performance, as the control actions are not taken a priori and are thus

chosen with more information; however, we consider robust control to be more

appropriate for ATM purposes. The main reason is that fixed and predictable

trajectory plans make it easier for air traffic controllers to coordinate multiple

aircraft trajectories, which is particularly important in this setting as convective

weather episodes lead to higher controller workload.

The proposed solution could find applications in both onboard and ground-

based decision-support tools (DST). At the airborne side, pilots could employ

such a DST to quickly obtain and evaluate flight path alternatives; in the ground,

it could help air traffic controllers to assign time-based metering slots to aircraft

flying through weather impacted regions and/or group aircraft trajectories into

weather-avoiding flows that are easier to manage. Finally, it could be employed

as a basis for trajectory synchronization and negotiation between air traffic

control and the aircraft.
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This work is structured as follows. In Section 2, we describe the charac-

terization of convection, from the data source to the probabilistic model. The

optimal control formulation of the problem, as well as its initialization and so-

lution are discussed in Section 3. We show the results of using our approach on

a realistic scenario in Section 4 and draw conclusions on Section 5.

2. Meteorological modelling

Convection occurs when the stratification of the atmosphere breaks down

due to the presence of convective instability, with the formation of tower clouds

that easily reach the tropopause. It is observed over a wide range of spatial and

temporal scales [28]:

• At annual time periods and planetary-length scales, convection is modu-

lated by meteorological events governed by orbital and oceanic forcings,

such as the Intertropical Convergence Zone (ITCZ), the monsoonal circu-

lations and the El Niño Southern Oscillation (ENSO).

• At the synoptic scale and middle latitudes, Rossby waves produce low

and high pressure systems with length scales from 1000 to 6000 km and

durations on the order of one or two weeks. While high pressure systems

tend produce a stable stratification of the atmosphere that inhibits con-

vection, low pressure systems tend to feature convection along cold, warm

and occluded fronts and instability lines [29].

• At the mesoscale, we can find convective phenomena with characteristic

lengths of 10 to 1000 km, such as isolated thunderstorms, squall lines, con-

vective complexes and tropical cyclones, that can be embedded in bigger

structures. [30].

While planetary and synoptic scale phenomena can be forecasted with a

global Ensemble Prediction System (EPS) [31, 32], these forecast systems lack

the spatiotemporal resolution to resolve mesoscale phenomena. Limited area

8



EPS products (which nowadays have resolutions near the kilometer) can be em-

ployed at the mesoscale [33, 34], but they are not yet able to forecast individual

cells.

Mesoscale phenomena (in particular, thuderstroms) are the main focus of

the trajectory planning problems that we consider in this study. Therefore,

as discussed in Section 1, it is useful to employ a nowcasting system based on

extrapolation instead of an NWP product. We employ the RDT system5 for

this purpose, which we describe in Section 2.1.

2.1. Data

RDT is one of the products of the Satellite Application Facility on support to

Nowcasting and Very Short-Range Forecasting (NWCSAF) consortium, partici-

pated by several European National Weather Services. It uses imagery collected

from the SEVIRI instrument installed aboard the geostationary Meteosat Sec-

ond Generation (MSG) satellites, with a horizontal resolution of 3 km, in order

to characterize convective systems in an area around Europe every 15 minutes.

20°W 0° 20°E

20°N

30°N

40°N

50°N

2017-11-17, 12:30Z
Triggering
Trigg. (split)
Growing
Mature
Decaying

Figure 1: Convective systems over Europe as identified by the RDT product.

5http://www.nwcsaf.org/AemetWebContents/ReferenceSystem/GEO/ProductsPages/

ReferenceSystem_GEO_RDT_rdt_LOOP.html
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The RDT system identifies convective cells and describes them as polygons

on a latitude-longitude map in an object-oriented approach, while also deter-

mining certain attributes of the cells (see Figure 1). The algorithm at the core

of RDT operates in three steps:

• In first place, an identification of cells corresponding to cloud systems

is performed using the infrared brightness temperature channel from the

SEVIRI data. The algorithm identifies the cloud towers from the local

minima of the infrared brightness temperature and then analyzes the local

temperature pattern in the vicinity of the cloud tower to determine an

adaptive temperature threshold that is employed to determine the extent

of the cloud system.

• In second place, successive analyses are compared with a tracking algo-

rithm that employs overlap and correlation methods in order to match

previously determined cells with the newly identified objects and store

their evolution and trajectories; this information is employed to generate

new estimates of the speed and direction of the cells. Cloud splitting and

merging events are also handled at this stage.

• Finally, a discrimination method is employed to distinguish convective

objects from other cloud cells, which are much more numerous. It relies

on data from multiple infrared and vapour channels and uses both spatial

characteristic and temporal variations and trends. There parameters are

stored in a learning database, which is used to train a statistical model

that employs lightning occurrence data from the Météorage and European

Cooperation of Lightning Decision (EUCLID) networks as ground truth.

The RDT output contains the list of identified convective objects, along with

characteristics such as the perimeter, the speed and direction of its motion, or

the cloud top pressure. One computed parameter of particular interest for

our analysis is the phase of the convective cell, which classifies thunderstorm
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systems into five categories: triggering, triggering from split, growing, mature

and decaying.

