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Abstract

This paper is concerned with detecting the presence of out of sample predictability

in linear predictive regressions with a potentially large set of candidate predictors. We

propose a procedure based on out of sample MSE comparisons that is implemented

in a pairwise manner using one predictor at a time and resulting in an aggregate test

statistic that is standard normally distributed under the null hypothesis of no linear

predictability. Predictors can be highly persistent, purely stationary or a combination

of both. Upon rejection of the null hypothesis we subsequently introduce a predictor

screening procedure designed to identify the most active predictors.
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1. Introduction

A vast body of research over the past decade has been concerned with developing

estimation and forecasting techniques that can accommodate the availability of large datasets.

An important objective driving this literature is to obtain accurate out of sample predictions

of a response variable via suitable covariate screening and model selection techniques. These

typically involve a vast amount of nested model permutations and predictor configurations

that may often exceed the available sample size and are typically handled via shrinkage

methods that can simultaneously achieve regularization and variable selection objectives in

data rich environments. Popular examples include the LASSO, Ridge and their numerous

variants (see Mullainathan and Spiess (2017) for an overview of these methods in the context

of economic applications).

The detection of predictability within linear regression settings has also been the subject

of extensive research in the econometrics literature. The broadly labelled topic of predictive

regressions for instance has become an important field of research in its own right due

to the specificities associated with economic data and the complications that these may

cause for estimation and inference (e.g. persistent nature of many financial and economic

predictors, endogeneity, low signal to noise ratios, imbalance in the persistence properties

of predictand and predictors). Unlike the above mentioned statistical literature however,

predictive regressions as explored in econometrics have been mainly concerned with in-sample

significance testing in single predictor environments (see Gonzalo and Pitarakis (2019) and

references therein for an overview of this literature).

Our objective in this paper is to consider this predictive regression environment as

commonly explored in the econometrics literature and propose a method for detecting the

potential presence of out-of-sample linear predictability when the latter is induced by one

or more predictors from a potentially large pool of candidate predictors. These predictors

could be purely stationary or highly persistent without affecting the validity of our proposed

approach and without the need for the investigator to have knowledge of these properties.

Our environment is that of a potentially large number of nested specifications that also

include an intercept only model which we view as the benchmark model or the maintained
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theory. More specifically, we focus our attention on testing this benchmark specification

against the alternative hypothesis that at least one of the predictors under consideration is

active in the sense of improving out of sample MSEs relative to the benchmark.

The approach introduced in this paper is able to accommodate a large number of predictors

as it relies on multiple pairwise comparisons of the benchmark model with a larger model that

includes solely one predictor at a time. These pairwise MSE comparisons are implemented

via the repeated evaluation of a test statistic suitable for out of sample predictive accuracy

comparisons in nested environments. The resulting series of test statistics are subsequently

reassembled into a single aggregate statistic allowing us to test the null of no predictability

against the alternative that at least one of the predictors is active.

Upon rejection of the benchmark model the important question as to which predictors

are the most important drivers of predictability also arises. To address this question we

subsequently introduce a covariate screening method that allows us to identify the key

predictor that most improves the accuracy of forecasts of the response variable relative to

the forecasts based on the benchmark model.

Our operating environment is particularly relevant to economic and financial applications

where one is interested in the maintained hypothesis of no predictability whereby the response

variable of interest is best described by a martingale difference process (e.g. excess stock

returns, currency returns, consumption growth amongst many others). Suppose for instance

that a researcher wishes to assess the presence of predictability in stock returns with the

well known Goyal and Welch predictors consisting mostly of highly persistent series (e.g.

valuation ratios, interest rates) combined with a variety of macroeconomic indicators. The

methods developed in this paper are designed to explore such issues in a particularly simple

and computationally feasible way. Recent applications across a variety of fields and that are

relevant to our setting include Molodotsova and Papell (2015), Li Tsiakas and Wang (2015),

Jacobsen, Jiang and Zhang (2019), Rapach, Strauss, Tu and Zhou (2019) amongst numerous

others.

The plan of the paper is as follows. Section 2 introduces our modelling environment

and the key test statistics that are used to implement our predictive accuracy comparisons.

Section 3 develops the asymptotic theory under the benchmark specification followed by a

comprehensive local power analysis. Section 4 is concerned with the detection of the most
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relevant predictors upon rejection of the benchmark model. Section 5 demonstrates the finite

sample properties of our methods through a comprehensive simulation based exercise and

Section 6 concludes. All proofs are relegated to the appendix.

2. Models and Theory

Let {yt} denote a scalar random process. Given a sample of size t = 1, . . . , n, we wish

to assess the presence of linear one-step ahead predictability in yt. If present, predictability

is induced by at least one predictor from a finite pool of p predictors xt = (x1t, . . . , xpt)′.

Predictability is understood to be present whenever an intercept only benchmark model is

rejected in favour of a larger model on the basis of out-of-sample MSE based comparisons.

Thus the generic framework within which we operate is given by the predictive regressions

yt+1 = θ0 + β′xt + ut+1 (1)

where β = (β1, . . . , βp)′ and ut is a random disturbance term. For later use we also define θ =

(θ0,β
′)′ and wt = (1,x′t)′ so that (1) can equivalently be expressed as yt+1 = θ′wt+ut+1. The

predictors collected in xt can accommodate candidates with different degrees of persistence as

commonly encountered in economic applications (e.g. highly persistent versus less persistent).

Nevertheless our approach does not rely on any knowledge of the persistence properties of

the pool of predictors available to the investigator.

We view (1) as encompassing a family of nested linear predictive regressions including the

benchmark specification given by

yt+1 = θ0 + ut+1. (2)

Given the above framework the main goal of this paper is to address the following questions.

Suppose a researcher has access to a pool of predictors collected within xt. Is at least one

of these predictors active relative to the benchmark model in (2)? In the affirmative, is it

possible to identify which one of the p predictors has the strongest influence in the sense of

improving forecast accuracy the most relative to the benchmark?
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To formalise our environment we let ŷ0,t+1|t denote the one-step ahead forecasts of yt+1

obtained from the benchmark model in (2) and ŷj,t+1|t, j = 1, . . . , p, the one-step ahead

forecasts of yt+1 obtained from (1) using one predictor at a time from the available collection

of p predictors and inclusive of a fitted intercept. The corresponding forecast errors are

ê0,t+1|t = yt+1 − ŷ0,t+1|t and êj,t+1|t = yt+1 − ŷj,t+1|t. Out of sample forecasts are constructed

recursively with an expanding window approach. We estimate each predictive regression via

recursive least-squares starting from an initial window of size t = 1, . . . , k0 and progressively

expanding the estimation window up to n− 1. Throughout this paper k0 is taken to be a

given a fraction π0 of the sample size and we write k0 = [nπ0] for some π0 ∈ (0, 1). Under

the benchmark model we have θ̂0t = ∑t
s=1 ys/t leading to the unconditional mean forecasts

ŷ0,t+1|t = θ̂0t. Under the larger models estimated with an intercept and one predictor at a time

we have θ̂jt = (∑t
s=1 w̃j,s−1w̃

′
j,s−1)−1∑t

s=1 w̃j,s−1ys for w̃jt = (1, wjt) and wjt ∈ {x1t, . . . , xpt}

with forecasts obtained as ŷj,t+1|t = θ̂′jtw̃jt for t = k0, . . . , n− 1.

At the end of this pseudo out-of-sample exercise we obtain the p+ 1 sequences of forecast

errors {ê0,t+1|t}n−1
t=k0 and {êj,t+1|t}n−1

t=k0 which form the basis of our inferences. Throughout this

paper the maintained null hypothesis is that the population MSEs of the benchmark model

and the larger models are equal in the sense that β = 0 in (1) or equivalently model (2) holds.

The alternative of interest is that there is at least one active predictor wjt in the sense that

E[ê2
0,t+1|t − ê2

j,t+1|t] > 0 for at least one j ∈ {1, 2, . . . , p}.

Addressing the two questions stated above raises three key challenges. The first one arises

from the fact that we wish to conduct out of sample predictive accuracy comparisons in a

nested setting (e.g. intercept only model versus single predictor specifications), rendering

traditional sample MSE comparisons ineffective as under the null hypothesis of equal predictive

accuracy all forecast errors under consideration will be asymptotically identical, leading to

normalised sample MSE spreads identically equal to zero in the limit (and similarly for their

variances). The second challenge is a dimensionality related complication as we wish our

method to be computationally feasible to implement despite the availability of a potentially

large pool of predictors. The third challenge has to do with the identification of active

predictors upon rejection of the null hypothesis. Although numerous covariate screening

procedures have been developed in the statistics literature (e.g. sure independence screening)

the validity of most of these relies on assumptions that are not tenable in our time series
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environment.

