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Abstract

We propose a new algorithm in the two-sided marriage market wherein both

sides of the market propose in each round. The algorithm always yields a

stable matching. Moreover, the outcome is often a non-extremal match-

ing, and in fact, is a Rawlsian stable matching if the matching market is

“balanced.” Lastly, the algorithm can be computed in polynomial time and,

hence, from a practical standpoint, can be used in markets in which fairness

considerations are important.

Keywords: two-sided matching, fair procedure, deferred acceptance algo-

rithm

JEL Classification: C72, C78, D41

1. Introduction

In a classical two-sided marriage market, the celebrated Deferred Acceptance Al-

gorithm (DAA henceforth) due to Gale and Shapley (1962) proved that there

always exists a stable matching—a matching for which no man-woman pair would

leave their current match to match with each other. DAA is a simple iterative

algorithm in which one side of the market makes proposals to the other side. How-

ever, this asymmetry in proposals, whereby one side proposes while the other can

only passively accept or reject, translates into an asymmetry of outcomes—the

resulting stable matching is the most favorable outcome for the proposing side.

As Knuth (1997) suggests:

∗E-mail: a.kuvalekar@essex.ac.uk and aromero@eco.uc3m.es. Aditya Kuvalekar is in-
debted to Jay Sethuraman for countless discussions and guidance in the development of the
early version of this algorithm (Kuvalekar (2014)) that is now subsumed in this paper. We
sincerely thank Vikram Manjunath for his detailed comments and feedback on the paper. We
also wish to thank Christine Cheng, Kevin Dick, Elliot Lipnowski, Kaustubh Nimkar, Efe Ok,
Debraj Ray, Parag Pathak, Ennio Stacchetti and Leeat Yariv for their useful comments.
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The different algorithms considered until now favor the men, and if we

interchange the roles of men and women they would become favorable

to the women. Such injustice is too shocking for the present day. Can

we therefore find a solution that treats both sexes fairly?

Notwithstanding the unfairness embedded in the DAA, one of its appeal is

its simplicity. This raises a natural question: can we devise a simple iterative

algorithm in which both sides of the market make proposals, and the resulting

outcome is stable but, hopefully, non-extremal?

To this end, we propose an algorithm in which both sides propose in each

round, and one that always generates a stable matching. There are three reasons

why we view our algorithm as an attractive alternative. First, the algorithm is

“procedurally fair”—it treats both sides of the market equally. Second, it often

produces non-extremal outcomes and, in fact, a Rawlsian stable matching in “bal-

anced markets.”1,2 Third, the algorithm is computationally efficient— i.e., can be

run in polynomial time.

Our algorithm can be described as follows. In any Round k, we start with an

existing match. Agents propose to either their top k agents if they are unmatched

or to the set of agents weakly better than their current match. Based on these

proposals, for each agent, we compute the set of mutually proposing agents—the

set to whom (s)he proposes and from which (s)he also receives a proposal. Using

these, we construct a graph with nodes as agents and edges given by each agent,

pointing to his/her top mutually proposing agent. This graph produces cycles.

We form a tentative match by breaking these cycles in favor of men or women

randomly, and we remove those set of agents to redraw the graph. Once the

graph is empty, we check whether the tentative match is stable with respect to

the truncated (top k agents) preferences. If yes, we move to the next round; and

otherwise, we construct a truncated stable matching before proceeding to the next

round. We stop the algorithm if, at any point, the tentative matching is stable.

1.1. Related Literature

We are, obviously, not the first ones to address the asymmetry in DAA wherein

it picks the extreme points of the set of stable matchings depending on who the

proposing side is. There are, primarily, two approaches towards this problem. First

is the idea of procedural fairness proposed by Klaus and Klijn (2006). They discuss

1A market is balanced if, for every unstable matching, we can find at least one blocking pair
such that both the agents of this blocking pair are matched to someone in any stable matching.
While this requirement may be harder to verify, a much easier condition to verify is the following.
If all the agents are matched in any stable matching, then the market is balanced.