These parameters (in particular, the perimeter, speed and direction) can be

employed to extrapolate the position of the storm in a deterministic manner

(indeed, RDT output includes extrapolated nowcasts generated in this fashion).

However, this extrapolation is deterministic and doesn’t take into account the

error inherent to the nowcast. Therefore, we proceed to build a model of the

uncertainty in Section 2.2.

2.2. Probabilistic modelling

We will now seek to obtain a function of the form pta(r, t) that represents

the probability that the point r = (φ, λ) ∈ R2 (where φ and λ denote geodetic

latitude and longitude in degrees) lies inside a convective storm at time t, as

estimated using the forecasts available up to time ta.

Let ta be the time at which we build the probabilistic forecast (not the

deterministic RDT forecast). We define the reference time tref <= ta as the

time at which the latest RDT forecast before ta was released.6 See Figure 2 for

reference.

As input data, we will make use of the latest Nsteps forecasts that are avail-

able before ta. We will denote the corresponding forecasts times as follows (see

Figure 2):

tf−i = tref − i · 15 min, i ∈ I := {0, 1, . . . , Nsteps − 1}

For example, if Nsteps = 3 (as in our implementation), we will employ the

forecasts made at tref , tref − 15 min and tref − 30 min.

For each of these forecasts, the projected position of each storm can be

extrapolated to any posterior time t in a linear and deterministic manner by

6While each analysis contains forecasts for multiple discrete time horizons (15, 30, 45, and

60 minutes), we can extrapolate them to any instant between them by making use of the

speed and direction information.
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15 min} {
Extrapolation

Figure 2: Construction of the time-lagged ensemble.

employing the velocity information provided by the forecast and the temporal

distance. In order to perform the extrapolation, we add the quantity v · |t− tf−i|
to each point in the polygon that defines the contour of the storm, where v is

the estimated velocity of the storm in latitude-longitude coordinates and can be

expressed as:

v =
180

π
R−1e vs

 cosχs

(cosφ)−1 sinχs

 (1)

where Re is the mean radius of the Earth, vs is the velocity of the storm as

estimated by the RDT forecast and χs is the estimated direction of movement

of the storm (again provided by the RDT extrapolation).

Let J = {Triggering, Triggering from split, Growing, Mature, Decaying}
be the set of possible phases of the storm. For a given reference time, we now

compute the indicator functions I−i,j(r, t) with i ∈ I , j ∈ J . These functions

take the value 1 if, according to the forecast made at tf−i and extrapolated to
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time t in the aforementioned fashion, the point r lies inside a storm with phase

j; they take the value 0 otherwise.

We will now proceed to incorporate stochasticity into the movement of the

convective cell in order to represent the forecast uncertainty.7 We model this

evolution as a Brownian motion with drift. This process is described by the

following stochastic differential equation (see [35, Chapter 5]):

dct = vdt+ ΣwdW (2)

In Equation (2), ct denotes the position of a reference point in the storm,

such as the center; v denotes the speed of the storm. Σw is a matrix describ-

ing the magnitude and shape of the random perturbations; we model them

as isotropic, i.e., Σw = σwI2×2 with σw denoting the amplitude of the per-

turbations. Finally, W denotes a standard two-dimensional Wiener process.

The Wiener process (also known as “Brownian motion”) represents the sim-

plest stochastic process; it is characterized by having independent increments,

distributed as Gaussian variables with variance equal to the time differential

(i.e. with the information available at time t, the value of the Wiener process

at t+ ∆t is a normal variable with variance ∆t). It can, therefore, be viewed as

the “integral in time” of white noise.

We define the stochastic displacement D as the difference between the stochas-

tic position ct and the deterministic forecast ctf−i
+ v(t − tf−i) (see Figure 3).

For a fixed t, this displacement is a Gaussian random variable with mean 0 and

standard deviation σw

√
t− tf−i; its probability density function is, therefore:

ptD(y) =
1√

2πσw|t− tf−i|
exp

(
− ||y||2

2σ2
w|t− tf−i|

)
Because the position of the storm is now a stochastic process, the indicator

functions I−i,j(r, t) become stochastic processes too. We can, however, compute

7In this work, we will not consider changes in size or shape
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Figure 3: Example realization of Equation (2).

their expected value Ī−i,j(r, t) with a straightforward convolution operation,

as shown by equation (3). See Figure 4 for a schematic illustration of the

convolution process.

Ī−i,j(r, t) = E[I−i,j(r, t)] =

∫
R2

ptD(y)I−i,j(r− y, t))dy = ptD ∗ I−i,j(·, t) (3)
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Figure 4: Schematic representation of the deterministic and stochastic (averaged) indicator

functions in one dimension at different, successive times.

Performing this approximation for multiple storms in the same manner re-

quires the assumption that the stochastic displacement is common to all storms

with the same phase j; in other words, the movement of the storms is assumed

to be perfectly correlated and linearity allows us to take the convolution af-

ter aggregation. While it would be desirable to model the correlation of the

movements of the storms, we consider this approximation good enough for our

purposes, as it approximates a “correct” Ī−i,j by an upper bound.8

At this stage, we have |I | × |J | smoothed, extrapolated indicator functions.