The issue of predictive performance testing in nested environments has attracted consid-

erable attention in the forecasting literature following the observation that Diebold-Mariano

(DM) type constructions (Diebold and Mariano (1995), West (1996)) are not suitable since

under the null hypothesis of equal predictive ability the pair of models being compared

become identical in the limit. Consequently suitably normalised sample MSE spreads and

their variance both converge to zero asymptotically resulting in statistics with ill-defined

limits. In the context of predictive regressions this problem has been addressed through

the use of alternative normalisations of sample MSEs, resulting in test statistics with well

defined but non-standard limits requiring bootstrap based approaches (see McCracken (2007),

West (2006), Clark and McCracken (2013) and references therein). More recently, alternative

solutions involving modifications to DM type statistics that result in conventional standard

normal asymptotics regardless of the nested nature of competing models have also been

developed in Pitarakis (2020). These are similar in spirit to the way Vuong type model

selection tests (Vuong (1989)) have been recently adapted to accommodate both nested

and non-nested environments via sample splitting and related approaches (see Schennah

(2017), Hsu and Shi (2017)). This is also the route we will continue to take in this paper by

introducing a novel DM type test statistic for the initial pairwise model comparisons between

the benchmark model in (2) and the p larger models containing one predictor at a time. The

formulation of our test statistic relies on the same principles as the statistics introduced in

Pitarakis (2020) but does not involve any discarding of sample information. The resulting DM

type statistics associated with the p pairwise model comparisons are subsequently reassembled

into an aggregate statistic designed to test whether at least one of the p predictors is active

in predicting yt+1.

The idea of considering one predictor at a time makes the practical implementation of

our approach trivial regardless of the size of the pool of predictor candidates and is here

justified by the fact that our null hypothesis is given by the benchmark model in (2). This is

very much in the spirit of Ghysels et al. (2020) where the authors developed a procedure

for testing the statistical significance of a large number of predictors through functionals

(e.g. maximum) of multiple individual t-statistics obtained from models estimated with one

regressor at a time and a benchmark model with none of the explanatory variables included.
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An important advantage unique to our own setting however is the fact that each of the

pairwise DM type statistics will have identical limits under our null hypothesis, making

the exercise of constructing an aggregate statistic trivial. The average of these individual

statistics will by construction also have the same limiting distribution. Differently put we

do not need to be concerned with the behaviour of the covariances of the p individual test

statistics and the nested nature of our setting is here used to our advantage.

Before proceeding further it is also useful to mention the recent but already extensive

literature on screening for relevant predictors in high dimensional settings and which is related

to our second concern of identifying dominant predictors upon rejection of the benchmark

model in (2). In this context, a particularly popular approach has been based on ranking

marginal correlations via marginal linear regressions (see Fan and Lv (2008), Tang, Wang

and Barut (2017), McKeague and Qian (2015) amongst numerous others). In McKeague

and Qian (2016) for instance the authors developed a test for the presence of at least one

significant predictor via a maximum correlation type of approach between each predictor

and predictand. Within our own context and upon rejection of the benchmark model we

aim to identify at least one of the active predictors among the pool of p predictors using the

above mentioned aggregate test statistic instead. An important aspect accommodated by

our framework is the possibility that the pool of predictors contains dependent series with

different persistence properties in addition to being possibly correlated (following a VAR

process for instance) as it is the norm with economic data.

We now introduce and motivate the DM type test statistic which will be used to conduct

pairwise predictive performance comparisons between the benchmark model and each of

the p marginal predictive regression. Recalling that the key complication arising from the

underlying nestedness of models is that in the limit ê2
0,t+1|t and ê2

j,t+1|t will be identical

under the null hypothesis, we split the evaluation of the forecast errors associated with the

benchmark model across two subsamples of size m0 and n− k0−m0 respectively. This double

counted sample MSE of the benchmark model can then be compared with twice the sample

MSE of the larger model via the following base formulation

Dn(m0, j) =
√
n− k0

ω̂n(m0)


∑k0+m0−1

t=k0 ê2
0,t+1

m0
+
∑n−1
t=k0+m0 ê

2
0,t+1

n− k0 −m0

− 2
∑n−1
t=k0 ê

2
j,t+1

n− k0

 . (3)
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Here we take m0 to be a user-defined parameter and express it as a fraction µ0 of the effective

sample size n− k0, writing m0 = [(n− k0)µ0]. An alternative but equivalent way of thinking

about (3) is as splitting the sample MSE of the benchmark model ∑n−1
t=k0 ê

2
0,t+1/(n− k0) into

the two parts ∑k0+m0−1
t=k0 ê2

0,t+1/m0 and ∑n−1
t=k0+m0 ê

2
0,t+1/(n− k0 −m0) and taking the average

of these two subsample means instead of the grand mean. Within our specific context,

the motivation for proceeding this way is that it avoids the variance degeneracy problems

associated with nested model comparisons as explained more formally below. Indeed, under

the null hypothesis the numerator of (3) will have a non-degenerate positive limiting variance

provided that µ0 ∈ (0, 1) \ {1/2}. This idea of using averages of subsample means instead of

grand means has been used in a variety of other contexts such as the construction of more

accurate confidence intervals as discussed in Decrouez and Hall (2014) for instance. Finally,

the normaliser ω̂n(m0) appearing in the denominator of (3) is understood to be a consistent

estimator of the long run variance of the numerator and whose characteristics together with

suitable choices of µ0 we postpone to further below.

Given the sequences {ê0,t+1|t}n−1
t=k0 , {êj,t+1|t}n−1

t=k0 (j = 1, . . . , p) and suitable choices for

µ0 and ω̂n(m0) the quantities in (3) can be trivially obtained for each possible predictor

j = 1, . . . , p resulting in p such statistics which we aggregate into the following overall statistic

Dn(m0) = 1
p

p∑
j=1
Dn(m0, j). (4)

Intuitively, the test statistic in (4) compares the sample MSEs associated with the benchmark

model with the average of the p individual sample MSEs obtained from the p single predictor

based specifications. A large positive magnitude of Dn(m0) is expected to indicate that at

least one of the p predictors improves the predictability of yt+1 relative to the benchmark

model.

In what follows our first objective is to establish the limiting behaviour of (4) under

the null hypothesis that there are no active predictors in helping predict yt+1. We show

that under weak assumptions on the probabilistic properties of (1) the above aggregate test

statistic is standard normally distributed. We subsequently assess its local power properties

against departures from (2) that are relevant to practitioners. This in turn allows us to

formalise suitable choices for µ0 in the practical implementation of (4).
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Upon rejection of the null hypothesis the interesting question as to which predictor is the

key driver of predictability arises. Although our goal here is not to develop a new covariate

screening method, our framework does allow us to identify a key predictor through the

analysis of the Dn(m0, j) components that make up the test statistic in (4). We focus our

attention on the following estimator

ĵn ∈ arg max
j=1,...,p

Dn(m0, j) (5)

which we expect to be informative about the most important contributor to predictability

i.e. the predictor that leads to the greatest reduction in out of sample MSEs relative to the

benchmark model. A limitation of ĵn is of course the fact that it allows us to identify only

a single predictor. Nevertheless, in numerous economic applications this information can

be extremely valuable as it isolates the key player that causes the rejection of a maintained

martingale difference hypothesis for instance.

3. Limiting Distributions and Local Power

3.1. Asymptotics of Dn(µ0) under the benchmark model

Our objective here is to obtain the limiting distribution of Dn(µ0) under the null hypothesis

of no predictability when the benchmark model in (2) holds. Our operating assumptions are

collected under Assumption 1 below and consist of a collection of high level assumptions that

are general enough to accommodate most environments commonly encountered in economics

and finance applications.

Assumptions 1. (i) The sequence ηt = u2
t+1 − E[u2

t+1] satisfies the functional central limit

theorem ∑[k0+(n−k0)r]
t=k0 ηt/

√
n− k0

d→ φ W (r) for r ∈ [0, 1] with W (r) denoting a standard

scalar Brownian Motion and where φ2 = ∑∞
s=−∞ γη(s) > 0 for γη(s) = E[ηtηt+s]. (ii) There is

a φ̂2
n such that φ̂2

n

p→ φ2 ∈ (0,∞). (iii) For given ra ∈ [0, 1] and rb ∈ [0, 1] with ra < rb and un-

der the null hypothesis, the forecast errors satisfy ∑[(n−k0)rb]
t=[(n−k0)ra](ê2

`,t+1|t−u2
t+1)/

√
n− k0 = op(1)

∀` ∈ {0, 1, 2, . . . , p}. (iv) µ0 satisfies µ0 ∈ (0, 1) \ {1/2}.
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Assumption 1(i) requires the sequence of demeaned squared errors driving (1)-(2) to

satisfy a suitable functional central limit theorem. Such a result would hold for instance if the

ut’s are a conditionally homoskedastic or conditionally heteroskedastic martingale difference

sequence with mild existence of moments restrictions. Assumption 1(ii) requires that a

consistent estimator of the long run variance associated with the ηt’s to be available. Under

conditional homoskedasticity a trivial choice would be φ̂2 = ∑
t(û2

t+1 − σ̂2
u)2/(n− k0) while

under conditional heteroskedasticity one may use a Newey-West type formulation as in Deng

and Perron (2008). Assumption 1(iii) can be viewed as a correct specification assumption in

the sense that under the null hypothesis squared forecast errors are understood to behave like

their true counterparts. Such a property holds within a broad range of contexts as established

in Berenguer-Rico and Nielsen (2019), including settings with purely stationary or highly

persistent predictors. Assumption 1(iv) imposes a minor restriction on m0 = [(n−k0)µ0] used

in the construction of Dn(µ0) to ensure that it has a non-degenerate asymptotic variance.