2We want to emphasize that in defining the Rawlsian criterion, we focus only on the set of
matched agents. We argue that this is a more reasonable definition of the Rawlsian criterion
since the set of matched agents is the same across every stable matching (Roth and Sotomayor
(1990)).
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how well-known randomized procedures such as Employment by Lotto proposed by

Aldershof et al. (1999) or Random Order Mechanism by Ma (1996), that is based

on Roth and Vate (1990), achieve ex-ante fairness. While our algorithm is also

procedurally fair in the sense of Klaus and Klijn (2006), a key distinction between

the earlier procedures and the one we propose is the nature of the algorithm itself;

that is, due to both sides proposing in every round, the outcomes tend to be at

the center of the stable matchings’ lattice rather than at the extremes (Example

4). This is also bolstered by the fact that our algorithm picks one of the Rawlsian

stable matchings in balanced markets unlike these algorithms.

The second approach regarding fairness is based on the outcomes. For exam-

ple, Romero-Medina (2005) define an Equitable Set to capture fairness.3 Also,

Masarani and Gokturk (1989) show the impossibilities of obtaining a fair stable

matching, based on a Rawlsian notion of fairness. This would seem to contradict

our algorithm. However, in their paper, the Rawlsian criterion is defined over the

set of all the matchings, not just stable matchings. More importantly, while the

outcome we obtain is Rawlsian in the case of balanced matching markets, that

is not our primary objective. Our goal is to suitably modify the most appealing

feature of the DAA —simplicity due to its iterative nature— while allowing both

sides to make proposals in each round to tackle the asymmetry.

In a contemporaneous paper, Dworczak (2016) proposes an iterative algorithm,

Deferred Acceptance with Compensation Chains (DACC), in which both men and

women make proposals. While similar in motivation, the key difference from our

algorithm is that his procedure makes the agents propose in a pre-determined

order (as opposed to simultaneously in our algorithm). Moreover, by varying the

initial order, DACC can obtain all the stable matchings, while, in general, we

obtain a strict subset of stable matchings.

Ma (1996) proposes a procedure wherein we start with a Random Priority over

agents. Following the priority, we start with an empty match and add agents one

by one to the matching, satisfying all the blocking pairs within the match. That

is, blocking pairs outside the agents not added so far are ignored. While this

procedure does not distinguish between sexes, it can result in situations in which

it can select only the extremes but not the middle outcomes. In contrast, the

algorithm we propose has narrower support and, often, will pick a strict subset of

stable matchings that do not involve any of the extremal matchings (See Section

4.1).

Using another approach, Teo and Sethuraman (1998) and Sethuraman et al.

(2006) establish the existence of ‘the median stable matching(s)’ which is appealing

3The equitable set also focuses on the Rawlsian criterion, but one that is defined over the
set of all the agents, unlike ours. This seemingly minor distinction is important in markets in
which merely one single agent can render all the matchings equally “unfair” according to his
criterion. Moreover, his proposed procedure is closer to the Random Priority mechanism due to
Ma (1996). Lastly, it is unclear where this algorithm can be executed in polynomial time. See
Romero-Medina (2001) as well.
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from a fairness perspective. However, the main issue with median stable matching

is that, if computing it can be done efficiently, then computing the number of

stable matchings can also be done efficiently; and the latter is known to be a

computationally hard problem (Cheng (2010)).

Cheng et al. (2011) propose a concept of Center Stable Matchings that are

stable matchings whose maximum distance to any stable matching is as small as

possible. These matchings are close to median stable matchings and can also be

computed efficiently. However, primarily median stable matchings or center stable

matchings are fair due to the properties of the stable matchings themselves. Our

approach to fairness through the proposed algorithm focuses on the procedural

fairness of the mechanism itself. In that sense, our algorithm is more similar to

the mechanism due to Ma (1996).

For the problem of school choice, when schools carry out their matching in-

dependently, Manjunath and Turhan (2016) propose a new mechanism to avoid

wasted seats: a Matching and Rematching mechanism that yields a solution dif-

ferent from the two extremes. The outcome of their procedure varies depending

on the number of iterations and is not gender-neutral.

2. Model

Let M and W denote two finite sets of men and women. Let A := M ∪W stand

for the set of all agents. A generic agent in M(W ) will be denoted by m(w). When

the distinction is immaterial, we will denote an agent by i. Let O(i) = W ∪ {i} if

i ∈M and O(i) = M ∪ {i} if i ∈ W ; denote the opposite side for agent i.

Each agent i ∈ A is endowed with a preference relation, �i over O(i). �i is a

binary relation that is reflexive, transitive and antisymmetric (strict).4 Moreover,

since �i is antisymmetric, j �i k =⇒ ¬k �i j if j 6= k, where ¬ denotes negation.

� denotes the strict part of �. Finally, �:= (�i)i∈A is called a preference profile.