In order to integrate the information from all of them in a data-driven fashion,

we will use them as predictors in a statistical model. We select a logistical

8Assume that there are two storms, and the events that the point r is in each one of them

at time t are denoted by A and B. Then

P (A ∪B) = P (A) + P (B)− P (A ∩B) = Ī−i,j(r, t)− P (A ∩B).

Therefore, if P (A ∩ B) (which represents the probability of the point being inside both

extrapolated storms) is small enough, the approximation is close. For more storms, the

argument is similar, as the difference is again only intersection terms.
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regression model, as it is a parsimonius specification that models the output

variable as the probability that the event of interest takes place (in this case,

the existence of convective conditions in a future step). Therefore, by comparing

the predicted indicators with the actual outcomes (according to the analysis in

the next time steps), a logistical regression procedure can be employed to predict

convective conditions in a probabilistic manner.

In a Generalized Linear Model (GLM) such as linear regression, an outcome

variable y (that, in a binary setting like ours, takes values in {0, 1}) is modelled

as a random variable whose expected value depends on the values of a vector z

of predictors or “features”:

`(E[y]) = wT z (4)

where ` represents a link function while w is a vector of coefficients whose

values are determined, in GLM routines, by maximizing their log-likelihood on

a training set. The quantity wT z is called the linear predictor.9 In the case of

logistic regression, the link function is the logit function:

logit(p) = log

(
p

1− p

)
(5)

In our case, the predictor variables will be the extrapolated indicator func-

tions as well as a constant offset w0, so the linear predictor is given by:

LP(r, t) = w0 +
∑
i∈I
j∈J

wi,j Ī−i,j(r, t) (6)

and the desired probability function can be written as:

ptref (r, t) =
1

1 + exp(−LP(r, t))
(7)

Section 2.3 describes the process of fitting this model.

9Note that, just like in the linear regression case, nonlinear predictors can be included as

long as they are included in additive fashion.
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2.3. Model fitting

The complete model is defined by the parameters Nsteps and the coefficients

σw, w0 and wi,j . We choose Nsteps = 3 after our exploratory analysis concluded

that the coefficients after i = 2 were too close to 0 to be relevant and the

statistical skill of the model was not appreciably deteriorated by the exclusion

of the i > 2 forecasts; in other words, the information contained in the forecasts

before the third to last seems to be redundant for prediction purposes. In order

to determine the remaining parameters, we will make use of three procedures:

• An “inner loop” that computes the values of w0 and wi,j for a given value

of σw, as well as a measure of the statistical skill of the model.

• An “outer loop” that calls the inner loop for different values of σw and

then selects the value σ∗w that leads to the best statistical skill.

• A “bootstrap-like” method that runs the inner loop with σw = σ∗w and

different, randomly selected slices of the dataset in order to obtain more

robust estimates of the w0 and wi,j coefficients as well as to estimate their

volatility.

We start by describing the inner loop procedure. For a given value of σw,

we can compute the values of the coefficients w0 and wi,j with the following

method:

1. Select a number of dates and times ta in random fashion from a training

dataset and load the corresponding RDT analyses, as well as the Nsteps

preceding forecasts.

2. For each analysis, compute the “areas of interest” (AoI), defined as rect-

angular regions containing any detected or forecasted storms while adding

proportional margins (see Figure 2.3). This step reduces the subsequent

computational requirements of the process.

3. At each point r in a rectangular grid inside an AoI, compute the values

of Ī−i,j(r, ta) and the actual value Ia(r, ta) (i.e., 1 if the point lies in-

side a storm according to the analysis and 0 otherwise). Note that the
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extrapolated and smoothed indicator Ī−i,j(r, ta) depends on the value of

σw.

4. Launch a logistic regression routine employing the computed values of

Ī−i,j as predictors and the values of the points as data samples, returning

the values of the w0 and wi,j coefficients.

The performance of the regression model can be evaluated with several met-

rics. Suppose that we now consider the test set (composed by data that have

not been employed in training) and predict that every data point where the

Predicted or
identified storm

Area of Interest (AoI)

a) b)

Predicted storms Area of Interest (AoI)

Identified stormsc) d)

Figure 5: Area of Interest determination. For a given storm (as in Figure 2.3.a), the corre-

sponding AoI is the rectangle containing it, with proportional margins (Figure 2.3.b). For each

analysis, comprised of multiple identified storms plus forecasted storms from earlier analysis

(Figure 2.3.c), the AoIs from each storm are merged.
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forecasted probability is above a threshold to have convective conditions and

every other data point to have clear air conditions. If we plot the true positive

rate against the false positive rate as the threshold changes from 0 to 1, we

obtain the Receiver Operating Characteristic (ROC) curve. The integral of the

area below the ROC curve is called the Area Under Curve (AUC) metric; AUC

values of around 0.5 indicate that the model is no more skilled that random

classification on average, while values closer to 1 indicate that the skill of the

model is high.10

We can now employ this inner loop process in order to choose the value of σw

in the outer loop and the values of w0 and wi,j in the bootstrap-like procedure.