To gain further intuition on this latter point it is useful to explicitly evaluate the limiting

variance, say ω2(µ0), of the numerator of (3) under the null hypothesis. Replacing ê2
0,t+1 and

ê2
j,t+1 with ηt+1 = u2

t+1 − E[u2
t+1] in (3), rearranging and taking expectations results in the

population variance

ω2(µ0) = (1− 2µ0)2

µ0(1− µ0)
φ2 (6)

so that the availability of a consistent estimator for φ2 also ensures that ω2
n(µ0) can be

estimated consistently provided that µ0 satisfies Assumption 1(iv).

Our first proposition below establishes the limiting distribution of Dn(µ0) when the

maintained benchmark model holds.

Proposition 1. Under the benchmark model in (2), assumptions 1(i)-(iv) and as n→∞

we have

Dn(µ0) d→ Z. (7)
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with Z denoting a standard normally distributed random variable.

The result stated in Proposition 1 allows us to test for the presence of at least one active

predictor for any finite number of such predictors. As it is customary in this literature (7) is

implemented using one-sided (right tail) tests so that a rejection of the null provides support

for the availability of at least one active predictor that helps generate more accurate forecasts

than the benchmark model.

3.2. Asymptotic Power Properties of Dn(µ0)

We next explore the ability of Dn(µ0) to detect predictability induced by one or more

of the available p predictors. Two aspects we are particularly interested in exploring are

the influence of the persistence properties of predictors on power and the role played by

the ad-hoc choice of µ0 in the construction of Dn(µ0). We analyse local power within the

following parameterisation

yt+1 = β′nxt + ut+1 (8)

with βn = n−γβ∗ for β∗ = (β∗1 , . . . , β∗p)′ and where we have abstacted from the inclusion of an

intercept for notational simplicity and with no loss of generality. Note of course that within

(8) all but one of the β∗i ’s may be zero and from a notational point of view xt is understood

to contain all of the p predictor candidates. We let

I∗ = {1 ≤ j ≤ p: β∗j 6= 0} (9)

denote the set of active predictors with |I∗|= q ≥ 1 referring to the size of the true model

(i.e. the number of nonzero β∗i ’s in (8)).

In what follows we establish the local power properties of Dn(µ0) across three scenarios.

In a first instance we take all p components of xt to be stationary and ergodic processes

(scenario A) with I∗ in (9) containing one or more of these xt’s. We then focus on the

case where the xt’s are parameterised as persistent processes (scenario B). Finally our last

scenario sets xt = (x1,t,x2,t)′ in (8) with x1,t and x2,t containing non-persistent and persistent
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predictors respectively (scenario C). In this latter instance the specification in (8) takes the

following form

yt+1 = β′1nx1t + β′2nx2t + ut+1 (10)

with x1t = (x1,t, . . . , xp1,t) and x2t = (xp1+1,t, . . . , xp,t) so that the pool of p predictors is

sub-divided into two types ranging from 1, . . . , p1 and p1 + 1, . . . , p respectively. The slope

parameter vectors are in turn specified as β1n = n−γ1β∗1 for β∗1 = (β∗1,1, . . . , β∗1,p1)
′ and

β2n = n−γ2β∗2 for β∗2 = (β∗2,p1+1, . . . , β
∗
2,p)′. This mixed environments require us to also modify

the formulation of the active set of predictors included in the DGP. For this purpose we let

I∗1 = {1 ≤ j ≤ p1: β∗1,j 6= 0} (11)

I∗2 = {p1 + 1 ≤ j ≤ p: β∗2,j 6= 0} (12)

with |I∗1 |= q1 and |I∗2 |= q2. In this setting the specification in (10) is therefore understood

to have q1 active predictors satisfying scenario A and q2 active predictors satisfying scenario B.

Assumption 2A below summarises our operating framework when all predictors are as-

sumed to be purely stationary.

Assumption 2A. (i) Assumptions 1(i), 1(ii) and 1(iv) hold. (ii) The model in (8) holds

with γ = 1/4. (iii) The p predictors satisfy supλ∈[0,1]|
∑[nλ]
t=1 xitxjt/n − λE[xitxjt]|= op(1) in

λ ≥ 0 and ∑[nλ]
t=1 xitut+1/

√
n = Op(1) for i, j = 1, . . . , p.

Note that part (i) of Assumption 2A excludes 1(iii) as we are no longer operating under

the null hypothesis. Part (ii) sets the rate at which we explore departures from the null.

The remainder parts essentially require that a uniform law of large number applies to the

predictors and that a suitable CLT holds ensuring the uniform boundedness of relevant

sample moments.

Regarding the scenario involving solely persistent predictors we parameterise these as
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mildly integrated processes via

xjt =
(

1− cj
nα

)
xjt−1 + vjt j = 1, . . . , p (13)

where cj > 0, α ∈ (0, 1) and vjt denotes a random disturbance term. The high level

assumptions we impose under Assumption 2B explicitly accommodate dynamics such as

(13) and follow directly from Phillips and Magdalinos (2009). We also let Σvv denote the

p× p covariance of the v′jts and refer to its diagonal components as σ2
vj

and its off-diagonal

components as σvivj respectively.

Assumption 2B. (i) Assumptions 1(i), 1(ii) and 1(iv) hold. (ii) The model in (8) holds with

γ = (1 + 2α)/4 for α ∈ (0, 1). (iii) The p predictors follow the process in (13) and satisfy∑[nλ]
t=1 xitxjt/n

1+α p→ λσvivj/(ci + cj),
∑[nλ]
t=1 x

2
jt/n

1+α p→ λσ2
vj
/(2cj) and ∑[nλ]

t=1 xjtut+1/n
1+α

2 =

Op(1) for i, j = 1, . . . , p.

We note that in the context of our specification in (8), Assumption 2B(iii) is guaranteed

to hold when the predictors follow the mildly integrated process in (13) as established in

Lemmas 3.1-3.3 of Phillips and Magdalinos (2009). Our last assumption accommodates an

environment that combines stationary and persistent predictors.

Assumption 2C. (i) Assumptions 1(i), 1(ii) and 1(iv) hold. (ii) The model in (10) holds

with γ1 = 1/4 and γ2 = (1 + 2α)/4 for α ∈ (0, 1). (iii) The pool of p predictors consists

of p1 predictors satisfying Assumptions 2A(ii)-(iii) and p2 = p − p1 predictors satisfying

Assumptions 2B(ii)-(iii).

Local Power under Stationarity (scenario A)

Proposition 2A: Under Assumption 2A, q: = |I∗| active predictors in (8) with associated
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slope parameters βi = n−1/4β∗i for i ∈ I∗, and as n→∞ we have

Dn(µ0) d→ Z + g(µ0, π0, φ) 1
p

p∑
j=1

∑
i∈I∗

β∗i
E[xitxjt]√
E[x2

jt]


2

(14)

where

g(µ0, π0, φ) =
2
√

1− π0

√
µ0(1− µ0)√

φ2(1− 2µ0)
. (15)

The result in (14) establishes the consistency of our proposed test and its ability to detect

departures from the constant mean model in (2) when predictors are taken to be stationary

processes. An obvious implication of (14) is that under fixed alternatives Dn(µ0)→∞ and

more specifically

Dn(µ0)
H1= Op(

√
n). (16)

REMARK 1. The local power result in Proposition 2A has been obtained under local

departures from the null that are of order n−1/4 rather than the conventional square root

rates one typically observes in stationary environments. This is not really due to the way the

test statistic Dn(µ0) has been constructed. The main reason for operating under such a rate

comes from the use of squared errors which result in the squaring of the relevant parameters

in the DGP.

To gain further intuition on the formulation of the second component in the right hand

side of (14) it is useful to specialise the result to a single active predictor scenario. Suppose

that there is a single active predictor, say xat, with associated slope parameter βan = n−1/4β∗a.