An instance of a marriage market is a tuple (M,W, (�i)i∈A).

A bijection µ : A → A is called a matching if µ(i) ∈ O(i) for all i ∈ A, and

µ(i) = j =⇒ µ(j) = i. The set of all possible matchings is denoted by M. Also,

µ(i) = i means that i is single or unmatched. Say that a matching µ ∈ M is

individual rational if µ(i) 6= i =⇒ ¬(i �i µ(i)) for all i. We define the following

notions of stability that are adapted from their analogues in the environment with

complete preferences.

Definition: A matching µ is stable if it is individually rational and there is no

(m,w) ∈ M ×W , such that w �m µ(m) and m �w µ(w). If there exists such a

(m,w), then we say that (m,w) is a “blocking pair” for µ.

4We assume away indifferences purely for convenience, and no results are affected by allowing
the agents to have weak preferences.
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As is well known, Gale and Shapley (1962) show that a stable matching exists

using the DAA. In fact, the set of stable matchings is a complete lattice.5 In

particular, this means that a men- (women)-proposing DAA produces a stable

matching most preferred by men (women). Roughly, in a men-proposing DAA,

men propose in each round, and women can choose only from the men who propose

to them. This passive role played by women, where they cannot initiate proposals

themselves, leads to an extreme outcome—men-proposing DAA selects the stable

matching most preferred by men. However, given the appeal of the DAA—a simple

iterative procedure that produces a stable matching—the natural question that

motivates us the following: Can we have an iterative algorithm, along the lines

of the DAA, in which both sides propose in each round and we obtain something

non-extremal?6 With this motivation, we provide an algorithm in which both sides

propose in each round and the result is a stable matching—a “Rawlsian” one, in

fact (if the market is balanced).

A few simple definitions will be useful in presenting the algorithm. First, let us

define the rank of agent j 6= i for agent i to mean the position that j occupies in

i′s preference ordering. Formally, ρi(j) := |{k : k �i j}|.
Definition: k−truncated preferences of �, denoted by �k, are preferences with

the following two properties:

1. For each i ∈ A and j, l 6= i such that max{ρi(j), ρi(l)} ≤ k, j �i l⇔ j �′
i l.

2. For each i ∈ A and j 6= i such that ρi(j) > k, i �′
i j.

For a matching µ, we say that (m,w) is a “�k blocking pair” if w �k
m µ(m) and

m �k
w µ(w).

Simply speaking, �k is a truncation of � that looks only at the top k agents

for each i ∈ A.

Now, we define a k−stable matching and a k−stable submatching.

Definition 1: Say that an individually rational matching µ ∈M is “k−stable”
if it is a stable matching with respect to �k. Also, say that a matching µ ∈ M is

“k−stable with active agents in V ⊂ A”, if, for every �k blocking pair (m,w) of

µ, {m,w} 6⊂ V

Definition 2: Given an individually rational matching µ and a number k ∈ N,

such that µ(i) 6= i =⇒ ρi(µ(i)) ≤ k, µ′ is called “a submatching” of µ if,

µ′(i) 6= i =⇒ µ′(i) = µ(i). µ′ is called k−stable submatching of µ with active

agents in V ⊂ A, if µ′ is a submatching of µ that is k−stable with active agents

in V .

Since the algorithm will produce a Rawlsian stable matching for balanced mar-

5To be precise, it is a complete lattice under two natural orders: �M and �W . We say that
µ �M µ′ iff µ 6= µ′ and µ(m) �m µ′(m) for all m ∈M . A similar definition applies for �W . See
Roth and Sotomayor (1990) for more details.

6As mentioned in Section 1.1, a number of papers address a similar question.
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kets, we define it formally below. For any stable matching µ, define,

f(µ) := max{ρ(µ(i)) : i ∈ A such that µ(i) 6= i}

to be the rank of the agent who has a partner with the highest rank (higher rank

means worse). Notice that we focus only on agents who are matched in defining

the Rawlsian score. Since the set of single agents is identical across all stable

matchings (Theorem 2.2, Roth and Sotomayor (1990)), to consider the well-being

of the single agents in comparing two stable matchings is unappealing. A Rawlsian

stable matching µ is one, such that f(µ) ≤ f(µ′) for all stable matchings µ′.

Definition: For an instance of a marriage market, let S be the set of agents

who are matched in any stable matching. We say that an instance of a matching

market is balanced if, for every unstable matching, there is at least one blocking

pair, such that both the agents of the blocking pair belong to S.