Both methods are illustrated in Figure 6.

For the outer loop, we can employ the AUC criterion to choose the “best”

value of σw. We compute the logistic regression on a training set for different

values of the σw parameter (using the same randomly chosen data). Then, we

compute the AUC score on a test set. Finally, we select the value of σw that lies

on the maximum of the σw - AUC curve. This process is performed twice: first,

with a logarithmic sweep of σw in order to identify the scale of interest (upper

plot in Figure 7); then, with a linear sweep and polynomial approximation in

order to identify the optimum with more precision (though we will note that

somewhat lower or higher values lead to very similar AUC scores). With our

dataset, comprising RDT analysis and forecasts from the 20th to the 29th of

March, 2017, the chosen value is σw = 0.73 km · s−0.5.

10Values closer to 0 indicate “reverse skill”, i.e., the model is worse than chance at classifying

outcomes so the reverse prediction has skill.

19



Compute predictors
with 

Run regression on
initial training data

Generate training and 
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new training data
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Retrieve the estimated
values of the coefficients

Compute 2.5th and 
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Figure 6: Schematic representation of the deterministic and stochastic (averaged) indicator

functions in one dimension at different, successive times. NBS denotes the number of bootstrap

analyses.

Finally, with σ∗w fixed, we can now estimate the mean values and confidence

intervals of the coefficients {wi,j} with the bootstrap-like procedure. We ran-

domly select 250 dates and times from the available data set and subsample

25% of the resulting areas of interest at random; these settings allow us to hold

the resulting sample in-memory. Then, we obtain the coefficient values by re-

gression and evaluate the performance by computing the AUC score on a test

dataset composed by a random 25% of a random 150 dates and times from the

remaining files. We repeat this process 1000 times and take the average, as

well as the 2.5th and the 97.5th percentiles which allow us to define the 95%

confidence intervals.
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Figure 7: Values of the AUC (Area Under Curve) metric. The dashed line represents the

polynomial approximation employed to determine the value of σw that optimizes the AUC.

The computed values of the coefficients {wi,j} are presented in Table 1 and

Figure 8. It can be observed that the step of the forecast is more relevant in

the prediction than the analyzed storm phase, with the latest forecast being 2

to 4 times more influential than the previous one, while the earliest forecast is

statistically significant only partially. Additionally, we can see that the esti-

mated values of the coefficients for storms that are triggering are more volatile;

we attribute this outcome to the fact that they are less numerous within the

data set, so the coefficient estimates have higher variance.
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0 min -15 min -30 min

Triggering 5.712 (4.955, 6.793) 2.556 (1.474, 3.544) 0.052 (-0.868, 1.229)

Tr. (split) 6.453 (6.114, 6.813) 1.756 (1.199, 2.342) -0.054 (-0.676, 0.575)

Growing 5.647 (5.397, 5.886) 1.239 (0.875, 1.613) -0.082 (-0.430, 0.282)

Mature 5.765 (5.518, 6.026) 1.746 (1.380, 2.097) 0.699 (0.346, 1.030)

Decaying 5.700 (5.493, 5.920) 1.555 (1.231, 1.873) 0.581 (0.248, 0.914)

w0 -4.155 (-4.186, -4.122)

Table 1: Coefficient values w0 and {wi,j} and 95% confidence intervals.
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Figure 8: Coefficient estimates w0 and {wi,j}. Each boxplot represents the distribution among

different bootstrap-like fits, with the box representing the 25th, 50th and 75th percentiles and

the whiskers representing the 10th and 90th percentiles.

The computed AUC values range from 0.949 to 0.958. This seems like an

excellent value, but we will note that our dataset features a large amount of

points where no storm is extrapolated and no storm occurs; this inflates the

AUC score by providing a lot of “easy predictions”. In practice, our model will

often miss newly created storms that are hard to detect using extrapolation

procedures, unless they are close enough to other storms that the probability

dispersion effect assigns some non-zero probability.
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Figure 9 compares the deterministic extrapolation of an RDT nowcast to

the probability field generated by the fitted model. It can be observed how the

probability field diffuses as the forecast horizon increases.
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Figure 9: Comparison between the deterministic RDT extrapolation and the probabilistic

model at different forecast horizons. The solid, dashed, and dotted lines represent the extrap-

olation from the forecast at tf−0, tf−1, and tf−2, respectively. Color bar denotes pt(r, t).

We now turn our attention to the issue of how to employ these generated

probabilistic forecasts for the purpose of flight planning under uncertainty.
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3. Optimization Methodology

We use a numerical optimal control framework, as it represents a versatile

approach that not only allows us to model nonlinear dynamics and nonconvex

objective functions (features that have made it popular in aerospace engineering

[36, 37]), but it is also flexible enough to allow for future extensions of the

method.