It now follows directly from (14) that

Dn(µ0) d→ Z + g(µ0, π0, φ) (β∗a)2 E[x2
at]

1
p

p∑
j=1

ρ2
a,j. (17)

It is here interesting to note the role played by the correlation between the single predictor

xat driving the DGP in (8) and the remaining components of the predictor pool (i.e. the
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irrelevant candidates). The higher this correlation is the stronger we expect power to be. This

clearly conforms with intuition since the models are estimated with one predictor at a time. A

particular fitted specification containing a predictor other than xat and therefore misspecified

will nevertheless continue to dominate the intercept only model in an MSE sense provided

that this wrong predictor contains relevant information about xat. Note also that this does

not mean that in an environment where all predictors in the pool are uncorrelated with xat
power will vanish as we have ρ2

a,a = 1 by construction, implying that the second component

in the right hand side of (17) will always be strictly positive under our assumptions. Note

however that in such instances where all candidate predictors are uncorrelated with xat the

size of the predictor pool p will have a detrimental impact on power.

Another important feature that can be inferred from (17) is the favourable impact that

the variance of xat has on power. The more persistent xat is, the better the power is expected

to be. This hints at the fact that the presence of persistent predictors in the pool will improve

the detection ability of our test. Perhaps more interestingly we can also note that the role of

persistence may manifest itself not only via E[x2
at] but also via ρ2

a,j due to the well known spu-

rious correlation phenomenon characterising persistent processes. These issues are explored

in the next proposition that focuses on the local power properties of Dn(µ0) under persistence.

Local Power under Persistence (scenario B)

Proposition 2B: Under Assumption 2B, q: = |I∗| active predictors in (8) with associated

slope parameters βi = n−(1+2α)/4β∗i for i ∈ I∗ and as n→∞ we have

Dn(µ0) d→ Z + g(µ0, π0, φ) 1
p

p∑
j=1

∑
i∈I∗

β∗i
σvivj√
σ2
vj

√
2cj

(ci + cj)2


2

. (18)

The result in (18) highlights the beneficial impact that predictor persistence will have on

the detection ability of Dn(µ0). This can also be observed by focusing on fixed alternatives
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under which we can immediately infer from (18) that

Dn(µ0)
H1= Op(n

1+2α
2 ). (19)

It is also interesting to observe from (18) that if we were to restrict all predictors to have the

same non-centrality parameter, say ci = c ∀i = 1, . . . , p the expression reduces to

Dn(µ0) d→ Z + g(µ0, π0, φ) 1
p

1√
2c

p∑
j=1

∑
i∈I∗

β∗i
σvivj√
σ2
vj


2

(20)

which also suggests that all other things being equal power is expected to improve for smaller

magnitudes of this non-centrality parameter.

REMARK 2. It is useful to note that we have opted to capture persistence via a mildly

integrated setting with the α parameter in (13) excluding the boundary case of a local to

unit-root specification (see Phillips and Magdalinos (2007, 2009)). As our result in (18)

captures a reasonably broad notion of persistence we omit the details associated with more

extreme forms of persistence that can be modelled via local to unit-root processes that impose

α = 1. Nevertheless it is useful to point out that in such settings the divergence of our test

statistic would be faster with (19) replaced by Op(n3/2) instead.

Local Power under Mixed Predictors (scenario C)

The last scenario we consider consists of an environment that blends purely stationary

and persistent predictors. The pool of predictors now consists of p1 purely stationary and p2

persistent predictors with p1 + p2 = p and we let J1 and J2 denote the sets associated with

the stationary and persistent predictors respectively so that |J1|= p1 and |J2|= p− p1.

Proposition 2C: Under Assumption 2C, q1: = |I∗1 | and q2: = |I∗2 | active predictors in (10)
with associated slope parameters β1,i = n−1/4β∗1,i for i ∈ I∗1 and β2,i = n−(1+2α)/4β∗2,i for i ∈ I∗2
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we have as n→∞

Dn(µ0) d→ Z + g(µ0, π0, φ) 1
p

∑
j∈J1

∑
i∈I∗1

β∗i
E[xitxjt]√
E[x2

jt]


2

+
∑
j∈J2

∑
i∈I∗2

β∗i
σvivj√
σ2
vj

√
2cj

(ci + cj)2


2
 .(21)

REMARK 3. The expressions in (14), (18) and (21) provide useful insights on suitable choices

about µ0 when constructing our main test statistic. We note for instance that µ0 affects local

power via g(µ0, π0, φ) as defined in (15) suggesting that a choice for µ0 in the vicinity of 0.5

may result in the most favourable power outcomes, all other things being equal.

4. Detecting active Predictors

Upon rejection of the benchmark model it becomes interesting to explore ways of iden-

tifying the predictors driving these departures from the null hypothesis. In this context

we distinguish between two settings and obtain the corresponding limiting behaviour of

ĵn ∈ arg maxj=1,...,pDn(m0, j) which selects the predictor that results in the greatest MSE

spread relative to the benchmark model.

In a first instance we evaluate the large sample behaviour of ĵn when the DGP contains a

single active predictor (i.e. q = |I∗|= 1 in (9)) that can be either stationary or persistent.

We subsequently extend our analysis to environments with multiple predictors (i.e. q > 1 in

I∗) that are again assumed to be of the same type in their persistence properties (i.e. all

stationary or all persistent). Finally we consider the case of mixed predictors as in (11)-(12)

with the joint presence of stationary and persistent active predictors numbering q1 and q2

respectively. The large sample behaviour of ĵn is summarised in the following Proposition.

Proposition 3. (i) Under Assumptions 2A or 2B and as n→∞ we have ĵn
p→ j0 ∈ I∗ for

q ≥ 1. (ii) Under Assumptions 2C and as n→∞ we have ĵn
p→ j0 ∈ I∗1 ∪ I∗2 .

When the DGP consists solely of a single predictor (stationary or persistent), part (i) of

Proposition 3 implies that ĵn will be consistent for that true predictor asymptotically. When
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there are multiple predictors of the same type the same result implies that ĵn remains

consistent for one of the q > 1 active predictors i.e. ĵn is consistent for one of the true

components in I∗. Part (ii) of Proposition 3 relates to a scenario with mixed active predictors

and states that in such a mixed setting ĵn will continue to point to one of the true predictors

which may come from any of the two sets.

Using the results provided in the proof of Proposition 3 it is useful to illustrate the mixed

predictor scenario via a simple example of a predictive regression with two active predictors,

say yt+1 = βanxat + βbnxbt + ut+1 with xat ∈ I∗1 , xbt ∈ I∗2 and as before βan = β∗a/n
1/4 and

βbn = β∗b /n
(1+2α)/4. Proposition 3(ii) clearly applies and implies that ĵn will asymptotically

point to either xat or xbt. From (53) and (55) in the appendix, we have that ĵn will

asymptotically point to xbt (the persistent predictor) if

(β∗b )2 >
E[x2

1t]
(σ2

vb
/2cb)

(β∗a)2 (22)

and to xat otherwise. It is now interesting to observe from (22) that ĵn is expected to pick xbt
when the squared slope associated with this predictor exceeds the scaled slope of xat with the

scaling factor given by the ratio of the variances of the two predictors. As the ratio of these

variances is likely to be small due the higher persistence of xbt the procedure is also more

likely to identify the persistent predictor unless the slope associated with xat is particularly

large relative to that of xbt.

5. Experimental Properties

This section aims to document the empirical properties of our proposed test as well as

the ability of ĵn to detect relevant predictors in finite samples. In a first instance we focus on

the size and power properties of Dn(µ0) which we then follow with experiments documenting

the correct decision frequencies associated with ĵn.

Before proceeding with our experimental design however it is important to revisit the

practical implementation of Dn(µ0) which requires imposing a suitable choice for µ0 and a

suitable estimator for ω2(µ0) as defined in (6). We conduct our size experiments across a
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variety of choices for µ0 covering the (0, 1) \ {1/2} interval with all our results showing strong

robustness to alternative magnitudes of µ0 when it comes to size related outcomes. However,

specific choices of µ0 do play an important role when it comes to the power properties of

Dn(µ0) as also highlighted in our formal local power analysis. Our simulation based results

confirm that magnitudes of µ0 in the vicinity of 0.5 lead to the best power outcomes (e.g.

µ0 = 0.4) with good size control.

A second issue related to the the practical implementation of Dn(µ0) has to do with a

suitable choice for an estimator of ω2(µ0). As we wish to explicitly isolate the properties

of our one predictor at a time method in what follows we abstract from additional layers

of complications and contaminations related to the quality of the estimator of ω2(µ0) used

to evaluate Dn(µ0). For this reason we conduct our experiments in the simplest possible

conditionally homoskedastic setting and use

ω̂2(µ0) = (1− 2µ0)2

µ0(1− µ0)

∑n−1
t=k0(û2

t+1 − σ̂2
u)2

n− k0
(23)

as an estimator of ω2(µ0). The estimator in (23) does leave the choice of σ̂2
u open in the sense

that we could use the ût’s from either the benchmark model or the larger model. Although

this is asymptotically immaterial when it comes to the large sample properties of Dn(µ0) we

expect that the use of residuals obtained from the larger model will result in better finite

sample power properties as it is commonly the case for test statistics such as CUSUM and

CUSUMSQ. This is the option we also adopt in what follows.