This is admittedly a hard condition to verify. But, one simple (but perhaps too

demanding) sufficient condition of a balanced market is that no agent is unmatched

in any stable matching.

3. The Algorithm

3.1. An example

Example 1: Below is a simple example of a market in which one could expect to

obtain an outcome different than the DAA outcome should the two sides be allowed

to make proposals in each round.

Table 1: Preferences for Example 1

m1 m2 m3 m4 w1 w2 w3 w4

w1 w2 w3 w4 m2 m3 m4 m1

w2 w3 w4 w1 m3 m4 m1 m2

w3 w4 w1 w2 m4 m1 m2 m3

w4 w1 w2 w3 m1 m2 m3 m4

�

The DAA outcomes are:

{(m1, w1), (m2, w2), (m3, w3), (m4, w4)} and {(m1, w4), (m2, w1), (m3, w2), (m4, w3)}.

Imagine a procedure whereby the agents from both sides of the market make

proposals to a set of agents in every round. If there is no agent to whom they are

proposing to and who is also proposing to them, then they expand their proposing
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to set of agents in the following round. They start by proposing to the top agent

according to their preferences and then expand the set of agents they propose to

progressively.

In the first round, all the agents propose to their top choice, and no pair of

agents is “mutually proposing.” For example, m1 proposes to w1, while w1 pro-

poses to w2, and so on. In the following round, for example, m1 proposes to w1

and w2. However, w1 proposes to m2 and m3, while w2 proposes to m3 and m4.

Therefore, no woman is proposing to m1 or receiving a proposal from m1. It is

easy to see that there are no two agents who propose to each other in this round,

either.

However, in round 3, consider agent m1. He proposes to w1,w2 and w3. Observe

that w2 proposes to m3, m4 and m1, while w3 proposes to m4, m1 and m2. That

is, m1 is interested in being matched two agents who are also interested in being

matched with m1. Those two agents are w2 and w3. m1 would prefer being

matched to w2 over w3. But observe that w2 also has two mutually proposing

agents (m1 and m4), and she prefers m4 over m1. Continuing this way, if we look

at the top agent for each person from the list of their mutually acceptable agents

in this round, we obtain a cycle as below.

m1 → w2 → m4 → w1 → m3 → w4 → m2 → w3 → m1

If we break this cycle in favor of either men or women, we obtain the following

two matches respectively:

{(m1, w2), (m2, w3), (m3, w4), (m4, w1)} or {(m1, w3), (m2, w4), (m3, w1), (m4, w2)}

The algorithm we propose makes this simple idea from the above example formal

and solves a complicated cycling problem that can often arise in markets with

arbitrary preferences. However, at the core, the motivation and the essence are

embodied in this simple example.
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3.2. The Algorithm

We now present our algorithm. Let N := max{|M |, |W |}.

Algorithm 1: Main

input : An instance of a marriage market: M,W,�.

output: A stable matching.

1 initialization: Set µ(i) = i for all i, k = 1 and V = A.;

2 while k ≤ N do

3 Set V := A;

4 repeat

5 (µ′, V ′) = H(µ, V, k);

6 µ = µ′, V = V ′;

7 until V 6= ∅;
8 if µ′ is k−stable, then

9 µ = µ′, V = A, k = k + 1 ;

10 else

11 Let µ′ be some k−stable submatching of µ with active agents in

V := {i : µ′(i) 6= i};
12 µ = RO(µ′,M,W,�k);

13 end

14 if µ is stable, then

15 Terminate with output µ

16 end

17 end

We call steps 3-16 above a “Round k.”

Step 12 above is the “Random Order Mechanism” (RO mechanism henceforth)

due to Ma (1996) that we use to generate a k−stable matching in case the map H
(specified below) fails to produce a k−stable matching. We will now describe the

map H and then, for the sake of completeness, will describe the RO mechanism.

Map H(µ, V, k)

We now describe the map H. Let us first define a few objects to this end. Given

an arbitrary matching µ, a subset of agents V ⊂ A, and a number k ∈ N, define,

for each i ∈ V ,

Si :={j ∈ V : ρi(j) ≤ k, j �i µ(i)}
Ti :={j ∈ V : j ∈ Si, i ∈ Sj}.