3.1. Optimal Control

Consider a controlled, constrained dynamical system, composed by:

• A temporal domain T = [t0, tf ] ⊂ R

• A vector of state variables x(t) : T → Rnx

• A vector of control variables u(t) : T → Rnu

• The differential equation f : Rnx × Rnu × T → Rnx that describes the

evolution of the system:

dx

dt
= f(x(t),u(t), t) (8)

• Equality constraints h : Rnx × Rnu × T → Rnh (with the equality sign

applying in element-wise fashion):

h(x(t),u(t), t) = 0 (9)

• Inequality constraints g : Rnx×Rnu×T → Rng (with the inequality signs

applying in element-wise fashion):

gL ≤ g(x(t),u(t), t) ≤ gU (10)

In order to define an optimal control problem, we need to define a cost

functional that describes the objective that must be pursued, as well as a set

of boundary conditions. The boundary conditions can be defined by a function

Ψ : Rnx × R× Rnx × R→ Rnb and an allowable set Ωb ⊂ Rnb such that:
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Ψ(x(t0), t0,x(tf ), tf ) ∈ Ωb (11)

Finally, the cost functional is commonly written in the general “Bolza form”:

J(x,u, t0, tf ) = Φ(x(t0), t0,x(tf ), tf ) +

∫ tf

t0

L(x(t),u(t), t)dt (12)

where Φ : Ωx×R×Ωx×R is often called the “Mayer term” or “terminal cost”

(as it usually depends only on the final time and state) and the integral term

is called the “Lagrangian term” or “running cost”, with L : Ωx ×Ωu × T → R.

The optimal control problem can then be defined as:

min
t0,tf ,x,u

J(x,u, t0, tf ) (13)

such that Equations and inequalities (8) – (11) are fulfilled.

The solution of an optimal control problem is characterized by either the

necessary conditions for optimality (the Pontryagin Minimum Principle, which

transform the optimal control problem into a two-point boundary value prob-

lem) or the sufficient conditions (described by the Hamilton-Jacobi-Bellman

partial differential equation). Most optimal control problems of practical inter-

est cannot be solved analytically, so numerical methods are employed instead.

We choose to employ direct transcription methods [38], as they handle con-

straints more naturally than indirect methods and do not suffer from the “curse

of dimensionality” like dynamic programming.

In direct collocation methods [39], the state and control trajectories are dis-

cretized in time and the differential equations are turned into defect constraints

that depend on the values of the states and controls at the discretization nodes,

which become decision variables. The cost functional is approximated by a

quadrature rule, and the constraints are enforced at the discretization nodes.

In this form, the optimal control problem can be turned into an Nonlinear Pro-

gramming (NLP) problem, which can then be solved with standard nonlinear

optimization algorithms such as SNOPT [40] or IPOPT [41], which make use of

gradient-based methods for solving the optimization problem.
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3.2. Dynamical Model

We assume that the uncertainty in the movement of the storm is substan-

tially greater than the uncertainty in aircraft dynamics; therefore, we model

the motion of the aircraft as a deterministic system. We assume the aircraft

moves in a 2D plane (i.e. at a constant flight level) with variable airspeed and

non-instantaneous turning dynamics. We consider an ellipsoidal Earth as in

the World Geodetic Survey 1984 reference system (WGS84) model, with radii

of curvature of ellipsoid meridian and prime vertical denoted by RM and RN

respectively. We take wind from a forecast and set remaining atmospheric pa-

rameters according to the International Standard Atmosphere (ISA) model. The

equations that describe the dynamics are:

d

dt



φ

λ

v

χ

m


=



(RN + h)−1(v cos(χ) + wx(φ, λ, t))

(RM + h)−1 cos−1(φ)(v sin(χ) + wy(φ, λ, t))

(T(CT )−D(CL, v))/m

(g/v) tanµ

−η(v)T(CT , v)


, (14)

L(CL, v) cosµ = mg, (15)

where φ is the latitude, λ is the longitude, v is the true airspeed, m is the

mass, h is the geodetic altitude, χ is the heading, µ is the bank angle of the

aircraft, wx and wy are the zonal and meridional components of wind,11 T is the

thrust force, D is the drag force and η is the thrust-specific fuel consumption.

Both η and D are modelled according to the BADA 4 aircraft performance model

[42], and L(CL, v) = 1
2ρv

2SCL is the lift force, where S is the wet wing surface.

The control vector is composed by the thrust coefficient CT , the lift coefficient

CL, and the bank angle µ. Figure 10 illustrates the relationship between the

speeds and angles.

11Contrary to the usual definition, we take wy to be in a South to North direction, so that

the signs match.
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Figure 10: Relationship between airspeed, groundspeed, wind, heading and course.

In addition, the following flight envelope constraints apply:

|µ| ≤ 45◦, (16)

CL ≤ CLmax (17)

M(v) ≤MMO (18)

CTmin
≤ CT ≤ CTmax

(19)

v ≤ vmax (20)

where CLmax is the maximum lift coefficient, M is the Mach number (the

ratio between airspeed and the speed of sound, see Equation 21), MMO is the

divergence Mach number, CTmin and CTmax are the thrust limits and vmax is a

tighter airspeed limitation that we introduce to account for the potential speed

limits when flying through turbulent air near convective zones. The speed of

sound, a, depends on the temperature, so the Mach number can be defined as:

M = v/a(T ) (21)
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3.3. Trajectory Optimization

We formulate the trajectory planning problem as an optimal control problem.