Finally, in the context of our size and power experiments we also consider a modification to

Dn(µ0) designed to enhance its power properties without affecting its null limiting distribution.

Our proposed approach is in the spirit of Fan, Liao and Yao (2015) and involves augmenting

our test statistic with a quantity that converges to 0 under the null while diverging under

the alternative of at least one active predictor. Consider for instance the quantity dnj =∑n−1
t=k0(ê0,t+1|t− êj,t+1|t)2/(n−k0). Within our nested context and under the benchmark model

we clearly have dnj = Op(n−1/2) ∀j = 1, . . . , p while under the alternative whereby the true

model contains at least one active predictor d̃nj ≡
√
n− k0 dnj/ω̂(µ0) = Op(1) ∀j = 1, . . . , p

with the associated limiting random variable being strictly positive. This prompts us to
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propose the following augmentation to Dn(m0)

Ddn(m0) = 1
p

p∑
j=1

(Dn(m0, j) + d̃nj) (24)

which we expect to have a favourable impact on power while being size neutral asymptotically

and whose properties we explore via the simulations below.

5.1. Finite Sample Size and Power Properties of Dn(m0) and Ddn(m0)

Empirical Size

For our size experiments the DGP is given by the benchmark specification in (2) where

we set θ0 = 0 with no loss of generality. The pool of p predictors is taken to follow the

VAR(1) process xt = Φxt−1 + vt with vt ∼ N(0,Σvv) which we parameterise in ways

that can distinguish between weakly or uncorrelated features and more strongly correlated

features. In what follows we also let Ω denote the covariance matrix of (ut,vt)′ and write

Ω = {σ2
u,σ

′
uv}, {σuv,Σvv}}. Our experiments involving either purely stationary or purely

persistent predictors are conducted across the following three alternative configurations of Ω

(i) Ω0: σ2
u = 1,σuv = 0p×1,Σvv = Ip,

(ii) Ω1: σ2
u = 1,σuv = 0p×1,Σvv = [0.5|i−j|]1≤j≤p,

(iii) Ω2: σ2
u = 1,σuv = (−0.5)|1−j|,Σvv = [0.5|i−j|]1≤j≤p

and two alternative scenarios on the persistence properties of the predictors, with

(a) Φ = 0.50 Ip

(b) Φ = 0.95 Ip.

Accordingly we label these size related DGPs as DGP-S(a-i)-(a-iii) and DGP-S(b-i)-(b-iii).

For the scenario corresponding to a mixed pool of predictors we set Φ = diag(Φ1,Φ2)

with Φ1 = 0.50 Ip1 and Φ2 = 0.95 Ip2 for p2 = p− p1. The corresponding covariance matrix,

say Ω3, is here formulated as Ω3 = {{1,0′,0′}, {0p1×1,Σv1v1 ,0p1×p2}, {0p2×p1 ,0p2×p1 ,Σv2v2}}
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with Σv1v1 = [0.5|i−j|] for i, j = 1, . . . , p1 and Σv2v2 = [0.5|i′−j′|] for i′, j′ = 1, . . . , p2. We label

this latter DGP as DGP-S(c).

Empirical size outcomes are obtained for p ∈ {10, 20}, µ0 ∈ {0.3, 0.4} and samples of

size n = 500 with π0 = 0.25 used as the starting point for generating recursive forecasts i.e.

n− k0 = 375. Results across the two test statistics and all of the above parameterisations

are collected in Table 1 below.

We can first highlight the fact that the one predictor at a time approach based on Dn(µ0)

and Ddn(µ0) appears to be robust to the size of the predictor pool with almost identical

size estimates obtained across p = 10 and p = 20. Outcomes are also clearly robust to

alternative predictor dynamics and their persistence characteristics as expected from our

result in Proposition 1. We can note for instance very little variability in size outcomes across

the seven DGPs that span various persistence characteristics.

From the size estimates based on Dn(µ0) we note that the statistic appears to be undersized

under µ0 = 0.4 while maintaining good size control under µ0 = 0.3. More importantly, its

augmented version Ddn(µ0) appears to offer good size control across all configurations and

chosen magnitudes of µ0. Our earlier local power analysis established that setting µ0 in the

vicinity of 0.5 should result in more favourable power outcomes relative to other magnitudes in

(0, 1). The size estimates of Table 1 suggest potential size-power trade-offs (albeit moderate)

when one proceeds this way and uses Dn(µ0 = 0.4) for instance. Focusing on Ddn(µ0) on

the other hand, this augmented test statistic appears to offer excellent size control even for

µ0 = 0.4 and such a choice comes across as a good compromise between size and power. Our

power experiments below provide extensive support for this intuition.

Empirical Power

We consider predictive regressions with either one or two active predictors parameterised

as

yt+1 = βanxa,t + βbnxb,t + ut+1 (25)
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Table 1: Empirical Size
DGP-S a(i) a(ii) a(iii) b(i) b(ii) b(iii) c

p = 10
Dn(µ0 = 0.3) 0.090 0.092 0.091 0.086 0.086 0.086 0.089
Ddn(µ0 = 0.3) 0.113 0.111 0.111 0.111 0.112 0.111 0.112
Dn(µ0 = 0.4) 0.062 0.061 0.062 0.056 0.056 0.056 0.057
Ddn(µ0 = 0.4) 0.105 0.105 0.105 0.106 0.109 0.108 0.105

p = 20
Dn(µ0 = 0.3) 0.090 0.091 0.091 0.086 0.086 0.086 0.088
Ddn(µ0 = 0.3) 0.109 0.108 0.109 0.110 0.110 0.109 0.106
Dn(µ0 = 0.4) 0.071 0.071 0.071 0.067 0.066 0.064 0.067
Ddn(µ0 = 0.4) 0.107 0.111 0.109 0.113 0.116 0.115 0.115

with βan = β∗a/n
0.25, βbn = β∗b /n

0.675 and the following three scenarios

(i) Φ = 0.50 Ip, β∗a ∈ {1, 2, 3, 4, 5}, β∗b = 0 and Ω = Ω1, xat ∈ {x1t, . . . , xpt}, xat = x1t

(ii) Φ = 0.95 Ip, β∗a = 0, β∗b ∈ {5, 6, 7, 8, 9} and Ω = Ω1, xbt ∈ {x1t, . . . , xpt}, xbt = x1t

(iii) Φ1 = 0.50 Ip1 , Φ2 = 0.95 Ip−p1 , xat ∈ {x1,t, . . . , xp1t}, xbt ∈ {xp1+1,t, . . . , xp,t},

(β∗a, β∗b ) ∈ ({1, 2, 3, 4, 5}, {5, 6, 7, 8, 9}) and Ω = Ω3, xat = x1t, xbt = xp1+1,t,

which we label as DGP-P(i)-(iii). It is also useful to point out that our chosen slope parame-

terisations translate into βan ∈ {0.211, 0.423, 0.634, 0.846, 1.057} for the stationary predictors

and βbn ∈ {0.075, 0.090, 0.106, 0.121, 0.136} for the persistent predictors, highlighting the

point that power is evaluated as the DGP moves further away from the null.

Here DGP-P(i) corresponds to a setting with a single active stationary predictor that

belongs to the pool of p stationary predictors. DGP-P(ii) considers the case of a single

active predictor that is persistent and belongs to the pool of p persistent predictors. Finally,

DGP-P(iii) considers the case of two active predictors. The first one belongs to the pool of

p1 stationary predictors and the second one belongs to the pool of p2 = p − p1 persistent

predictors. Note also that for notational convenience and no loss of generality we have

taken the active predictor to be x1t in cases (i) and (ii) and the two active predictors to be

(x1t, xp1+1,t) in case (iii). Results for these experiments are presented in Table 2 below.
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Table 2: Empirical Power
p=10 p=20

DGP-P(i) DGP-P(i)
βa,n 0.211 0.423 0.634 0.846 1.057 0.211 0.423 0.634 0.846 1.057

Dn(µ0 = 0.3) 0.147 0.348 0.730 0.953 0.997 0.108 0.190 0.362 0.611 0.848
Ddn(µ0 = 0.3) 0.250 0.717 0.989 1.000 1.000 0.161 0.407 0.747 0.972 0.998
Dn(µ0 = 0.4) 0.189 0.682 0.987 1.000 1.000 0.113 0.331 0.714 0.965 1.000
Ddn(µ0 = 0.4) 0.447 0.980 1.000 1.000 1.000 0.250 0.760 0.989 1.000 1.000

DGP-P(ii) DGP-P(ii)
βb,n 0.075 0.090 0.106 0.121 0.136 0.075 0.090 0.106 0.121 0.136