For each i ∈ V such that Ti 6= ∅, define,

αi := {j : j �i k,∀k ∈ Ti, k 6= j}.
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We will make use of some simple graphs in H. Consider a directed bipartite graph

G = (V,E) with the following properties:

(i) V ⊂ A is the set of nodes, and E is the set of directed edges, such that if

(i, j) ∈ E, then exactly one of (i, j) is a man and the other is a woman.

(ii) The out-degree (number of outgoing edges) of any node is, at most, 1, and,

any node that has an incoming edge also has an outgoing edge.

It is obvious that such a graph will exhibit disjoint cycles if E is nonempty.7

Definition: Consider a cycle C = {m1 → w1 → m2 . . . wk → m1} and a match-

ing µ. We refer to the following operation as: “resolve a cycle in favor of men

given a matching µ.”

Input: µ,C.

Output: µ′.

1. Set µ′ = µ.

2. First, for each i ∈ C, set µ′(i) = i and µ′(µ(i)) = µ(i).

3. Then, for each (m,w) ∈ C such that m→ w, set µ′(m) = w, µ′(w) = m. In

words, if there is an edge from m to w, we match m and w.

Similarly, if, for every edge (w,m) in C, if we match m and w, we refer to that

as “resolving a cycle in favor of women given a matching µ.”

Algorithm 2: Map H
input : µ, V, k

output: µ′, V ′

1 initialization: Let µ′ = µ. Draw a graph G = (V,E) where (i, j) ∈ E iff

j = αi.

2 if E = ∅, then

3 V ′ = ∅;
4 else

5 for Each cycle C in G, given a matching µ′ do

6 Resolve C in favor of either men or women with probability 1
2

each.;

7 Let the output matching be µ′ ;

8 V ′ = V \C;

9 end

10 end

Example 2 (Example of map H): As a simple example, suppose that, for some

k and an empty matching µ (all agents are single), we obtain the graph in Figure

7To see why there will be cycles if E is nonempty, start with some node, say m1, with an
outgoing edge to w1. Since w1 must have exactly one outgoing edge, if it is m1, we have found
a cycle. Otherwise, let it be m2. Since the number of agents is finite, we must eventually form
a cycle. That the cycles will be disjoint is immediate because any node has an outdegree of, at
most, 1.
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1 in running H(µ,A, k). �

There are two cycles here: (m1 → w1 → m2 → w2 → m1) and (m4 → w4 →
w4). We first unmatch everyone involved in any cycle. Thereafter, we resolve each

cycle randomly in favor of either the men or the women. For the cycle involving

m4 and w4, regardless of how we resolve it, we obtain the match µ′(m4) = w4 and

µ′(w4) = m4. For the first cycle, say we resolve it in favor of the women. Then, we

obtain, {(m1, w2), (m2, w1)} as the two new matches in µ′. Finally, since m3 and

w3 are not involved in any cycle, we set V ′ = {m3, w3} and the algorithm moves

to Step 5 with V = V ′.

Figure 1: Example of an instance of H

m1

m2

m3

m4

w1

w2

w3

w4

Now, we will describe Step 12, the RO mechanism due to Ma (1996).

Algorithm 3: The RO mechanism

input : µ′,M,W,�k

output: µ

1 initialization: Set V = {i : µ′(i) 6= i}, t = 1, R = A\V ;

2 repeat

3 Pick an agent i ∈ R randomly and set V := V ∪ {i};
4 repeat

5 V ′ := V ;

6 repeat

7 (µ′′, V ′) = H(µ′, V ′, k);

8 µ′ := µ′′;

9 until V ′ 6= ∅;
10 until µ′ is k−stable with active agents in V ;

11 until R 6= ∅;
12 µ := µ′

The original version of the RO mechanism starts with an empty matching, and

agents are “made active” in random order. From among the active agents, we

form a stable matching. After doing so, we make the next agent active. In the

above algorithm, rather than starting with an empty matching, we start with a

10



k−stable submatching. Thereafter, we make agents active in random order and

apply H repeatedly to obtain a k−stable matching with an updated set of active

agents.8

Theorem 1: For every instance of the stable marriage problem, Algorithm 1

terminates to produce a stable matching. Moreover, if the matching market is

balanced, then the output is a Rawlsian stable matching.

Proof. To prove that the algorithm terminates amounts to proving that steps 4−7

in Algorithm 1 do not cycle for any k. This is proved in Lemma 1 below.

Lemma 1: For every instance of a marriage market, Algorithm 1 reaches Step 8

for every k. That is, steps 4− 7 in Algorithm 1 do not cycle for any k ∈ N.