Its objective function is formulated as follows:

J =

[
−m(tf ) + CI · tf + rp

∫ tf

t0

p(r(t), t)dt

]
, (22)

where CI is the “Cost Index” parameter, representing the preference for

reduced flight time instead of fuel burn, and rp is the “risk penalty”, which

we define as the preference for reduced exposition to regions of high storm

probability instead of the other objectives. A higher rp setting generates a

trajectory that is less likely to be exposed to convective activity.

The optimal control problem is formulated as:

min J (23)

subject to Equations (14) to (20) as well as the boundary conditions:

(φ, λ, v, χ,m)(t0) = (φ0, λ0, v0, χ0,m0) (24)

and

(φ, λ, v)(tf ) = (φf , λf , vf ) (25)

If a required time of arrival (RTA) to the end waypoint is specified, we set

tf = tRTA instead of leaving it free. Naturally, if an RTA is set in this fashion,

the CI setting becomes irrelevant.

As we mentioned before, we work with direct transcription methods that

transform the optimal control problem into a nonlinear optimization problem.

Therefore, a user-provided initial guess for the decision variables (the values

of the trajectory state and control variables at every node) is required. We

describe the generation of this initial guess in the next subsection.

Note that the presented optimal control scheme requires a probability field of

function of the form p(r(t), t) ∈ [0, 1] (in either analytical or gridded representa-

tion), such as the one we generate in Section 2.2. Therefore, a different weather
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forecast or product could be employed as input, as long as it is provided in the

required shape and represents the same concept (the probability of an aircraft

at r being within a convective cell at time t ) or a similar one.

3.4. Initialization

The selection of the initial guess is important for two reasons. First, the

quality of the initial guess is, in general, an important factor in the performance

of NLP solvers. The number of iterations, the computational time (particularly

relevant for our purposes) and the likelihood that the algorithm converges to an

optimal solution are all dependant on the initial guess.

In second place, we expect the optimization problem that we formulate to

have multiple local minima; therefore, the initial guess will determine which of

these multiple solutions will be found by the algorithm. We expect different

local minima because of the non-convex nature of the problem, which is derived

to a high extent from the existence of multiple potential avoidance routes that

are separated (in trajectory space) by “worse” routes that cross the obstacles,

which implies the existence of multiple basins of attraction around the locally

optimal routes.

For these reasons, we have designed a randomized heuristic initialization pro-

cedure that produces different initial guess trajectories with the goal of exploring

the solution space and find the different local minima. Generating multiple solu-

tions also has operational benefits, as pilots and controllers can then choose one

of them according to a different criterion (for example, facilitating deconfliction

or sequencing); additionally, it is possible for them to employ their trained intu-

ition and experience to judge the feasibility and complexity of the trajectories,

or any factor not included in the model, to take the best decision in practice.

The generated trajectories will be obtained assuming no wind and constant

airspeed vIG. Under these assumptions, any trajectory departing from r0 can

be represented by the arrival time tf and the heading history χ(t). If a random

arrival time tf and a random heading history χ(t) are generated, integrating the

dynamics leads to a random trajectory. However, this randomly-generated tra-
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jectory will arrive at a random point, and we are only interested in trajectories

that arrive at rf . Therefore, we will generate a “normalized” heading history

χ̂ : [0, 1]→ R such that

χ(t) = χ0 + χ̂

(
t

tf − t0

)
, (26)

where χ0 and tf are adjustable constants that allow us to generate a valid

heading history from any continuous normalized heading history χ̂ through a

straightforward rotation (adjustment of χ0) and stretch (adjustment of tf ).

In order to generate χ̂, we consider the following basis expansion:

χ̂(τ) =

nL∑
k=1

akZkPk(τ) (27)

where nL represents the degree of the expansion (we use 4), {Zk} is a se-

quence of independent standard normal variables, {ak} represents a weighting

sequence (in our implementation, ak = (3/4)1−k) and {Pk} denotes the shifted

Legendre polynomials (the Legendre polynomials on [0, 1]). Note that the ze-

roth term is omitted, as it corresponds to a constant offset and χ0 already fulfills

that role. Table 3.4 lists the shifted Legendre polynomials up to degree 5.

k Pk(τ)

0 1

1 2τ − 1

2 6τ2 − 6τ + 1

3 20τ3 − 30τ2 + 12τ − 1

4 70τ4 − 140τ3 + 90τ2 − 20τ + 1

5 252τ5 − 630τ4 + 560τ3 − 210τ2 + 30τ − 1

Table 2: Legendre polynomials on [0, 1]

By sampling {Zk} in random fashion, we can generate different functions

χ̂(t), which determine different heading histories χ(t). We generate the rest of

the state and control trajectory by integrating Equation (14), thus completing

30



the initial guess. Finally, by solving the problem with different starting points

obtained in this fashion and collecting the corresponding solutions, we have a

higher chance of obtaining a global optimum instead of a single local optimum.