Dn(µ0 = 0.3) 0.142 0.162 0.220 0.252 0.303 0.118 0.134 0.138 0.171 0.217
Ddn(µ0 = 0.3) 0.264 0.342 0.445 0.539 0.608 0.190 0.255 0.272 0.341 0.410
Dn(µ0 = 0.4) 0.188 0.251 0.331 0.426 0.520 0.115 0.165 0.168 0.233 0.312
Ddn(µ0 = 0.4) 0.472 0.635 0.742 0.835 0.901 0.316 0.440 0.516 0.613 0.719

βb,n 0.136 0.151 0.166 0.181 0.196 0.136 0.151 0.166 0.181 0.196

Dn(µ0 = 0.3) 0.303 0.354 0.414 0.477 0.493 0.217 0.246 0.248 0.290 0.344
Ddn(µ0 = 0.3) 0.608 0.704 0.765 0.821 0.871 0.410 0.488 0.522 0.562 0.657
Dn(µ0 = 0.4) 0.520 0.618 0.679 0.754 0.805 0.312 0.381 0.401 0.462 0.541
Ddn(µ0 = 0.4) 0.901 0.947 0.974 0.988 0.992 0.719 0.804 0.848 0.900 0.932

DGP-P(iii) DGP-P(iii)
βa,n 0.211 0.423 0.634 0.846 1.057 0.211 0.423 0.634 0.846 1.057
βb,n 0.075 0.090 0.106 0.121 0.136 0.075 0.090 0.106 0.121 0.136

Dn(µ0 = 0.3) 0.200 0.423 0.729 0.931 0.994 0.130 0.242 0.374 0.576 0.780
Ddn(µ0 = 0.3) 0.400 0.801 0.990 1.000 1.000 0.240 0.510 0.779 0.957 0.996
Dn(µ0 = 0.4) 0.330 0.767 0.985 1.000 1.000 0.168 0.422 0.734 0.947 0.995
Ddn(µ0 = 0.4) 0.730 0.993 1.000 1.000 1.000 0.434 0.878 0.995 1.000 1.000
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The top panel of Table 2 presents power outcomes in a stationary context (case (i)). As

expected from our theoretical results power can be seen to increase towards 100% as βan
increases and we move further away from the null hypothesis. The DGP here contains a

single active predictor and our one at a time approach has been implemented using predictor

pools of size 10 and 20. Overall Ddn(µ0 = 0.4) based inferences are seen to provide excellent

power outcomes even under a sizeable number of predictors and very moderate signal to

noise ratios. Under βan = 0.423 for instance we note that Dn(µ0 = 0.4) and Ddn(µ0 = 0.4)

lead to power estimates of 68.2% and 98.0% respectively.

The middle panel of Table 2 considers the case of persistent predictors while the DGP

continues to be characterised by a single active predictor. For this scenario we provide a more

detailed range of βbn magnitudes which help highlight the favourable impact that persistence

has on power. For comparable departures from the null we can indeed observe substantially

better power outcomes. Under stationarity and βan = 0.423 for instance Dn(µ0 = 0.4) led

to an empirical power of 98% while in the persistent setting such power magnitudes are

achieved for substantially smaller departures from the null. The bottom panel of Table 2

considers the case of two active predictors with the first one being stationary and the second

one persistent. We continue to note the excellent performance of both Dn(µ0 = 0.4) and

Ddn(µ0 = 0.4) across most parameterisations. Both test statistics do appear to lose power as

p is allowed to increase however. This feature is not surprising as it follows directly from our

theoretical analyses in Propositions 2A-2C. Nevertheless it is useful to point out that the

drop in power of Ddn(µ0 = 0.4) is considerably more moderate (e.g. dropping from 99.3% to

87.8% under (βan, βbn) = (0.423, 0.090) and as we double the pool of predictors).

5.2. Finite Sample Properties of ĵ

In this last set of experiments our goal is to illustrate the result in Proposition 3 by

documenting the behaviour of ĵn as n is allowed to grow. For this purpose we focus

on DGP-P(iii) that contains two mixed predictors and evaluate the behaviour of ĵn for

a given slope configuration (βan, βbn) as n increases. More specifically, we proceed with

(βan, βbn) ∈ {(0.423, 0.090), (0.423, 0.196)} and track ĵn across n ∈ {150, 250, 500}. We

operate under p = 10 with the active stationary predictor being given by xat ≡ x1t and the
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persistent active predictor by xbt ≡ x6t. The pool of p=10 predictors consists of 5 stationary

and 5 persistent components so that according to Proposition 3(ii) we expect to observe

ĵn
p→ j0 ∈ {1, 6}.

Under (βan, βbn) = (0.423, 0.090) we note that the slope associated with the stationary

predictor is substantially larger than that of the persistent predictor. Based on our analysis in

(22) we expect that under this parameterisation ĵn is likely to point to 1 more often than to 6.

For (βan, βbn) = (0.423, 0.196) the slope associated with the stationary predictor continues to

dominate that of xbt = x6t. However as x6t is more persistent it is now possible that ĵn may

point to 6 more often. These conjectures are confirmed by the empirical outcomes presented

in Table 3 below.

Under (βan, βbn) = (0.423, 0.090), ĵn points to x1t close to 100% of the times. We can also

observe that the correct selection frequencies increase with n as expected from our result in

Proposition 3. Within this parameterisation the large magnitude of the slope of x1t makes it

a dominant predictor that gets uniquely picked up by our proposed estimator.

Under (βan, βbn) = (0.423, 0.196) the right panel of Table 3 highlights the greater ambiguity

in outcomes due to the complex interplay between the magnitudes of the slopes and the

greater persistence associated with x6t. We note that as n increases the estimator increasingly

concentrates on the persistent predictor x6t.

Table 3: Selection frequencies based on ĵn
p = 10 ĵn = 1 ĵn = 6 ĵn /∈ {1, 6} ĵn = 1 ĵn = 6 ĵn /∈ {1, 6}

(βan, βbn) = (0.423, 0.090) (βan, βbn) = (0.423, 0.196)
n = 150
Dn(µ0 = 0.4) 0.910 0.064 0.026 0.400 0.586 0.014
Ddn(µ0 = 0.4) 0.919 0.059 0.022 0.380 0.604 0.016
n = 250
Dn(µ0 = 0.4) 0.961 0.036 0.003 0.290 0.708 0.002
Ddn(µ0 = 0.4) 0.964 0.034 0.002 0.280 0.720 0.000
n = 500
Dn(µ0 = 0.4) 0.984 0.016 0.000 0.157 0.843 0.000
Ddn(µ0 = 0.4) 0.989 0.011 0.000 0.150 0.850 0.000
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6. Conclusions

This paper proposed a method of detecting the presence of out-of-sample predictability in

the context of linear predictive regressions linking a response variable to one or more lagged

predictors. The main novelty here is the ability of our method to accommodate a large

number of predictors in a simple and computationally feasible way, including scenarios where

the number of candidate predictors exceeds the sample size. An additional feature that is

also particularly relevant to economic applications is the robustness of our proposed approach

to the dynamic properties of predictors which can be noisy, persistent or a mixture of both.

In numerous applications one is often interested in whether a particular variable is best

described as a mean independent process as opposed to being predictable with some predictor

belonging to a large information set. The researcher may not wish to take a stance on a

particular predictor while also being constrained by dimensionality problems. The test we

introduced in this paper is precisely designed to accommodate such environments by providing

a way of testing the null of no predictability versus the alternative of at at least one active

predictor drawn from a potentially large pool of candidate predictors. Although our primary

focus is not about uncovering a true model or achieving full model selection consistency our

framework does also allow us to consistently detect the key player or one of the key players

which can be valuable information in itself.

Various limitations of our setting can become the subject of interesting further research

and extensions. We conjecture for instance that it may be possible to consider an iterated

approach to uncovering key predictors by proceeding sequentially, one at a time, using our

estimator ĵn. Although conceptually straightforward such an extension would raise important

technical challenges similar to well known post model selection related inference problems.

A second potentially interesting extension would be to explore an alternative asymptotic

framework for the limiting behaviour of our Dn(µ0) statistic whereby µ0 would be made

sample size dependent in a way that allows it to approach the variance degeneracy boundary

of µ0 = 1/2 at some suitable rate.
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APPENDIX

PROOF OF PROPOSITION 1. Under the null hypothesis Assumption 1(iii) implies that for

given µ0 we can write (4) as

Dn(m0) =
√
n− k0

ω̂n(m0)


∑k0+m0−1

t=k0 (u2
t+1 − σ2

u)
m0

+
∑n−1
t=k0+m0(u2

t+1 − σ2
u)

n− k0 −m0

− 2
∑n−1
t=k0(u2

t+1 − σ2
u)

n− k0


+ op(1). (26)

It now follows directly from Assumption 1(i) and the continuous mapping theorem that

Dn(m0) d→ 1
ω(µ0)

φ(W (µ0)
µ0

+ W (1)−W (µ0)
1− µ0

)
− 2φW (1)

 . (27)

As we operate under a given µ0 it is now straightforward to observe that the variance of

the expression between brackets in (27) is given by φ2(1− 2µ0)2/(µ0(1− µ0)). As ω̂(µ0)
p→

ω(µ0) = φ(1− 2µ0)/
√
µ0(1− µ0) it follows from Slutsky’s theorem that Dn(µ0) d→ N(0, 1) as

required.