Proof. Notice that we start with V = A. If E is empty, then we set V = V ′ = ∅
and proceed. If not, then any iteration of H resolves all the cycles. Moreover, the

output V ′ is a strict subset of V . Therefore, eventually, we must reach a situation

where E is empty, and therefore, V is empty. Hence, we go to Step 8.

If the algorithm terminates with k = N , then we have a stable matching because

N−stable matchings and stable matchings are equivalent by definition. If we

terminate for k < N , then the stopping condition itself establishes that µ is

stable.

Therefore, we need to only prove that µ is a Rawlsian stable matching if the

marriage market is balanced. To this end, suppose that µ is not a Rawlsian stable

matching. Thus, ∃ a stable matching µ′ such that r′ := f(µ′) < f(µ). Let us

consider what happens in Round r′. Since the algorithm did not terminate in

Round r′, the output in this round, say µ′′ is r′−stable but is not stable. Since µ′

is stable, it is also r′−stable. The following claim will help us complete the proof.

Claim 1: There is at least one blocking pair in µ′′, (m,w), such that both m and

w are matched to someone in µ′′.

Proof. By Theorem 2.22 of Roth and Sotomayor (1990), the set of agents who

are single is the same across all the stable matchings. Therefore, if we view the

truncated market with preferences given by �r′ , then we know that the set of

matched agents in µ′ and µ′′ is the same as both are r′-stable. At the same time,

since µ′ is a stable matching, we also have, from the same theorem, that the set

of matched agents in µ′ and any other stable matching is the same. Therefore,

the set of matched agents in µ′′—an unstable matching—and any other stable

matching is the same. Therefore, since the market is balanced, there is a blocking

pair, (m,w), in µ′′ such that both the agents are matched to someone in µ′′.

Consider a blocking pair, (m,w), in µ′′. The fact that m,w are matched and

8The original RO mechanism is not stated in terms of H. However, that the operation is the
same is straightforward to see, and we omit it. This is illustrated more formally in Kuvalekar
(2014).
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form a blocking pair means that ρw(m) ≤ r′ and ρm(w) ≤ r′. Therefore, µ′′ is not

r′-stable, a contradiction.

4. Some examples

Example 3: Here is a slightly more complicated example than Example 1.

Table 2: Preferences

m1 m2 m3 m4 w1 w2 w3 w4

w2 w3 w1 w4 m4 m3 m4 m3

w3 w4 w3 w4 m1 m4 m1 m2

w1 w1 w4 w2 m3 m1 m2 m4

w4 w2 w2 w3 m2 m2 m3 m1

�

Notice that m4 and w1 appear as each other’s top preference. Therefore, they

will be matched in the first round, and that match will never be broken. We will,

therefore, exclude them in writing the Si’s and the Ti’s for each round.

Round 1 In the first round,

Ti =∅, ∀i ∈ {m1,m2,m3, w2, w3, w4} , Tm4 = {w1} , Tw1 = {m4}
and µ = {(m4, w1)} .

At this point, we set k = 2.

Round 2 Let us present a table for Si, Ti and µi for each agent in this round.

Table 3: Table for Si, Ti and µi for Round 2

Agent Si Ti µi

m1 w2, w3 w3 w3

m2 w3, w4 w4 w4

m3 w1, w3

w2 m3,m4

w3 m4,m1 m1 m1

w4 m3,m2 m2 m2

Therefore, at the end of this round, agents m3 and w2 are unmatched. The

allocation

µ = {(m1, w3), (m2, w4), (m4, w1), (m3,m3), (w2, w2)}
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is 2-stable but it is not stable; it can be blocked by (m1, w2). Hence, we proceed

to k = 3.

Round 3 Let us look at a similar table as above in this round.

Table 4: Table for Si, Ti and µi for Round 3

Agent Si Ti µi

m1 w2, w3 w2, w3 w2

m2 w3, w4 w4

m3 w1, w3, w4 w4 w4

w2 m3,m4,m1 m1 m1

w3 m4,m1 m1

w4 m3,m2 m3,m2 m3

Therefore, at the end of this round, agents m2 and w3 are unmatched. The

allocation

µ = {(m1, w2), (m3, w4), (m4, w1), (m2,m2), (w3, w3)}

is not 3-stable, as it can be blocked by (m2, w3). At this point, we apply the RO

mechanism due to Ma (1996). We start with a 3-stable submatching. Notice that

µ is a 3-stable submatching (of itself, in fact; see Definition 2), as there are no

blocking pairs involving any agent who is matched. Hence, we are now ready to

start the RO mechanism.