We note that the relationship between a given starting point and the optimal

solution found by the solver is not fixed, but may depend on the choice of NLP

solver and its settings.

3.5. Computational setup

We employ the Python-based CasADi [43] library for NLP modelling. The

probability field is computed in a 0.1◦×0.1◦ grid, sampled every 5 minutes, and

then interpolated through 3-dimensional B-splines. We employ the interior-

point NLP solver IPOPT [41] running with the MA27 sparse symmetric linear

solver from the HSL Mathematical Software Library [44] and initial barrier pa-

rameter µ = 10−3.8. The computations are performed in a workstation equipped

with an Intel Xeon E3-1240 v5 CPU running at 3.5 GHz.

We employ a trapezoidal transcription scheme [39, Chapter 4] with piecewise-

constant controls as direct collocation method, with defect constraints of the

form

xn+1 − xn =
h

2
(f(xn+1,un, tn) + f(xn,un, tn+1)) , ∀n ∈ {0, . . . , Nnodes − 1},

with the subscript n denoting the value of the directized variables at the n-th

node or interval and h =
tf − t0

Nnodes − 1
≡ tn+1− tn denoting the node spacing. By

employing an homogeneous node spanning h, this transcription scheme samples

the probability field in a homogeneous fashion, unlike higher-order pseudospec-

tral methods [45]; furthermore, the potential existence of constrained arcs (such

as legs at maximum speed) does not allow us to assume that pseudospectral

methods will provide spectral accuracy unless coupled with complex adaptive

methods. In any case, the choice of discretization method is not critical for our

work.
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4. Case study

4.1. Scenario definition

Our test scenario is based on a storm group that is detected by the RDT

algorithm on November 16th, 2017. The storm group is evolving towards North-

East. The scenario starts at 6:00Z and ends at 07:30Z. A twinjet narrow-body

airliner modeled according to the BADA 4 specification flies at FL330 from

(φ0, λ0) = (34◦,−24◦) to (φf , λf ) = (28◦,−19◦), therefore crossing the group of

storms. The remaining initial conditions are given by:

χ0 = 115◦ (28)

m0 = 71495 Kg (29)

v0 = 220 m/s (30)

We select rp = 10 Kg/s, a required time of arrival at the end waypoint

of 07:12Z, a vmax of 230 m/s, and a final airspeed of 200 m/s. We solve the

problem with the initialization procedure described in Section 3.4, starting from

3400 randomly chosen starting points. We will discuss the best solution found

in Section 4.2 and the other local minima afterwards, in Section 4.3.
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4.2. Global optimum
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Figure 11: Computed trajectory and storm probability p(r, t) at different points in the tra-

jectory. The solid line with dots represents the flown part of the trajectory while the dashed

one represents the remaining part. The three contour levels represents the 2.5%, 5% and 10%

probability levels.

Figure 11 illustrates the evolving probability field p(r, t) at different instants

in time, as well as the planned trajectory of the aircraft, passing through a

corridor between the storms. It can be observed that the planned trajectory

takes the future potential evolution of the storms into account, and not just the

present location of the storms.

33



−24 −22 −20

λ (deg)

28

30

32

34

φ
(d

eg
)

Latitude - Longitude

0 20 40 60

t (min)

120

140

160

180

χ
(d

eg
)

Heading

0 20 40 60

t (min)

200

205

210

215

220

v
(m

/s
)

True Airspeed

0 20 40 60

t (min)

69000

70000

71000

m
(K

g
)

Mass

0 20 40 60

t (min)

−2

0

2

4

6
µ

(d
eg

)

Bank angle

0 20 40 60

t (min)

0.2

0.4

0.6

Controls

CL
CT

Figure 12: State space and control trajectories for the global solution.

State and control trajectories are illustrated in Figure 12. Since the resulting

airspeed profile is relatively smooth, the longitudinal controls (CT and CL) are

stable, while the lateral-directional control (the bank angle, µ, with CL playing

a compensation role) changes in order to steer the aircraft. Beyond the initial

and final transitions towards the initial and final conditions, the speed slowly

decreases as the mass decreases. This could be attributed to multiple factors:

it might be optimal to go faster at the beginning in order to avoid the storms

incoming from starboard and to go slower at the final leg in order to wait for

the storms at the port side to go away. Alternatively, the TAS profile might be

similar to the one in a simple, one-dimensional cruise problem [46]; in this kind

of setting, the optimal solution requires that the airspeed slowly goes down as

the mass of the aircraft decreases.
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4.3. Local optima
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Figure 13: Trajectories from different randomized starting points. For the most likely trajec-

tories with close-to-optimal objective function values, we annotate the difference in cost with

respect to the global optimum and the percentage of the time that the randomized initial

guess produces the trajectory. The storm probability field is represented at 06:30Z.

We illustrate all the locally optimal paths found by the method in Figure 13.