Before proceeding with the proofs of Propositions 2A, 2B and 2C we introduce a series

of intermediate results and further notation that will be used throughout. As we operate

under the hypothesis of at least one active predictor the true specifications under our three

scenarios A, B and C are understood to be given by

yt+1 =
∑
i∈I∗

(β∗i /n1/4) xit + ut+1 (28)

yt+1 =
∑
i∈I∗

(β∗i /n(1+2α)/4) xit + ut+1 (29)

and

yt+1 =
∑
i∈I∗1

(β∗i /n1/4) xit +
∑
i∈I∗2

(β∗i /n(1+2α)/4) xit + ut+1 (30)
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respectively. We also recall that the fitted specification involving one predictor at a time is

here given by

yt+1 = βjxjt + ut+1 j = 1, . . . , p (31)

so that using (28) and (29) we can write the recursively estimated slope parameters as

β̂jt =
∑
i∈I∗ β

∗
i (
∑t
s=1 xisxjs)

nγ
∑t
s=1 x

2
js

+
∑t
s=1 xjsus+1∑t
s=1 x

2
js

(32)

for γ = 1/4 under scenario A and γ = (1 + 2α)/4 under scenario B. For the mixed predictor

scenario C and using (30) we have instead

β̂jt =
∑
i∈I∗1 β

∗
i (
∑t
s=1 xisxjs)

nγ1
∑t
s=1 x

2
js

+
∑
i∈I∗2 β

∗
i (
∑t
s=1 xisxjs)

nγ2
∑t
s=1 x

2
js

+
∑t
s=1 xjsus+1∑t
s=1 x

2
js

. (33)

The specifications in (28)-(30) are the DGPs under the local alternatives of interest and the

β̂jt’s in (32)-(33) are the slope parameters estimated via recursive least squares when fitting

(31). As for notational convenience we have abstracted from the inclusion of an intercept in

the above specifications it is naturally understood that the forecasts under the null model will

be taken as ŷ0,t+1|t = 0 instead of ∑t
j=1 yj/t. This has no bearing on any of the asymptotic

results presented in Propositions 2A-2C. We can now write the forecast errors as

ê0,t+1|t = yt+1 − 0

êj,t+1|t = yt+1 − β̂jtxjt (34)

with yt+1 given by either (28), (29) or (30).

LEMMA A1. Under Assumption 2A, β̂jt as in (32) and ∀j ∈ {1, . . . , p} we have as n→∞

(i) supr∈[π0,1]

∣∣∣∣∣∣n1/4β̂j,[nr] −
1

E[x2
jt]
∑
i∈I∗ β

∗
iE[xitxjt]

∣∣∣∣∣∣ = op(1)

(ii) supk0≤t≤n

∣∣∣∣∣∣
∑t
`=k0 β̂j`xj`u`+1√

n− k0

∣∣∣∣∣∣ = op(1)
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(iii) supk0≤t≤n

∣∣∣∣∣∣
∑t
`=k0 β̂

2
j`x

2
j`√

n− k0
−
√

1− π0

E[x2
jt]

(∑
i∈I∗ β

∗
iE[xitxjt]

)2
∣∣∣∣∣∣ = op(1)

(iv) supk0≤t≤n

∣∣∣∣∣∣ β
∗
i

n1/4

∑t
`=k0 β̂j`xi`xj`√

n− k0
−
√

1− π0 β
∗
i

E[xitxjt]
E[x2

jt]
(∑i∈I∗ β

∗
iE[xitxjt])

∣∣∣∣∣∣ = op(1)

PROOF OF LEMMA A1. (i) From (32) we have

n1/4β̂jt =
∑
i∈I∗ β

∗
i (
∑t
s=1 xisxjs)∑t

s=1 x
2
js

+ n1/4
∑t
s=1 xjsus+1∑t
s=1 x

2
js

(35)

and

n1/4 sup
t
|β̂jt| ≤ sup

t

∣∣∣∣∣∣
∑
i∈I∗ β

∗
i (
∑t
s=1 xisxjs)∑t

s=1 x
2
js

∣∣∣∣∣∣+ n1/4 sup
t

∣∣∣∣∣∣
∑t
s=1 xjsus+1∑t
s=1 x

2
js

∣∣∣∣∣∣ . (36)

We can now note that

n1/4 sup
t

∣∣∣∣∣∣
∑t
s=1 xjsus+1∑t
s=1 x

2
js

∣∣∣∣∣∣ ≤ sup
t

∣∣∣∣∣∣ t∑t
s=1 x

2
js

∣∣∣∣∣∣ n
1/4

t
sup
t

∣∣∣∣∣∣
t∑

s=1
xjsus+1

∣∣∣∣∣∣ p→ 0 (37)

which follows directly from Assumption 2A(iii). This latter assumption now also leads to

sup
t

∣∣∣∣∣∣
∑
i∈I∗ β

∗
i (
∑t
s=1 xisxjs)∑t

s=1 x
2
js

−
∑
i∈I∗

β∗i
E[xitxjt]
E[x2

jt]

∣∣∣∣∣∣ = op(1) (38)

as required. (ii) We write

sup
k0≤t≤n

∣∣∣∣∣∣
∑t
`=k0 β̂j`xj`u`+1√

n− k0

∣∣∣∣∣∣ = 1√
1− π0

1
n1/4 sup

r∈[π0,1]

∣∣∣∣∣∣
∑[nr]
l=k0(n1/4β̂jt)xj`u`+1√

n

∣∣∣∣∣∣+ op(1). (39)

The result in part (i) combined with Assumption 2A(iii) allows us to appeal to Theorem 3.3

in Hansen (1993) from which the statement in (ii) follows. For part (iii) it is sufficient to

focus on

1√
n− k0

n−1∑
`=k0

β̂2
j`x

2
j` = 1√

1− π0

1
n

n∑
`=k0

(
√
nβ̂2

j`)x2
j` + o(1) (40)
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for which part (i) combined with Assumptions 2A(iii) ensures that

1√
n− k0

n−1∑
`=k0

β̂2
j`x

2
j`

p→
√

1− π0

∑
i∈I∗

β∗i
E[xitxjt]√
E[x2

jt]


2

. (41)

Part (iv) follows identical lines to part (iii) and its details are therefore omitted.

PROOF OF PROPOSITION 2A. Using yt+1 as in (28) in ê0,t+1|t = y2
t+1 from (34) we have

∑k0+m0−1
t=k0 ê2

0,t+1|t√
n− k0

=
∑k0+m0−1
t=k0 u2

t+1√
n− k0

+
∑k0+m0−1
t=k0 (∑i∈I∗ β

∗
i xit)2

√
n
√
n− k0

+ 2
n1/4

∑
i∈I∗

β∗i

∑k0+m0−1
t=k0 xitut+1√

n− k0


=
∑k0+m0−1
t=k0 u2

t+1√
n− k0

+
∑k0+m0−1
t=k0 (∑i∈I∗ β

∗
i xit)2

√
n
√
n− k0

+ op(1)

=
∑k0+m0−1
t=k0 u2

t+1√
n− k0

+ µ0
√

1− π0 E

∑
i∈I∗

β∗i xit

2

+ op(1) (42)

where we made repeated use of Assumption 2A(iii). Proceeding as above it also follows that

∑n−1
t=k0+m0 ê

2
0,t+1|t√

n− k0
=
∑n−1
t=k0+m0 u

2
t+1√

n− k0
+ (1− µ0)

√
1− π0 E

∑
i∈I∗

β∗i xit

2

+ op(1). (43)

Next, we focus on ê2
j,t+1|t given by (34) with yt+1 as in (28). We have

∑n−1
t=k0 ê

2
j,t+1|t√

n− k0
=
∑n−1
t=k0 u

2
t+1√

n− k0
+ 1√

n(n− k0)

n−1∑
t=k0

(
∑
i∈I∗

β∗i xit)2

+ 2
n1/4
√
n− k0

∑
i∈I∗

β∗i (
n−1∑
t=k0

xitut+1) + 1√
n− k0

n−1∑
t=k0

β̂2
jtx

2
jt

− 2
n1/4
√
n− k0

∑
i∈I∗

β∗i (
n−1∑
t=k0

β̂jtxjtxit)

− 2√
n− k0

n−1∑
t=k0

β̂jtxjtut+1. (44)
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Appealing to Assumption 2A(iii) and using Lemma A1(ii)-(iii) in (44) also allows us to write

∑n−1
t=k0 ê

2
j,t+1|t√

n− k0
=
∑n−1
t=k0 u

2
t+1√

n− k0
+
√

1− π0 E

∑
i∈I∗

β∗i xit

2

−
√

1− π0

E[x2
jt]

∑
i∈I∗

β∗iE[xitxjt]
2

+ op(1). (45)

Using (42)-(45) in Dn(m0, j) now gives

Dn(m0, j) = 1
ω(µ0)

n− k0

m0

∑k0+m0−1
t=k0 u2

t+1√
n− k0

+ n− k0

n− k0 −m0

∑n−1
t=k0+m0 u

2
t+1√

n− k0

− 2
∑n−1
t=k0 u

2
t+1√

n− k0

+ 2
√

1− π0
1

ω(µ0)

∑
i∈I∗

β∗i
E[xitxjt]√
E[x2

jt]


2

+ op(1) (46)

leading to the desired result.