We have, V = {m1,m3,m4, w1, w2, w3} in the RO mechanism given in Algo-

rithm 3, and R = {m2, w3}. We pick one agent randomly—say, m2—and set

V ′ = V ∪ {m2}. Notice that µ is 3-stable with active agents in V ′. Therefore,

H(µ, V ′, 3) produces µ′ = µ. We go back to Step 3 in the RO mechanism (Algo-

rithm 3). The only remaining agent is w3. Therefore, we now have V = A. It

is easy to check that H(µ, V, 3) = µ′ := µ ∪ {(m2, w3)}. This is a 3-stable and a

stable matching. Therefore, the algorithm terminates with the output.

µ = {(m1, w2), (m2, w3), (m3, w4), (m4, w1)}

It can be checked that this is also a Rawlsian matching.

4.1. Difference between the output of Algorithm 1 and the

median matching and the RO Mechanism

Example 4: The following example is due to Knuth as reproduced in Roth and

Sotomayor (1990).
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Table 5: Preferences

m1 m2 m3 m4 w1 w2 w3 w4

w1 w2 w3 w4 m4 m3 m2 m1

w2 w1 w4 w3 m3 m4 m1 m2

w3 w4 w1 w2 m2 m1 m4 m3

w4 w3 w2 w1 m1 m2 m3 m4

We enumerate all the stable matchings below.

Table 6: All the stable matchings

w1 w2 w3 w4

1 m1 m2 m3 m4

2 m2 m1 m3 m4

3 m1 m2 m4 m3

4 m2 m1 m4 m3

5 m3 m1 m4 m2

6 m2 m4 m1 m3

7 m3 m4 m1 m2

8 m4 m3 m1 m2

9 m3 m4 m2 m1

10 m4 m3 m2 m1

The median stable matching of Teo and Sethuraman (1998) is matching either

4 or 7. The RO Mechanism due to Ma (1996) generates any matching except for

4, 5, 6, and 7. Our algorithm can produce any matching out of 4, 5, 6, and 7.

5. Computational Complexity

The Median Stable Matching of Teo and Sethuraman (1998) is a very appealing

solution concept when fairness concerns matter. However, a practical problem

is that, to compute the median matching, one has to compute the entire set of

stable matchings, which is computationally difficult. On the other hand, Theorem

2 below shows that Algorithm 1 can be executed in polynomial time. Therefore,

in markets where fairness considerations are important, we view our algorithm as

a compelling alternative.

Theorem 2: Algorithm 1 can be executed in polynomial time.

Proof. We need, at most, N rounds to end the algorithm. Each round has an

execution of map H, potentially N number of times. H involves computing Ti to

construct the graph G. Ti can be computed in O(N3). Following the construction

of the graph, we need to enumerate the cycles, which is the same as enumerating all
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the strongly connected components. This can be done using Tarjan’s algorithm in

O(|V |+ |E|) = O(N). The process of eliminating cycles can be repeated within a

particular execution of H. Every iteration removes at least two agents by forming a

match between them. Therefore, steps 4−7 have a complexity of O(n4). Checking

for stability or k-stability has a complexity of O(N2). Moreover, if the output is

not k-stable, we run the RO mechanism that uses a k-stable submatching as an

input. Such a submatching can be obtained by removing any agent involved in a

blocking pair, which has a complexity of O(N2). Thereafter, the RO mechanism

itself can be run in polynomial time as mentioned in Cheng (2016).

6. Conclusion

Motivated by the asymmetry in DAA, we have proposed an alternative algorithm

in the classical two-sided marriage market. The algorithm has the flavor of a DAA

but it attempts to correct the asymmetry in the outcomes by allowing both sides

of the market to make proposals. We show that we can still retain the simplicity

of the DAA in constructing such a procedure, and also obtain a stable matching.

More importantly, allowing both sides to make proposals results in a Rawlsian

stable matching—a well-established criterion of fairness in numerous settings—if

the market is balanced. Finally, practical considerations are of paramount impor-

tance when one proposes a new algorithm in these contexts. On this matter, the

fact that the algorithm can be executed in polynomial time makes it a compelling

alternative in markets where the designer considers fairness of the procedure and

the outcomes as important.
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