We highlight the five solutions that are present in more than 1% of the runs

and have objetive values closer than 100 Kg to the global optimum.
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Figure 14: TAS profiles of the randomly initialized trajectories

It can be observed that about two thirds of the starting points lead to the

most common trajectory, which is very close in cost (12 Kg) to the global op-

timum. Another 4.4% of the starting points lead to the global optimum, as

discussed in Section 4.2. Together, the five highlighted trajectories account for

nearly 85% of the initialization points; the remaining 15% of the starting points

lead to trajectories that have higher costs or are found infrequently. Some of

these solutions try to route around the whole storm group, but the RTA re-

quirement prevents them from fully avoiding the bigger storm clusters.

These results confirm our hypothesis about the multiplicity of local optima

formulated in Section 3.4. Therefore, the usage of a randomized initial guess

procedure is justified.

Figure 14 displays the airspeed profiles of these trajectories. The most com-

mon solution features the slowest airspeed profile and, thus, the lowest expected

fuel burn (as long as the trajectory does not have to reroute). It does so, how-

ever, at the expense of increasing the potential exposition to convective hazards

when compared to the global optimum (see Figure 15(a) and Figure 15(b)).
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Another feature present in the airspeed profiles shown in Figure 14 is the

appearance of peaks of increased airspeed, which correspond to the crossing of

zones of higher storm probability (compare with Figure 13 and Figure 15(a)).

This phenomenon can be explained by the shape of our cost functional, where

the cost of flying through risky zones depends not only on the probability level

but on the time spent in risky zones, and thus flying faster is recommended.

This might seem to contradict recomendations to not fly at high speed through

turbulent air, but we address this issue with the vmax setting in Equation (20).

The best solution, which does not cross zones where the probability field is above

2.5%, is the only one that does not feature these temporary airspeed increases.
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Figure 15: Probability of convection and cost. Fig a) The horizontal dashed lines represent

the 2.5%, 5% and 10% probability levels. Fig b) The dashed lines represent equal total cost

curves.

Figure 15(b) shows the two components of the objective value that is achieved

by each trajectory. As discussed earlier, approximately 85% of the starting

points lead to one of the five highlighted trajectories, which have close-to-

optimal cost. A few of the remaining trajectories also have relatively small

cost increases with respect to the optimum (50 - 200 Kg), manifesting mainly in

the form of increased fuel burn. The second cluster has similar fuel consumption

patterns, but the potential exposition to convective weather rises by about 50%

(from 1.4 equivalent minutes to 2.1 equivalent minutes).
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The information provided in Figure 15 could be presented to the decision-

maker in order to assess the safety of the proposed trajectory, as Figure 15(a)

represents the risk of encountering thunderstorms at each instant in the tra-

jectory while Figure 15(b) illustrates the accumulated risk. Note that, in our

approach, the event to avoid (because it would likely lead to an unplanned route

deviation) is an encounter with a convective cell, not a instance of loss of sepa-

ration with the convective cell, as we deal with uncertainty in an explicit form

instead of employing pre-determined safety margins. Nevertheless, it is certainly

possible to add additional safety margins to our approach by enlarging the de-

terministically nowcasted storms by the desired amount before the application

of the model.
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Figure 16: Distribution of the computational cost.

The distribution of the computational cost associated with the solution of

the optimization problem (not including preprocessing) is shown in Figure 16. It

can be observed that the NLP solver takes less than 30 seconds of CPU time to

find the corresponding solution around 90% of the time. The computational cost

of the algorithm can be thus considered as moderate. While the 10-40 seconds of
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optimization time is useful for analysis and close to real-time performance, the

multiple runs needed to obtain the alternative trajectories with the initialization

scheme represent a limit in terms of practical implementation. Nevertheless,

because runs are independent processes, it is possible to run them in parallel.
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5. Conclusions

We have presented a data-driven methodology for estimating a probabilistic

thunderstorm nowcasting based a existing, deterministic thunderstorm nowcast-

ing product. We then combined it with a robust optimal control methodology

for the design of avoidance trajectories under uncertainty on the motion of

thunderstorms. It considers nonlinear aircraft dynamics, therefore generating

realistic trajectories within a moderate computational cost. The initialization

scheme allows the methodology to capture multiple local optima and identify

the best one, as well as providing alternative trajectories. In a future concept

of operations, the pilot or air traffic controller might prefer to employ these

alternative options because of considerations not included in the optimization

model, such as conflicts with other aircraft. In this way, multi-aircraft situa-

tions could be managed in a more computationally affordable way than a full

n-aircraft optimal control problem, an approach that requires the consideration

of O(n2) potential interactions.

Possible extensions exist in the two main areas of contribution of the pa-

per: First, the probabilistic model for the motion of the thunderstorms can be

enhanced by the addition of other meteorological variables to the set of pre-

dictors. Additionally, the growth and decay processes could be considered to

enhance the model. Finally, a statistical analysis of the relationship between

meteorological conditions and flight plan deviations could be performed in order

to create a more applicable indicator. Second, the optimal control formulation

and the application of direct methods allow for direct and efficient extension of

the methodology to consider additional constraints or dynamics in an efficient

fashion; in particular, the methodology could be extended in future work to a

full 4-D model, with movement in the vertical plane and not just the horizontal

plane.
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