LEMMA B1. Under Assumption 2B, β̂jt as in (32) and ∀j ∈ {1, . . . , p} we have as n→∞

(i) supr∈[π0,1]

∣∣∣∣∣∣n(1+2α)/4β̂j,[nr] −
∑
i∈I∗ β

∗
i

σvivj
σ2
vj

(
2cj

ci + cj

)∣∣∣∣∣∣ = op(1)

(ii) supk0≤t≤n

∣∣∣∣∣∣
∑t
`=k0 β̂j`xj`u`+1√

n− k0

∣∣∣∣∣∣ = op(1)

(iii) supk0≤t≤n

∣∣∣∣∣∣∣∣
∑t
`=k0 β̂

2
j`x

2
j`√

n− k0
−
√

1− π0

∑i∈I∗ β
∗
i

σvivj√
σ2
vj

√2cj
ci + cj


2
∣∣∣∣∣∣∣∣ = op(1),

(iv) supk0≤t≤n

∣∣∣∣∣∣ β∗i
n(1+2α)/4

∑t
`=k0 β̂j`xi`xj`√

n− k0
−
√

1− π0
2cjσvivj

(ci + cj)σ2
vj

(∑
i∈I∗ β

∗
i

σvivj
ci + cj

)∣∣∣∣∣∣ = op(1)

PROOF OF LEMMA B1. For all four cases the results follow in an identical manner to

Lemma A1(i)-(iv) with the use of Assumption 2A(iii) replaced with Assumption 2B(iii) and

n1/4 replaced with n(1+2α)/4.
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PROOF OF PROPOSITION 2B. Using yt+1 as in (29) in ê0,t+1|t = y2
t+1 from (34) we have

∑k0+m0−1
t=k0 ê2

0,t+1|t√
n− k0

=
∑k0+m0−1
t=k0 u2

t+1√
n− k0

+
∑k0+m0−1
t=k0 (∑i∈I∗ β

∗
i xit)2

n(1+2α)/2
√
n− k0

+ 2
n(1+2α)/4

∑
i∈I∗

β∗i

∑k0+m0−1
t=k0 xitut+1√

n− k0


=
∑k0+m0−1
t=k0 u2

t+1√
n− k0

+
∑k0+m0−1
t=k0 (∑i∈I∗ β

∗
i xit)2

n(1+2α)/2
√
n− k0

+ op(1) (47)

and

∑n−1
t=k0+m0 ê

2
0,t+1|t√

n− k0
=
∑n−1
t=k0+m0 u

2
t+1√

n− k0
+
∑n−1
t=k0+m0(∑i∈I∗ β

∗
i xit)2

n(1+2α)/2
√
n− k0

+ 2
n(1+2α)/4

∑
i∈I∗

β∗i

∑n−1
t=k0+m0 xitut+1√

n− k0


=
∑n−1
t=k0+m0 u

2
t+1√

n− k0
+
∑n−1
t=k0+m0(∑i∈I∗ β

∗
i xit)2

n(1+2α)/2
√
n− k0

+ op(1). (48)

Next, for ê2
j,t+1|t we have

∑n−1
t=k0 ê

2
j,t+1|t√

n− k0
=
∑n−1
t=k0 u

2
t+1√

n− k0
+ 1
n(1+2α)/2

√
(n− k0)

n−1∑
t=k0

(
∑
i∈I∗

β∗i xit)2

−
√

1− π0
2cj
σ2
vj

∑
i∈I∗

β∗i
σvivj
ci + cj

2

+ op(1). (49)

Using (47)-(49) in Dn(m0, j) and rearranging gives

Dn(m0, j) = 1
ω(µ0)

n− k0

m0

∑k0+m0−1
t=k0 u2

t+1√
n− k0

+ n− k0

n− k0 −m0

∑n−1
t=k0+m0 u

2
t+1√

n− k0

− 2
∑n−1
t=k0 u

2
t+1√

n− k0

+ 2
√

1− π0
1

ω(µ0)

∑
i∈I∗

β∗i
σvivj√
σ2
vj

√
2cj

(ci + cj)2


2

+ op(1) (50)

leading to the result in Proposition 2B.

LEMMA C1. Under Under Assumption 2C, β̂jt as in (33) and ∀j ∈ {1, . . . , p} we have as

n→∞
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(i) supr∈[π0,1]

∣∣∣∣∣∣n1/4β̂j,[nr] −
1

E[x2
jt]
∑
i∈I∗1 β

∗
iE[xitxjt]

∣∣∣∣∣∣ = op(1) for j ∈ I∗1

(ii) supr∈[π0,1]

∣∣∣∣∣∣n(1+2α)/4β̂j,[nr] −
∑
i∈I∗2 β

∗
i

σvivj
σ2
vj

(
2cj

ci + cj

)∣∣∣∣∣∣ = op(1) for j ∈ I∗2 .

PROOF OF LEMMA C1. (i) and (ii) are obtained following the same derivations as LEMMA

A1(i) and LEMMA B1(i) and details are therefore omitted. It is here useful to note the

distinct behaviour of the slope estimates obtained from the one predictor at a time regressions

depending on whether the fitted predictor belongs to I∗1 or I∗2 . This result is driven by

the well known phenomenon of asymptotic independence between persistent and stationary

predictors.

PROOF OF PROPOSITION 2C. The result in (21) is obtained following identical derivations

to (14) and (18) and details are therefore omitted.

PROOF OF PROPOSITION 3. For part (i) of Proposition 3 we focus solely on the case of a

single stationary active predictor in the DGP as the remaining scenarios follow identical lines.

It is useful to first note that the argmax of Dn(m0, j) will be equivalent to arg minj Sn(j)

where

Sn(j) =
∑n−1
t=k0(ê2

j,t+1|t − u2
t+1)√

n− k0
j = 1, . . . , p. (51)

The main result now follows by establishing that Sn(j) converges to a deterministic limit

that is uniquely minimized at j = j0. We continue to operate under the DGP given by (28)

with |I∗|= 1 (i.e. there is a single active predictor) and with no loss of generality we set that

predictor to be x1t. Recalling that êj,t+1|t = yt+1− β̂jtxjt and using Lemma A1 it immediately

follows that for j = j0 = 1 we have Sn(j = 1) p→ 0 while for j 6= j0 = 1 and using Lemma A1

we have

Sn(j) p→ (β∗1)2√1− π0E[x2
1t](1− ρ2

1j) ∀j 6= j0 (52)

which is strictly positive for any predictor different from x1t, thus leading to the required

result. (ii) For part (ii) of Proposition 3 we consider the DGP given by (30) and that consists
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of predictors with mixed persistence properties. We operate with a pool of p1 stationary

predictors and p−p1 ≡ p2 persistent predictors and with no loss of generality take j = 1, . . . , p1

to index the stationary predictors and j = p1 + 1, . . . , p the persistent predictors. We assume

two active predictors given by xat = x1t and xbt = xp1+1,t respectively. Using the results in

Lemmas A1, B1 and C1 and standard algebra gives

Sn(j = 1) p→
√

1− π0(β∗p1+1)2 σ
2
vp1+1

2cp1+1
(53)

Sn(j ∈ {2, . . . , p1})
p→
√

1− π0(β∗p1+1)2 σ
2
vp1+1

2cp1+1
+
√

1− π0(β∗1)2E[x2
1t](1− ρ2

1j) (54)

Sn(j = p1 + 1) p→
√

1− π0(β∗1)2E[x2
1t] (55)

Sn(j ∈ {p1 + 2, . . . , p}) p→
√

1− π0(β∗1)2E[x2
1t] +

√
1− π0(β∗p1+1)2 σ

2
vp1+1

2cp1+1

×

1− (σp1+1,j/(cp1+1 + cj))2

(σ2
p1+1/2cp1+1)(σ2

j/2cj)

 (56)

Comparing (53) with (54) and (55) with (56) implies that ĵn will asymptotically point to

either j = 1 or j = p1 + 1 (i.e. one of the two true predictors) as stated.
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